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Abstract

This paper concerns the problem of allocating network capacity through periodic auctions, in which users submit bids
for fixed amounts of end-to-end service. We seek a distributed allocation policy over a general network topology that
optimizes revenue for the operator, under the provision that resources allocated in a given auction are reserved for the
entire duration of the connection.

We first study periodic auctions under reservations for a single resource, modeling the optimal revenue problem as a
Markov Decision Process (MDP), and developing a receding horizon approximation to its solution. Next, we consider
the distributed allocation of a single auction over a general network, writing it as an integer program and studying its
convex relaxation; techniques of proximal optimization are applied to obtain a convergent algorithm. Combining the
two approaches we formulate a receding horizon optimization of revenue over a general network topology, leading
to a convex program with a distributed solution. The solution is also generalized to the multipath case, where many
routes are available for each end-to-end service. A simulation framework is implemented to illustrate the performance
of the proposal, and representative examples are shown.
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1. Introduction

The possibility of auctioning bandwidth in real time
has been considered by many authors [15, 11, 18, 23, 9,
24], with a variety of applications: diffserv, access con-
trol, 3G cellular access, VPNs, etc. Much of this work
has focused on game-theoretic considerations, in partic-
ular on providing incentives for bidders to reveal their
true utilities. The standard theory of auctions [14] pro-
vides these mechanisms for the auctioning of a single
resource, but it is far more challenging to extend them to
a general network topology. Most proposals in this re-
gard require the user (or a broker entity acting on his/her
behalf), to place separate bids for internal resources of
the network. In particular, the Progressive Second Price
(PSP) mechanism of [15] requires each player to coordi-
nate bids at the different nodes on its route, so that each
node may run an auction with the allocation and pricing
rules of the single resource case. PSP has a long conver-
gence phase, which is improved by amultibidmethod in
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[18]; however, the latter mechanism only applies to tree
topologies. Another approach to bandwidth auctioning
for multicast trees or VPNs is proposed in [9], based
on Dutch auctions. The mechanism assumes that users
interested in a path would try to reserve bandwidth by
placing bids simultaneously for all constituent links.

In this paper we argue that to have practical impact, a
bandwidth auction requires a simpler user interface: the
consumer should submit a bid for an entire end-to-end
service, oblivious of the internal topology. It is the op-
erator’s problem to decide which of these bids to accept
and how to accommodate the aggregate service within
the available network capacity. Furthermore, a more
natural objective than incentive compatibility is revenue
maximization for the operator that offers this end-to-end
service. As one possible deployment scenario to make
the discussion concrete, consider the Service Overlay
Network (SON) architecture [12], where an overlay op-
erator has leased tunnels between a set of service gate-
ways located in domain boundaries, and auctions a ser-
vice of high-quality (e.g. video-on-demand) over this
infrastructure, with the objective of obtaining revenue.

Another important aspect of the problem that has
not been satisfactorily addressed in previous work are
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inter-temporal considerations. Most references cover a
one-shot auction where bids for the entire duration are
known initially. References for multi-period auctions
(e.g. [23]) allow future bidders to compete with incum-
bent ones, albeit given the latter some advantage. This is
not an attractive condition for our intended applications.
Consider for example selling video-on-demand content
about 100 minutes long, in auctions every 5 minutes. A
consumer will not purchase the service if he/she faces
the risk of losing the connection close to the end of the
movie. In this paper we impose the condition that once
bandwidth has been allocated in an auction, the success-
ful bidder has areservationfor the duration of his/her
connection. This means that the operator must assume
the risk of future auctions, which makes the maximiza-
tion of revenue a stochastic dynamic optimization prob-
lem.

Both of the above aspects (general network topology,
time reservations) lead to optimization problems of high
complexity, on top of which we add the requirement of
a distributed solution. Rather than an exact solution, we
develop in this paper a series of tractable methods that
approximate the optimal revenue objective. We begin in
Section 2 with auctions of a single resource (single link
capacity) with time-reservations, a problem that we for-
mulate as a Markov decision process (MDP) [1, 21]. We
introduce a receding horizon approximation that is able
to capture the dynamic component of the problem in a
tractable way, and validate it by simulation. Next, we
turn in Section 3 to the network aspect, formulating the
allocation of a one-shot auction as an integer program;
by recasting this problem in the language of Network
Utility Maximization (NUM) [13, 7], we develop a nat-
ural relaxation that has a distributed solution; conver-
gence is obtained through the application of a proximal
optimization method [5, 16].

In Section 4 we combine the previous approaches to
formulate a receding-horizon optimization of revenue
for multi-period auctions over a distributed network,
which again is formulated as a variant of a NUM prob-
lem, solved in relaxed form through a proximal method.
We develop in this case a distributed implementation of
the algorithm, and exhibit its performance in a series
of simulation examples that progressively include more
realistic situations. Finally, in Section 5 we consider
multipath optimization, where end-to-end services can
be offered through multiple routes inside the network;
we show how to extend the methodology to this case.
Conclusions are given in Section 6.

This article is an extension of our conference papers
[2, 3]. One main enhancement included here is the
proximal approximation method to ensure convergence

of our distributed algorithms with non-strictly concave
utilities. Also, the entirety of Section 5 on multipath
auctions is new material.

2. Periodic auctions of a single resource with time
reservations

We consider first an auction for the capacity of a sin-
gle resource, the bandwidth of one link, postponing the
consideration of network topology. The focus here is
the temporal dimension: auctions are held periodically,
based on bids collected for a period of time of dura-
tion T. When each auction closes, the provider decides
which bidders are allocated capacity, which is subse-
quentlyreservedfor a service duration that may exceed
T. In particular, when the next auction occurs, new bid-
ders are not allowed to displace incumbent users. The
objective is to find an allocation policy that maximizes
revenue of the seller over time, under the assumption
that users pay their bid upon admittance to the service,
a first-price auction. Later on we discuss strategic im-
plications.

We establish some notation. Letσ be the bandwidth
requirement of the single service being auctioned; the
provider has capacityc to auction. In this section we
normalizeσ = 1, and assumec is an integer.

The discrete time indexk defines the auction at time
kT, for which the seller has receivedNk bids, ordered as

bk,(1) ≥ bk,(2) ≥ · · · ≥ bk,(Nk).

The result of the auction is a capacity allocationak to
a set of highest bidders, yielding a revenue of

Ubk(ak) :=
ak
∑

i=1

bk,(i). (1)

This functionUbk(·) is defined above for integer values
of ak; we will also apply this notation to the function
of ak ∈ R defined by linear interpolation, and constant
aboveNk. This piecewise linear function is increasing
and concave inak, since bids are decreasing.

If we were considering a single auction of the capac-
ity c, clearly the optimal revenue decision would be to
sell as much as possible,ak = min{c,Nk}. However, the
occurrence of periodic auctions and reservations across
multiple periods complicates the decision significantly,
as discussed next.

