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Abstract

This paper concerns the problem of allocating network daptwough periodic auctions, in which users submit bids
for fixed amounts of end-to-end service. We seek a distriballecation policy over a general network topology that
optimizes revenue for the operator, under the provisionrgsources allocated in a given auction are reserved for the
entire duration of the connection.

We first study periodic auctions under reservations for glsiresource, modeling the optimal revenue problem as a
Markov Decision Process (MDP), and developing a recedimg o approximation to its solution. Next, we consider
the distributed allocation of a single auction over a gelnsgbwork, writing it as an integer program and studying its
convex relaxation; techniques of proximal optimizatioa applied to obtain a convergent algorithm. Combining the
two approaches we formulate a receding horizon optiminatforevenue over a general network topology, leading
to a convex program with a distributed solution. The soluigalso generalized to the multipath case, where many
routes are available for each end-to-end service. A simonldtamework is implemented to illustrate the performance
of the proposal, and representative examples are shown.
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1. Introduction [18]; however, the latter mechanism only applies to tree

o o o . topologies. Another approach to bandwidth auctioning
The possibility of auctioning bandwidth in real time 5 multicast trees or VPNSs is proposed in [9], based

has been considered by many authors [15, 11, 18, 23, 9,45y pytch auctions. The mechanism assumes that users

24], with a variety of applications: ffserv, access con-  jnterested in a path would try to reserve bandwidth by
trol, 3G cellular access, VPN, etc. Much of this work  5j4cing bids simultaneously for all constituent links.

has focused on game-theoretic considerations, in partic-
ular on providing incentives for bidders to reveal their
true utilities. The standard theory of auctions [14] pro-
vides these mechanisms for the auctioning of a single
resource, but itis far more challenging to extend them to
a general network topology. Most proposals in this re-
gard require the user (or a broker entity acting oritas
behalf), to place separate bids for internal resources o

In this paper we argue that to have practical impact, a
bandwidth auction requires a simpler user interface: the
consumer should submit a bid for an entire end-to-end
service, oblivious of the internal topology. It is the op-
erator’s problem to decide which of these bids to accept
and how to accommodate the aggregate service within
fthe available network capacity. Furthermore, a more

the network. In particular, the Progressive Second Price natural objective than incentive compatibility is revenue

(PSP) mechanism of [15] requires each player to coordi- maximization for the operator thaffers this end-to-end

nate bids at the elierent nodes on its route, so that each fﬁrv&ge. As'one p055|tt)le deplq(;j/metrr:t scS:enqr|o tg ma:ke
node may run an auction with the allocation and pricing € discussion concrete, consider the service Lveriay

rules of the single resource case. PSP has along conver-NewvOrk (SON) architecture [12], where an overlay op-

gence phase, which is improved bynaltibid method in erator has leased tunnels between a set of service gate-
’ ways located in domain boundaries, and auctions a ser-

vice of high-quality (e.g. video-on-demand) over this

*Corresponding author infrastructure, with the objective of obtaining revenue.
Email addressesbelza@fing.edu.uy (Pablo Belzarena), .
paganini@ort . edu.uy (Fernando Paganini), Another important aspect of the problem that has
ferragut@ort.edu.uy (Andrés Ferragut) not been satisfactorily addressed in previous work are
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inter-temporal considerations. Most references cover a of our distributed algorithms with non-strictly concave
one-shot auction where bids for the entire duration are utilities. Also, the entirety of Section 5 on multipath
known initially. References for multi-period auctions auctions is new material.
(e.g. [23]) allow future bidders to compete with incum-
bent ones, albeit given the latter some advantage. Thisis, - perigdic auctions of a single resource with time
not an attractive condition for our intended applications.
Consider for example selling video-on-demand content
about 100 minutes long, in auctions every 5 minutes. A We consider first an auction for the capacity of a sin-
consumer will not purchase the service if$tee faces  gle resource, the bandwidth of one link, postponing the
the risk of losing the connection close to the end of the consideration of network topology. The focus here is
movie. In this paper we impose the condition that once the temporal dimension: auctions are held periodically,
bandwidth has been allocated in an auction, the successbased on bids collected for a period of time of dura-
ful bidder has aeservationfor the duration of higer tion T. When each auction closes, the provider decides
connection. This means that the operator must assumewhich bidders are allocated capacity, which is subse-
the risk of future auctions, which makes the maximiza- quentlyreservedor a service duration that may exceed
tion of revenue a stochastic dynamic optimization prob- T. In particular, when the next auction occurs, new bid-
lem. ders are not allowed to displace incumbent users. The
Both of the above aspects (general network topology, objective is to find an allocation policy that maximizes
time reservations) lead to optimization problems of high revenue of the seller over time, under the assumption
complexity, on top of which we add the requirement of that users pay their bid upon admittance to the service,
a distributed solution. Rather than an exact solution, we a first-price auction. Later on we discuss strategic im-
develop in this paper a series of tractable methods thatplications.
approximate the optimal revenue objective. We beginin ~ We establish some notation. Letbe the bandwidth
Section 2 with auctions of a single resource (single link requirement of the single service being auctioned; the
capacity) with time-reservations, a problem that we for- provider has capacitg to auction. In this section we
mulate as a Markov decision process (MDP) [1, 21]. We normalizes = 1, and assumeis an integer.
introduce a receding horizon approximation that is able  The discrete time indek defines the auction at time
to capture the dynamic component of the problem in a kT, for which the seller has receivédf bids, ordered as
tractable way, and validate it by simulation. Next, we
turn in Section 3 to the network aspect, formulating the

by recasting this problem in the language of Network 3 set of highest bidders, yielding a revenue of
Utility Maximization (NUM) [13, 7], we develop a nat-

ural relaxation that has a distributed solution; conver-
gence is obtained through the application of a proximal
optimization method [5, 16].

In Section 4 we combine the previous approaches to This functionUw(-) is defined above for integer values

reservations

B 5 pk@ 5 ... 5 N9

ak

Up(@) := Z bk,

i=1

1)

formulate a receding-horizon optimization of revenue
for multi-period auctions over a distributed network,

which again is formulated as a variant of a NUM prob-

lem, solved in relaxed form through a proximal method.
We develop in this case a distributed implementation of
the algorithm, and exhibit its performance in a series
of simulation examples that progressively include more
realistic situations. Finally, in Section 5 we consider
multipath optimization, where end-to-end services can
be dfered through multiple routes inside the network;

we show how to extend the methodology to this case.
Conclusions are given in Section 6.

