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Abstract -- Hydrothermal systems optimal operation includes a 

step of optimizing the resources that are valued system storable. 

This optimization is performed traditionally by a stochastic 

dynamic programming in which the objective function to 

minimize is the expected value of future cost of operation, also 

known as Bellman function. While in theory, minimize the 

expected value of future cost of operation is "objective" in 

practice there are many reasons why the actual operation 

includes additional precautions, sometimes actually taken by 

operators who are the ones which have responsibility for the 

consequences of the operation or sometimes made based on safety 

considerations were not introduced in the optimization of the 

operation. This work shows the implementation on the platform 

Simulation of Electric Power Systems of stochastic dynamic 

programming algorithm for specifying the objective function cost 

reduction future with a certain probability of exceedance. This 

work was performed as part of the draft platform enhancements 

SimSEE with funding from the Energy Sector A(II. The paper 

presents the results of the operation to minimize the expected 

value of future cost and minimizing the risk value of 5% of being 

exceeded. Both operations are compared both costs achieved as in 

the qualitative aspects. The results allow evaluating the cost of 

being introduced by risk averse and also identify situations where 

there are major differences. It also discusses the impact on the 

marginal cost of system operation with a slogan risk averse. This 

value is relevant because it is the basis for calculating the 

Uruguayan market spot price. These scenarios correspond to the 

operation in 2017 with high penetration of wind energy in the 

system. 

. 

I. INTRODUCTION

 The optimal operation of a dynamic system involves the 
calculation of a function y (t) from knowledge of the system 
state x (t) and its inputs r (t) determine the value of the control 
variables u (t) system leading to the optimal path. 
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Fig.1.  Block diagram of the relationship between the System and the 
Operator  

For dynamical system we mean a system in which "the past 
matters." Assuming that past information is representable in a 
vector of state variables, system dynamics can be modeled by 
an evolution equation as shown in (1):  
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Where we have assumed a discretization of time and the 
vector xk is the state vector at the beginning of step k by 
dentition contains all the relevant information system of the 
past needed to calculate their future paths from the input series 
{uj} , {rj}, {j} for all j> k. 

The series {rj} are the inputs "uncontrolled" usually 
associated with stochastic processes. By way of example, the 
wind speed from which energy is generated in the wind farm is 
part of this set of entries not controlled. Rk will call the "noise 
vector" that "attacks" the system at stage k. 

Uk parameter in (1) is the control input of the system. The 
system operator must select at each stage the "best" value for 
that vector control in the space of possible values. The series 
of vectors {u} is the number of control vectors. 

The Operator, considering the system state information and 
tickets uncontrolled fixed at all times the control vector uk to 
guide the system for the optimal path. Explicitly or implicitly, 
to do this the operator has a policy function or operation as 
shown in (2): 
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Differences between the operations of the 
generation power system of Uruguay operated 
minimizing the Expected Value vs. minimizing 
the Value at Risk of the future operating costs. 
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Given the evolution equation of state of the system (1) 
Operation and Operator Policy (2), it is possible to simulate 
the trajectories of the system from a known initial state x0 if 
you know the possible series of entries {rk} controlled for all 
k> 0. Since the vector rk corresponds to the realizations of
stochastic processes, from an initial state given the state evolve
through different paths. In each of these possible paths is
possible to calculate the cost incurred during the operation of
the system and indicators of exposure experienced by the
system to go through them. Whether an Operation Policy is
better than another depends on what the merit function is used
for comparison. The simplest and most commonly used is to
minimize the expected value of future cost of operation. The
aim of this work is to develop alternatives to the expected
value of future cost of operation that allows including the
concept of risk aversion in determining Operating Policy.

At this point, it should clarify the meaning of the word 
"cost" used in context "cost function" and beyond. The term 
"cost function" refers to the objective function minimization 
problem. Outside that context, the cost (e.g. Future Operating 
Cost System) refers to the cost, expressed in money (usually in 
constant currency of a given date) and coincides with the 
meaning that most people assigned to the word "cost". Strictly 
speaking, these two assignments of meanings for the word 
"cost" are not divergent but on the contrary, because usually 
the "cost function" is intended to represent the sum of all costs, 
both those incurred in a direct and quantifiable in cash and 
other less direct costs and are able to quantify and add in the 
cost function. 