2.1. Optimal allocation as a Markov Decision Process
The long-term optimal revenue problem is posed in

terms of a stochastic model for the bidding and duration
processes. The model assumptions are now described:

2



• Distribution of bids. We assume bids are drawn
independently from a continuous probability dis-
tribution. For the theory to follow, we will assume
the distribution is known; in Section 4.2 we show
how it can be learned from past observations.

• Number of bids. Two alternatives are considered:

– A fixed numberNk = N of bids;

– A random number of bids, with Poisson dis-
tribution of parameterλT, that results from a
Poisson process of bid arrivals with rateλ.

• Revenue functions. First-price charging is as-
sumed. The revenue function for given bids is (1),
and we define the expected revenue function as

U(a) = E[Ub(a)]. (2)

Here the expectation is over the bid distribution
and possibly the number of bids. As is the case
with (1), this function is also piecewise linear and
concave ina, at integer values representing the ex-
pected revenue from admittinga connections.

• Service duration. As explained before, connec-
tions are reserved for the entire duration, which
is characteristic of the service being auctioned.
To allow for a Markovian analysis, we will use a
stochastic, memoryless model: service durations
are independent exponential random variables, of
mean 1/µ. Therefore at the end of the periodT
each connection has probabilityp := e−µT of re-
maining active for the following period.

We now describe the process dynamics . Letxk de-
note the number of connections active att = kT−, i.e.
before thek-th auction. The system admitsak new con-
nections, 0≤ ak ≤ c − xk, taking the total toxk + ak.
By the next auction period,t = (k + 1)T−, the number
of active connectionsxk+1 follows then a binomial dis-
tribution with parametersxk + ak andp:

P[xk+1 = i|xk,ak] =
(

xk+ak

i

)

pi(1− p)xk+ak−i . (3)

We our now ready to formulate our first stochastic
optimization problem.

Problem 1 (Optimal mean revenue, single link).

Maximize lim
K→∞

1
K

K−1
∑

k=0

E[Ubk(ak)].

Here the expectation is over two sources of randomness:
the vector of bidsbk and the departure process. The
constraints are 0≤ ak ≤ c − xk wherexk follows the
binomial transition dynamics (3). We can also consider
the discounted version:

Maximize
∞
∑

k=0

ρkE[Ubk(ak)], where 0< ρ < 1.

Both are Markov Decision Processes (MDPs) [4, 21].
The stateat timek is given by (xk,bk), i.e. the current
occupation and the incoming bids. Based on this state,
the action ak = a(xk,bk) decides on how many bids to
accept. A solution to the MDP is apolicy a(x,b) that
results in a minimum cost. In the discounted caseρ < 1,
this policy satisfies the Bellman equation

V∗(x0,b) = max
a∈Ax

{

Ub(a) + ρE[V∗(x1,b′)]
}

, (4)

whereV∗ is the value function and the expectation is
taken over the binomial distribution ofx1|(x0,a) and the
distribution of the next bidb′. The state-dependent con-
straints areAx = {0 ≤ a ≤ c − x0}. For ρ = 1, V∗

satisfying (4) is no longer the optimal cost, but (4) still
characterizes the optimal actiona(x,b).

It is in general difficult to solve the Bellman equation;
a commonly used strategy is thevalue iteration[4]

Vm+1(x0,b) := max
a∈Ax

{

Ub(a) + ρE[Vm(x1,b′)]
}

;

starting with an arbitraryV0(x,b), Vm(x,b) converges to
V∗(x,b), and the corresponding maximizing action con-
verges to the optimal action [4].

2.2. Receding horizon approximation.

We use initial steps of the value iteration to approxi-
mate the optimal policy. Starting fromV0 ≡ 0, we have

V1(x0,b) = max
a≤c−x0

Ub(a) = Ub(c− x0).

This first step gives the “myopic” policya = c− x0, that
sells all available capacity without regard to the future.
This is clearly suboptimal, but may be appropriate for
certain parametric scenarios. To improve on it, we take
a second step in the value iteration:

V2(x0,b) = max
a≤c−x0

{Ub(a) + ρE[V1(x1,b′)]}

= max
a≤c−x0

{Ub(a) + ρE[Ub′ (c− x1)]}

= max
a≤c−x0

{Ub(a) + ρEx1U(c− x1)]}.
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In the last step we have taken expectation with respect
to the bidb′, usingU defined above; what remains is
the expectation with respect tox1 ∼ Bin(x0 + a, p). The
above optimization can be given areceding horizonin-
terpretation: optimize over the current revenue plus the
expected revenue of looking one step ahead, assuming
all available capacity will be sold off at that time. This
decision is applied recursively; thus the future is taken
into account, but at a limited level of complexity.

The receding horizon policy is thus the following: at
each auctionk, let xk denote the current occupation, and
bk the vector of incoming bids. Admit the number of
bidsak that solves

Problem 2 (Receding horizon policy, single link).

max
a≤c−xk

{Ub(a) + ρEXU(c− X)}, (5)

where the expectation is over X∼ Bin(xk + a, p).

We now analyze how to carry out this optimization.
The first term in (5) increases witha. To characterize the
second, we rewrite it as follows. Consider the function
W(i) = U(c)−U(c− i), piecewise linear, increasing and
convexin i. Indeed, the increments

w(i) :=W(i + 1)−W(i) = E[b(c−i)], i = 1, . . . , c

are non-negative and increasing ini (since bids are de-
creasing). We now study the expectation with respect to
the binomial distribution.

Proposition 1. DefineW(x) = E[W(Ix)], where Ix ∼
Bin(x, p) for integer x, and extend by linear interpola-
tion. ThenW(x) is increasing and convex.

Proof 1. Given Ix ∼ Bin(x, p), integer x, we can gener-
ate a Bin(x + 1, p) random variable of the form Ix + ξ,
whereξ is Bernoulli(p), independent of Ix. Writing

W(Ix + ξ) −W(Ix) = w(Ix + 1)ξ

and taking expectations, using independence we obtain
increments

w(x+ 1) :=W(x+ 1)−W(x) = pE[w(Ix + 1)]. (6)

It remains to show the last term is increasing in x. Not-
ing that w(i) is increasing, the inequality w(Ix+ ξ+1) ≥
w(Ix + 1) holds almost surely; taking expectations,

E[w(I(x+1) + 1)] = E[w(Ix + ξ + 1)] ≥ E[w(Ix + 1)].

The receding horizon optimization (5) can now be
rewritten as

max
a≤c−x0

Ub(a) − ρW(x0 + a) + ρU(c). (7)

Implicit in (5) and (7) is thata is an integer. In this case,
however, the condition can be relaxed without loss of
generality, treating (7) as a convex optimization prob-
lem. To solve it amounts to looking for a crossing
point between the derivatives ofUb(a) andρW(x0 + a)
(marginal utilities and costs), as depicted in Fig. 1.
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Figure 1: Marginal utility versus marginal cost

The marginal utilities are just the current bids in de-
creasing order. The marginal costs represent the value
of leaving one more free circuit for the next auction, and
have the formρw(i), with w(·) defined in (6); as noted
they are increasing ini. Since the bidsb are random, the
curves of Figure 1 will almost surely cross at a single,
integer point. So the convex relaxation is innocuous.

