
Optimum design of a banked memory with
power management

Leonardo Steinfeld∗, Marcus Ritt†, Fernando Silveira∗ Luigi Carro†,
∗Instituto de Ingenieria Electrica, Universidad de la Republica, Uruguay. {leo, silveira}@fing.edu.uy

†Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Brasil. {mrpritt,carro}@inf.ufrgs.br

Abstract—The ever-increasing complexity of appli-
cations of wireless sensor networks (WSNs) demands
for increasing memory size and larger memory size
increases the power drain. It is well known that SRAM
memory consumption can be reduced by employing a
banked structure, where unused banks are switched
into the low leakage retention mode. In this work,
we propose a detailed model for the energy saving
for equally sized banks with two power management
schemes: a best-oracle policy and a simple greedy pol-
icy. The model gives valuable insight into the particular
factors (coming from the application, the technology
and design decisions) critical for reaching the maximum
achievable energy saving. Thanks to our modeling, at
design time the optimum number of banks can be
estimated to reach more aggressive energy savings. The
memory content allocation and the power management
problem were solved by an integer linear program
formulation for a real wireless sensor network appli-
cation. Experimental results show an energy reduction
of 79.2% for a partition overhead of 1%.

I. Introduction

Wireless sensor networks (WSNs) embed computation
and sensing in the physical world, enabling an unprece-
dented spectrum of applications, ranging from environ-
mental monitoring to medicine. Nowadays, one of the
major issues of WSNs is reducing the energy consumption
without sacrificing the computational power to meet the
demands of ever-increasing complexity of applications. It
is widely accepted that efforts toward energy reduction
should target communication and processing [1].

In the last years, there has been a lot of research
dealing with processing power optimization resulting in
a variety of ultra-low power processors. These processors
pose a primary energy limitation for SRAM, where the
embedded SRAM consumes most of the total processor
power [2]. Partitioning a SRAM memory into multiple
banks that can be independently accessed reduces the
dynamic power consumption, and since only one bank is
active per access, the remaining idle banks can be put
into a low-leakage sleep state to also reduce the static
power. However, the power and area overhead due to the
extra wiring and duplication of address and control logic
prohibits an arbitrary fine partitioning into a large number
of small banks. Therefore, the final number of banks should
be carefully chosen at design time, taking into account
this partitioning overhead. The memory organization may

be limited to equally-sized banks, or it can allow any
bank size. Moreover, the strategy for the bank states
management may range from a greedy policy (as soon as
a bank memory is not being accessed it is put into low
leakage state) to the use of more sophisticated prediction
algorithms [3].

Memory banking has been applied for code and data
using scratch-pad and cache memories in applications with
high performance requirements (e.g. [4], [5]). We follow
the methodology employed in [5], in which a memory
access trace is used to solve an optimization problem for
allocating the application memory divided in blocks to
memory banks. However, to the best of our knowledge,
this is the first time banked memories are considered for
WSNs demonstrating its potential and resulting in the
contributions described in the next paragraph.

The main contributions of this work are the following.
We derive expressions for the energy saving for equally
sized banks based on a detailed model for two power
management strategies: best-oracle policy and a simple
greedy policy. The maximum achievable energy saving
is found and the limiting factors are clearly determined.
We show that it is possible to find a near optimum
number of banks at design time, provided that the energy
memory parameters are given, such as energy consumption
characteristics and the partition overhead as a function
of the number of banks. We show that using a banked
memory leads to aggressive energy reduction in WSN
applications. Results suggest that adopting an advanced
power management must be carefully evaluated, since the
best-oracle policy outperforms the greedy policy by a
narrow margin.

The remainder of this paper is organized as follows. In
Section II, we present a memory energy model, and in
Section III we derive expressions for the energy savings of a
banked memory. The experiments are presented in Section
IV and in Section V we discuss the results. Finally Section
VI contains concluding remarks and research directions.

II. Banked memory energy model

First, we present a general memory energy model consid-
ering dynamic and static energy consumption. Then, the
dependence of the energy on the memory size is modeled.
These models are the basis for deriving, in Section III,



Table I
Curve fitting parameters.

Eacc Eidl Eact unit
a 7.95× 10−5 3.28× 10−7 1.78× 10−6 nJ/byte
b 0.48 1.09 0.96 -

the energy consumption for the different memory organi-
zations and the different power management strategies.