When the system is generating electricity, the optimal path 
is usually one that minimizes the expected value of future cost 
(FC) of operation. This CF is the sum of expenditure on fuel 
imports and costs assigned to the energy not supplied (costs of 
shortages or rationing) less revenue in your system from 
energy sales to other countries (exports). 
Theoretically, when the cost function represents all the real 
components of the cost, minimizing the expected value of said 
function is the aim of optimization for excellence. In practice 
there are situations not always well captured in the cost 
function and lead to you prefer to be "more conservative" or 
risk averse. One of the reasons for that risk aversion is not to 
fall into situations which by their low probability weigh little 
in the expected value of the cost of operation but in the event 
of a disorder means you may have economic consequences 
rather than on system administrators or the economy. Of 
course you can always discuss whether these rare but 
catastrophic events should not be included reflecting that 
"catastrophic cost" in a cost function "well formed". 
To fix ideas, if the system in question is the power systems of 
a country like Uruguay, strongly interconnected with 
Argentina and Brazil that are between two and 70 times larger 
than Uruguay. Optimizing the Operation Policy with a goal of 
reducing the expected value of future cost of operation could 
lead to at some point Uruguay sell all the energy of the lakes at 
a great price (compared to a prolonged drought of the 
neighbors who considerably raise their prices) and it was a 
good deal in expected value, but there is a chance (albeit very 
low) that it rain not in the short term in Uruguay and therefore 
have to make cuts power to the country's domestic demand. 

One could argue that if the costs allocated to power rationing 
(values of failure costs) reflect the actual cost to the country 
that the optimizer would not happen "selling water", but this 
statement is guilty of two errors (or large budgets) . The first 
of the errors is that the precision of the tools and models used 
are only approximations to reality, thus determining an optimal 
policy via a cost reduction in expected value is a mechanism 
that takes accuracy over what happens in situations of very low 
probability and very high costs as described. This is because 
the models and the data available for calibration is based on 
what happens to most likely and unlikely are well represented 
"tails of probability." The second assumption is that errors or 
information you have on the evolution of the variables of 
interest (e.g. fuel costs) is perfect and what is not and again 
this effect while impacting on all possible paths in those in 
which the system goes through situations very high costs, any 
error in the prediction of cost values is amplified. 

This paper documents an implementation on the platform on 
Simulation of Electric Power Systems - SimSEE for 
calculating the optimal operating policy of a hydro-thermal 
generation with a criterion of Risk Aversion. 

This work is done in the context of research project 
ANI_FSE_18/2009 of Faculty of Engineering of Uruguay with 
funding from the Energy Sector of the ANII (Agencia 
Nacional de Invertigación e Innovación) of Uruguay. 

II. STOCHASTIC DYNAMIC PROGRAMMING WITH HISTOGRAM.

 This section shows how to modify the recursive algorithm of 
the stochastic dynamic programming so that instead of 
calculating the expected value of future operating cost 
(Bellman function), calculated in each state of the system, at 
every point of time, probability distribution function of the 
future cost of operation. This function is denoted by a vector 
of equi-probable samples arranged in decreasing order. This 
representation can be thought of as a histogram particularly 
where the discretization is selected such that all boxes are an 
example. 

In (1) shows the evolution equation of the system state, 
where x is the vector of state variables and as such captures all 
necessary information from the past to calculate the evolution 
of the system from knowledge of x entries system from a given 
instant. Tickets r and u are the vectors representing the set of 
inputs on which we have no control and vector control or to 
which the operator can impose the values (complying with the 
restrictions in your system for it) to drive the system by the 
optimal path. Then (1) can then calculate the state x' at the end 
of the stage (or time step) k from the knowledge x and state of 
uncontrollable inputs r at the beginning of stage k. 

In Fig 2 shows in schematic form the evolution of the 
system state from the position x at the beginning of stage k to 
state x 'at the end of the stage under the influence of 
uncontrolled inputs r and the control inputs u. 
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Fig. 2.  Evolution of the system state. 

 In the kind of dynamic system under consideration we 
assume that the input vector while r 'is not controllable, "is 
known at the start of the stage and is used as input for the 
calculation of the control vector u better be applied to the 
stage during . 
We assume that the cost of operating the system is an integral 
function of the costs incurred at each stage. For example, in 
the system of power generation (our purpose) consists of 
expenditure on fuel + imports - exports + rationing costs at 
each stage. 
Given a set of inputs: 

Rk={r j }; j=k , k+1, ...

And a series of control: 
U k={u j }; j=k , k+1, ...