The optimal acceptance policy is the valuea such that

b(1) ≥ · · · ≥ b(a) ≥ ρw(i) > b(a+1), for i = x0 + a.

The valuesρw(i); act as successivethresholds: to accept
a bids, thelowestone must exceedρw(x0 + a). To ac-
cept one more, we require amore demandingthreshold
ρw(x0 + a+ 1) on this (smaller) bid.

A concrete formula for the thresholds as a function of
the bid distribution is given (see the Appendix) by

w(i) = p
i−1
∑

l=0

E(b(c−l))
(

i−1
l

)

pl(1− p)i−1−l . (8)

Based on knowledge ofρ, p, and the distribution of bids,
this expression could be calculated offline and used for
carrying out auctions with the policy (5).

Example 1. We evaluate the previous results in a few
simple cases (forρ = 1). For c = 1, there is a single link
costw1 = pE(b(1)), that acts as an admission threshold
for bids received when the circuit becomes empty. For
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instance in the case of N bids, uniformly distributed in
[0,bmax] we havew1 = p N

N+1bmax.
If c = 2, there are two marginal costs:w1 =

pE(b(2)) for occupying the first connection, andw2 =

p[E(b(2))(1 − p) + E(b(1))p] for occupying the second.
For uniform in[0,bmax] bids we have

w1 = p
N − 1
N + 1

bmax

w2 = p
(N − 1)(1− p) + Np

N + 1
bmax.

We now compare by simulations our receding hori-
zon policy with the optimal infinite-horizon MDP, in
the case of one circuit (c = 1). In this simple case,
the latter is also a threshold policy on the bids, but the
optimal threshold does not have a simple formula; we
computed it numerically through the value iteration al-
gorithm from [10]. Fig. 2 shows the acceptance thresh-
olds for both policies: we see the infinite horizon thresh-
old is more demanding. Fig. 3 shows the average utility
obtained by simulation of these two policies. Results
are very similar. Therefore, in this case we have man-
aged to extract almost the optimal utility just by looking
one-step ahead with the policy. On the other hand, if we
apply the myopic policy that always fills the link, the
second plot shows there is a clear loss in utility.

Figure 2: Threshold comparison between policies,c = 1, p = 0.1.

2.3. Strategic and game considerations

A large focus of the auction literature has been strate-
gic bidding, and the design of mechanisms in which
bidding true utilities is a dominant strategy. Vick-
rey’s second-price auction [26], where the winning
user is charged the second highest bid, is of this kind.
More generally, VCG mechanisms (for Vickrey-Clarke-
Groves, see e.g. [8]) have built-in “incentive compati-
bility”, a condition sought in many auction designs for
networks [15, 18, 9]. In contrast, we have proposed a

Figure 3: Revenue comparison between policies,c = 1, p = 0.1.

first-price auction with incoming bids, which does not
have built-in incentives for revealing true utilities; in
this section we explain the reasons behind our choice.

The main reason is that our stated objective is rev-
enue maximization, rather than truth-revelation. A fun-
damental result of the theory of auctions, theRevenue
Equivalence Theorem, see [8], states that under certain
assumptions (mainly, risk neutrality of participants) all
auctions have the same expected revenue for the seller.
However, under other conditions (e.g., risk-averse buy-
ers) first-price auctions are known to improve revenue
[8]. To illustrate this issue in a simple setting, consider
a one-shot auction of capacityc, avoiding the temporal
dimension. If in a certain auction there are fewer than
c competitors, the generalized Vickrey auction would
charge a price equal to the highest bid left out, in this
case, zero, hence the network receives zero revenue.
If, instead, we charge users what they bid, how would
strategic bidders behave?If they knewthat capacity is
not scarce, the rational thing would be to submit a bid
close to zero; this would confirm revenue equivalence.
However, in a practical situation they would not have
this information, and will be compelled to bid a non-
negligible amount. So the seller is better off with a first-
price auction.

A second consideration is thecomplexityof truth re-
vealing mechanisms, when we add the time dimension,
and later on the network topology. In this regard, we
note:

• For a generalized Vickrey auction, the revenue
function (1) is no longer concave, or increasing;
for instance the vector of bidsb = (2,2,1,1) gives
revenue values (2,2,3,0). These properties are es-
sential to the tractability of our optimization over
time.

• In the network case, to be discussed in future sec-
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tions, the generalization of VCG mechanisms is
very complex, even for a one-shot auction. This
issue was already brought up in [19]. Namely,
finding the VCG charges involves solving multiple
optimization problems, with each bidder removed
from the network.

3. Distributed one-shot auctions over a network

We turn now to auctioning bandwidth over a gen-
eral network topology. We seek methods to optimize
revenue of the allocated bids, that can be computed in
a distributed way across a network. This section fo-
cuses on a single auction of available capacity; later on
we will return to the temporal considerations associated
with reservations.

We begin by extending our notation to the network
case. The network is composed of a set of links indexed
by l, and a set of end-to-end routes indexed byr. R
denotes the routing matrix,Rlr = 1 iff router includes
link l, otherwiseRlr = 0. c = (cl) is the vector of link
capacities.

Consider a set of services, indexed bys, that are auc-
tioned over the network. Each service has a fixed band-
width requirementσs: users bid for this well-defined
rate allocation. For the moment we consider thesin-
gle pathsituation, in which services is offered over a
single router(s); in Section 5 we extend the method to
the multipath setting. There could be multiple services
offered over the same route. For eachs, the network
receives a set ofNs bidsb(i)

s , ordered as

b(1)
s ≥ b(2)

s ≥ · · · ≥ b(Ns)
s .

The resource allocation decision is to find which of
these bids to accept, within the capacity constraints of
the network, to maximize revenue under a first-price
auction. Defining the variableξs,i by ξs,i = 1 if bid b(i)

s is
accepted,ξs,i = 0 otherwise, the optimal revenue prob-
lem for the single auction is the integer program

max
∑

s

Ns
∑

i=1

b(i)
s ξs,i (9a)

subject to
∑

s

Ns
∑

i=1

Rlr (s)σsξs,i ≤ cl ∀l, (9b)

ξs,i ∈ {0,1}. (9c)

We can also convert this problem to a utility-based form
as in the previous section. Since for fixeds, all bids
b(i)

s are for the same amount of bandwidth, the optimal

solution will involve the highest bids per service,

Ns
∑

i=1

b(i)
s ξs,i =

ms
∑

i=1

b(i)
s ,

where the integer variablems is the number of accepted
bids for services, resulting in a rateas := σsms for this
service applied to router(s). Now define

Ubs(as) :=
as/σs
∑

i=1

b(i)
s . (10)

This function is defined above for discrete values ofas

(the multiples ofσs). As before we extend it to a piece-
wise linear, concave function ofas ∈ R, by linear inter-
polation. With this notation, we rewrite (9) as follows.

