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Abstract. New Internet services like video on-demand, high definition
IPTV, high definition video conferences and some real time applications
have strong QoS requirements regarding losses, delay, jitter, etc. This
work addresses the challenge of guaranteeing quality of service (QoS)
in the Internet from a statistical point of view. Three lines of work are
proposed. The first one is about the estimation of the QoS parameters
from traffic traces (in the context of large deviation theory and effective
bandwidth). The second one, address the admission control problem from
results of the many sources and small buffer asymptotic. Finally, the third
line focuses on the estimation of QoS parameters seen by an application
based on end-to-end active measurements and statistical learning tools.
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1 Introduction and motivation

Internet services with high quality of service requirements like video on-demand,
high quality video conferences, high definition IPTV, telematic services with real
time requirements, etc. have grown at a smaller rate than the initially hoped. One
possible cause is the difficulty that exists in order to guarantee end-to-end quality
of service (QoS) in IP networks. Another possible cause is that the operators have
not deploy the different proposals developed during the last 15 years in order
to assure QoS (IntServ, DiffServ, etc.). These difficulties have been recently
increased by the heterogeneity of the access networks (xdsl, cablemodem, wifi,
wimax, 2G, 3G, mesh networks, etc.). End-to-end QoS leads to another issue; in
the general case, the end-to-end performance parameters can not be estimated
from the performance parameters of each individual router in the path. This
problem becomes even worst when the service operator offers its service over
multiple domains. In this case, the nodes of the path are under the administration
of different network operators.

An important issue in this context is the network admission control based
on end-to-end QoS. In a network of “premium” services this kind of admission
control allows the operator to control the end-to-end QoS. This issue is one of
the main motivations of this work.
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The focus of this work is on the estimation of the admission control region.
We look for a simple and efficient procedure for such estimation which can be
applied on line. A control admission tool using this estimation can decide if it
accepts or not a new service request.

The admission control mechanisms proposed in the literature are mainly
based on one link analysis [1]. We start analyzing admission control mechanisms
where the link analysis is based on Large Deviation Theory (LDT). In the anal-
ysis of networks performance using LDT [2] three main asymptotic regimes have
been described. These are the large buffer regime, the many sources asymptotic
and the many source and small buffer asymptotic. In the first case the conver-
gence rate to zero of some QoS parameter (e.g. loss probability) when the buffer
size goes to infinity is studied. In the second one it is also studied the conver-
gence rate to zero of the loss probability but when there are many independent
and identically distributed sources arriving at the link and the link capacity
and the buffer size both increases at the same rate as the number of sources.
In the third case, there are many independent sources, the link capacity grows
with the number of sources but the buffer size grows slower than the number of
sources. The large buffer asymptotic can be applied only in the access networks
where there are few sources and the buffer per source can be considered big.
However, the large buffer asymptotic can only be applied to one isolated link
because the output of that link does not verify the assumptions needed to apply
the asymptotic to the following link in the path.

In networks such as an internet backbone, the many sources asymptotic ap-
proach is more reasonable than the large buffer one. In fact, in this kind of
backbone, large numbers of flows from different sources arrive, the capacities
are high and the buffer sizes per source are in general small, because they are
intended to serve many sources but not many bursts at the same time.

We start analyzing in Section 2 a link based admission control. This mecha-
nism is based on the many sources asymptotic and in particular on the effective
bandwidth notion [3]. In this work we address an important issue for an on-line
admission control mechanism: the estimation of the QoS performance parameters
(particulary the buffer overflow probability) based on traffic traces.

Although we analyze the estimation of buffer overflow probability in the many
source asymptotic, the results of this work can also be applied to estimate the
large deviation rate function in the many sources and small buffer asymptotic
introduced by Ozturk et al.[4]. The small buffer asymptotic presents more inter-
esting results in order to analyze the end-to-end QoS and not only the QoS of
an isolated link. For a service provider the most interesting issue is about admis-
sion control mechanisms based on the end-to-end QoS. In Section 3 we analyze
end-to-end QoS applying the so called “fictitious network model”. This model
is based on the many sources and small buffer asymptotic. We will show that
this model allows simple and on-line estimations of end-to-end QoS parameters,
which will be in turn used to decide which flows can access the network.

Ozturk et al. find a useful way to analyze the overflow probability in a net-
work interior link and show that when the fictitious network model is applied,
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an overestimation is obtained. The fictitious network analysis gives then a sim-
ple and efficient yet conservative way to implement on-line admission control
mechanisms. However, the overestimation can translate into wasted network re-
sources. If a flow is admitted, its QoS is guaranteed but the link capacities can
be under-used. In this work we analyze in detail the fictitious network model
and we find conditions to assure that the fictitious network analysis in an in-
terior link gives the same overflow probability than the real network analysis,
being much simpler. We also find a method to bound the overestimation when
these conditions are not fulfilled. In addition, since no model is assumed for the
input traffic, we define an estimator of the end-to-end Loss ratio based on traffic
measurements. We show that this estimator is a good one, i.e. it is consistent
and verifies a Central Limit Theorem (CLT). These results allow us to define an
admission control mechanism based on the expected end-to-end Loss Ratio that
a flow traversing the network will obtain.

However, the many sources and small buffer asymptotic can only be applied
to analyze an end-to-end path in a backbone network. If the end points are end
users this asymptotic cannot be applied because the path goes through the back-
bone but also through the access network where the many sources asymptotic is
not valid. The research community does not have yet a model in order to analyze
an end-to-end path including the access and the backbone network. Therefore,
a different approach must be applied if the access control mechanism must take
a decision based on end-to-end QoS.

Some authors propose end-to-end admission control mechanism based on
active measurements [5]. In the third part of this tutorial, in Section 4, we
propose a different approach for an end-to-end admission control. This approach
is based on active measurements and statistical learning tools. We analyze the
application of an statistical learning approach in order to predict the quality of
service seen by an application.

Although the end-to-end admission control problem is our main motivation,
the different issues analyzed in this work can be applied to many other network
operation and management problems like for example to share resources in a
network, to continuous monitoring a Service Level Agreement (SLA), etc..

2 Effective bandwidth and link operation point

estimation

2.1 Introduction

One of the main issues in QoS admission control is the estimation of the resources
needed for guaranteed VBR communications, which cannot be the peak rate nor
the mean rate of the service. Indeed, the mean rate would be a too optimistic
estimation, that would cause frequent losses. On the other side, the peak rate
would be too pessimistic and would lead to resource waste.
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Effective bandwidth (EB) defined by F. Kelly in [3] is an useful and realistic
measure of channel occupancy. The EB is defined as follows:

α(s, t) =
1

st
log E

(
esXt

)
0 < s, t < ∞. (1)

where Xt is the total amount of work arriving from a source in the time interval
[0, t], which is supposed to be a stochastic process with stationary increments.
α(s, t) lies between the mean rate (for s → 0) and the peak rate (for s → ∞) of
the input process.

Parameters s and t are referred to as the space and time parameters re-
spectively. When solving for a specific performance guarantee, these parameters
depend not only on the source itself, but on the context on which this source is
acting. More specifically, s and t depend on the capacity, buffer size and schedul-
ing policy of the multiplexer, the QoS parameter to be achieved, and the actual
traffic mix (i.e. characteristics and number of other sources). The EB concept
can be applied to sources or to aggregated traffic, as we find in a network’s core
link.

Under the many sources asymptotic regime discussed in [6], where it is as-
sumed that, as the number of sources feeding a switch grows, the switch capacity
and buffer size increase proportionally, the EB is related with the stationary loss
probability through buffer overflow by the so called inf sup formula:

Γ = inf
t≥0

sup
s≥0

((B + Ct)s − Nstα(s, t))

where C is the link capacity, B is its buffer size and N the number of incoming
multiplexed sources of effective bandwidth α(s, t). If QN represents the sta-
tionary amount of work in the queue, the buffer overflow probability or loss
probability is approximately given by:

log P(QN > B) ≈ −Γ

We call s∗ and t∗ to the values of parameters s and t in which the inf sup is
attained. These values s∗ and t∗ are called the link’s operating point.