A. Memory energy model

The static power consumed by a memory depends on
its actual state: ready or sleep. During the ready state
read or write cycles can be performed, but not in the sleep
state. Since the memory remains in one of these states for
a certain amount of cycles, the static energy consumed can
be expressed in terms of energy per cycle (Erdy and Eslp)
and number of cycles in each state. Each memory access,
performed during the ready state, consumes a certain
amount of energy (Eacc). The ready period during which
memory is accessed is usually called the active period,
and the total energy spent corresponds to the sum of the
access and the ready energy (Eact = Eacc +Erdy), i.e. the
dynamic and static energy. On the other hand, the ready
cycles without access are called idle cycles, consuming
only static energy (Eidl = Erdy). Each state transition
from sleep to active (i.e. the wake-up transition) has an
associated energy cost (Ewkp) and a latency, considered
later (Section III-D).

Based on the parameters defined above, the total energy
consumption of a memory can be defined as

E = Eactnact + Eidlnidl + Eslpnslp + Ewkpnwkp, (1)

where nact, nidl and nslp are the sum of the cycles in which
the memory is in active, idle and in sleep state respectively,
and nwkp is the number of times the memory switches from
sleep to active state.

B. Energy variation with memory size

In this subsection the energy variation with the memory
size is modeled in order to appropriately evaluate the
energy saving when a banked memory is used. The energy
values in Eq. (1) depend on the size of the memory, and
generally energy is considered simply proportional to it [4].
We investigated the dependence of the dynamic and static
power on the memory size using the CACTI tool [6]. We
obtained simulation results for a pure RAM memory, one
read/write port, 65 nm technology and a high performance
ITRS transistor type, varying its size from 512 B to 256
KB. CACTI outputs the dynamic and leakage energy,
corresponding to the access and idle of our model. The
active energy is directly computed (dynamic plus leakage).
The data for the access, idle and active energy were fitted
to a power function E(S) = aSb, where E(S) is the energy
per cycle and S the memory size. The resulting fitting
coefficients are presented in Table I and Figure 1 shows
the simulated data and the fitted curve.

Figure 1. Energy consumption per cycle as a function of the memory
size.

The energy dependence on the memory size can be
explained by examining the simulation output and analyz-
ing the relative contribution of each memory component.
The leakage energy in idle state grows nearly linearly,
because the memory-cell leakage represents about 70% of
the total energy and the number of memory-cells is directly
proportional to the memory size. The dynamic energy
varies approximately as the square root of the size. It could
be observed that between 70% and 80% of the dynamic
energy come from bit-lines, sense amps, and other resource
shared between memory-cells. The active energy, dynamic
plus leakage, finally ends up varying almost linearly with
size (exponent equal to one), because the leakage energy
becomes more important than the dynamic energy with
increasing size. Hereafter, for sake of simplicity, we will
work based on this approximation, that is, active energy
is proportional to the memory size.

Consider the remaining energy parameters in Eq. (1),
sleep and wake-up energy. The energy consumed per cycle
in the sleep state is a fraction of the idle energy, since we
suppose that a technique based on reducing the supply
voltage is used to exponentially reduce the leakage. We
considered a reduction factor of leakage in sleep state
of 0.1, which is generally accepted in the literature [7].
Finally, before a memory bank could be successfully ac-
cessed, the memory cells need to go back from the data
retention voltage to the idle voltage, which involves the
loading of internal capacitances. Since the involved cur-
rents in this process are similar to those in an access cycle,
the associated wake-up energy cost is proportional to the
access energy, ranging the proportionality constant from
about 1 [8] to hundreds [9]. We adopt an intermediate
value of 10.

Summarizing, the active, idle and sleep energy per
cycle, and wake-up transition energy are modeled as being



proportional to the memory size:

Ek(S) = akS (2)

for k ∈ {act, idl, slp, wkp}, where S is the memory size in
bytes, and ak is the corresponding constant of proportion-
ality. The parameter ak is determined using the respective
values of Table I, and the factors mentioned before, that
is, a 0.1 factor of idle energy for sleep state and a 10 factor
of the access for the wake-up energy.