Problem 3 (Network allocation, single auction).

max
∑

s

Ubs(as) (11a)

subject to
∑

s

Rlr (s)as ≤ cl ∀l, (11b)

as/σs ∈ Z. (11c)

3.1. Convex relaxation and distributed solution

If we ignore the integer constraint in (11c), the
optimization in Problem 3 has the form of thenet-
work utility maximizationproblem in congestion control
[13, 17, 25], that is known to have distributed solutions.
Motivated by this, we will focus on the convex relax-
ation (11a-11b). Before doing this, we inquire whether
it can be claimed that the relaxation is generically exact
(equivalently, whether the linear program that relaxes
(9) has generically integer solutions). Unfortunately,
this is not the case.

Example 2. Consider 4 links with capacity cl = 2, and
5 paths (each with bandwidth requirementσs = 1), with
routing matrix

R=





























1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1





























.

Bids for the same route are all equal, with the following
distribution among routes: b1 = b2 = b3 = b4 = 1,
and 1 < b5 <

4
3. Then, the relaxed convex program

(11a-11b) has solution a∗ = ( 2
3 ,

2
3 ,

2
3 ,

2
3 ,0)T , with opti-

mum revenue U∗ = 8
3. To see this, note first that a∗

satisfies (11b) with equality. Now consider the prices
6



α∗l =
1
3, l = 1,2,3,4, with aggregate route prices

q∗ = (1,1,1,1, 4
3)T . Since b5 < q∗5, we must have

a5 = 0, but the remaining coordinates are indetermi-
nate in[0,1]. So the proposed point(a∗, α∗) is a saddle,
but this would not happen with integer coordinates in a.

In fact, here the integer program can be solved by
observing that at most two connections can be active
over all routes, so the best solution is to give them to the
highest bidders in route five,̃a = (0,0,0,0,2)T . This
gives an optimal integer revenuẽU = 2b5 <

8
3. So

the optimal relaxed solution is better than any integer
solution.

The above example shows that optimal revenue is
not an easy integer program, its convex relaxation is
not exact. Since integer programming is NP hard, we
have strong indication of a fundamental difficulty in this
problem, not easy to overcome even allowing for cen-
tralized computation. We will thus accept a sub-optimal
allocation: solving the convex relaxation, and round-
ing off to satisfy the integer constraints. Note from the
above example that this may not be optimal; if, however,
the capacity allows for a large number of connections,
the loss of revenue is moderate. In compensation, we
will obtain an efficient distributed solution.

Remark 1. Our problem shares similarities with an op-
timal resource allocation problem studied in [20], under
opposite conditions: fixed input demand, minimization
of a convex cost subject to integer constraints. Again,
except for special cases this integer program does not
have an exact convex relaxation.

We thus focus on finding a distributed solution to the
convex program (11a-11b), for which we can draw from
duality methods used in congestion control. The associ-
ated Lagrangian is

L(a, α) =
∑

s

Ubs(as) +
∑

l

αl [cl −
∑

s

Rlr (s)as]

=
∑

s

[Ubs(as) − qr(s)as] +
∑

l

αlcl ,

whereα = (αl) is a vector of Lagrange multipliers
(prices) associated with the constraints (11b), andqr =
∑

l Rrlαl are the accumulated route prices. A gradient-
projection algorithm to find a saddle point ofL(a, α) is

as := arg max
as

[Ubs(as) − qr(s)as], (12a)

αl := [αl + γl (yl − cl)]
+. (12b)

Hereyl =
∑

s Rlr (s)as, [·]+ = max{·,0} andγl > 0 are
step sizes.

(12a) uses current route prices to fix a rate allocation
with maximum “surplus” (utility minus a linear cost).
(12b) compares the proposed allocation to link capacity
and updates prices (up or down) accordingly.

In congestion control, the preceding equations are in-
terpreted as describing thedata plane, in which elastic
sources adapt their packet rate and links generate prices
based on their instantaneous congestion. In our situa-
tion, we think of the above equations as an iteration in
thecontrol plane, which is run to settle an auction prior
to any allocation of resources. More details on imple-
mentation are given in Section 4.

For strictly concave utilities, it is shown in [17] that
the above iteration converges to the optimal allocation,
for sufficiently small step size. Here, however,Ubs is not
strictly concave, it is piecewise linear, changing slope
at the multiples ofσs; this may compromise the con-
vergence of the algorithm. In particular, the optimiza-
tion (12a) amounts to comparing the marginal utilities
U′bs

(as) with the current priceqr(s). The former are the
bids in decreasing order, analogously to the graph in
Fig. 1, but now compared with a constant. Here as well
the curves will generically cross at an integer multiple
of σs; however if the relaxed problem has a non-integer
optimum,qr(s) will oscillate around the value of one bid,
and the resultingas will “chatter” between the adjacent
integer values.

3.2. Proximal optimization algorithm

One method to obtain convergence is to modify our
problem through the so-calledproximal optimization
method [5, 16, 22, 28], described as follows.

Problem 4 (Proximal optimization, single auction).

max
∑

s

Ubs(as) −
∑

s

κs

2
(as − ds)

2 (13a)

subject to
∑

s

Rlr (s)as ≤ cl ∀l. (13b)

In the above,κs > 0 is a constant andds an additional
free variable, which clearly makes the problem equiva-
lent to the relaxed problem (11a-11b).

The standard Proximal Optimization Algorithm [5]
consists of two steps:

(i) For fixedd = (ds), optimize (13a-13b) overas; this
is now a strictly concave program.

(ii) For fixed as, optimize overds, i.e. setds := as.
7



It is shown in [5] that this kind of iteration converges
to the optimum, with a rate of convergence that depends
onκs and improves asκs becomes smaller (see [5] Chap-
ter 3, exercise 4.2). Rockafellar in [22] shows that un-
der mild assumptions the convergence occurs at least at
a linear rate, i.e. that the distance to equilibrium de-
creases by a constant factor per iteration. This factor
tends to zero withκs, so convergence can be made su-
perlinear by decreasingκs as the iteration progresses. In
[28], a generalized Newton method is proposed that also
solves the standard proximal algorithm with a superlin-
ear rate of convergence.

We note, however, that in our case step (i) above is a
constrained problem that must itself be solved through
a dual iteration similar to (12); the cited results apply
if this dual iteration is assumed to converge before the
update (ii) inds takes place; this means the algorithm
would have have two time-scales. This is unsuitable for
online implementation because in practice, it is difficult
for the network elements to decide in a distributed fash-
ion when the inner level of iterations should stop.

A more practical alternative for a distributed imple-
mentation in a network is to perform a finite number of
dual gradient steps per update ofds, as follows.

(i’) For fixed ds, runN steps of the iteration

as := arg max
as

[Ubs(as) − qr(s)as −
κs

2
(as − ds)

2],

(14a)

αl := [αl + γl (yl − cl)]
+. (14b)

(ii) Set ds := as, and go to (i’).

