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ABSTRACT

Estimates of soil moisture and surface salinity are of significant im-
portance to improve meteorological and climate prediction. The
SMOS mission monitor these quantities, by measuring the bright-
ness temperature by means of L-band aperture synthesis interferom-
etry. Despite the L-band being reserved for Earth and space explo-
ration, SMOS images reveal large number of strong outliers, pro-
duced by illegal antennas emitting in this band. In this work we
propose a variational approach to recover a super-resolved, denoised
brightness temperature map. The measurements are modeled as the
superposition of three super-resolved components in the spatial do-
main: the target brightness temperature map u, an image o model-
ing the outliers, and Gaussian noise n. This decomposition allows
to isolate each of its constituent parts, thanks to a sparsity operator
that acts on o, and a bounded variation prior on u that extrapolates
its spectrum promoting a non-oscillating behavior. The proposed
model is interesting in itself, as it is general enough to be applied to
other restoration problems. Experiments on real and synthetic data
confirm the suitability of the proposed approach.

1. INTRODUCTION

Surface soil moisture (SSM) and sea surface salinity (SSS) mea-
sures provide extremely valuable information for meteorological
and climate predictions. A direct way to monitor SSM and SSS is
through the use of L-band microwave radiometers systems. These
sensors present an important practical limitation: to achieve a suit-
able ground resolution would require an antenna of prohibitive
size. Hopefully, this limitation can be overcome using interferom-
etry instruments such as MIRAS (Microwave Imaging Radiometer
by Aperture Synthesis). MIRAS payload is carried on the SMOS
satellite, launched on November 2009.

Interferometric radiometers measure the complex cross-correlation
between two signals collected by two different antennas. Each cor-
relation is a sample of the so called visibility function, given by
[3]:
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where ukl are the frequency baselines pair associated to antennas
Ak and Al; Uk, Ul are the normalized voltage patterns and Ωk,Ωl
are the solid angles of the two antennas Ak and Al respectively.
The Cartesian coordinates ξ = (ξ1, ξ2) are the spatial domain co-
ordinates, restricted to the unit circle. Tr is the physical tempera-
ture of the receivers (assumed the same for all receivers); r̃kl is the

Fringe-Wash function, a function of the spatial delay t = ukl
T ξ
f0

,
where f0 = c

λ0
is the central frequency of observation. Note that

the brightness temperature Tb is a 2D function restricted to the unit
circle (||ξ|| ≤ 1).

In MIRAS, the instrument is composed of three arms on a Y-
shaped configuration, where each arm consists of an array of anten-
nas. This configuration leads to a hexagonal grid where the visibility
function is sampled. Figure 1 shows the star shaped domain Ω ob-
tained from the MIRAS array configuration.

If we note T = Tb−Tr , samples of T in a hexagonal grid could
be obtained from the visibility samples by solving the linear system
GT = V , where matrix G corresponds to the discrete linear oper-
ator derived from Eq 1. However, this inverse problem is ill-posed
since G is not invertible (due to the lack of information beyond Ω).
As usual, additional constraints must be added to the model in order
to obtain a well posed problem.

In [4] the authors propose to regularize the inverse problem by
imposing that T have no frequency components beyond Ω. Hence,
if PΩ denotes the spectral projection onto Ω:

min
T
‖V −GT‖22 s.t. (I − PΩ)T = 0. (2)

Note that the projection operator can be written asPΩ = F−1ZΩZ
∗
ΩF

in terms of the Discrete Fourier Transform operator F 1, the zero
padding operator ZΩ and its adjoint, the restriction to Ω. Thus the
non-zero Fourier coefficients of the solution T to the previous prob-
lem can be written as D = T̂ = Z∗ΩFT , and T can be recovered
from T̂ by T = F−1ZΩD.

The previous description is a simplified model of how the SMOS
L1B data product D = T̂ is obtained from the raw L1A visibility
measurements V . As we shall see later the simple Fourier inversion
T = F−1ZΩT̂ leads to potentially very strong Gibbs effects which
are partially alleviated (as proposed by [4]) by the use of a Blackman
window B: T = F−1BZΩT̂ , which can be seen as a kind of linear
Tikhonov regularization:

T = arg min
T
‖B(FT −D)‖22. (3)

Such linear approaches are however not well suited for the restora-
tion of SMOS images, because usually the measurements are pol-
luted by outliers. Indeed, despite the fact that according to inter-
national radio regulations, the L-band in which MIRAS radiometer
operates is exclusively allocated to the Earth Exploration Satellite
Service, space research and radio astronomy, soon after SMOS was
launched the data revealed there were many signals being transmit-

1F is the Fourier Transform defined on an hexagonal grid



ted within this protected passive band, rendering a great amount of
data unusable for scientific purposes. Because these outliers have
frequencies beyond Ω, very strong Gibbs effects can be seen on the
final brightness temperature images (see Figure 2).