Therefore, a good estimation of s∗ and t∗ is useful for the network’s design,
for the Connection Admission Control (CAC) function, or for optimal operating.

We point out the need of a good estimation of the bandwidth in order to
optimize resource sharing.

In section 2.2 we show how the operating point of a link can be estimated
from its EB, the consistency of this estimation and its confidence interval. We
observe that other well known estimators fit the necessary conditions for the
validity of the theorem.

Analytical results are compared with numerical data in section 2.3. These
numerical data were obtained independently from the analytical work from sim-
ulations models that are also explained in this section. In this framework, over-
flow probability estimation is a key topic, which makes necessary EB and link’s
operating point estimation.
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2.2 Estimation

Estimating the operating point of a link, as defined in section 2.1 is closely
related with its defining equation which we rewrite here on a per source basis:

γ = inf
t≥0

sup
s≥0

((b + ct)s − stα(s, t)) (2)

where γ is the asymptotic decay rate of the overflow probability as the number
of sources increases, c and b are the link’s capacity and buffer size per source
and α(s, t) the effective bandwidth function (equation 1). With the present nota-
tion, stationary overflow probability in a switch multiplexing N sources, having
capacity C = Nc and buffer size B = Nb verifies:

lim
N→∞

1

N
log P (QN > B) = −γ (3)

In general, the effective bandwidth function α(s, t) is unknown, and shall
be estimated from measured traffic traces. The problem is how to estimate the
moment generating function Λ(s, t) = E

(
esXt

)
of the incoming traffic process

Xt for each s and t.
Different approaches have been presented to solve this problem. One of them,

presented in [7] and [8] is to estimate the expectation E
(
esXt

)
as the time average

given by:

Λn(s, t) =
1

n

n∑

k=1

es(Xkt−X(k−1)t) (4)

which is valid if the process increments are stationary and satisfy any weak
dependence hypothesis that guarantees ergodicity. To estimate Λ(s, t) a traffic
trace of length T = nt is needed. We can construct an appropriate estimator of
the EB as αn(s, t) = 1

st log(Λn(s, t)).
When a model is available for incoming traffic, a parametric approach can

be taken. In the case of a Markov Fluid model, i.e. when the incoming process
is modulated by a continuous time Markov chain which dictates the rate of
incoming work, explicit computation can be made as shown by Kesidis et al.
in [9]. In this case, an explicit formula is given for Λ(s, t) and α(s, t) in terms
of the infinitesimal generator or Q-matrix of the Markov chain. In a previous
work of our group [10], and based on the maximum likelihood estimators of the
Q-matrix parameters presented in [11], an EB estimator and confidence intervals
are developed.

Having an estimator of the function α(s, t), it seems natural to estimate
γ, and the operating point s∗, t∗ substituting the function α(s, t) by αn(s, t) in
equation (2) and solving the remaining optimization problem. The output would
be some values of γn, s∗n and t∗n, and the question is under what conditions these
values are good estimators of the real γ, s∗ and t∗.

Therefore, we may discuss two different problems concerning estimation. The
first one is, given a “good” estimator αn(s, t) of α(s, t), find sufficient conditions



6 Pablo Belzarena and Maŕıa Simon

under which the estimators s∗n, t∗n and γ∗
n obtained by solving the optimization

problem:

γn = inf
t≥0

sup
s≥0

((b + ct)s − stαn(s, t)) (5)

are “good” estimators of the operating point s∗, t∗ and the overflow probability
decay rate γ of a link. This affirmation is not an obvious result because s∗ and t∗

are found from a non linear and implicit function. We remark that the reasoning
applied to s∗ and t∗ can be also applied to other parameters that are deduced
from the EB. Further in the article the parameters B and C are also studied.

The second problem is finding this good estimator of the EB and determining
whether the conditions are met, so that the operating point can be estimated
using equation (5).

The remaining part of the section addresses the first problem, where a com-
plete answer concerning consistency and Central Limit Theorem (CLT) proper-
ties of estimators is given by theorem 1, based on regularity conditions of the
EB function. At the end of the section we discuss the validity of the theorem
for some known estimators and in section 2.3 we compare our analytical results
with numerical ones.

Let us define:

g(s, t) = s(b + ct) − stα(s, t)

which can be rewritten in terms of Λ(s, t) = E
(
esXt

)
. We have that ∂

∂sg(s, t) = 0
if and only if:

∂

∂s
g(s, t) = b + ct −

∂
∂sΛ(s, t)

Λ(s, t)
= 0 (6)

Assuming that for each t there exists s(t) such that, ∂
∂sg(s(t), t) = 0, it is easy

to show that sups≥0 g(s, t) = g(s(t), t) because g(s, t) is convex as a function of
s. In that case, γ = inft≥0 g(s(t), t), and:

∂

∂t
g(s(t), t) =

∂

∂s
g(s(t), t)ṡ(t) +

∂

∂t
g(s, t)

∣∣∣∣
s=s(t)

If there exists t∗ such that: ∂
∂tg(s(t∗), t∗) = 0 and the infimum is attained, it

follows that: γ = g(s(t∗), t∗).
If we define s∗ = s(t∗), we have that γ = g(s∗, t∗) where:

∂

∂s
g(s∗, t∗) ṡ(t∗) +

∂

∂t
g(s∗, t∗) = 0 and

∂

∂s
g(s∗, t∗) = 0

and then we have the relations:

∂

∂s
g(s∗, t∗) =

∂

∂t
g(s∗, t∗) = 0 (7)

Since:
∂

∂t
g(s, t) = cs −

∂
∂tΛ(s, t)

Λ(s, t)
(8)
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it follows from (6), (7) and (8) that the operating point must satisfy the equa-
tions:

b + ct∗ −
∂
∂sΛ(s∗, t∗)

Λ(s∗, t∗)
= 0 and cs∗ −

∂
∂tΛ(s∗, t∗)

Λ(s∗, t∗)
= 0 (9)

If we make the additional assumptions that interchanging the order of the
differential and expectation operators is valid, and that Ẋt exists for almost
every t we can write:

∂

∂s
Λ(s, t) = E

(
Xte

sXt
) ∂

∂t
Λ(s, t) = E

(
sẊte

sXt

)
(10)

Replacing the expressions of (10) in equations (9) we deduce an alternative
expression for the solutions s∗ and t∗:

b + ct∗ − E
(
Xt∗e

s∗Xt∗
)

E (es∗Xt∗ )
= 0 and cs∗ −

E
(
s∗Ẋt∗e

s∗Xt∗

)

E (es∗Xt∗ )
= 0 (11)

Therefore, we can reformulate the optimization problem presented in (2). The
operating point of the link can be calculated solving the system of equations (9),
or (11) if the additional assumptions are valid. The first formulation, which is
more general, is the one used in the main result of this work, which follows:

Theorem 1. If Λn(s, t) is an estimator of Λ(s, t) such that both are C1 functions
and:

Λn(s, t) −→
n

Λ(s, t)
∂

∂s
Λn(s, t) −→

n

∂

∂s
Λ(s, t)

∂

∂t
Λn(s, t) −→

n

∂

∂t
Λ(s, t)

(12)
almost surely and uniformly over bounded intervals, and if we denote s∗n and t∗n
the solutions of:

b + ct∗n −
∂
∂sΛn(s∗n, t∗n)

Λn(s∗n, t∗n)
= 0 cs∗n −

∂
∂tΛn(s∗n, t∗n)

Λn(s∗n, t∗n)
= 0 (13)

then (s∗n, t∗n) are consistent estimators of (s∗, t∗). Moreover, if a functional Cen-
tral Limit Theorem (CLT) applies to Λn − Λ, i.e,

√
n (Λn(s, t) − Λ(s, t))

w
=⇒

n
G(s, t),

where G(s, t) is a continuous gaussian process, then:

√
n ((s∗n, t∗n) − (s, t))

w
=⇒

n
N(0, Σ) (14)

where N(0, Σ) is a centered bivariate normal distribution with covariance matrix
Σ.