III. Energy saving expressions

In this section we derive expressions for the energy
savings of a memory of equally sized banks with different
management schemes: greedy and oracle. In the greedy
policy as soon as a memory bank is not being accessed
it is put into sleep state. Therefore, each memory bank
is in one of the following states: active or sleep. On the
contrary, in the best-oracle policy a bank may remain in
idle state even if it is not accessed.

A. Energy saving with greedy policy

Using Eq. (2) the energy consumption of a bank of size
s in a banked memory of total size S can be modeled as

Ek(s) = Ek
s

S
, (3)

where Ek = akS is the corresponding energy consumption
per cycle of the whole memory.

Now, considering a banked memory of N equally sized
banks Eq. (3) becomes

Ek(
S

N
) =

Ek

N
. (4)

The total energy consumption per cycle of the whole
memory after n cycles have elapsed is

ĒN =
1

N

N∑
i=1

Eact
nacti
n

+ Eslp
nslpi

n
+ Ewkp

nwkpi

n
, (5)

where the first two terms of the sum represent the active
and sleep energy as a function of the fraction of active and
sleep cycles performed by each bank i. The last term of
the sum represents the wake-up energy as a function of the
average wake-up rate of each memory bank, that is, the
average number of cycles elapsed between two consecutive
bank transitions from sleep to active (for example, one
transition in 1000 cycles).

Since in greedy policy each bank is in active or sleep
state, the total number of cycles is n = nacti + nslpi

, then
we obtain

ĒN = Eslp+
1

N

N∑
i=1

(Eact − Eslp)
nacti
n

+Ewkp
nwkpi

n
. (6)

We define the energy savings of a banked memory as the
relative deviation of the energy consumption of a single
bank memory (E1 = Eact, always active)

δE =
E1 − ĒN

E1
. (7)

The energy saving of a banked memory of N uniform
banks is

δEgreedy
N = 1− Eslp

Eact
− 1

N

N∑
i=1

(
1− Eslp

Eact

)
nacti
n

+

+

N∑
i=1

Ewkp

Eact

nwkpi

n
(8)

Since there is only one bank active per cycle

N∑
i=1

nacti = n (9)

and Eq. (8) simplifies to

δEgreedy
N =

N − 1

N

(
1− Eslp

Eact

)
− 1

N

Ewkp

Eact

N∑
i=1

nwkpi

n
.

(10)
The first term is related to active consumption reduc-

tion, coming from having N-1 banks in sleep state and only
one bank in active state. The last term, which is related to
the cost of wake-ups, depends on the accumulated wake-up
rate and is directly proportional to the wake-up to active
energy ratio, and inversely proportional to the number of
banks.

In order to maximize the energy saving in a memory
having N uniform banks, the optimization algorithm must
minimize the accumulated wake-up rate. Note that the
energy saving does not depend on the access profile among
the banks, since the access to every bank costs the same as
all banks have the same size. Still, the allocation of blocks
to banks must consider the constraints of the banks size.
Finally, the energy saving can be improved by increasing
N and at the same time keeping the accumulated wake-
up rate low. The maximum achievable saving corresponds
to the sleep to active rate, which is equivalent to have
the whole memory in sleep state. Even so, the partition
overhead limits the maximum number of banks.

B. Energy saving with oracle policy

Consider a memory with a power management, different
from greedy, by means of which a bank may remain in idle
state, even if it will not be immediately accessed. In this
case the total number of cycles is n = nacti + nidli + nslpi

for all banks. In a similar way to the previous procedure,
an expression for the energy savings can be found:

δEoracle
N =

N − 1

N

(
1− Eslp

Eact

)
−

− 1

N

(
Eidl − Eslp

Eact

) N∑
i=1

nidli
n
−

− 1

N

Ewkp

Eact

N∑
i=1

nwkpi

n
. (11)

Compared to Eq. (10), Eq. (11) has an additional term,
which is related to the energy increase caused by the



idle cycles. This does not mean that the energy saving
is reduced, since the accumulated wake-up ratio may
decrease. This expression is general and contemplates also
the greedy strategy, making nidl equal to zero for all banks.

C. Energy saving limit

The energy savings in the limit, as the wake-up and idle
contributions tend to zero, is

δEmax
N =

N − 1

N

(
1− Eslp

Eact

)
. (12)

This is valid for the oracle as well as the greedy policy.