This article is an extension of our conference papers
[2, 3]. One main enhancement included here is the
proximal approximation method to ensure convergence

2

of a; we will also apply this notation to the function

of a“ € R defined by linear interpolation, and constant
aboveNK. This piecewise linear function is increasing
and concave i@k, since bids are decreasing.

If we were considering a single auction of the capac-
ity ¢, clearly the optimal revenue decision would be to
sell as much as possibla = min{c, N}. However, the
occurrence of periodic auctions and reservations across
multiple periods complicates the decision significantly,
as discussed next.

2.1. Optimal allocation as a Markov Decision Process
The long-term optimal revenue problem is posed in

terms of a stochastic model for the bidding and duration

processes. The model assumptions are now described:



e Distribution of bids. We assume bids are drawn
independently from a continuous probability dis-
tribution. For the theory to follow, we will assume
the distribution is known; in Section 4.2 we show
how it can be learned from past observations.

Number of bids. Two alternatives are considered:

— A fixed numbemK = N of bids;

— A random number of bids, with Poisson dis-
tribution of parametenT, that results from a
Poisson process of bid arrivals with rate

Revenue functions First-price charging is as-
sumed. The revenue function for given bids is (1),
and we define the expected revenue function as

@)

Here the expectation is over the bid distribution
and possibly the number of bids. As is the case
with (1), this function is also piecewise linear and
concave irg, at integer values representing the ex-
pected revenue from admittirgconnections.

U(a) = E[Up(a)]-

Service duration. As explained before, connec-
tions are reserved for the entire duration, which
is characteristic of the service being auctioned.
To allow for a Markovian analysis, we will use a
stochastic, memoryless model: service durations
are independent exponential random variables, of
mean Yu. Therefore at the end of the peridd
each connection has probability := e*#T of re-
maining active for the following period.

We now describe the process dynamics . Ketle-
note the number of connections activetat kT-, i.e.
before thek-th auction. The system adm$ new con-
nections, 0< a < ¢ — xX, taking the total tox + a*.
By the next auction period, = (k + 1)T~, the number
of active connectiong“** follows then a binomial dis-
tribution with parameters® + a< andp:

P[Xk+1 — ile, ak] — (Xk-ii—ak) pl(l _ p)xk+ak—i' (3)

We our now ready to formulate our first stochastic
optimization problem.

Problem 1 (Optimal mean revenue, single link).

Maximize lim

K—o0

1 K-1
< 2 ElUs(@].
k=0

Here the expectation is over two sources of randomness:
the vector of bidsb® and the departure process. The
constraints are & a < ¢ — x€ wherex follows the
binomial transition dynamics (3). We can also consider
the discounted version:

Maximize ZPKE[Ubk(ak)L where 0< p < 1.
k=0

Both are Markov Decision Processes (MDPs) [4, 21].
The stateat timek is given by &, b"), i.e. the current
occupation and the incoming bids. Based on this state,
theaction & = a(x¥, b¥) decides on how many bids to
accept. A solution to the MDP is policy ax, b) that
results in a minimum cost. In the discounted casel,

this policy satisfies the Bellman equation

V*(’. b) = max{Us(@) + pE[V' (<. b))}, (4)

whereV* is the value function and the expectation is
taken over the binomial distribution a#|(x°, a) and the
distribution of the next bidy'. The state-dependent con-
straints areA, = {0 < a < ¢c- x%. Forp = 1, V*
satisfying (4) is no longer the optimal cost, but (4) still
characterizes the optimal actia(x, b).

Itis in general dificult to solve the Bellman equation;
a commonly used strategy is thialue iteration[4]

Vinsa (4, b) 1= max{Up(@) + pE[Vin(x", b')]};

starting with an arbitrary/y(x, b), Vin(X, b) converges to
V*(x, b), and the corresponding maximizing action con-
verges to the optimal action [4].

2.2. Receding horizon approximation.

We use initial steps of the value iteration to approxi-
mate the optimal policy. Starting frovy = 0, we have

V1(X®, b) = max Up(a) = Up(c — x°).
asc-x0

This first step gives the “myopic” policg = c— X, that
sells all available capacity without regard to the future.
This is clearly suboptimal, but may be appropriate for
certain parametric scenarios. To improve on it, we take
a second step in the value iteration:

V20, b) = max{Up(@) + pE[Va(x', b')]}

a@%{Ub(a) + pE[Uy (= x")]}

max{Up(a) + pExU(c - x1)]}.
a<c—x0



In the last step we have taken expectation with respect The receding horizon optimization (5) can now be
to the bidby, usingU defined above; what remains is  rewritten as

the expectation with respect 16 ~ Bin(x° + a, p). The
above optimization can be giverreceding horizornn-
terpretation: optimize over the current revenue plus the
expected revenue of looking one step ahead, assumin
all available capacity will be soldfbat that time. This
decision is applied recursively; thus the future is take
into account, but at a limited level of complexity.

The receding horizon policy is thus the following: at
each auctiork, let x* denote the current occupation, and
b* the vector of incoming bids. Admit the number of
bidsa® that solves

max Up(a) — pW(C + @) + pU(c). 7)

mplicit in (5) and (7) is thatis an integer. In this case,
owever, the condition can be relaxed without loss of
n generality, treating (7) as a convex optimization prob-
lem. To solve it amounts to looking for a crossing
point between the derivatives tf,(a) andpW(x° + a)
(marginal utilities and costs), as depicted in Fig. 1.

30 - - Marginal cost
—Marginal utility

Problem 2 (Receding horizon policy, single link).

max{Up(a) + pExU(c - X)), (5)

asc-X

where the expectation is over XBin(x + a, p).