Proof. See [12].
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Remark 1. The computation of Σ is not trivial. However, if replication is possible
(for instance by taking large traces of weak-dependent signals), the previous
result allows the estimation of Σ in terms of empirical covariances. Arguments
of this type are used in section 2.3.

Remark 2. Since the convergence assured by theorem 1 is uniform over bounded
intervals, it is also assured that γn given by:

γn = s∗n(b + ct∗n) − Λn(s∗n, t∗n)

inherits the properties of the s∗n and t∗n estimators. That is, γ = F (s∗, t∗, Λ)
where F is a differentiable function. Also, γn = F (s∗n, t∗n, Λn). Therefore, if the
estimator Λn verifies a functional CLT we have for γn:

√
n (γn − γ)

w
=⇒

n
N(0, σ2)

Remark 3. In a many source environment, expressions for the buffer size b and
the link capacity c obtained by Courcoubetis [7] are similar to the inf sup equa-
tion. Therefore, the reasoning used in the previous theorem extends consistency
and CLT results to b∗ and c∗. Also, confidence intervals for these design param-
eters can be constructed in this way.

We address now the second question posed at the beginning of the section. As
we can see, for the validity of theorem 1 it is necessary that the estimator Λn(s, t)
converge uniformly to the moment generating function over bounded intervals,
as well as its partial derivatives. These conditions are reasonably general, and
it can be verified that they are met by the estimator (4) presented in [7] and
[8], and by the estimator for Markov Fluid sources presented in [10]. In both
cases a CLT can be obtained so the CLT conclusion of the theorem is also valid.
It should be noticed that a consistent but non-smooth estimator can be used
with this procedure, if it is previously regularized by convolution with a suitable
kernel.

2.3 Simulation and numerical results

EB and operation point estimation. In order to validate the results obtained
in the previous section, we simulated traffic using a two state (ON-OFF) Markov
Fluid model. In that model, a continuous time Markov chain drives the process.
When the chain is in the ON state, the workload is produced at constant rate
h0, and when it is in the OFF state no workload is produced (h1 = 0). Denoting
by Q the Markov chain infinitesimal generator, by π, its invariant distribution,
and by H, the diagonal matrix with the rates hi in the diagonal. The effective
bandwidth for a source of this type is [9][3]:

α(s, t) =
1

st
log {π exp [(Q + Hs)t]1} (15)

where 1 is a column vector of ones.



The Search for QoS in Data Network: A Statistical Approach 9

In our simulations we generated three hundred traffic traces of length T
samples, with the following Q-matrix:

Q =

(
−0.02 0.02
0.1 −0.1

)

The effective bandwidth for this process calculated through equation (15).

For each traffic trace we estimated EB using the following procedure. We
divided the trace in blocks of length t and constructed the following sequence:

X̃k =
kt∑

i=(k−1)t

x(i) 1 ≤ k ≤ ⌊T/t⌋

where x(i) is the amount of traffic arrived between samples and ⌊c⌋ denotes the
largest integer less than or equal to c.

EB can then be estimated by the time average proposed in [7], [8] as

αn(s, t) =
1

st
log


 1

⌊T/t⌋

⌊T/t⌋∑

j=1

esX̃j


 (16)

where n = ⌊T/t⌋. This is merely an implementation of the time average estimator
in equation (4) based on a finite length traffic trace. When the values of t verify
that t ≪ T , the number of replications of the increment process within the trace
is good enough to get a good estimation.

In order to find the operating point (s∗,t∗) of the theoretical Markov model,
and its estimator (s∗n,t∗n) for each simulated trace, we solve the inf sup optimiza-
tion problem of equation (2). In our case α(s, t) will be the previous theoretical
equation (15) for the Markovian source or the αn(s, t) estimated for each trace.
The numerical solution has two parts. First, for a fixed t we find the s∗(t) that
maximize g(s, t) as a function of s. It can be shown that stα(s, t) is a convex
function of s. This convexity property is used to solve the previous optimiza-
tion problem, that is reduced to find the maximum difference between a convex
function and a linear function of s, and it can be done very efficiently. After the
s∗(t) is found for each t, it is necessary to minimize the function g(s∗(t), t) and
find t∗. For this second optimization problem, there are no general properties
that let us make the search algorithm efficient and a linear searching strategy is
used.

An important issue is to develop a confidence region for (s∗, t∗). We simulated
300 traces of length 100000(T) samples and constructed, for each simulated trace
indexed by i = 1, . . . ,K the corresponding estimator (s∗n(i), t∗n(i)). By theorem
1 the vector

√
n((s∗n, t∗n)− (s∗, t∗)) is asymptotically bivariate normal with (0, 0)

mean and covariance matrix Σ. We estimated the matrix Σ using the empirical
covariances of the observations {√n((s∗n(i), t∗n(i)) − (s∗(i), t∗(i)))}i=1,...,K given
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by:

ΣK =
n

K




∑K
i=1

(
s∗n(i) − s∗n

)2 ∑K
i=1

(
s∗n(i) − s∗n

) (
t∗n(i) − t∗n

)

∑K
i=1

(
s∗n(i) − s∗n

) (
t∗n(i) − t∗n

) ∑K
i=1

(
t∗n(i) − t∗n

)2




where s∗n = 1
K

∑K
i=1 s∗n(i) and t∗n = 1

K

∑K
i=1 t∗n(i).

Therefore, we can say that approximately: (s∗n, t∗n) ≈ N
(
(s∗, t∗) , 1

nΣK

)
, from

where a level α confidence region: Rα = (s∗n, t∗n)+
At

KB
(
0,
√

χ2
α(2)

)

√
n

, being AK the

matrix that verifies At
KAK = ΣK , while B(x, r) is the ball of center x and radius

r.
To verify our results, we calculated the theoretical operating point (s∗, t∗)

and simulated another 300 traces independent of those that were used to es-
timate ΣK . We constructed then the 95% confidence region. If the results are
right, approximately 95% of the times, (s∗, t∗) must fall inside that region, or
equivalently and easier to check, approximately 95% of the simulated (s∗n, t∗n)

must fall inside the region R = (s∗, t∗) + 1√
n
At

KB
(
0,

√
χ2

0.05(2)
)
. Numerical

results, plotted in figure 1 (left), verify that the confidence level is attained,
95.33% of the estimated values fall inside the predicted region.
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Fig. 1. Estimated operating points (left), γn and theoretical γ (right) and its confidence
regions

QoS parameters estimation. We estimate the link operating point in order to
estimate loss probability. As was said in section 2.2, if we have an EB estimator
that verifies the hypotheses of theorem 1, then

γn = inf
t

sup
s

((b + ct)s − stαn(s, t)) (17)

is a consistent estimator and has CLT properties. From this estimator loss prob-
ability could be approximated by

qn = Pn(QN > B) ≈ exp−Nγn (18)
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where QN is the queue size and N is the number of sources. Figure 1 (right)
shows the estimations of γn for 600 simulated traces, its theoretical value and its
confidence interval. Numerical results show that in this case 94.8% of the values
fall in the 95% confidence interval.

3 End-to-end QoS, the fictitious network analysis

3.1 Introduction

As we have explained in the previous section, using Large Deviations Theory
and in the many sources asymptotic Wischik [6] proves the following formula
(called inf sup formula) for the overflow probability:

log P(QN > B) ≈ − inf
t≥0

sup
s≥0

((B + Ct)s − Nstα(s, t))

where QN represents the stationary amount of work in the queue, C is the link
capacity, B is the buffer size and N is the number of incoming multiplexed
sources of effective bandwidth α(s, t).