D. Effective energy saving

As mentioned previously, the wake-up transition from
sleep to active state of a bank memory has an associated
latency. This latency forces the microprocessor to stall
until the bank is ready. The microprocessor may remain
idle for a few cycles each time a new bank is waken up,
incrementing the energy drain. This extra microprocessor
energy can be included with the bank wake-up energy and
for simplicity we will not consider it explicitly. Moreover,
if the wake-up rate is small and the active power of
the microprocessor is much higher than idle power, this
overhead can be neglected. Additionally, the extra time
due to the wake-up transition is not an issue in low duty-
cycle applications, since simply slightly increases the duty-
cycle.

On the other hand, the partitioning overhead must be
considered to determine the effective energy saving. A
previous work had characterized the partitioning overhead
as a function of the number of banks for a partitioned
memory of arbitrary sizes [9]. In that case the hardware
overhead is due to an additional decoder (to translate
addresses and control signals into the multiple control and
address signals), and the wiring to connect the decoder
to the banks. As the number of memory banks increases,
the complexity of the decoder is roughly constant, but
the wiring overhead increases [9]. The partition overhead
is proportional to the active energy of an equivalent
monolithic memory and roughly linear with the number
of banks, as can be clearly seen by inspecting the data of
the aforementioned work (3.5%, 5.6%, 7.3% and 9% for a
2-, 3-, 4-, and 5-bank partitions, resulting in an overhead
factor of approximately 1.8% per bank). Consequently, the
relative overhead energy can be modeled as:

δEovhd
N = kovhdN. (13)

In this work, the memory is partitioned into equally-sized
banks. As result the overhead is expected to decrease
leading to a lower value for the overhead factor.

If the energy savings limit is considered, Eq. (12), the
maximum effective energy saving is

δEmax
N,eff =

N − 1

N

(
1− Eslp

Eact

)
− kovhdN. (14)

Table II
Application parameters (size in bytes).

Application text bss data #functions
MultihopOscilloscope 32058 122 3534 261

δEmax
N,eff is maximized for

Nopt =

√
1

kovhd

(
1− Eslp

Eact

)
. (15)

IV. Experiments

In this section we present the experimentation starting
with briefly describing the integer linear program that
minimizes the energy consumption of a banked memory
with power management. The memory has N memory
banks of equal size. The application code is divided in M
memory blocks of given size. We are further given an access
pattern to blocks over time.We want to determine an allo-
cation of blocks to banks that respects the size constraints,
and an activation schedule of the banks that minimizes
total energy consumption, and such that banks that are
accessed at time t are ready at time t. If no constraint is
given for the activation schedule, but that a bank is ready
at the time is accessed, correspond to the oracle strategy.
For a greedy power management a bank is ready only when
it is accessed. Given the number of banks, the partition
overhead is fixed, hence the problem formulation does not
need to include this term. The optimization problem was
defined following the procedure in [5] (for detail see the
mentioned work) and

The criteria for selecting the case study application
were: public availability of source files, realistic and ready-
to-use application. We chose a data-collection application
from the standard distribution of TinyOS (version 2.1.0)
1. Each node periodically samples a sensor and the read-
ings are broadcast every few iterations. The readings are
collected by a root node connected to a PC where they can
be displayed. The application was compiled for node based
on a MSP430 microcontroller2. Table II summarizes the
section sizes and the number of functions of the selected
applications. It can be observed that the code memory is
almost tens of times larger than the data memory. This
relationship, present in current WSNs applications, moti-
vates using a banked memory with power management for
code memory rather than for data memory.

Since current sensor nodes do not support real-time ex-
ecution trace generation, we simulated the network using
COOJA[10]. For the experiments we set up an unique
scenario based on a configuration consisting of a network
composed of 25 nodes. The memory access trace was
trimmed to consider 5000 cycles or time steps.

1www.tinyos.net
2www.ti.com/msp430



Figure 2. Energy savings as a function of the number of banks.

The size of the application blocks, sd, could be chosen
to be regular (equally sized) or irregular, ranging from
the minimum basic blocks to arbitrary size. For the sake
of simplicity, the block set was selected as those defined
by the program functions and the compiler generated
global symbols (user and library functions, plus those
created by the compiler). The size of the blocks ranges
from tens to hundreds of bytes, in accordance with the
general guideline of writing short functions, considering
the run-to-completion characteristic of TinyOS and any
non-preemptive event-driven software architecture.