In [16] an algorithm of this kind was studied, for a
utility maximization problem that has some similari-
ties with the one considered here. It was proved that
provided the step-size in the subgradient step is small
enough, the algorithm converges for any value 1≤ N ≤
∞. The maximum step-size in order to have conver-
gence depends onκs, and decreases with it. Thus the
choice ofκs involves a tradeoff between the rate of con-
vergence of the inner (dual subgradient) iteration and
that of the outer proximal algorithm. We will not at-
tempt here to reproduce the theory of [16] for our prob-
lem. Rather, in the following sections we will study the
behavior of the above iteration by simulation.

As an additional comment, notice that the solution of
(14a) reduces to the equation

U′bs
(as) = qr(s) + κs(as − ds), (15)

which amounts to intersecting the step function of de-
creasing bids with a straight line, as depicted in Figure
4. The linear term withκs > 0 makes it possible to have
an intersecting pointas which is not an integer multiple
of σs, as required for solving the relaxed problem.
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Figure 4: Solving foras in the proximal method.

3.3. Simulation Example
In this example we consider the network of the figure

5. First, we auction the capacity of the network using
the algorithm defined by equations (12a) and (12b). In
figure 6 we show that this algorithm does not converge
for Route 1 that oscillates between 4 and 5 connections.

After that, we auction the capacity of the network
using the proximal optimization algorithm defined by
equations (14a) and (14b). In Figure 7 we show that in
this case the algorithm converges for all routes.

C 1  =  1 5 C 2  =  1 0

R o u t e  1

R o u t e  2 R o u t e  3

Figure 5: Linear network.

4. Periodic auctions in the network case

Having considered two sub-problems in the previous
sections, we now take on the problem of optimizing rev-
enue for periodic bandwidth auctions with time reser-
vations over a general network topology. More specif-
ically: assume that a set of services is defined over a
network, each characterized by a route and bandwidth
requirement as in Section 3; every timeT, a set of bids
is collected for each service, and the network must make
an allocation decision among all services, within the ca-
pacity constraints, that takes into account the future im-
pact of reserved bandwidth.
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Figure 6: Route 1 does not converge using the algorithm defined by
equations (12a) and (12b).
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Figure 7: Convergence using the proximal optimization algorithm.

Given the complexity we encountered in each of the
two subproblems (the MDP for periodic auctions in the
single resource case, an integer program for one-shot
auctions in the network case) it should be clear that this
unified problem is not tractable in its exact form. We
will thus develop an approximation that combines the
receding horizon approach of Section 2 with the convex
relaxation of Section 3.

4.1. Fluid receding horizon policy

We begin by formulating a variant of the receding
horizon policy of Problem 2, more suitable for gener-
alization to the network case. The idea is to replace
EXU(c − X) in (5) with U(c − E[X]), leading to a de-
terministic fluid optimization, where the expectation of
X ∼ Bin(xk + a, p) can be readily computed to be
p(xk + a). The above change overestimates the one-step
ahead utility, sinceU(·) is concave; the error will, how-
ever, be moderate as the number of circuitsc grows, and
the binomial distribution becomes concentrated around
its mean. This leads to the following policy for the
single resource case: admit the number of bidsak that

solves

ak = argmaxa≤c−xk{Ub(a) + ρU(c− p(xk + a))}. (16)

By introducing a slack variablezwe can also rewrite the
above optimization as a convex program, as follows:

Problem 5 (Fluid receding horizon policy, single link).

max
a,z

[Ub(a) + ρU(z)],

subject to xk + a ≤ c,

p(xk + a) + z≤ c.

At the optimum, the constraint inz is an equality,z =
c − p(xk + a), so clearly this problem is equivalent to
(16). Note thatz (expected future allocation) need not
be an integer. On the other hand,ak should be an in-
teger, something that isnot guaranteed generically for
the optimum of Problem 5; in this sense, Problem 2 is
better behaved for the single link case. Problem 5 is,
however, more easy to generalize to the network case,
where in any event integer constraints will necessarily
be relaxed.

The network generalization of the fluid receding hori-
zon policy is now described. In this context, the prob-
lem studied in Section 3 covers the myopic policy
of auctioning all bandwidth; we wish to incorporate
the consideration of future revenue, generalizing the
method of Problem 5.

We describe the allocation decision at timek = 0, and
hence avoid inserting time indices in the bids and other
variables. For each services, we denote byx0

s the rate
from previous occupation,as the rate allocation in the
current auction, andzs the expected rate allocation in
the following auction (t = T). Recall the definition (10)
of the piecewise linear utilityUbs(as) based on current
bids; analogously defineUs(·) as in (2), replacing bids
by their expectation. Both are in terms ofσs, the band-
width requirement of the class of service associated with
s. Another feature of the class of service is the model
for duration: letps be the probability that a connection
active att = 0 will remain active att = T 1.

Problem 6 (Network receding horizon allocation).

max
∑

s

Ubs(as) + ρUs(zs), (17a)

subject to yl :=
∑

s

Rlr (s)(as + x0
s) ≤ cl ∀l, (17b)

ỹl :=
∑

s

Rlr (s)[ps(as + x0
s) + zs] ≤ cl ∀l. (17c)

1For an exponential duration,ps = e−µsT .
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We have already stated the problem in terms of a
convex relaxation, omitting the integer constraint of the
form (11c); as before, this constraint is not automati-
cally guaranteed and not easy to enforce, in practice we
will round off the solution of Problem 6. Similarly to
the situation of Section 3, we also face challenges in ob-
taining distributed solutions through duality, due to lack
of strict concavity of the objective: these can be solved
by generalizing the proximal approximation method of
Problem 4.

Problem 7. (Proximal network receding horizon
allocation)

max
∑

s

Ubs(as) + ρUs(zs) −
κs

2
[(as − ds)

2 + (zs − es)
2]

(18)

subject to (17b-17c).

The above problem includes auxiliary variablesds,
es, which at optimality become equal toas, zs respec-
tively, but provide “inertia” when computing a dual so-
lution. We describe the resulting algorithm through the
LagrangianL(a, z, α, β), that includes now two vectors
of multipliersα andβ for the two constraints:

L =
∑

s

Ubs(as) + ρUs(zs) −
κs

2
[(as − ds)

2 + (zs − es)
2]

+
∑

l

αl















cl −
∑

s

Rlr (s)(as + x0
s)















+
∑

l

βl















cl −
∑

s

Rlr (s)[ps(as + x0
s) + zs]















=
∑

s

[Us(as) − (qr(s) + psvr(s))as −
κs

2
(as − ds)

2]

+
∑

s

[ρUs(zs) − vr(s)zs −
κs

2
(zs − es)

2]

+
∑

l

(αl + βl)cl −
∑

s

(qr(s) + psvr(s))x
0
s.

Here we have defined the vectors of aggregate prices per
route

qr =
∑

l

Rlrαl , vr =
∑

l

Rlrβl .