Wischik also shows in [13] that in the many sources asymptotic regime the
aggregation of independent copies of a traffic source at the link output and the
aggregation of similar characteristics at the link input, have the same effective
bandwidth in the limit when the number of sources goes to infinity. This result
allows to evaluate the end to end performance of some kind of networks like “in-
tree” ones. Unfortunately this analysis can not be extended to networks with a
general topology.

A slightly different asymptotic with many sources and small buffer charac-
teristics was proposed by Ozturk, Mazumdar and Likhanov in [4]. They consider
an asymptotic regime defined by N traffic sources, link capacity increasing pro-

portionally with N but buffer size such that lim B(N)
N → 0. In their work they

calculate the rate function for the buffer overflow probability and also for the
end to end loss ratio. This last result can be used to evaluate the end to end
QoS performance in a network backbone in contrast with the Wischick result
explained before, where it is necessary to aggregate at each link N i.i.d. copies
of the previous output link.

Ozturk et al. also introduce the “fictitious network” model. The fictitious
network is a network with the same topology than the real one, but where each
flow aggregate goes to a link on its path without being affected by the upstream
links until that link. The fictitious network analysis is simpler and so, more ad-
equate to on-line performance evaluation and traffic engineering. Ozturk et al.
show that the fictitious network analysis overestimates the overflow probability.
In this work we analyze when, for an interior network link, the overflow proba-
bility calculated using the fictitious network is equal to the overflow probability
of the real network.

In the next section we summarize Ozturk et al. main results.
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3.2 Many sources and small buffer asymptotic performance model

Ozturk, Mazumdar and Likhanov work. Consider a network of L links
which is accessed by M types of independent traffic. Consider a discrete time
fluid FIFO model where traffic arrives at time t ∈ Z and is served immediately
if buffer is empty and is buffered otherwise. Each link k has capacity NCk and
buffer size Bk(N) where Bk(N)/N → 0 with N → ∞. Input traffic of type

m=1,...,M, denoted Xm,N is stationary and ergodic and has rate Xm,N
t at time

t (workload at time t of N sources of type m).

Let µN
m = E(Xm,N

0 )/N and Xm,N (t1, t2) =
t2∑

t=t1

Xm,N
t . We assume that

µN
m →

N→∞
µm and Xm,N (0, t)/N satisfies the following Large Deviation Prin-

ciple (LDP) with good rate function IXm

t (x):

− inf
x∈Γ o

IXm

t (x) ≤ lim inf
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
(19)

≤ lim sup
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
≤ − inf

x∈Γ
IXm

t (x) (20)

where Γ ⊂ R is a Borel set with interior Γ o and closure Γ and IXm

t (x) :
R → [0,∞) is a continuous mapping with compact level sets. We also assume
the following technical condition: ∀ m and a > µm,

lim inf
t→∞

IXm

t (at)

log t
> 0

Type m traffic has a fixed route without loops and its path is represented by
the vector km = (km

1 , ...., km
lm

), where km
i ∈ (1, .., L). The set Mk = {m : km

i =
k, 1 ≤ i ≤ lm} denotes the types of traffic that goes through link k. To guarantee
system stability it is assumed that

∑

m∈Mk

µm < Ck (21)

The main result of Ozturk et al. work is the following theorem.

Theorem 2. Let Xm,N
k,t be the rate of type m traffic at link k at time t. There

exist a continuous function gm
k : R

M → R relating the instantaneous input rate
at link k for traffic type m to all of the instantaneous external input traffic rates
such that:

Xm,N
k,0

N
= gm

k

(
X1,N

0

N
, ...,

XM,N
0

N

)
+ o(1) (22)

The buffer overflow probabilities are given by:
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lim
N→∞

1

N
log P (overflow in link k) = −Ik =

− inf

{
M∑

m=1

IXm

1 (xm) : x = (xm) ∈ R
M ,

M∑

m=1

gm
k (x) ≥ Ck

}
(23)

In (22), o(1) verifies that lim
N→∞

o(1) = 0 since Bk(N)
N →

N→∞
0. The function

gm
k (x) is constructed in the proof of the theorem. Ozturk et al. prove that the

continuous function relating the instantaneous input rate at link i for traffic m to
all of the instantaneous external input traffic rates is the same function relating
these variables in a no buffers network. The function relating the instantaneous
output rate at link i for traffic m to all of the instantaneous input traffic rates
at this link is:

fm
i (x,Ci) =

xmCi

max(
∑

j∈Mi

xj , Ci)
(24)

In a feed-forward network the function gm
k (x) can be written as composition of

the functions of type (24) in a recursive way. Using equation (24) the buffer
overflow probability can be calculated for any network link, by solving the opti-
mization problem of equation (23). We need to know the network topology, the
link capacities and, for each arrival traffic type m, the rate functions IXm

1 .
Ozturk et al. define also the total (end to end) loss ratio as the ratio between

the expected value of lost bits at all links along a route and the mean of input
traffic in bits, for stream m identified by Xm. With the previous definition they
find the following asymptotic for the loss ratio Lm,N :

lim
N→∞

1

N
log Lm,N = − min

k∈km
Ik (25)

The main problem of this approach is that the optimization problem of equa-
tion (23) could be very hard to solve for real-size networks. The calculation of
the function gm

k (x) is recursive and so, when there are many links it becomes
complex. In addition, the virtual paths can change during the network oper-
ation. Therefore, it is necessary to recalculate on-line the function gm

k (x). To
solve equation (23), it is also necessary to optimize a nonlinear function under
nonlinear constraints. In order to simplify this problem, Ozturk et al. introduce
the “fictitious network” concept, that is simpler and gives conservative results.
In the next section we find conditions to assure that there is no overestimation in
the calculus of the link overflow probability in the fictitious network analysis. We
also find a bound for the error (difference between the rate function calculated
for the real network and the fictitious one) in those cases where the previous
condition is not satisfied.

The aim of our work is to define an admission control mechanism. Such a
mechanism is simple a set of rules to accept or reject a flow that intend to access
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the network. This can be done by defining an acceptance region, i.e. which is the
set of flows that can access the network. In [4] an acceptance region based on
end-to-end QoS guarantees, is defined. This acceptance region is the traffic mix
that can flow through the network without QoS violation. Assume that Xm,N

is the sum of Nnm i.i.d. process. More formally, the acceptance region noted by
D is the mix or collection {nm}M

m=1 of sources which can be flowing through the
network while the QoS (loss ratio) for each class is met, that is:

D = {(nm),m = 1, ...,M : lim
N→∞

1

N
log Lm.N < −γm} with γm > 0 (26)

We will concentrate then in the estimation of this acceptance region. We aim
not only to do it in a efficient way but also in a simple one in order to apply it
on-line.

3.3 Fictitious network analysis

We analyze an interior network link k under the same assumptions that in Ozturk
et al. work. M is the set of traffic types that access the network and Mi is the
set of traffic types that go through link i. We suppose that the network is feed-
forward, this means that each traffic type has a fixed route without loops. In
the real network, the link k overflow probability large deviation function (or rate
function) is given by:

IR
k = inf

{
∑

i∈M
IXi

1 (xi) : x = (xi)i∈M,
∑

i∈M
gi

k(x) ≥ Ck

}
(27)

In the fictitious network this function is given by

IF
k = inf

{
∑

i∈Mk

IXi

1 (xi) : x = (xi)i∈Mk
,

∑

i∈Mk

xi ≥ Ck

}
(28)

In the following it is assumed that each traffic type is an aggregate of N i.i.d
sources. This implies that each rate function IXi

1 is convex and IXi

1 (µi) = 0 for
all i. Then, (27) and (28) are convex optimization problems under constraints.
The second one has the advantage that the constraints are linear and there are
well known fast methods to solve it. The functions IXi

1 are continuous, so we
solve the following problems corresponding to the real and fictitious network
respectively.