The problem of allocating the code to equally sized
banks was solved for up six banks, for both power man-
agement strategies. The total memory size was considered
10% larger than the application size, to ensure the feasibil-
ity of the solution. For each experiment the bank memory
access patterns abt have been determined using the trace
adt and the allocation map lbd (how block are allocated to
banks), given by the corresponding solution. For the best-
oracle power management the solution also outputs obt,
the bank states for each cycle (i.e. ready or sleep). Finally,
the average energy consumption is calculated using the
memory energy model and the energy saving is determined
comparing with a single bank memory with no power
management.

V. Results and Discussion

Fig. 2 shows the energy savings as a function of the
number of banks, for best-oracle and greedy policy, and the
saving limit given by Eq. (12). The figure shows that the
oracle policy outperforms the greedy policy, as expected,
and both are within 1.5% and 5% of the saving limit.
As the number of banks increases, the energy savings
approach to the corresponding value of having all banks in
sleep state (in this figure we have intentionally discarded
the partition overhead).

Figure 3. Fraction of cycles and energy breakdown where each
contribution is averaged among the different banks.

Contrary to what one could expect, the extra benefit
of oracle over greedy policy is scarce. Fig. 3 shows the
fraction of cycles and the energy breakdown for a memory
having five banks of equal size, where each contribution
(i.e. access, ready, sleep, wake-up) is averaged among the
different banks. The upper part clearly shows that the frac-
tion of access cycles are equal in both cases and represent
20% of the total number of cycles, since five banks are
considered (only one bank of N is active, in this case N
is five). For the greedy policy the number of ready cycles
is equal to the access cycles, since both correspond to the
active compound state. While, for the oracle policy part of
the ready cycles correspond to active cycles, and the rest to
idle cycles, in which the banks are ready but not accessed.
Moreover, for the greedy policy 80% of the cycles are sleeps
cycles (N −1 banks are in sleep state) while for the oracle
policy this percentage is slightly larger, used to reduce the
wake-up cycles from 0.54% to 0.06 % (not visible in Fig.
3). The energy breakdown, Fig. 3 (lower part), shows that
the difference between oracle and greedy came mainly from
the wake-up transitions. In this case study, due to its even-
driven nature, the code memory access patterns are caused
by external events. Each event triggers a chain of function
calls starting with the interrupt subroutine. This chain
may include the execution of subsequent functions calls
starting with a queued handler function called by a basic
scheduler. The allocation of highly correlated functions to
the same bank leads to a bank access pattern with a high
temporal locality. Hence, the total wake-up fraction across
the banks is very low. This explain the modest gain of
applying the best-oracle policy.

The optimum number of banks estimated using Eq. (15)
(after rounding) as a function of kovhd (1%, 2%, 3% and
5%) is shown in Table III. The energy savings is limited
by the partition overhead, reaching a maximum of 79.2%
for an overhead of 1%. The energy saving limit, as the



Table III
Optimum number of banks as a function of partition

overhead.

kovhd(%) 0 1 2 3 5
Nopt ∞ 10 7 6 4

δEmax(%) 99.1 79.2 70.9 64.6 54.3

partition overhead tends to zero and N to infinity, is 99.1%
(1− Eslp/Eact).

Table IV compares the energy saving results as a func-
tion of the number of banks and the partition overhead. In
the upper part, the table gives the maximum achievable
savings calculated using Eq. (14). It can be observed that
with a partition overhead of 3% the optimum number
of banks is six, whereas with 5% is four, both marked
with a gray background. In the middle part of the table
it can be observed that the maximum energy saving for
greedy strategy with 3% and 5% of partition overhead is
achieved for six and five banks respectively, different from
what arises in the previous limit case. This means that the
saving lost due to wake-up transitions shifts the optimum
number of banks. Finally, similar results are obtained for
the best-oracle strategy, but with higher energy savings.