The corresponding algorithm is defined by repeating
the following two steps:

(i) For fixedds, es, runN steps of the iteration

as :=arg max
as

[Ubs(as) − (qr(s) + psvr(s))as

−
κs

2
(as − ds)

2]; (19a)

zs :=arg max
zs

[ρUs(zs) − vr(s)zs −
κs

2
(zs − es)

2];

(19b)

αl :=[αl + γl(yl − cl)]
+; (19c)

βl :=[βl + γl(ỹl − cl)]
+. (19d)

Hereyl , ỹl are defined in (17b-17c).

(ii) Set ds := as, zs := es and go to (i).

The above algorithm is very similar to the one in Sec-
tion 3. Although there are additional price and rate vari-
ables to communicate, the complexity is fundamentally
the same. Solving (19a) amounts to the equation

U′bs
(as) = qs + psvs + κs(as − ds), (20)

which compares bids to a linear cost; this is similar to
(15) but with an additional price termpsvs that “inter-
nalizes” the cost of the current allocation in the follow-
ing auction. (19b) involves a similar calculation with the
expected bids. They both have in general non-integer
solutions.

4.2. Implementation and simulations

Implementing the described allocation algorithm in a
real network should be possible with variants of current
network protocols. For instance, reservation and price
signalling between network elements can be done with
the RSVP protocol, as we now briefly describe.

First, user bids are received by the brokers, where
each broker is associated with a service and a route from
a network access node to a server. These bids are col-
lected until auction time.

The auction allocation is then performed following
the above decentralized algorithm running in the net-
work elements. Specifically, for theN iterations of step
(i) the rate reservation variables (as, zs) are sent by bro-
kers in RSVP Path messages; prices are accumulated
along a path with RSVP Resv messages in the reverse
direction. The variables (ds,es) are updated less fre-
quently, and convergence is defined when variations in
these variables are below a tolerance, or alternatively af-
ter a maximum number of iterations. Finally, theas is
rounded down to a multiple ofσs, values that are within
capacity provided convergence has been attained. These
circuits are reserved through a last round of RSVP reser-
vations.
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An important implementation issue is that the mean
user utility function may not be known to the bro-
ker. In that case, we use an adaptive method that es-
timates the functionU from past bids, through an expo-
nential smoothing of the instantaneous utility function.
Namely:

U
(k+1)

(z) = (1− δ)U
(k)

(z) + δUbk(z),

whereU
(k)

is the current estimate. Note that this re-
quires updating only the values ofU at multiples of the
circuit rate. Furthermore, the iteration applies even if
the number of received bids is randomly varying in time.

This procedure allows the allocation mechanism to
become independent of the bid distribution, and also of
the arrival process. For instance, if bids arrive as a sta-
tionary random process (e.g. Poisson),U is well de-
fined, but difficult to write explicitly. However, the sys-
tem can estimate it through smoothing. In Fig. 8 we
show an estimation example. In this case, bids arrive as
a Poisson process with intensityλ = 10 bids per auction,
each bid having uniform distribution in [0,1]. The aver-
aging is taken over 100 auction periods withα = 0.05.
The realU(z) was calculated numerically.
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Figure 8: Estimation of theU(z) for a Poisson process

In order to evaluate the proposed algorithm, we im-
plemented a discrete event simulator in JAVA which
runs the allocation algorithm in a configurable network
topology, with variable circuit demands, bid distribu-
tions and arrival processes. The simulator also imple-
ments the myopic policy and the average utility estima-
tion presented above. We present results for three dif-
ferent scenarios.

4.2.1. Single link auctions.
We first compare the results of the receding horizon

and myopic policies in a single link case, with 30 cir-
cuits. Auctions take place eachT minutes, and bids
arrive periodically with intensityλ bids/min (assumed
fixed), totallingN = λT bids per auction.

Bids are assumed independent and uniformly dis-
tributed in [0,1], and rejected bids are discarded after
each auction. Accepted jobs are assumed to stay in the
system an exponentially distributed time with mean 100
minutes. Hence,T is a critical system parameter: en-
largingT will allow more bids to participate in a given
auction and circuits to be freed in between, but a very
largeT will decrease the auction rate, and therefore de-
crease the revenue per time unit.
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Figure 9: One link situation: 30 circuits, bid arrival rateλ = 0.5

In Fig 9 we show the results forλ = 0.5. In this figure
the myopic policy is compared with the one-step ahead
policy implemented with the known bids distribution
and with the learning version described above. We can
see that both one-step ahead policies attain more rev-
enue per time unit than the myopic policy, as expected.

4.2.2. Linear network
We now simulate the linear network topology of Fig.

10. In this case, users in the long route 1 are expected to
pay more in order to be allocated resources, since each
of its circuits traverses 2 links. In order to emulate a
real world situation, the bids arrive as a Poisson process
of intensityλ and the learning one-step-ahead policy is
used. In the first simulation, we compared the results

C1 = 50 C2 = 30

Route 1

Route 2 Route 3

Figure 10: Linear network with varying bids.

of this policy with the myopic one by variying the bid
arrival rateλ in every link and keeping the time between
auctionsT = 5 min. We fixed the mean bid of route 1 to
be twice of shorter routes. Results are shown in Fig. 11,
where the average income per unit time is displayed.
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Figure 11: Linear network with varying bid arrival rate.

As we can see, also in this case the one step ahead
policy attains a significative gain over the myopic pol-
icy, for a wide range of arrival rates.

Our second experiment deals with varying the mean
bid over the long route. In this case,T = 5 min. as be-
fore andλ = 1. We assumed independent and uniform
bids with mean 1 for the short routes and varying mean
for the long route. Results are shown in Table 1. As

Table 1: Effect of varying the mean bid in the allocation.

E[b1] REV1 REV2 REV3 a1 a2 a3

0.5 0.003 0.643 0.428 0.3 47.5 28.4
1.0 0.051 0.627 0.401 2.8 45.0 25.9
1.5 0.252 0.558 0.312 9.5 38.4 19.2
2.0 0.583 0.469 0.191 17.3 30.7 11.5
2.5 0.918 0.397 0.115 22.1 25.9 6.7

· REVs: revenue per unit time generated by services.
· as: mean allocated rate in services.

we can see, when the mean bid of broker 1 is twice as
much as the others, it gets a fair share of connections.
Offering more will cause most resources of link 2 to be
allocated to broker 1, with broker 2 retaining its share
of 10 circuits, and broker 3 will starve.

4.2.3. Overlay network.
In this final scenario, we tested the feasibility of our

proposal in the more realistic situation depicted in Fig-
ure 12. In this case we have four interconnected servers
and several brokers, each one attempting to secure re-
sources of the overlay network. We have two types of
demands: each connection in the short routes 1 and 3
consumes 2 circuits representing premium traffic, and
the rest consume 1 circuit. The numbers over the links
in Figure 12 indicate the number of available circuits.

We assume that premium demand is less frequent (20%)
but its mean bid is twice the bids of shorter routes.

Figure 12: Overlay Network Example.

The results are shown in Table 2. We can see that the
premium users who only use one link receive a substan-
tial portion of the resources.