The recovery of the brightness temperature original images is
the main motivation of the present work, where we seek to detect
and remove signal effects generated from illegal emissions (outliers),
while at the same time extrapolating the image spectrum in order
to minimize Gibbs effects. As a byproduct we shall also partially
reduce measurement noise.

Fig. 1. Spectral domain Ω associ-
ated to MIRAS Y-shaped instru-
ment.

Fig. 2. Brightness temperature
obtained by the inverse Fourier
transform of the acquired data.

2. PROPOSED METHOD

From the previous paragraph we can summarize the image formation
model as follows:

D = Z∗Ω (F (u+ o)) + n̂, (4)

where u is the non-polluted brightness temperature image, o is the
outliers’ image generated by illegal signals being transmitted, and n̂
is an additive Gaussian noise with covariance matrix σ2W−2. This
covariance can be derived from the matrix G or approximated (as
we do here) by a diagonal matrix from the knowledge of the redun-
dancy of each Fourier coefficient in D with respect to the measured
visibilities V .

Hence, Wn̂ = D − Z∗Ω (F (u+ o)) is a white Gaussian noise
with zero mean and variance σ2. This motivates the following
method.

2.1. Variational formulation

We propose to recover u in Eq. (4) by solving the following con-
strained optimization problem:

min
u,o
{TV(u) + µS(o)}

s.t. ‖W (F (o+ u)−D)‖22 ≤ |Ω|σ2. (5)

The constraint is the data fidelity term. Data D are SMOS L1B data
product, and correspond to the Fourier coefficients of the brightness
temperature. The redundancy matrix W weighs repeated measure-
ments, and masks frequencies outside the spectral support Ω. Param-
eter σ2 is the measurement noise variance, whose value is known.

The objective function acts as a regularizer, and consists of two
terms that were designed in order to separate the outliers o from the
original brightness temperature map u. The first term is the total
variation semi-norm of u, intended to super-resolve u beyond spec-
tral support Ω while avoiding Gibbs oscillations. The second term

results from applying some sparsity operator to o (in practice `0 or
`1 norms) in order to recover a very sparse solution for o. The pa-
rameter µ controls the trade-off between both terms and its choice is
discussed in Section 2.2.2.

Instead of solving the constrained minimization problem (5), we
will solve the following unconstrained minimization:

min
u,o

˘
‖W (F (o+ u)−D)‖22 + λ(TV(u) + µS(o))

¯
. (6)

It can be shown that, for a given σ2, there exist a unique Lagrange
multiplier λ such that this problem has a unique solution, given by
the equivalent constrained problem (5). Here the value of λ is de-
rived from that of σ2 using a version of Uzawa’s algorithm proposed
in [5].

In order to reduce the ”staircasing” effect inherent to many TV
minimization methods, we follow an approach based on the Spectral
TV introduced by Moisan in [6]. Staircaising reduction is achieved
by: (i) Computing image derivatives not by finite differences but an-
alytically on Fourier series expansion; (ii) Approximating the con-
tinuous TV as a Riemann integral over a grid at least two times finer
than the critical sampling rate.

In our case, instead of doubling the sampling rate of ∇u, we
chose to reduce the spectral domain of u to an intermediate cell H,
in-between the star domain Ω where measures û are taken, and the
cell C corresponding to the (largely overcritical) spatial sampling
rate of u.

The final method can be stated as follows:

min
u,o

˘
‖W (F (o+ u)−D)‖22 + λ(TV(u) + µS(o))

¯
s.t. supp û ⊆ H ⊂ C. (7)

2.2. Numerical implementation

To solve the minimization problem (7) while achieving the spars-
est possible solution, we proceed in two steps. First, we solve (7)
choosing as sparsity term S(o) = ‖o‖1. Under this conditions, the
problem is convex and can be solved using a Forward-Backward al-
gorithm which is known to converge to a global minimum. Then,
to reinforce the sparsity of the solution o obtained in the first step,
we consider the problem with S(o) = ‖o‖0, which is also solved
iteratively using the Forward-Backward method, starting from the
previous solution. While this problem is non-convex due to the `0
norm, Blumensath and Davies [8] have shown that for this functional
the Forward-Backward algorithm converges to a local minimum.