Circuits

We now analyze how to carry out this optimization.
The first term in (5) increases with To characterize the Figure 1: Marginal utility versus marginal cost
second, we rewrite it as follows. Consider the function

W(i) = U(c) - U(c— i), piecewise linear, increasing and  The marginal utilities are just the current bids in de-

convexn i. Indeed, the increments creasing order. The marginal costs represent the value
. _ . ©i of leaving one more free circuit for the next auction, and
w(i) == W(i +1) - W(i) = E[0*"], i=1....c have the formpw(i), with W(-) defined in (6); as noted

) ) o ) they are increasing in Since the bide are random, the
are non-negative and increasingii(since bids are de-  \,es of Figure 1 will almost surely cross at a single,

creasing). We now study the expectation with respect t0 jyieqer point. So the convex relaxation is innocuous.

the binomial distribution. The optimal acceptance policy is the valuguch that
Proposition 1. DefineW(x) = E[W(l,)], where | ~ b > ... > b@ > pw(i) > b@D, fori=x"+a.
Bin(x, p) for integer x, and extend by linear interpola-

tion. ThenW(x) is increasing and convex. The valuepW(i); act as successithresholdsto accept

a bids, thelowestone must exceedw(x’ + a). To ac-
Proof 1. Given k ~ Bin(x, p), integer x, we can gener-  C€pt one more, we requirenaore demandinghreshold

ate a Bir(x + 1, p) random variable of the formyl+ &, pW(X + a+ 1) on this (smaller) bid.
where¢ is Bernoulli(p), independent of.| Writing A concrete formula for the thresholds as a function of

the bid distribution is given (see the Appendix) by
W(lx + &) — W(ly) = W(lx + 1)¢

i-1
and taking expectations, using independence we obtain w(i) = pz E(b* I))(I Il) pa-p (8)
increments 1=0
Based on knowledge @f p, and the distribution of bids,
this expression could be calculatefilioe and used for
carrying out auctions with the policy (5).

WX+ 1) = W(x+ 1) - W(x) = pE[w(l, +1)].  (6)

It remains to show the last term is increasing in x. Not-

ing that w(i) is increasing, the inequality f\ +& + 1) > Example 1. We evaluate the previous results in a few
w(Ix + 1) holds almost surely; taking expectations, simple cases (fgs = 1). For ¢ = 1, there is a single link
costwy, = pE(b®), that acts as an admission threshold
Ew(l(xe2) + 1)] = E[w(Ix + & + 1)] 2 E[w(lx + 1)]. for bids received when the circuit becomes empty. For



instance in the case of N bids, uniformly distributed in 011
[0, bmax] We haveW; = pxlisbmax

If ¢ = 2, there are two marginal costsw; =
pE(b®) for occupying the first connection, amg = 0.09
P[E(b@)(1 - p) + E(bW)p] for occupying the second.
For uniform in[0, bmay bids we have

Revenue
o
o
«Q

-—Infinite Horizon MDP

W -1 ooel [ --Receding Horizon MDP
Wi=p N + lbmax i -=-Myopic policy

0.05
_ (N_l)(l_ p)+ Np (¢} 2 4 6 8 10 12
W2 = p bmax. N

N+1

We now compare by simulations our receding hori-
zon policy with the optimal infinite-horizon MDP, in
the case of one circuitc(= 1). In this simple case,
the latter is also a threshold policy on the bids, but the first-price auction with incoming bids, which does not
optimal threshold does not have a simple formula; we haye built-in incentives for revealing true utilities; in
computed it numerically through the value iteration al- s section we explain the reasons behind our choice.
gorithm from [10]. Fig. 2 shows the acceptance thresh-  The main reason is that our stated objective is rev-
olds for both policies: we see the infinite horizon thresh- o e maximization, rather than truth-revelation. A fun-
old is more demanding. Fig. 3 shows the average utility yamental result of the theory of auctions, Revenue
obtained by simulation of these two policies. Results gqyivalence Theorensee [8], states that under certain
are very similar. Therefore, in this case we have man- gsqumptions (mainly, risk neutrality of participants) all
aged to extract almost the optimal utility just by looking - g,ctions have the same expected revenue for the seller.
one-step ahead with the policy. On the other hand, ifwe owever, under other conditions (e.g., risk-averse buy-
apply the myopic policy that always fills the link, the  grq) first-price auctions are known to improve revenue

Figure 3: Revenue comparison between poliaies,1, p = 0.1.

second plot shows there is a clear loss in utility. [8]. To illustrate this issue in a simple setting, consider
a one-shot auction of capacity avoiding the temporal
0.9 ‘ ‘ ‘ ‘ dimension. If in a certain auction there are fewer than

c competitors, the generalized Vickrey auction would
charge a price equal to the highest bid left out, in this
case, zero, hence the network receives zero revenue.
If, instead, we charge users what they bid, how would
; strategic bidders behavd? they knewthat capacity is
—~Infinite horizon MDP not scarce, the rational thing would be to submit a bid
os f -Receding horizon MDP close to zero; this would confirm revenue equivalence.

o = 2 a 6 5 10 12 However, in a practical situation they would not have

N this information, and will be compelled to bid a non-

negligible amount. So the seller is bettéiwith a first-
price auction.

A second consideration is tlewmplexityof truth re-
vealing mechanisms, when we add the time dimension,

2.3. Strategic and game considerations and later on the network topology. In this regard, we
note:

A large focus of the auction literature has been strate-
gic bidding, and the design of mechanisms in which o For a generalized Vickrey auction, the revenue

4
@

=4
u

Threshold w,

o
o

Figure 2: Threshold comparison between policges,1, p = 0.1.

bidding true utilities is a dominant strategy. Vick- function (1) is no longer concave, or increasing;
rey’s second-price auction [26], where the winning for instance the vector of bids= (2,2, 1, 1) gives
user is charged the second highest bid, is of this kind. revenue values (2, 3,0). These properties are es-
More generally, VCG mechanisms (for Vickrey-Clarke- sential to the tractability of our optimization over
Groves, see e.g. [8]) have built-in “incentive compati- time.

bility”, a condition sought in many auction designs for
networks [15, 18, 9]. In contrast, we have proposed a e In the network case, to be discussed in future sec-
5



tions, the generalization of VCG mechanisms is solution will involve the highest bids per service,
very complex, even for a one-shot auction. This N

. . s Ms

issue was already brought up in [19]. Nam_ely, Z b0, = Z b0

finding the VCG charges involves solving multiple L SeSt T L s

optimization problems, with each bidder removed =t =t

from the network. where the integer variableg is the number of accepted
bids for services, resulting in a rat@s := o¢ms for this

L . service applied to routds). Now define
3. Distributed one-shot auctions over a network PP ()

as/os
We turn now to auctioning bandwidth over a gen- Up.(as) := Z bg). (10)
eral network topology. We seek methods to optimize i=1
revenue of the allocated bids, that can be computed in_ . L ) .
a distributed way across a network. This section fo- | S function is defined above for discrete valuesof
cuses on a single auction of available capacity; later on (the multiples obrs). As before we extend it to a piece-

we will return to the temporal considerations associated iS€ linéar, concave function af € R, by linear inter-
with reservations. polation. With this notation, we rewrite (9) as follows.