PR





min
∑

i∈M
IXi

1 (xi)

∑
i∈M

gi
k(x) ≥ Ck

PF





min
∑

i∈Mk

IXi

1 (xi)

∑
i∈Mk

xi ≥ Ck
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Definition 1. Consider two optimization problems

P1

{
min f1(x)
x ∈ D1

and P2

{
min f2(x)
x ∈ D2

P2 is called a relaxation of P1 if D1 ⊆ D2 and f2(x) ≤ f1(x), ∀x ∈ D1.

Proposition 1. PF is a relaxation of PR.

Proof. Since the functions IXi

1 are non negatives, it is clear that
∑

i∈Mk

IXi

1 (xi) ≤
∑

i∈M
IXi

1 (xi) ∀x = (xi)i∈M. Then, we have to prove that

{
x :

∑

i∈M
gi

k(x) ≥ Ck

}
⊆

{
x :

∑

i∈Mk

xi ≥ Ck

}

By definition, gi
k(x) = 0 ∀ i /∈ Mk and gi

k(x) ≤ xi ∀ i ∈ Mk (since gi
k can be

written as composition of functions of type (24)) then

∑

i∈M
gi

k(x) =
∑

i∈Mk

gi
k(x) ≤

∑

i∈Mk

xi

and therefore
∑

i∈Mk

gi
k(x) ≥ Ck, implies

∑
i∈Mk

xi ≥ Ck.

Remark 4. If an optimum of the fictitious problem PF verifies the real problem
PR constraints and the objective functions take the same value at this point,
then it is an optimum of the real problem too.

The following theorem gives conditions over the network to assure that link
k overflow probability rate function for the real and for the fictitious network
are equal (E = IR

k − IF
k = 0). Since the network is feed forward, it is possible

to establish an order between the links. We say that link i is “previous to” or
“less than” link j if for one path, link i is found before than link j in the flow
direction.

Theorem 3 (Sufficient Condition). If x̃ = (x̃i)i∈Mk
is optimum for PF , and

the following condition is verified for all links i less than k:

Ck −
∑

j∈Mk\Mi

µj ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k (29)

then x∗ defined by:

(x∗)i =

{
x̃i if i ∈ Mk

µi if i /∈ Mk

is optimum for PR.

Proof. See [14].
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Ci Cj Ck

X1

X2 X3 X4

Fig. 2.

Example 1. Consider a network like in figure 2. We analyze the overflow proba-
bility at link k.
If condition (29) is attained for link k, then E = IR

k − IF
k = 0. This condition is:





Ck − µ4 ≤ Ci − µ2

Ck − µ4 ≤ Cj − µ3

Sufficient condition in terms of available bandwidth.

Definition 2. For a traffic type m in a link j, it is defined the available band-
width ABWm

j as the difference between the link j capacity and the mean value
of the transmission rate of the other traffic types in j.

In terms of the previous definition, the theorem condition (29) assures that
the overflow probability rate function at link k on real and fictitious network
are the same if for all link j < k, and for all m traffic type in Mj ∩ Mk,
ABWm

j > ABWm
k . This condition is represented in figure 3 for a simple network

with two links.

X 1

X 2

X 3

C j C k

L ink  j L i n k  k

A B W k
A B W j

u 2
u 3

Fig. 3. Sufficient condition in terms of available bandwidth

Sufficient but not necessary condition. The theorem condition (29) is
sufficient to assure that the overflow probability rate function at link k on real
and fictitious networks are the same, but it is not a necessary condition. In fact,
if x̃ is optimum for the fictitious problem, and if x∗ defined as:

(x∗)i =

{
x̃i si i ∈ Mk

µi si i /∈ Mk
(30)

satisfies the real problem constraints, then x∗ is optimum for the real problem.
If x∗ verifies the following condition

∑

j∈Mi

(x∗)j ≤ Ci ∀ i < k (31)

it also verifies the real problem constraints and therefore is optimum for the real
problem.
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Therefore, in the case that the theorem condition is not fulfilled, if we found
x̃ optimum for the fictitious problem, then is easy to check if the rate functions
are equal or no. It is enough to check (31), where x∗ is defined in (30).

Error bound. Since the functions IXi

1 are non negatives, it is clear that the
rate function for the real problem is always greater than the fictitious one. Then
the error E = IR

k − IF
k is always non negative. This implies that the fictitious

network overestimates the overflow probability. We are interested in finding an
error bound for the overestimation of the fictitious analysis when conditions (29)
and (31) are not satisfied. A simple way to get this bound is to find a point x
which verifies the real problem constraints. In this case, we have that:

E = IR
k − IF

k ≤
∑

i∈M
IXi

1 (xi) −
∑

i∈Mk

IXi

1 (x̃i)

To assure that x verifies the real problem constraints, we have already seen that
it is enough to show that

∑
j∈Mi

xj ≤ Ci ∀ i < k and
∑

j∈Mk

xj ≥ Ck. Therefore,

we have to solve this inequalities system. It can be seen that the optimum of
the fictitious problem is in the boundary of the feasible region (

∑
i∈Mk

x̃i = Ck).

Since we are looking for a point near the optimum of the fictitious problem in
the sense that the error bound be as small as possible, we solve the following
system:





∑
j∈Mi

xj ≤ Ci ∀ i < k

∑
j∈Mk

xj = Ck

(32)

For the interesting cases, where there are losses at link k, this system always
has a solution. In the following an algorithm to find a solution of this system is
defined. We define the following point:

(x∗)j =

{
x̃j if j ∈ Mk

0 if j /∈ Mk

If x∗ verifies the conditions (32), we find a point that verifies the real problem

constraints. In some cases this is not useful because IXj

1 (0) = ∞ and we have

that the error bound is infinite. If P (Xj,N
1 ≤ 0) 6= 0, the function IXj

1 (0) < ∞
and a finite error bound is obtained. If x∗ is not solution for system (32), then
we redefine (by some small value) the coordinates where

∑
j∈Mi

xj > Ci in such

a way that
∑

j∈Mi

xj = Ci. The second equation must be verified too and, since

some coordinates were reduced, others coordinates have to increase to get the
total sum equal to Ck. Since the system is compatible, following this method,
a solution is always found. There is no guarantee that the solution given by
this method minimizes the error bound. However, this method has a very simple



18 Pablo Belzarena and Maŕıa Simon

implementation and gives reasonable error bounds as we can see in the numerical
examples of the last section.

3.4 End-to-End Loss Ratio Evaluation

In the previous section we found sufficient conditions to assure that results on
the fictitious and on the real network analysis coincide for an interior link. How-
ever, to define an admission control mechanism based on the end-to-end quality
of service, we must find a condition that guarantees that the end-to-end loss
ratio coincides for both networks. A natural answer is that the sufficient con-
dition found in theorem 3 must be verified for all links in the considered path.
However, as equation 25 suggest, we will show that this is not necessary since
it is enough that the sufficient condition is verified for the link with minimum
overflow probability rate function. This link must be then identified, and clearly
we aim to do it within the fictitious network context. We must then be sure that
the link with minimum rate function is the same for the real and the fictitious
network. In the sequel we address this two issues.

Proposition 2. Let kf be the link with minimum overflow probability rate func-
tion in the fictitious network for traffic type m: Ikf

= minki∈km Iki

If the conditions of theorem 3 are verified for link kf , the minimum overflow
probability rate function for traffic type m in the real network is also attained at
link kf .

Proof. See [14].

Proposition 3. Let k be the link where Ik = − min
k∈km

Im
k for the real network ,

i.e. the link where the minimum rate function of traffic type m is attained. Let Ik

be the rate function of the same link k for the fictitious network. If the sufficient
conditions of theorem 3 are verified for link k then Lm = L

m
, i.e. the end-to-end

loss ratio for real and fictitious network coincide.

Proof. See [14].