2.2.1. Combettes-Wajs Forward-Backward implementation

Combettes and Wajs Forward-Backward algorithm [7] is designed to
minimize a functional E(x) = E1(x) + E2(x), where E1 and E2

are convex functions such that: E1 is differentiable with Lipschitz
gradient; E2 is a simple function, in the sense that its associated
proximal operator can be easily computed as:

proxγE2
(x) = arg inf

y
E2(y) +

1

2γ
‖x− y‖2. (8)

If these hypotheses hold, the following generic algorithm can be de-
rived: starting with an arbitrary x0, set for each k ∈ N,

xk+1/2 = xk − γ∇E1(xk)

xk+1 = proxγE2
(xk+1/2).



In order to ensure convergence to the minimizer, γ must be smaller
than 2/L, where L is the Lipschitz constant of∇E1.

For our problem, we define

E1(u, o) =
1

2
‖W (F (o+ u)−D) ‖22

E2(u, o) = λTV(u) + λµ‖o‖1.

Direct differentiation of E1(u, o) yields

∇E1(u, o) =
`
F ∗W 2(F (u+ o)−D), F ∗W 2(F (u+ o)−D)

´
,

where F ∗ is the adjoint operator of F , that is, the inverse Fourier
transform. As for the proximal operator of γE2(u, o), we have

proxγE2
(u, o) =

“
proxγλTV(u), proxγλµ‖·‖1(o)

”
.

For proxγλTV, we implemented Chambolle’s algorithm [5], where
in each iteration we included a spectral projection into H in order
to force the constraint in (7). As for proxγλµ‖·‖1(o), it is straight-
forward to show from (8) that it corresponds to the soft thresholding
operator:

s∆(t) =


sign(t)(|t| −∆) if |t| ≥ ∆,
0 if |t| < ∆.

To summarize, each iteration for the first step (S(o) = ‖o‖1)
can be expressed as follows:8>><>>:

uk+1/2 = uk − γ(F ∗W 2F (o+ u)− F ∗W 2D)

ok+1/2 = ok − γ(F ∗W 2F (o+ u)− F ∗W 2D)

uk+1 = proxγλTV(uk+1/2)

ok+1 = sγλµ(ok+1/2).

This iteration converges to a global minimum, that corresponds to
the solution of problem (7) with sparsity operator S(o) = ‖o‖1.

We now proceed to the second step, where the sparsity oper-
ator is chosen to be S(o) = ‖o‖0. For this problem, the same
Forward-Backward method can be considered and is guaranteed to
converge to a local minimizer. Now, instead of the soft threshold-
ing, the proximal operator for S(o) becomes the hard thresholding
h√2γλµ. Note that the changes in the previous iteration, associated
to replacing ‖o‖1 by ‖o‖0, are easily implemented by transforming
the soft thresholding into a hard thresholding.

2.2.2. Selection of µ

We propose to balance the trade-off between the sparsity term S(o)
and the regularity term TV (u) based on modeling the outliers as
follows. For a cylinder c of radius r and height h, the involved norms
or semi-norms are:

TV (c) = 2πrh

‖c‖0 = πr2
1[h>0]

‖c‖1 = πr2h.

The selection of µ determines whether the cylinder is considered to
be an outlier or part of the image to be recovered (that is, as part of
o or u, respectively).

When the sparsity operator is the `1 norm, c is considered as an
outlier if TV (c) ≥ µ‖c‖1, leading to a µ ≤ 2

r
. In the examples, we

have selected a value µ ∼ 2
10

= 0.2, which amounts to consider that
the radii of the outliers are at most 10 pixels wide.

In the case of the `0 norm, a cylinder is considered as an outlier
as soon as TV (c) ≥ µ‖c‖0, i.e. µ ≤ 2h

r
. Hence, µ can then

be interpreted as the minimal h/r outlier ratio. Here, contrarily to
the `1 case, the height plays an important role in distinguishing an
outlier from the data, and larger values for µ may be chosen ( µ ∼
100 2

10
= 20).

3. EXPERIMENTS

We present two kind of experiments. In the first one, we compare re-
sults from our approach to those obtained by previous works. Exper-
iments are run on several snapshots from SMOS L1B dataset from
march 2010. We have set σ equal to 5K, which is the measurement
error reported by the SMOS mission.

Figure 3 shows the results obtained for snapshot 996, which cor-
responds to a region of central Europe. Note that the acquired image
is corrupted with several outliers that considerably degrade the data.
It is clear that our method outperforms both the direct inverse Fourier
transform and Blackman apodization.