We begin by extending our notation to the network proplem 3 (Network allocation, single auction).
case. The network is composed of a set of links indexed

by I, and a set of end-to-end routes indexedrbyR maXZ Up.(as) (11a)
denotes the routing matri®, = 1 iff router includes S

link I, p_therwiseR.r = 0. ¢ = (q) is the vector of link subject to Z Rrgas <G VI, (11b)
capacities. S
Consider a set of services, indexed$yhat are auc- as/os € 7. (11c)

tioned over the network. Each service has a fixed band-
width requirementrs: users bid for this well-defined
rate allocation. For the moment we consider $ie ] i o
gle pathsituation, in which servics is offered over a If we ignore the integer constraint in (11c), the
single router(s); in Section 5 we extend the method to  OPtimization in Problem 3 has the form of thet-

the multipath setting. There could be multiple services WOk utility maximizatiorproblem in congestion control
offered over the same route. For eacthe network [13, 17, 25], that is known to have distributed solutions.

3.1. Convex relaxation and distributed solution

receives a set d¥ls bidsbg) ordered as Motivated by this, we will focus on the convex relax-
’ ation (11a-11b). Before doing this, we inquire whether
bd > b@ > ... > b, it can be claimed that the relaxation is generically exact

(equivalently, whether the linear program that relaxes
The resource allocation decision is to find which of (9) has generically integer solutions). Unfortunately,
these bids to accept, within the capacity constraints of this is not the case.
the network, to maximize revenue under a first-price _ ) _ )
auction. Defining the variablg; by &; = 1 if bid b is Example 2. Consider 4 links with capacity & 2, and
acceptedss; = 0 otherwise, the optimal revenue prob-  Paths (each with bandwidth requiremeny = 1), with

lem for the single auction is the integer program routing matrix
Ns 1110
max bOé; (9a) |1 101
2;‘ ) R=11 0 1 1
Ns 01 11
subject to Rrgosési < VI, (9b)
ZS ; (T Bids for the same route are all equal, with the following
& €1{0,1. (9¢) distribution among routes: b= by = bs = by = 1,

andl < by < ‘5‘. Then, the relaxed convex program

We can also convert this problem to a utility-based form (11a-11b) has solution*a= (%, 4, 2, ,0)", with opti-
as in the previous section. Since for fixedall bids mum revenue U = §. To see this, note first that a
bg) are for the same amount of bandwidth, the optimal satisfies (11b) with equality. Now consider the prices

6



a = % I = 1,2,3,4, with aggregate route prices Herey, = YsRrgas []* = max:,0} andy, > 0 are
g = (L1113 Since B < g, we must have  step sizes.
as = 0, but the remaining coordinates are indetermi- (12a) uses current route prices to fix a rate allocation
nate in[0, 1]. So the proposed poia*, *) is a saddle, with maximum “surplus” (utility minus a linear cost).
but this would not happen with integer coordinates in a. (12b) compares the proposed allocation to link capacity
In fact, here the integer program can be solved by and updates prices (up or down) accordingly.
observing that at most two connections can be active In congestion control, the preceding equations are in-
over all routes, so the best solution is to give them to the terpreted as describing thiata plane in which elastic
highest bidders in route fivéi = (0,0,0,0,2)". This sources adapt their packet rate and links generate prices
gives an optimal integer revenug = 2bs < g, So based on their instantaneous congestion. In our situa-
the optimal relaxed solution is better than any integer tion, we think of the above equations as an iteration in
solution. the control plane which is run to settle an auction prior
to any allocation of resources. More details on imple-
The above example shows that optimal revenue is mentation are given in Section 4.
not an easy integer program, its convex relaxation is  For strictly concave utilities, it is shown in [17] that
not exact. Since integer programming is NP hard, we the above iteration converges to the optimal allocation,
have strong indication of a fundamentaffdiulty in this for sufficiently small step size. Here, howeve,_ is not
problem, not easy to overcome even allowing for cen- strictly concave, it is piecewise linear, changing slope
tralized computation. We will thus accept a sub-optimal at the multiples ofrs; this may compromise the con-
allocation: solving the convex relaxation, and round- vergence of the algorithm. In particular, the optimiza-
ing off to satisfy the integer constraints. Note from the tion (12a) amounts to comparing the marginal utilities
above example that this may not be optimal; if, however, U}, (as) with the current priceys. The former are the
the capacity allows for a large number of connections, bids in decreasing order, analogously to the graph in
the loss of revenue is moderate. In compensation, we Fig. 1, but now compared with a constant. Here as well
will obtain an dficient distributed solution. the curves will generically cross at an integer multiple
of os; however if the relaxed problem has a non-integer
Remark 1. Our problem shares similarities with an op-  optimum, gy will oscillate around the value of one bid,
timal resource allocation problem studied in [20], under and the resultings will “chatter” between the adjacent
opposite conditions: fixed input demand, minimization integer values.
of a convex cost subject to integer constraints. Again,
except for special cases this integer program does not 3.2. Proximal optimization algorithm

have an exact convex relaxation. . . :
One method to obtain convergence is to modify our

problem through the so-callegroximal optimization

We thus focus on finding a distributed solution to the method [5, 16, 22, 28], described as follows.

convex program (11a-11b), for which we can draw from
duality methods used in congestion control. The associ-
ated Lagrangian is

L@a)= ) Un(@)+ Y mla - Regad max; Up,(ag) - ZS: 5 (8- ds)’ (13a)
S | s

subject to ZR.r(S)asgq vl.  (13b)
S

Problem 4 (Proximal optimization, single auction).

= Z[Ubs(as) - qr(s)as] + Z a|C,
s [

In the aboveks > 0 is a constant ands an additional
free variable, which clearly makes the problem equiva-
lent to the relaxed problem (11a-11b).