Remark 5. Previous propositions show that to evaluate the end-to-end loss ratio
Lm, it is enough that sufficient conditions of theorem 3 are verified by the link
k where the minimum rate function of traffic type m path is attained. In this
case, it results that Lm = L

m
= Ik. If sufficient conditions are not verified, then

the error bound obtained for the one link case can be applied.

3.5 Rate function estimation

In previous sections we show how to evaluate the end-to-end loos ratio in terms
of the rate function for the fictitious network. In order to implement an on-
line admission control based on this information, we must be able to accurately
estimate the corresponding rate function. In this section we analyze how this
estimation can be done using traffic traces of the input traffic.
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Let Xm,N
k (0, t) be the traffic type m workload at link k during the time

interval (0, t). We suppose that Xm,N
k is the sum of Nρm independent sources

of type m:

Xm,N
k (0, t) =

Nρm∑

i=1

X̃m,i
k (0, t)

In this case, the instantaneous rate of traffic type m at time t is given by:

Xm,N
k,t =

Nρm∑

i=1

X̃m,i
k,t

Given the stationarity of the traffic, we can replace the t-index by 0 and for
simplicity we omit the link index k. Then the instantaneous rate of total input
traffic at link k is:

ZN
0 =

∑

m∈Mk

Xm,N
0 =

∑

m∈Mk

Nρm∑

i=1

X̃m,i
0 =

N∑

j=1

Z̃j

where the variables Z̃j are independent and identically distributed (iid) random

variables. Each variable Z̃j has the distribution of a mix of the variables X̃m,i
0

(given by the proportions ρm of each traffic type m present at link k). This
means that instantaneous rate of input traffic at link k is the sum of N iid
random variables and Cramer theorem (see for example [6]) can be applied. The

variable
ZN

0

N verifies then a large deviation principle with rate function:

IZ
t (x) = sup

θ≥0
{θx − Λ(θ)} = sup

θ≥0
{θx − log E

(
eθZ̃1

)
} (33)

Given the rate function of the LDP, IZ
t (x), we can calculate IF

k :

IF
k = inf

{
IZ(z) : z ≥ Ck

}
= inf

z≥Ck

sup
θ≥0

{θz − Λ(θ)}

= sup
θ≥0

{θCk − Λ(θ)} (34)

Before solving the optimization problem 34, we must calculate or estimate Λ(θ).
If some model is assumed for the traffic, Λ(θ) can be calculated analytically. In
case no model is assumed as in our case, it must be estimated from measurements
i.e. from traffic traces. A possible and widely used approach [7, 8] is to estimate

the expectation as a temporal average of a given traffic trace {Z̃N (t)}t=1:n:

E
(
eθZ̃1

)
= E

(
eθ

ZN
0

N

)
≈ 1

n

n∑

t=1

eθZN (t)/N

Then Λ(θ) can be estimated by Λn(θ) = log
(

1
n

∑n
t=1 eθZN (t)/N

)
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Now, the rate function IF
k can be estimated as: IF

k,n = supθ≥0 {θCk − Λn(θ)}
However it remains unclear how good is this estimation. We will show that

if Λn(θ) is a good estimator of Λ(θ), then IF
k,n is also a good estimator for the

rate function IF
k .

Theorem 4. If Λn(θ) is an estimator of Λ(θ) such that both are C1 functions
and:

Λn(θ) −→
n

Λ(θ)
∂

∂θ
Λn(θ) −→

n

∂

∂θ
Λ(θ)

where the convergence is almost surely and uniformly over bounded intervals,
then IF

k,n is a consistent estimator of IF
k . Moreover, if a functional Central

Limit Theorem (CLT) applies to Λn−Λ, i.e,
√

n (Λn(θ) − Λ(θ))
w

=⇒
n

G(θ) , where

G(θ) is a continuous gaussian process, then:
√

n
(
IF
k,n − IF

k

)
w

=⇒
n

N(0, σ) , where

N(0, σ) is a centered normal distribution with variance σ.

Proof. See [14].

From the previous analysis we conclude that the rate function and then
the admission control region can be accurately estimated from traffic traces
in a simple way. As we claimed before, this can be used in the definition of an
admission control mechanism based in the end-to-end quality of service expected
by the traffic.

3.6 Numerical example

In this section we present a numerical example to validate our results. Additional
numerical examples can be found in [14].

There are many issues that could be evaluated to analyze the performance of
an admission control mechanism. However, since the overall performance of our
proposition depends on how accurate are the results obtained when the fictitious
network model is considered, we will concentrate here only in this aspect.

Example 2. Consider a network like in figure 4. We analyze the overflow proba-
bility at link k, assuming that Ci > Ck.

Ci Ck

X1

X2

Fig. 4. Example 2-Network topology

If condition (29) is attained for link k, then E = IR
k − IF

k = 0.
This condition is: Ck ≤ Ci − µ2.
If this condition is not satisfied, since x̃ = Ck is optimum for PF , we first

verify if x∗ = (Ck, µ2) is optimum for (PR). It is sufficient to show that x∗ verifies

the real problem constraints, i.e:

{
Ck + µ2 ≤ Ci

Ck = Ck
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If Ck + µ2 > Ci, we look for x∗ = (x∗
1, x

∗
2) that verifies

{
x∗

1 + x∗
2 ≤ Ci

x∗
1 = Ck

It is possible to choose x∗
1 = Ck and x∗

2 = Ci − Ck > 0 resulting in the
following error bound:

E ≤ I1(Ck) + I2(Ci − Ck) − I1(x̃1) = I2(Ci − Ck) (35)

In the following numerical example, we calculate the overflow probability rate
function for the real and fictitious network. Let Ci = 16kb/s per source and
Ck growing from 4 to 15.5kb/s per source. All traffic sources are on-off Markov
processes. For X1, the bit rate in the on state is 16kb/s, and average times are
0.5s in the on state and 1.5s in the off state. For X2, the bit rate in the on state
is 16kb/s, and average times are 1s in the on state and 1s in the off state. Since
µ1 = 4kb/s the stability condition is Ck > µ1 = 4kb/s. Using these values, the
sufficient condition (29) is, Ck ≤ 8kb/s. Figure 5 shows that while this condition
is satisfied both functions match, but after Ck ≥ 8kb/s they separate. Figure 5
also shows the overestimation error (E = IR

k − IF
k ) and the error bound (35)

described before. In this case, the error bound is exactly the error.
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Fig. 5. Example 2-Rate functions and error bound

4 End-to-end QoS prediction based on active

measurements and statistical learning

4.1 Introduction

The many sources and small buffer asymptotic analyzed in the previous section,
can only be applied to analyze an end-to-end path in a backbone network. If
the end points are end users this asymptotic cannot be applied because the path
goes through the backbone but also through the access network where the many
sources asymptotic is not valid. Therefore, a different approach must be applied
if the access control mechanism must take a decision based on end-to-end QoS.

In this section we analyze another approach based on measurements and
statistical learning in order to evaluate the end-to-end QoS parameters seen by
applications like a video on demand service.
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A possible measurement technique for such tool is to send the application
traffic (a video for example) and to measure the video QoS parameters at the
receiver. However, in many cases these application flows may have bandwidth
requirements that are not negligible compared with links capacity. This technique
could overload a congested link degrading the QoS perceived by clients using
the system. This QoS degradation can be tolerated during short periods but the
previous methodology cannot be used if the operator requires a permanent or
frequent network monitoring.

Other measurement techniques estimate the QoS parameters seen by an ap-
plication using light probe packets and without considering the particular char-
acteristics of the application. These probe packets do not overload the network
but this procedure assumes, for example, that the delay of a specific application
can be approximated by the probe packets delay. This previous assumption is
not always true because the QoS parameters depend on the statistical behavior
of each traffic. Therefore, in many cases, this kind of estimation yields inaccurate
results.

We propose a methodology that is an intermediate point between both ap-
proaches (to send a multimedia flow during long periods or to send light probe
packets during short periods) and provides an accurate estimation of QoS pa-
rameters seen by an application without overloading the network during long
periods.