Table IV
Energy saving comparison: maximum, greedy and oracle.

maximum number of banks
2 3 4 5 6

kovhd(%)
1 47.55 63.06 70.32 74.27 76.58
2 45.55 60.06 66.32 69.27 70.58
3 43.55 57.06 62.32 64.27 64.58
5 39.55 51.06 54.32 54.27 52.58

greedy number of banks
2 3 4 5 6

kovhd(%)
1 43.82 58.33 65.18 69.36 71.99
2 41.82 55.33 61.18 64.36 65.99
3 39.82 52.33 57.18 59.36 59.99
5 35.82 46.33 49.18 49.36 47.99

oracle number of banks
2 3 4 5 6

kovhd(%)
1 46.40 61.88 69.12 73.07 75.41
2 44.40 58.88 65.12 68.07 69.41
3 42.40 55.88 61.12 63.07 63.41
5 38.40 49.88 53.12 53.07 51.41

VI. Conclusions

We have found that aggressive energy savings can be
obtained using a banked memory, up to 79.2% for a
partition overhead of 1% with a memory of ten banks.
The energy savings increase as a function of the number
of banks. The maximum saving is limited by the partition
overhead. Thanks to our modeling, at design time the
optimum number of banks can be estimated, provided that
the energy memory parameters are given, such as energy
consumption characteristics and the partition overhead as
a function of the number of banks.

We evaluated the benefits of using a partitioned mem-
ory in WSNs by simulation of a real WSN application.

The energy saving is maximized by properly allocating
the program memory to the banks in order to minimize
the accumulated wake-up rate and the idle cycles. The
optimum number of banks may differ from the estimated
value, due to the saving lost due to wake-up transitions.
However the estimated value can be used to quickly find
the optimum, by restricting the search to its vicinity.

The energy saving obtained by simulations were com-
pared with the limits given by the derived expressions,
showing a good correspondence. The oracle policy out-
performs the greedy policy as expected, but contrary to
what is expected, the extra benefit of the oracle over the
greedy policy is scarce. The additional benefit of using an
advanced algorithm to predict future access to banks must
justify the increasing complexity and compensate the extra
energy and area cost.

We are currently evaluating this technique in other
applications. Future research includes extending our model
to support arbitrary sized banks, the evaluation of the
effective savings when the access pattern is different from
the one used for the off-line optimization.

References

[1] M. A. Pasha, S. Derrien, and O. Sentieys, “A complete design-
flow for the generation of ultra low-power WSN node architec-
tures based on micro-tasking,” in Design Automation Confer-
ence (DAC), 2010 47th ACM/IEEE, pp. 693–698, IEEE, June
2010.

[2] N. Verma, “Analysis Towards Minimization of Total SRAM En-
ergy Over Active and Idle Operating Modes,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 19,
no. 9, pp. 1695–1703, 2011.

[3] A. Calimera, A. Macii, E. Macii, and M. Poncino, “Design Tech-
niques and Architectures for Low-Leakage SRAMs,” Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 59,
no. 9, pp. 1992–2007, 2012.

[4] O. Golubeva, M. Loghi, M. Poncino, and E. Macii, “Archi-
tectural leakage-aware management of partitioned scratchpad
memories,” in DATE ’07: Proceedings of the conference on
Design, automation and test in Europe, (San Jose, CA, USA),
pp. 1665–1670, EDA Consortium, 2007.

[5] O. Ozturk and M. Kandemir, “ILP-Based energy minimization
techniques for banked memories,” ACM Trans. Des. Autom.
Electron. Syst., vol. 13, pp. 1–40, July 2008.

[6] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and
N. P. Jouppi, “A Comprehensive Memory Modeling Tool and
Its Application to the Design and Analysis of Future Memory
Hierarchies,” in 2008 International Symposium on Computer
Architecture, (Washington, DC, USA), pp. 51–62, IEEE, June
2008.

[7] J. Rabaey, Low power design essentials. Springer Verlag, 2009.
[8] A. Calimera, L. Benini, A. Macii, E. Macii, and M. Poncino,

“Design of a Flexible Reactivation Cell for Safe Power-Mode
Transition in Power-Gated Circuits,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 56, pp. 1979–1993,
Sept. 2009.

[9] M. Loghi, O. Golubeva, E. Macii, and M. Poncino, “Archi-
tectural Leakage Power Minimization of Scratchpad Memories
by Application-Driven Sub-Banking,” IEEE Transactions on
Computers, 2010.

[10] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón,“COOJA/MSPSim: inter-
operability testing for wireless sensor networks,” in Proceedings
of the 2nd International Conference on Simulation Tools and
Techniques, Simutools ’09, (ICST, Brussels, Belgium), pp. 1–7,
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009.