The standard Proximal Optimization Algorithm [5]
consists of two steps:

wherea = (@) is a vector of Lagrange multipliers
(prices) associated with the constraints (11b), gne

> Riay are the accumulated route prices. A gradient-
projection algorithm to find a saddle point bfa, @) is

(i) Forfixedd = (ds), optimize (13a-13b) oveds; this
as := arg rQSa*Ubs(as) — s, (122) is now a strictly concave program.

a=[a+yn-a)l’ (12b) (i) For fixed as, optimize overs, i.e. setds := as.



It is shown in [5] that this kind of iteration converges
to the optimum, with a rate of convergence that depends
onksand improves ags becomes smaller (see [5] Chap-
ter 3, exercise 4.2). Rockafellar in [22] shows that un-

which amounts to intersecting the step function of de-
creasing bids with a straight line, as depicted in Figure
4. The linear term withrs > 0 makes it possible to have
an intersecting poirds which is not an integer multiple

der mild assumptions the convergence occurs at least atof o, as required for solving the relaxed problem.

a linear rate, i.e. that the distance to equilibrium de-
creases by a constant factor per iteration. This factor
tends to zero withs, SO convergence can be made su-
perlinear by decreasing as the iteration progresses. In
[28], a generalized Newton method is proposed that also
solves the standard proximal algorithm with a superlin-
ear rate of convergence.

We note, however, that in our case step (i) above is a
constrained problem that must itself be solved through
a dual iteration similar to (12); the cited results apply
if this dual iteration is assumed to converge before the
update (ii) inds takes place; this means the algorithm
would have have two time-scales. This is unsuitable for
online implementation because in practice, it i§idilt
for the network elements to decide in a distributed fash-
ion when the inner level of iterations should stop.

A more practical alternative for a distributed imple-
mentation in a network is to perform a finite number of
dual gradient steps per updatedaf as follows.

(") For fixed ds, run N steps of the iteration

as = arg maxUs. (a) — th(oas ~ 7 (3 — do)°],
(14a)
o =[a+n -l (14b)

(i) Setds:= as, and go to (i").

In [16] an algorithm of this kind was studied, for a
utility maximization problem that has some similari-
ties with the one considered here. It was proved that
provided the step-size in the subgradient step is small
enough, the algorithm converges for any value M <
oo, The maximum step-size in order to have conver-
gence depends an, and decreases with it. Thus the
choice ofxg involves a tradefd between the rate of con-
vergence of the inner (dual subgradient) iteration and
that of the outer proximal algorithm. We will not at-
tempt here to reproduce the theory of [16] for our prob-
lem. Rather, in the following sections we will study the
behavior of the above iteration by simulation.

As an additional comment, notice that the solution of
(14a) reduces to the equation

Ués(as) =09 + ks(as — ds), (15)
8

2|

Marginal utility

10

r(s]

q,.—kd
r(s) so

Figure 4: Solving foras in the proximal method.

3.3. Simulation Example

In this example we consider the network of the figure
5. First, we auction the capacity of the network using
the algorithm defined by equations (12a) and (12b). In
figure 6 we show that this algorithm does not converge
for Route 1 that oscillates between 4 and 5 connections.

After that, we auction the capacity of the network
using the proximal optimization algorithm defined by
equations (14a) and (14b). In Figure 7 we show that in
this case the algorithm converges for all routes.

Il

Figure 5: Linear network.

Cl =15 C2 =10

Route 1

Route 2 {

1Route 3

4. Periodic auctions in the network case

Having considered two sub-problems in the previous
sections, we now take on the problem of optimizing rev-
enue for periodic bandwidth auctions with time reser-
vations over a general network topology. More specif-
ically: assume that a set of services is defined over a
network, each characterized by a route and bandwidth
requirement as in Section 3; every timea set of bids
is collected for each service, and the network must make
an allocation decision among all services, within the ca-
pacity constraints, that takes into account the future im-
pact of reserved bandwidth.



1 solves

a = argmax_._«{Up(@) + pU(c — p(x* + @))}. (16)

By introducing a slack variabtewe can also rewrite the
above optimization as a convex program, as follows:

New connections

Problem 5 (Fluid receding horizon policy, single link).

o 100 200 300 _ 400 500 600 TTEX[Ub(a) +pU(2)],

Iteration number

. . _ _ subjectto X +a<c,
Figure 6: Route 1 does not converge using the algorithm difiye

equations (12a) and (12b). p(Xk +a)+z<c

At the optimum, the constraint inis an equalityz =
c — p(x* + a), so clearly this problem is equivalent to

T ] (16). Note thatz (expected future allocation) need not
popre= T ——— be an integer. On the other hara, should be an in-
g ---Route 2 teger, something that isot guaranteed generically for
g 8 e the optimum of Problem 5; in this sense, Problem 2 is
g 4 better behaved for the single link case. Problem 5 is,
§ -\x however, more easy to generalize to the network case,
4 where in any event integer constraints will necessarily
be relaxed.
0100200 30 mer’® 50 6% The network generalization of the fluid receding hori-
zon policy is now described. In this context, the prob-
Figure 7: Convergence using the proximal optimization atpari lem studied in Section 3 covers the myopic policy

of auctioning all bandwidth; we wish to incorporate
the consideration of future revenue, generalizing the
method of Problem 5.

We describe the allocation decision at tikne 0, and
hence avoid inserting time indices in the bids and other
variables. For each servigwe denote by the rate
from previous occupatiorgs the rate allocation in the
current auction, ands the expected rate allocation in
the following auction(= T). Recall the definition (10)
of the piecewise linear utilitfJp (as) based on current
bids; analogously defing(-) as in (2), replacing bids
by their expectation. Both are in terms®§, the band-
4.1. Fluid receding horizon policy width requirement of the class of service; as;ociated with
s. Another feature of the class of service is the model
for duration: letps be the probability that a connection
active att = 0 will remain active at = T 1,

Given the complexity we encountered in each of the
two subproblems (the MDP for periodic auctions in the
single resource case, an integer program for one-shot
auctions in the network case) it should be clear that this
unified problem is not tractable in its exact form. We
will thus develop an approximation that combines the
receding horizon approach of Section 2 with the convex
relaxation of Section 3.