Our goal is to learn the relation between the QoS parameters seen by an
application and the probe packets interarrival times statistic. This statistic char-
acterizes the network state. Once the model is learned, in order to predict the
QoS parameters, it is necessary only to send light probe packets.

More formally, we consider the regression model

Y = Φ(X) + ε (36)

where X, Y and ε are random variables. The random variable X is an esti-
mation of the state of network path, the response Y is the QoS parameter seen
by the application (delay, jitter, loss rate) and ε is a centered random variable
which represents an error, where ε and X are independent.

The previous formulation evidences two problems to be addressed in this
work. First, it is necessary to find an accurate estimation of the state of the
network path (the variable X). Second, it is necessary to estimate the function
Φ. We propose to estimate this function learning Φ from samples of the random
variables Y and X.

In order to estimate the state of the network path, we analyze a functional
random variable X that is the empirical distribution of the probe packets inter-
arrival times.

In order to estimate the function Φ we propose a statistical learning approach
based on the Nadaraya-Watson estimator. Nadaraya-Watson, first introduced
for real data [15], is used in this work mainly for functional regression [16].
We propose also an extension of theoretical results about the Nadaraya-Watson
functional estimator in a nonstationary context. This non-parametric approach
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is based on mapping data obtained from probe packets and any QoS parameter
seen by an application.

4.2 Problem formulation and proposed solution

We first consider the case of a path with a single link. The multilink case is
discussed later. We assume that the cross traffic, the link capacity and the buffer
size are unknown. The QoS parameter seen by the application is called Y and it
is a function of the link and traffic characteristics: Y = F (Xt, Vt, C,B)

where Xt is the cross traffic stochastic process, Vt is the video or other ap-
plication traffic stochastic process, C is the link capacity and B is the buffer
size. The link capacity C and the buffer size B are not known but it is assumed
that both have constant values during the monitoring process. As the goal is
to estimate a QoS parameter over the known process Vt (a video sequence for
example), Vt can be considered as an input to our problem. Taking into account
the previous considerations, we can say that Y = F (Xt). At the end of this
section we discuss these assumptions about C, B, and Vt.

The previous formulation pose two different problems that should be ad-
dressed. On one hand the estimation of the function that relates the cross traffic
and the QoS parameter and on the other the estimation of the cross traffic pro-
cess Xt. In order to take into account the multilink case, the last estimation is
what we call the estimation of the state of the network path.

In order to estimate the cross traffic we send probe packets from the user
equipment and measure the interarrival times. When two consecutive probe pack-
ets are queued in the same busy period at the link queue, as shown in figure 6
(left), the interarrival time is equal to Xi

C + K
C , where Xi is the amount of cross

traffic that arrived at the queue between probe packets i and i + 1, K is the
probe packets size and C is the link capacity. Then, during the busy periods,
the interarrival times are proportional to the cross traffic volume at least up to
a constant.

c t p p p p v i d e o

Fig. 6. Probe packets, probe video (video) and cross traffic (ct)

In the case where the packet i + 1 is queued after the packet i leaves the
queue, as we infer the cross traffic volume from the values tiout, we can conclude
that there is a cross traffic volume larger than the real one.

Baccelli et al. [17] present a rigorous probabilistic approach to active probing
methods for cross traffic estimation. They analyze the system identifiability and
show that different cross traffic types can give rise to the same sequence of
observed probe delays. Therefore, it is not always possible to determine the
distribution of any desired aspect of the cross traffic using probes. However, we
are not looking for an accurate estimator of the cross traffic. We are actually
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looking for an estimation of Y . Therefore, our interest is only in finding an
estimator that allow us to distinguish between possible states of the network.
This state is represented by a variable X that is a function of the probe packets
interarrival times.

We will estimate the function Φ in the regression model of equation 36 from
the observations of the pairs (X,Y ).

We divide the experiment in two phases. The first phase is called the learning
phase. In the learning phase we send a burst of probe packets. The probe packets
interdeparture time is a fixed value tin and the packets have a fixed size K.
Immediately after the probe packets we send a video sequence training sample
during a short period.

This procedure is repeated periodically sending the probe packets and the
video sequence alternatively as shown in figure 6 (right).

We build the variable Xj by measuring for each experiment j the interarrival
times of the probe packets burst. We also measure the QoS parameter Yj of the
corresponding video sequence and we have a pair (Xj , Yj) for each experiment.

The problem is how to estimate the function Φ : D → R by Φ̂ from these
observations, where X ∈ D and R is the real line.

The second phase is called the monitoring phase. During the monitoring
phase we send only the probe packets. We build the variable X in the same
way as in the learning phase. The QoS parameter Ŷ of the video sequence is
estimated using the function Φ̂ built in the learning phase by Ŷ = Φ̂(X). We
remark that this procedure does not load the network because it avoids sending
the video sequence during the monitoring phase.

Remark 6. The previous discussion is based on the single link case. We discuss
now some considerations about the multilink case. First, we must highlight that
the multilink case can be reduced to the single link one in many important esce-
narios. For example, when the application service is offered by a server located at
the ISP backbone (for example a video on demand server) and the user access is
a cellular link or an ADSL link. In these cases the bottleneck is normally located
at the access since the backbone is overprovisioned and it behaves as a single
link.

However, there are cases where the packets must wait in more than one
queue. In these cases the different queues modify the variable X that we use to
characterize the cross traffic. This means that we estimate a variable X where
the influence of all queues are accumulated. Nevertheless even in this case our
method will work fine if it is possible to distinguish with this variable between
different cross traffic processes observed in the path.

Remark 7. Another assumption was that the network path, the link capacities
and the buffer sizes are fixed. For link capacities and buffer sizes this assumption
is reasonable. However, the route between two points on the network can change.
This problem can be solved because it is possible to verify periodically the route
between two points using for example an application like trace-route. If a new
route is detected two circumstances can arise. If the system has learned infor-
mation about the new route, this information can be used for the estimation. If
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the system has not learned information about the new route it is necessary to
trigger a learning phase. Finally, we remark that in some cases a change in the
route does not affect the measures, for example when the bottleneck is in the
access link and the backbone is overprovisioned.

Remark 8. In this section we work with the assumption that the system is
trained with a unique kind of video (we assume that Vt is a fixed sequence).
This is not really an issue since the video QoS parameters depend on a set of
characteristics like coding, bit-rate, frame-rate and motion level. Therefore, we
can train the system with a set of video sequences that represent the different
classes of videos. Later the system will use the corresponding training samples
depending on the specific video that we want to monitor.

4.3 Statistical Learning, the Nadaraya-Watson estimator

In this section we discuss the mathematical tool selected to estimate Φ. We
present a brief review of current results about Nadaraya-Watson estimations.
We consider the regression model of equation 36. It is not assumed an explicit
form for the function Φ that relates the state of the network with the QoS
parameters, and it is not assumed either any particular probability distribution
for the random variables involved in the model. For this reason the model is
nonparametric.

There are several results on nonparametric regression for real random vari-
ables and for random variables in R

d since the works of Nadaraya and Wat-
son [18]. The Nadaraya-Watson estimator for the real case is

Φ̂n(x) =

n∑
i=1

YiK
(

||x−Xi||
hn

)

n∑
i=1

K
(

||x−Xi||
hn

) =

n∑
i=1

YiKn (Xi)

n∑
i=1

Kn (Xi)
(37)

K is a Kernel, which is a positive function that integrates one and Kn(Xi) =

K
(

||x−Xi||
hn

)
. hn is a sequence that tends to zero and it is called the kernel

bandwidth. This estimator is a weighted average of the samples Y1, . . . , Yn. The
weights are given by Kn (Xi) taking into account the distance between x and
each point of the sample X1, . . . ,Xn.