In the second experiment, we perform a quantitative evaluation
of our method. To do this, we simulated a new snapshot based on
real data in the following way. First, we generated an image ogt
composed of synthetic outliers, with spots with diameter ranging be-
tween 1 and 3 pixels and with radiometric values between [-30.000,
30.000]. We selected the snapshot 700 corresponding to Madagas-
car, denoted by ugt, that contains no outliers but is still contaminated
by acquisition noise. Hence, if we call u0 the ideal, noise-free im-
age, and n0 the acquisition noise, we have: ugt = u0 + n0. Finally
we added both images and filtering out frequency components out-
side Ω, as the data ugt comes from the instrument and hence lies on
this spectral region. In short, the synthetic data is given by:

D = PΩ(ugt + ogt)

Let u be the image brightness temperature, o the image outliers and
n the image noise obtained from our method. Figure 4 shows the
results obtained on this data. The table shows the estimation error
on u and o, for different error norms. These errors were computed
only over Ω in the Fourier domain, since the spectral support of our
ground-truth is Ω. In all cases, the standard deviation of the residual
‖WF (o+ u)−D‖/

p
|Ω| residual

p
E(n̂2) was 5± 0.1, which is

in agreement with the restriction imposed to Uzawa’s algorithm.

4. CONCLUSIONS

We presented a method to restore images from the L1B SMOS
data product. This product consists of measurements of the ground
brightness temperature, obtained by interferometry in the spectral
domain. The MIRAS instrument is such that the acquisition is ob-
tained in a anisotropic spectral domain, which is moreover smaller
than that of the target resolution. In addition, the measurements
are severely corrupted by measurement noise and punctual sources
(antennas) emitting in forbidden frequency bands. The proposed
variational approach simultaneously tackles all these difficulties
by modeling the observations as the superposition of three super-
resolved components in the spatial domain: the target brightness
temperature map u, an image o modeling the outliers due to the
illegal emissions, and colored Gaussian noise n. This decompo-
sition allows to isolate each of its constituent parts, thanks to a
sparsity enforcing term that acts on o, and a total variation semi-
norm that extrapolates the spectral domain of u while promoting a
non-oscillating behavior. It is worth noting that the method is based
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Fig. 3. Comparison between previous work and our method using
snapshot 996 from March 2010. The first row shows the temperature
map scaled to (0,300) Kelvin, and the second row its corresponding
Fourier spectrum. The first column is the result of applying inverse
Fourier transform directly. The second column is obtained after ap-
plying a Blackman apodization scheme. The third column shows the
results obtained with the method proposed here.

on general principles and hence can be applied to other restoration
problems.

We performed experimental evaluation on real SMOS measure-
ments, including outliers within a range of 1 to 100 times the dy-
namic range of the brightness temperature (about 300K). The re-
sults obtained from this evaluation proved to be consistent, in the
sense that the energy of the noise component is no more than 10%
away from the postulated noise level (3.75K), and that the brightness
temperature and outliers components exhibit reasonable structure ac-
cording to the experts knowledge of the ground truth. Experiments
over snapshots that appeared not to contain outliers, yielded no de-
tections in o. The previous conclusions on u and n also held.

The suitability of the method was also evaluated on synthetic
data. The ground truth was built by superposing sets of synthetic
outliers to an outlier-free, real noisy SMOS snapshot. Results were
consistent with the ground truth: the estimated noise n is also within
10% of 3.75K, and all the outliers were detected and well localized.
On uniform regions of the ground truth, the estimation error in the
brightness temperature map u was in the order of magnitude of the
measurement noise. In non-uniform regions, the error grows as a
result of the (unavoidable) effect of regularization.

4.1. Future work

More accurate results could be obtained if the model was modified to
include directly the raw L1A visibilities in the data fidelity constraint
as ‖C−

1
2 (G(o+ u)− V )‖22 ≤ |Ω|σ2. The expected benefit of such

a modification would be twofold: (i) a more detailed noise mod-
eling can be incorporated through the visibilities covariance matrix
C; and (ii) no intermediate linear approximation needs to be done
(L1B product): the final result is directly obtained from a non-linear
optimization on the original raw data V .

However, this approach could not be used it in conjunction with
the iterative non-differentiable, non-convex optimization methods
required by this application. Indeed, the matrix G being very dense
and each iteration would require a prohibitive number of operations.

u0 + n0 ogt

gr
ou

nd
tr

ut
h

u o n

re
st
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ed

L1 L2 L∞
PΩ(u− ugt) 11.038 16.557 149.215
PΩ(o− ogt) 9.026 14.482 147.905

Fig. 4. Results obtained with simulated data. Note that since no
information outside Ω is available, all errors have been measured
after projecting with PΩ.

By considering the L1B data product D, as was done in this first ap-
proach, the bulk of the work of evaluating and inverting G is done
only once, during the initialization step that computes D from V .
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