We begin by formulating a variant of the receding
horizon policy of Problem 2, more suitable for gener-
alization to the network case. The idea is to replace problem 6 (Network receding horizon allocation).
ExU(c — X) in (5) with U(c — E[X]), leading to a de- _
terministic fluid optimization, where the expectation of maxz Un,(as) + pUs(zs), (17a)
X ~ Bin(x* + a, p) can be readily computed to be s
p(X€ + a). The above change overestimates the one-step  subjectto y; := Z Rir(g(as + )< VI, (17b)
ahead utility, sinc&J(-) is concave; the error will, how- s
ever, _be m_oderatg as.the number of circaigsows, and ¥ = Z Reglps@s+ X)) +z <a VvI. (17c)
the binomial distribution becomes concentrated around S
its mean. This leads to the following policy for the
single resource case: admit the number of tafighat 1For an exponential duratiops = e#s'.

9




We have already stated the problem in terms of a
convex relaxation, omitting the integer constraint of the
form (11c); as before, this constraint is not automati-
cally guaranteed and not easy to enforce, in practice we
will round off the solution of Problem 6. Similarly to
the situation of Section 3, we also face challenges in ob-
taining distributed solutions through duality, due to lack
of strict concavity of the objective: these can be solved
by generalizing the proximal approximation method of
Problem 4.

Problem 7. (Proximal network receding horizon
allocation)

ds)? + (25 — €5)7]

(18)

max " Up,(as) + pU(zs) - %[(as -

subject to (17b-17c).

The above problem includes auxiliary variabls
es, Which at optimality become equal &, zs respec-
tively, but provide “inertia” when computing a dual so-
lution. We describe the resulting algorithm through the
LagrangianL(a, z @, ), that includes now two vectors
of multipliersa@ andp for the two constraints:

L= Zs Up,(as) + pUS(ZS) - %[(as - ds)2 + (25— es)z]
+ Z t [C| - Z Rir9(@s+ Xg)]
| s
+ ZBI (CI - Z Rrglps(as + Xg) + Zs])
| s

= Z[US(aS) = (Or(g + PsVr(9)as — %(as - ds)z]

+ Z[pu s(Zs) = Vi(9Zs — ( es) ]

+ Z(Q’I + )6 = D (G + PeVeo) XS
| S
Here we have defined the vectors of aggregate prices pe

route
Or =ZRIFQ|’ Vi =ZRIrﬁI~
| |

The corresponding algorithm is defined by repeating
the following two steps:
10

(i) For fixedds, es, runN steps of the iteration

as :=arg n;a){Ubs(as) — (Or(9) + PsVi(s))as

- Z(as— 7] (192)

Zg :=arg rTZ]a*PUs(Zs) —Vr(9Zs — K_ZS(ZS - es)z];
(19b)
a =[ar +nyn - a)l’; (19¢)
B =B +n@ - a)l. (19d)

Herey, § are defined in (17b-17c).
(i) Setds:= as, zs:= esand go to (i).

The above algorithm is very similar to the one in Sec-
tion 3. Although there are additional price and rate vari-
ables to communicate, the complexity is fundamentally
the same. Solving (19a) amounts to the equation

Uf,s(as) =

Os + PsVs + ks(as — ds), (20)

which compares bids to a linear cost; this is similar to
(15) but with an additional price termpgvs that “inter-
nalizes” the cost of the current allocation in the follow-
ing auction. (19b) involves a similar calculation with the
expected bids. They both have in general non-integer
solutions.

4.2. Implementation and simulations

Implementing the described allocation algorithm in a
real network should be possible with variants of current
network protocols. For instance, reservation and price
signalling between network elements can be done with
the RSVP protocol, as we now briefly describe.

First, user bids are received by the brokers, where
each broker is associated with a service and a route from
a network access node to a server. These bids are col-
lected until auction time.

The auction allocation is then performed following
the above decentralized algorithm running in the net-
work elements. Specifically, for thé iterations of step
() the rate reservation variableas(zs) are sent by bro-
kers in RSVP Path messages; prices are accumulated
along a path with RSVP Resv messages in the reverse

Id|rect|on The variablesd{, es) are updated less fre-

quently, and convergence is defined when variations in
these variables are below a tolerance, or alternatively af-
ter a maximum number of iterations. Finally, thgis
rounded down to a multiple afs, values that are within
capacity provided convergence has been attained. These
circuits are reserved through a last round of RSVP reser-

vations.



An important implementation issue is that the mean
user utility function may not be known to the bro-

ker. In that case, we use an adaptive method that es-

timates the functiotJ from past bids, through an expo-
nential smoothing of the instantaneous utility function.
Namely:

U(k+ 1)

@ = (1-9)0"°@) +6Up(.
whereU(k) is the current estimate. Note that this re-
quires updating only the values bfat multiples of the
circuit rate. Furthermore, the iteration applies even if
the number of received bids is randomly varying in time.
This procedure allows the allocation mechanism to
become independent of the bid distribution, and also of
the arrival process. For instance, if bids arrive as a sta-
tionary random process (e.g. Poissad),s well de-
fined, but dificult to write explicitly. However, the sys-
tem can estimate it through smoothing. In Fig. 8 we
show an estimation example. In this case, bids arrive as
a Poisson process with intensity= 10 bids per auction,
each bid having uniform distribution in [@]. The aver-
aging is taken over 100 auction periods with= 0.05.
The realU(2) was calculated numerically.

U@

Real
Estimation

15 20

Figure 8: Estimation of th&)(z) for a Poisson process

In order to evaluate the proposed algorithm, we im-
plemented a discrete event simulator in JAVA which
runs the allocation algorithm in a configurable network
topology, with variable circuit demands, bid distribu-
tions and arrival processes. The simulator also imple-
ments the myopic policy and the average utility estima-
tion presented above. We present results for three dif-
ferent scenarios.

4.2.1. Single link auctions.

We first compare the results of the receding horizon
and myopic policies in a single link case, with 30 cir-
cuits. Auctions take place eadh minutes, and bids
arrive periodically with intensityl bidgmin (assumed
fixed), totallingN = AT bids per auction.
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Bids are assumed independent and uniformly dis-
tributed in [Q 1], and rejected bids are discarded after
each auction. Accepted jobs are assumed to stay in the
system an exponentially distributed time with mean 100
minutes. HenceT is a critical system parameter: en-
larging T will allow more bids to participate in a given
auction and circuits to be freed in between, but a very
largeT will decrease the auction rate, and therefore de-
crease the revenue per time unit.