Table 2: Simulation results for Scenario 3

Broker 1 2 3 4 5 6
Links 1 1-2 2 2-3 3-4 4-1
REVs 0.111 0.081 0.115 0.204 0.420 0.211

as 30.8 4.5 30.6 11.9 25.3 11.8

· REVs: revenue per unit time generated by services.
· as: mean allocated rate in services.

5. Extension to multipath routing

This section considers a generalization of the pre-
vious setting, where each end-to-end service can be
supported through multiple routes across the network.
Therefore, for eachs, instead of a single route we
will allow a set of routesR(s). As before a broker at
the edge will receive bids for each service classs, but
now the allocation decision involves choosing the rates
ars, r ∈ R(s) admitted in each route, for a total service
rate per class

as =
∑

r∈R(s)

ars. (21)

We now generalize the receding horizon optimization
of Problem 6 to this situation. In addition to the vari-
ablesars, we define for each route the variablesx0

rs, zrs

that play the same role as before.
12



Problem 8. (Multipath network receding horizon
allocation)

max
ars,zrs

∑

s

Ubs

(

∑

r∈R(s)

ars

)

+ ρUs

(

∑

r∈R(s)

zrs

)

(22a)

subject to
∑

s

∑

r∈R(s)

Rlr (ars + x0
rs) ≤ cl ∀l, (22b)

∑

s

∑

r∈R(s)

Rlr [ps(ars + x0
rs) + zrs] ≤ cl ∀l. (22c)

Again we have stated this problem in its relaxed con-
vex form, ignoring the integer constraints that would
have to be imposed a posteriori by roundoff of the re-
laxed solution. In this regard there are two options:
rounding off each ars to a multiple ofσs, which means
imposing each successful bidder is served through a
single route, or alternatively rounding off the totalas,
assuming the network has multipath capabilities at the
packet level.

Note that the objective of Problem 8 is again not
strictly concave, but now in a more fundamental way,
due to the sums over routes in (22a). Indeed it would
be non-strict even ifUbs(·) andUs(·) were replaced by
strictly concave functions, as occurs in multipath con-
gestion control. This was in fact what motivated the
proximal optimization method in [16], and once again
we will employ it here. For this purpose, introduce vari-
ablesdrs, ers and subtract from the objective in (22a) the
quadratic term

∑

s

∑

r∈R(s)

κs

2
[(ars − drs)

2 + (zrs − ers)
2].

We now describe the calculations involved in step (i)
of the proximal approximation method, when one opti-
mizes overars andzrs for fixed drs, ers. As before we
will use duality, and define Lagrange multpliersαl , βl

for the constraints at each link, updated as in (19c-19d),
and the corresponding aggregate pricesqr , vr per route.
Given such prices, the update of the primal variablesars,
zrs is charactarized by the optimality conditions

U′bs
(
∑

r∈R(s)

ars) = qr + psvr + κs(ars − drs) (23)

U
′

s(
∑

r∈R(s)

zrs) = vr + κs(zrs − ers) (24)

Adding (23) overr ∈ R(s) and recalling (21) leads to
the equation

U′bs
(as) = κsas +

∑

r∈R(s)

[qr + psvr − κsdrs],

from which as can be readily obtained. Substitution
back in (23) leads to the formula

ars = drs +
U′bs

(as) − qr − psvr

κs
(25)

for the update ofars. An analogous procedure involv-
ing (24) leads to the update formula forzrs.

5.1. Multipath example
In this last example we demonstrate the performance

of the multipath allocation, and compare it with the sin-
gle path case. Figure 13 shows both situations; as com-
pared to the single-path topology in the top diagram, the
topology in the bottom enables two paths for brokers 2
and 3.

Figure 14 shows the convergence of the proximal op-
timization algorithm in the multipath case for one typ-
ical auction. As we can see, the algorithm converges
without oscillations.

To compare the performance, we ran 50 simulations
for the single path and multipath cases. Each simulation
includes 100 periodic auctions, for which we calculate
the mean revenue per unit time for the four brokers. Fig-
ure 15 shows the minimum, maximum and average val-
ues over the 50 simulations for this mean revenue per
unit time. As we can see, there is a clear improvement
in revenue in the multipath case.

B r o k e r  1

B r o k e r  2

B r o k e r  3

B r o k e r  4

C = 5 0

C = 3 0

S I N G L E  P A T H

M U L T I  P A T H

B r o k e r  1

B r o k e r  4

B r o k e r  2

B r o k e r  3

C = 5 0

C = 3 0

Figure 13: Single path and Multipath network topologies
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Figure 15: Revenue comparison between multipath and single path

5.2. Considerations on the simulated algorithm and its
convergence

Simulations were performed in Matlab. There are two
types of software agents, for sources and links respec-
tively. The algorithm has an outer iteration indexed by
t, and an inner one indexed byn, as follows:

(i) Fix t and the valuesdrs(t) and ers(t). Initialize
qr (t,0) := qr (t − 1,N) andvr (t,0) := vr (t − 1,N)
(for t = 0, initialize at zero). Forn = 0 to N − 1 do

– Each source agent, independently calculates
its ratesars(t,n + 1) andzrs(t,n + 1) using
equation (25) givenqr (t,n) andvr (t,n).

– Each sources sends the rates (ars(t,n + 1),
zrs(t,n+ 1)) to the links of its routes.

– Each link accumulates the rates received and
calculates using a subgradient step its new
pricesαl(t,n+ 1) andβl(t,n+ 1).

– Each link agent sends the prices to the
sources that use the link, and route prices are
accumulated asqr (t,n+ 1) andvr (t,n+ 1).

(ii) Set drs(t + 1) = ars(t,N) anders(t + 1) = zrs(t,N).

Other than the fact that two prices and two rates must
be communicated between agents, the algorithm is of
the same nature as the one discussed in Section 3.2. In
particular, convergence time depends on the number of
steps in both the inner and outer iterations, and involves
a tradeoff in the choice ofκs in (25).

The iterations indicated in Figure 14 are the total (in-
ner times outer) steps. We obtained convergence in
around 300 iterations. Since each step is in the order
of the round-trip-time (RTT), we can estimate a con-
vergence time of around 15sec for an RTT of 50msec.
This is reasonable to allocate an auction that is held pe-
riodically with a period in the order of a 5-10 minutes,
which is a plausible application scenario. In more de-
manding scenarios, or larger RTTs, we may want to re-
duce the number of iterations. Beyond tuningκs, more
significant gains would involve replacing the subgradi-
ent method of the inner iteration by something faster,
e.g. Newton’s method. The main challenge for such an
alternative is to maintain decentralization, a feature of
subgradient methods for Network Utility Maximization
problems. Very recently, Wei, Ozdaglar and Jadbabaie
[27] have proposed a novel distributed Newton method
for NUM, that appears to make convergence 2 or 3 or-
ders of magnitude faster than the subgradient method,
while still allowing for an implementation over a net-
work. We leave for future work the possibility that this
algorithm can be adapted to our optimization situation.