4.4 The empirical distribution of the probe packets interarrival
times

In this section we select for the variable X, the empirical distribution of the probe
packets interarrival times. This lead us to a functional regression model. In last
years some theoretical results on the functional Nadaraya-Watson estimator were
developed.

Why functional regression? We try to use as first option for the variable
X the mean and/or the variance of the probe packets interarrival times.
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In figure 7 (left) it can be observed the estimation of Y using these possible
choices for X. We develop many experiments with simulated data and with
data taken from operational networks and the estimations of Y are in all cases
inaccurate. It is not possible to estimate Y from the mean and the variance.

In figure 7 (right) we show four empirical distribution functions for simu-
lated data. Two of them were obtained in the presence of high cross traffic and
the others with low cross traffic. These empirical distribution functions capture
some network characteristics that allow us to distinguish between them. In the
next section we analyze the QoS estimation using these empirical distribution
functions.
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Fig. 7. Probe packets inter-arrival times

Functional Nadaraya-Watson estimator. For functional random vari-
ables, i.e. when the regressor X is a random function Ferraty et al. [16] intro-
duce a Nadaraya-Watson type estimator for Φ, defined by equation (37), where
the difference with the real case is that ‖ · ‖ is a seminorm on a functional space
D. One of the main issues in the functional approach is the “curse of dimen-
sionality”. The estimation Φ̂n(x) will be accurate if there are enough training
samples near x. This issue becomes crucial when the observations come from
an infinite dimensional vector space. This problem is addressed in the literature
and we refer for example to [16, 19] for different approaches. These works state
the convergence and the asymptotic distribution of the estimator for stationary
and weakly dependent (for example mixing) functional random variables.

Extensions to the nonstationary case. The cross traffic Xt on the In-
ternet is a dependent and non-stationary process. This topic has been studied
by many authors during last ten years. Zhang et al. [20] show that many pro-
cesses on the Internet (losses for example) can be well modelled as independent
and identical distributed (i.i.d.) random variables within a “change free region”,
where stationarity can be assumed. They describe the overall network behavior
as a series of piecewise-stationary intervals.

The nonstationarity has different causes. In all cases it is very important to
have estimators that can be used with nonstationary traffic.

As our data comes from Internet data traffic and it is typically nonstationary,
we extend previous results about functional nonparametric regression to this
case. Instead of considering random variables X equally distributed we consider
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a model introduced by Perera in [21] defined by Xi = ϕ(ξi, Zi) where ξi takes
values in a seminormed vector space with a seminorm ||·||, and Zi is a real random
variable that takes values in a finite set {z1, z2, . . . , zm}. For each k = 1, . . . ,m
the sequence (ϕ(ξi, zk))i≥1 is weakly dependent and equally distributed, but the
sequence Zi may be nonstationary as in [21]. The model represents a mixture
of weakly dependent stationary process, but the mixture is nonstationary and
dependent. Here ξ represents the usual variations of the traffic, and the variable
Z selects between different traffic regimes, and represents types of network traffic.

With this model two main theoretical issues appear: the convergence and
the asymptotic distribution of the estimator. We prove in [23] the almost sure
convergence of the estimator. The asymptotic distribution of the estimator for
this model is discussed in [22].

4.5 First application to simulated data

In this section we analyze the accuracy of estimations with functional Nadaraya-
Watson applied to simulated data. We analyze the estimation procedure by sim-
ulations using the ns-2 simulator software [24]. We simulate a link fed with a
video trace, a simulated cross traffic and probe packets. The cross traffic corre-
sponds to a model X = ϕ(ξ, Z). We have two Markovian ON-OFF sources and
Z is a random variable that takes values in {0, 1} selecting periodically between
this two sources. Fixing the value of Z we obtain stationary processes ϕ(ξ, 0)
and ϕ(ξ, 1).

The first source (source 0) generates Markovian ON-OFF traffic correspond-
ing to ϕ(ξ, 0) with average bit rate varying from 150 Mb/s to 450 Mb/s and
average time Ton in the ON state and Toff in the OFF state varying from 100
to 300 ms. The second source (source 1) generates Markovian ON-OFF traffic
corresponding to ϕ(ξ, 1) with average bit rate varying from 600 Mb/s to 900
Mb/s and average time Ton in the ON state and Toff in the OFF state varying
from 200 to 500 ms. For each period an independent random variable is sampled
to select the average bit rate. The payload of probe packets is 20 bytes and for
the video packets is 1400 bytes. The video sequence has an average bit rate of
480 kbps. The link capacity is 1.6 Mbps.

We send this cross traffic to a network link together with the probe packets
and the simulated video sequence. Each test consists on a probe packet burst
with fixed interdeparture time t∗in. After this burst we send a simulated video
traffic (a video traffic trace). For each test j we compute from the probe packets
the empirical distribution function of interarrival times Xj and we measure the
average delay Yj of the video packets.

The kernel is K(x) =

{
(x2 − 1)2 if x ∈ [−1, 1]
0 if x /∈ [−1, 1]

and we use the L1 norm for the distance between the empirical distribution
functions.

Concerning the time scales in our experiment the probe traffic is sent with
fixed time t between consecutive probe packets. The aim is to find some criterion
for choosing the best time scale in order to have accurate estimates. We consider
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different sequences of observations for a finite set of time scales {t1, t2, . . . , tr}.
In practice, as we send bursts of probe traffic with fixed time t between packets
we have observations with time scales in the set {t, 2t, . . . , rt}. Consider n + m

observations for each time scale
{

(X
tj

i , Y
tj

i ) : 1 6 i 6 n + m, 1 6 j 6 r
}

By dividing the sequence for a fixed time scale in two we can estimate the
function Φtj (for the time scale tj) by Φ̂

tj
n with the first n samples.

We then compute the difference σ2
tj

(n,m) = 1
m

m∑
i=1

(
Φ̂

tj
n (X

tj

n+i) − Y
tj

n+i

)2

,

that gives a measure of the estimator performance for the time scale tj . We
choose t∗n,m such that minimize σ2

tj
(n,m)

The kernel bandwidth is selected with a similar procedure.
In the simulations we have 360 values of (X,Y ) and we divide the sample in

two parts. The estimation of Φ is obtained from the last 300 samples and the
accuracy of the estimation is evaluated over the first 60 samples by comparing
Φn(Xj) with the measured average delay Yj for j = 1, . . . , 60. The relative error

in each point j is computed by
|Φ̂n(Xj)−Yj |

Yj
. Figure 8 show the estimated and the

measured value of the average delay, showing a good fitting.
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Fig. 8. Average delay estimation for simulated data.

4.6 Experimental Results.

In this section we show results of the procedures presented in this paper applied
to different operational networks. The experiments were done with a measure-
ment software tool specially developed for this purpose. In order to evaluate
the practical limits of this methodology we analyze different scenarios that have
different levels of complexity. In this paper we show only measurements using a
cellular access network.

We analyze a cellular connection used with a PC and an cellular modem. The
video sequences are downloaded from a server located at Facultad de Ingenieŕıa,
Universidad de la República. In this case the videos were codified at an average
rate of 96 kbps. First of all, we take the first 30 samples in order to select the
model. Next, we take the other 35 points not used to select the model in order
to validate the model.
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Figure 9 left and right show the video losses and its mean delay for the 35
points of the validation sample. The accuracy of the estimation is reasonable
taking into account the variability of the data.
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Fig. 9. Video packet losses (left) and mean delay (right) in the cellular case

5 Conclusions

This work addresses the challenge of guaranteeing quality of service (QoS) in the
Internet from a statistical point of view. First, we have discussed the end-to-end
QoS parameters estimations based models from the Large Deviation Theory.
Later, we have analyzed the estimation of QoS parameters seen by an applica-
tion based on end-to-end active measurements and statistical learning tools. We
have discussed how these methodologies can be applied to different parts of the
network in order to analyze its performance. We have obtained tight estimations
applying both methodologies.
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