Revenue per time unit

—— One-step

—— One-step learning | |
- Myopic

10 35

15 20 25 30
Time between auctions (min)

Figure 9: One link situation: 30 circuits, bid arrival rate- 0.5

In Fig 9 we show the results far= 0.5. In this figure
the myopic policy is compared with the one-step ahead
policy implemented with the known bids distribution
and with the learning version described above. We can
see that both one-step ahead policies attain more rev-
enue per time unit than the myopic policy, as expected.

4.2.2. Linear network
We now simulate the linear network topology of Fig.
10. In this case, users in the long route 1 are expected to
pay more in order to be allocated resources, since each
of its circuits traverses 2 links. In order to emulate a
real world situation, the bids arrive as a Poisson process
of intensity A and the learning one-step-ahead policy is
used. In the first simulation, we compared the results
Route 1 >

Route 2 [ 1 [ 1Route 3

Figure 10: Linear network with varying bids.

Cl1=50 C2 =30

of this policy with the myopic one by variying the bid
arrival rated in every link and keeping the time between
auctionsT = 5 min. We fixed the mean bid of route 1 to
be twice of shorter routes. Results are shown in Fig. 11,
where the average income per unit time is displayed.



1s We assume that premium demand is less frequent (20%)
but its mean bid is twice the bids of shorter routes.

40 circ.

Average revenue per time unit

—— Myopic Policy i
——One Step Learning

Link 3
40 circ.

50 circ.

) (bidgmin} oo
Link 2

Figure 11: Linear network with varying bid arrival rate. 50 cire.

As we can see, also in this case the one step ahead
policy attains a significative gain over the myopic pol-
icy, for a wide range of arrival rates.

Our second experiment deals with varying the mean
bid over the long route. In this casg,= 5 min. as be-
fore anda = 1. We assumed independent and uniform
bids with mean 1 for the short routes and varying mean
for the long route. Results are shown in Table 1. As

Figure 12: Overlay Network Example.

The results are shown in Table 2. We can see that the
premium users who only use one link receive a substan-
tial portion of the resources.

Table 2: Simulation results for Scenario 3

Table 1: Hfect of varying the mean bid in the allocation.

Broker| 1 2 3 4 5 6
E[bi] | REM REV, REV | & @& & Links| 1 12 2 23 34 41
0.5 | 0.003 0.643 0428 03 475 284 REV, [0.111 0.081 0.115 0.204 0.420 0.211
1.0 | 0.051 0.627 0.401 2.8 450 259 as | 308 45 306 11.9 253 11.8

15 | 0.252 0.558 0.312 95 384 19.2
20 | 0583 0469 0.19117.3 30.7 11§

55 | 0918 0397 0115221 259 6.7 - REV4: revenue per unit time generated by sendce

- as. mean allocated rate in serviee

- REV4: revenue per unit time generated by sendce

- ag: mean allocated rate in servise . . .
s 5. Extension to multipath routing

we can see, when the mean bid of broker 1 is twice as  This section considers a generalization of the pre-

much as the others, it gets a fair share of connections.vious setting, where each end-to-end service can be

Offering more will cause most resources of link 2 to be supported through multiple routes across the network.
allocated to broker 1, with broker 2 retaining its share Therefore, for eacls, instead of a single route we

of 10 circuits, and broker 3 will starve. will allow a set of routesr(s). As before a broker at
the edge will receive bids for each service clasbut
4.2.3. Overlay network. now the allocation decision involves choosing the rates

In this final scenario, we tested the feasibility of our &s." € R(s) admitted in each route, for a total service
proposal in the more realistic situation depicted in Fig- ate per class
ure 12. In this case we have four interconnected servers
and several brokers, each one attempting to secure re- 8s = Z as:
sources of the overlay network. We have two types of
demands: each connection in the short routes 1 and 3 We now generalize the receding horizon optimization
consumes 2 circuits representing premiuntfica and of Problem 6 to this situation. In addition to the vari-
the rest consume 1 circuit. The numbers over the links ablesa;s, we define for each route the variabbe, z
in Figure 12 indicate the number of available circuits. that play the same role as before.
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(21)
rer(s)



Problem 8. (Multipath network receding horizon
allocation)

max Ubs( Z ars) +pUs( Z er) (22a)
Brsis 3 rer(s) rer(s)
subject to Z Z Rr(as+x%) < VI, (22b)
S reR(s)
D) Rlps@as+ Xy +zsl <a vl (220)
S reR(s)

Again we have stated this problem in its relaxed con-
vex form, ignoring the integer constraints that would
have to be imposed a posteriori by roufidaf the re-
laxed solution. In this regard there are two options:
rounding df each g to a multiple ofo-s, which means

imposing each successful bidder is served through a

single route, or alternatively roundingfdhe totalas,
assuming the network has multipath capabilities at the
packet level.

Note that the objective of Problem 8 is again not
strictly concave, but now in a more fundamental way,
due to the sums over routes in (22a). Indeed it would
be non-strict even ity (-) andU¢(-) were replaced by
strictly concave functions, as occurs in multipath con-
gestion control. This was in fact what motivated the
proximal optimization method in [16], and once again
we will employ it here. For this purpose, introduce vari-
ablesd,s, €5 and subtract from the objective in (22a) the
guadratic term

> D Slas— )+ (s — @),

S reR(s)

We now describe the calculations involved in step (i)
of the proximal approximation method, when one opti-
mizes overa,s andzs for fixed d;s, €. As before we
will use duality, and define Lagrange multpliers 3

for the constraints at each link, updated as in (19¢-19d),
and the corresponding aggregate priges/; per route.
Given such prices, the update of the primal variablgs

Zs IS charactarized by the optimality conditions

Up,( Z as) = O + PsVr + Ks(@rs — Ors) (23)
rer(s)

U;( Z Zs) = Vr + ks(Zs — &) (24)
rer(s)

Adding (23) overr € R(s) and recalling (21) leads to
the equation

Uy, (as) = ksas + Z [0 + PsVr — ksChs],
rer(s)
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from which as can be readily obtained. Substitution
back in (23) leads to the formula

Up.(as) — ar -

Ks

V
PsVr (25)

as = Ors +

for the update oé&s. An analogous procedure involv-
ing (24) leads to the update formula fng.