6. Conclusions

In this work we proposed a mechanism for allocating
network capacity through periodic auctions. We formu-
lated the problem of maximizing operator revenue under
the following constraints: the solution must be fully dis-
tributed, the network has an arbitrary topology, and the
resources allocated in a given auction are reserved for
the entire duration of the connection.

We formulated near-optimal policies for this problem
in terms of convex optimization, through a receding-
horizon version of the network utility maximization
problem. Since the relevant utility is not strictly con-
cave, we solved this problem through a proximal opti-
mization method. Lastly, we extended this algorithm
to the multipath case. All proposals lead to fully dis-
tributed solutions that can be implemented by variants
of existing resource reservation protocols.

Through simulations we validated the convergence of
the algorithms and the obtained performance in various
network topologies. We find in particular that the re-
ceding horizon problem outperforms the myopic policy
of selling all capacity in each auction, and verified the
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performance gains achievable through multipath. We
also included practical enhancements like on-line esti-
mation of the bid distribution. In summary, we have
demonstrated a viable approach for real-time bandwidth
allocation through auctions in complex distributed net-
works.

A. Appendix

In this appendix we obtain the expression for the
threshold w(x). From (6) we have thatw(x) =
E(W(Ix)) − E(W(Ix−1)) with Ix ∼ Bin(x, p). From the
definition ofW andU we can rewrite this as

w(x) = EIx−1

















C−Ix−1
∑

l=0

E(bl)

















− EIx

















C−Ix
∑

l=0

E(bl)

















=

x−1
∑

j=0

A(x− 1, j)
C− j
∑

l=1

E(bl) −
x
∑

j=0

A(x, j)
C− j
∑

l=1

E(bl),

whereA(x, j) :=
(

x
j

)

p j(1− p)x− j , Operating we have

w(x) =
C
∑

l=C−x+1

E(bl)(
C−l
∑

j=0

A(x− 1, j) −
C−l
∑

j=0

A(x, j))

=

x−1
∑

l=0

E(bC−l)(
l
∑

j=0

A(x− 1, j) −
l
∑

j=0

A(x, j)). (26)

Now, it can be esablished by induction that

l
∑

j=0

A(x− 1, j) −
l
∑

j=0

A(x, j) = pA(x− 1, l).. (27)

The value of the threshold in (8), follows then from (26)
and (27).

Acknowledgment.

This work was partially supported by ANII-Uruguay,
project PR-FCE-2009-1-2158.

References

[1] E. Altman, “Applications of Markov Decision Processes in
Communication Networks: a Survey”, inMarkov Decision Pro-
cesses, Models, Methods, Directions, and Open Problems, E.
Feinberg and A. Shwartz (Editors) Kluwer, pp. 488-536, 2001.

[2] P. Belzarena, A. Ferragut, F. Paganini, “Auctions for resource
allocation in overlay networks”,Proc. Net-Coop, Paris, 2008.

[3] P. Belzarena, A. Ferragut, F. Paganini, “Network bandwidth al-
location via distributed auctions with time reservations”,IEEE
Infocom 2009, Rio de Janeiro.

[4] D. Bertsekas,Dynamic Programming : Deterministic and
Stochastic Models, Prentice-Hall, 1987.

[5] D. Bertsekas, J. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, 1989.

[6] S. Boyd, L. Vandenberghe,Convex Optimization, Cambridge
University Press, 2004.

[7] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Lay-
ering as optimization decomposition: A mathematical theory
of network architectures,” inProceedings of the IEEE, vol. 95,
no. 1, Jan 2007, pp. 255–312.

[8] C. Courcoubetis, R. Weber,Pricing Communication Networks
Economics, Technology and Modelling,Wiley 2003.

[9] C. Courcoubetis, M. Dramitinos and G. Stamoulis, “An Auction
Mechanism for allocating the bandwidth of networks to their
users”,Computer Networks, September 2007.

[10] I. Chads, M-J.Cros, F. Garcia, R. Sabbadin “Markov Deci-
sion Process Toolbox for MATLAB”,http://www.inria.
fr/internet/Departements/MIA/T//MDPtoolbox/

[11] M. Dramitinos, G. Stamoulis and C. Courcoubetis, “Auction-
based resource reservation in 2.5/3G Networks” Mobile Net-
works and Apps., 9, pp. 557-566, 2004.

[12] Z. Duan, Z-L.Zhang and Y. T. Hou, Service Overlay Networks:
“SLAs, QoS and Bandwidth Provisioning”,IEEE/ACM Trans.
on Networking, pp 870 - 883, 2003.

[13] F. Kelly, A. Maulloo, and D. Tan. Rate control in communica-
tion networks: shadow prices, proportional fairness and stabil-
ity. J. of the Operational Research Society, 39:237–252, 1998.

[14] P. Klemperer, Auctions: Theory and Practice, The Toulouse
Lectures in Economics,Princeton University Press, 2004.

[15] A. Lazar, N. Semret: Design and Analysis of the Progressive
Second Price auction for Network Bandwidth Sharing. Telecom-
munication Systems - s. i. on Network Economics, 2000.

[16] X. Lin, N. Shroff: Utility Maximization for Communication
Networks With Multipath Routing,IEEE Trans. on Automatic
Control, Vol. 51, No. 5, pp. 766-781, May 2006.

[17] S. H. Low and D. E. Lapsley, “Optimization flow control, I:
basic algorithm and convergence”,IEEE/ACM Transactions on
Networking, vol.7, no.6,pp. 861-874, December 1999.
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[19] P. Maillé, B. Tuffin, “Why VCG auctions can hardly be ap-
plied to the pricing of interdomain and ad-hoc networks”, Proc.
NGI2007, Trondheim, Norway.

[20] A. Ozdaglar and D. Bertsekas, “Routing and Wavelength As-
signment in Optical Networks”,IEEE/ACM Transactions on
Networking, Vol 11, No. 2, April 2003.

[21] M. Puterman,Markov Decision Processes. Wiley, N. J. 2005.
[22] R. Rockafellar, “Augmented Lagrangians and applications of the

proximal point algorithm in convex programming”,Mathematics
of Operation Research1 (1976), pp. 97-116.

[23] P. Reichl , S. Wrzaczek, “Equilibrium Market Prices for Multi-
Period Auctions of Internet Resources”. MMB 2004: 25-34.

[24] J. Shu and P. Varaiya, ”Pricing network services,” in Proc. IEEE
INFOCOM, 2003, vol. 2, pp. 1221-1230.

[25] R. Srikant. The Mathematics of Internet Congestion Control.
Birkhuser, Boston, MA, 2004.

[26] W. Vickrey, “Counterspeculation, auctions and competitive
sealed tenders”,Journal of Finance16, 8-7, 1961.

[27] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A Distributed Newton
Method for Network Utility Maximization,” Proc. of 49th IEEE
Conference on Decision and Control (CDC), Issue Date: 15-17,
Dec. 2010, pp. 1816 - 1821 , 2010.

[28] N. Yamashita and M. Fukushima, “The proximal point algo-
rithm with genuine superlinear convergence for the monotone
complementarity problem”,SIAM J. on Optimization11 (2001),
364-379.

15