5.1. Multipath example

In this last example we demonstrate the performance
of the multipath allocation, and compare it with the sin-
gle path case. Figure 13 shows both situations; as com-
pared to the single-path topology in the top diagram, the
topology in the bottom enables two paths for brokers 2
and 3.

Figure 14 shows the convergence of the proximal op-
timization algorithm in the multipath case for one typ-
ical auction. As we can see, the algorithm converges
without oscillations.

To compare the performance, we ran 50 simulations
for the single path and multipath cases. Each simulation
includes 100 periodic auctions, for which we calculate
the mean revenue per unit time for the four brokers. Fig-
ure 15 shows the minimum, maximum and average val-
ues over the 50 simulations for this mean revenue per
unit time. As we can see, there is a clear improvement
in revenue in the multipath case.

SINGLE PATH

- P S
Broker 2 ™ = = m m = = = = === @-}
—_—IC=50
—_— C=30
Broker 3 mm o= == m— m— E )_ >
Broker 4 *
MULTI PATH
LT S :
pmmmmmmmmaaKay
Broker 2 _I'_ C=50 .Il_ }
1 1
Broker 3. J1 c=30 b=>
1 1
ST eT T AT =T
Broker 4

Figure 13: Single path and Multipath network topologies



2 Other than the fact that two prices and two rates must

be communicated between agents, the algorithm is of

the same nature as the one discussed in Section 3.2. In
particular, convergence time depends on the number of
steps in both the inner and outer iterations, and involves

a tradedr in the choice okg in (25).

[
(621
3

new connections
P
o

---broker2| T,

) The iterations indicated in Figure 14 are the total (in-
| proker? ner times outer) steps. We obtained convergence in
—broker4) | . . . . . around 300 iterations. Since each step is in the order
0 %0 100 IR0 e om0 390 400 of the round-trip-time (RTT), we can estimate a con-
vergence time of around 15sec for an RTT of 50msec.
Figure 14: Multipath iteration This is reasonable to allocate an auction that is held pe-

riodically with a period in the order of a 5-10 minutes,

which is a plausible application scenario. In more de-
Hr manding scenarios, or larger RTTs, we may want to re-
duce the number of iterations. Beyond tuniagmore
significant gains would involve replacing the subgradi-
ent method of the inner iteration by something faster,
: e.g. Newton’s method. The main challenge for such an
E"ax:g-lﬁ min =92 alternative is to maintain decentralization, a feature of
Fove =887 subgradient methods for Network Utility Maximization
+min = 8.44 problems. Very recently, Wei, Ozdaglar and Jadbabaie
[27] have proposed a novel distributed Newton method
for NUM, that appears to make convergence 2 or 3 or-
ders of magnitude faster than the subgradient method,
while still allowing for an implementation over a net-
work. We leave for future work the possibility that this
algorithm can be adapted to our optimization situation.
5.2. Considerations on the simulated algorithm and its

convergence

Simulations were performed in Matlab. There are two
types of software agents, for sources and links respec- In this work we proposed a mechanism for allocating
tively. The algorithm has an outer iteration indexed by network capacity through periodic auctions. We formu-
t, and an inner one indexed Inyas follows: lated the problem of maximizing operator revenue under
the following constraints: the solution must be fully dis-
(i) Fix t and the valuesks(t) and es(t). Initialize tributed, the network has an arbitrary topology, and the
0 (t,0) = gr(t — LN) andv,(t,0) = v (t — 1,N) resources allocated in a given auction are reserved for
(for t = 0, initialize at zero). Fon =0toN - 1 do the entire duration of the connection.

_ Each source agent, independently calculates We formulated near—qpt?ma_l policies for this probllem
its ratesa,<(t,n + 1) andz(t,n + 1) using in terms of convex optimization, th_r_ough a_re_ced_lng-
equation (25) giveny, (t, n) andv; (t, n). horizon version of the networl_<_ utl_llty mam_rmzaﬂon

problem. Since the relevant utility is not strictly con-

— Each sources sends the ratesag(t, n + 1), cave, we solved this problem through a proximal opti-
zs(t, n+ 1)) to the links of its routes. mization method. Lastly, we extended this algorithm

— Each link accumulates the rates received and to the multipath case. All proposals lead to fully dis-
calculates using a subgradient step its new tributed solutions that can be implemented by variants
pricesa(t,n + 1) andgi(t, n + 1). of existing resource reservation protocols.

Through simulations we validated the convergence of
the algorithms and the obtained performance in various
network topologies. We find in particular that the re-
ceding horizon problem outperforms the myopic policy
(i) Setds(t+ 1) = as(t, N) andes(t + 1) = zs(t, N). of selling all capacity in each auction, and verified the
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tmax = 10.32
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o

+avg = 9.67
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Revenue per time unit
©
(62

[
3]

[o¢]

single path multi path

Figure 15: Revenue comparison between multipath and singhe pa

6. Conclusions

— Each link agent sends the prices to the
sources that use the link, and route prices are
accumulated ag(t,n+ 1) andv;(t,n + 1).



performance gains achievable through multipath. We [5]
also included practical enhancements like on-line esti-
mation of the bid distribution. In summary, we have
demonstrated a viable approach for real-time bandwidth (7
allocation through auctions in complex distributed net-
works.

(6]

(8]

A. Appendix (9]
In this appendix we obtain the expression for the
threshold w(x). From (6) we have thaiw(x)
E(W(ly)) — E(W(Ix-1)) with Ix ~ Bin(x, p). From the

definition of W andU we can rewrite this as

[10]

(11]

C—lx-1 C-lx
W(x) = Enca| Y E®)[-E,| D E®) [12]
1=0 1=0
x-1 C-j X C-j
= D A=L0) Y EO) - D A D) Y ED).
j=0 1=1 j=0 I=1

) . [14]
whereA(x, j) := (})p!(L - p)*~J, Operating we have o5
C

2

1=C—x+1
x=1
PG
1=0

Now, it can be esablished by induction that

C—I| C—I|
W(x) EO)Q AX-11)- > A )
=0 j=0

[16]

(17]

| |
AX=1,j) = > A ). (26)
=0 j=0

i
(18]

| | [19]
D2 AX-L) - ) A ) =pAX-LI).  (27)

j=0 i=0 [20]
The value of the threshold in (8), follows then from (26)

and (27). [21]
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