Both from the stage k known system state at the beginning of 
this stage, the succession of states: 

X k={x j}; j=k , k+1, ...

is calculable using the evolution equation (1). 
If we have: 

cek (xk , uk , rk , k )
The cost of stage k. Future Cost from state xk can be calculated 
as: 

CF ( xk , R k , U k )=
j=∞

∑
j=k

ce j ( x j , u j , r j , j )

Sum which can be written recursively as: 

CF ( xk , Rk ,U k )=cek (xk , uk , rk , k )+CF ( xk +1 , Rk +1 , U k +1)
If the system operator has a policy of the form of Operation 

(2) can eliminate the dependence of the series in the Uk

previous recursive equation being:

CF ( xk ,Rk )=cek ( xk , uk , r k , k )+CF (xk +1 , R k+1)  (3)

We are assuming that the operator knows 
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x to determine what the control vector uk 

that used in stage k that completely ignores the future behavior 
of uncontrollable inputs Rk +1. Thus, the value of future cost in 
the state of arrival (at the end of step k) is a random variable. 
The classical method of optimization is to consider the 
expected value of that variable in the method we are proposing 
we want to have a representation of the distribution of the 
variable in order to minimize such things as the value given 
risk of absence rather than the expected value. To get a 
representation of:  

CF ( xk +1 , Rk +1)
Will store a sample of the distribution function of the random 
variable CF samples keeping a number of equi-probable. We 
define a parameter that is the amount of samples stored in this 
representation will name: NmCF (Number of samples Cost 
Future). 
The optimization algorithm uses Monte Carlo draws in each 
stage to generate a set of rk

h with 
h=1,2 ... � �sop

possible realizations of the uncontrollable variables. With each 
of these values, the operator must decide what will be the 
control vector uk will use the knowledge that the system will 
evolve according to (1) and the cost associated with their 
decision will be that arising from (3). Thus, in the resolution of 
the step from a known state and for each value xk and rk

h 
obtain a value of costs incurred in stage 

cek (xk , uk , rk , k )
and a state value at the end of step by applying the equation of 
state evolution rk

h. In turn, as the future cost in the state of 
arrival, we have represented by equi-probable NmCF samples 
and depend only on the future (i.e. are conditioned only state 
which is reached at the end of the stage and future information 

not by the particular values ( )
k

u
k

r
k

x ,,  future cost 

will be the beginning of stage k combinations NmCF future 
costs in each state of arrival may xk

h. Thus there are, NmCF * 
NNsop equi-probable values for CF (xk, rk). To keep the 
representation of CF (xk, rk) with equi-probable NmCF samples, 
the algorithm proceeds to sample NmCF * NNsop them for a 
reduced set of NmCF and to continue the recursive calculation 
of CF representations. In implementing the sampling switch to 
NmCF samples from nmCF * NNsop, is done by ordering 
samples roughly nmCF * NNsop in decreasing order and then 
selecting samples NmCF, NNsop apart each beginning with the 
first as close as possible to half the interval of the first NNsop as 
shown in Fig. 2: 

Fig. 2: Resampling from histograms of CF. 

In the case of Fig. 2 the amount of points representing the 
histograms Future Cost is NmCF = 20 and the number of draws 
of Monte Carlo optimization step is NNsop = 5. The figure 
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shows for a given starting state, in blue, the equiprobable NmCF 
* NNsop = 100 points achieved in the solution of step sorted in
decreasing order and the red circles, the NmCF = 20 are selected
as representative of the distribution future cost CF (xk, rk)  to
continue the optimization algorithm.

III. VALUE AT RISK VAR.

To give generality to the measure of risk, introduce two 
measures of risk can be calculated on a random variable which 
is the value that is exceeded with a given probability of 
exceedance and the Value at Risk with a certain probability of 
Leave. 

Given a random variable: 
y∈D y⊂R

1

probability density function   and fixed probability 
value of risk: 

u∈[ 0,1 ]
define the VeR (Value and is exceeded with probability u) and 
VaR (Value at Risk and with probability u) as: 

            (4) 

         (5) 

The expected value of y is by definition: 

VE= ∫
y=�∞

y=+∞

y . p y . dy

Fig. 3 shows an example. Corresponds to 100 equi probable 
samples arranged in order of decreasing cost. Fixed as a 
probability of absence for the purposes of the risk values 5%, 
in Fig vertical line was drawn separating the 5% of the highest 
values of the rest. The value at risk of 5% is exceeded VeR = 
80 MU$S and 5% value at risk is the average value greater 
than VeR and VaR=88MU$S. 

Fig. 3: Example of  VeR and VaR whit risk 5%. 

IV. RISK AVERSE OBJETIVE FUNCTION.

In Section III showed how to construct recursively the 
histograms of the future cost function. To do this, it was 
assumed that the system operator has a policy that allows 
operation to calculate the vector control as a function of state 
at the beginning of the stage, the realization of uncontrollable 
input vector and time (step k). 
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different system operations. These operations can be classified 
into more or less "successful" if it has a measure of credit for 
the operation. The classical merit function is the expected 
value of costs incurred in the operation and as mentioned in 
the introduction the purpose of this paper is to propose an 
alternative merit function that allows us to take into account 
the risk aversion likely to have the operator. 

In the end, an operator who is VERY risk averse will not 
look the expected value of future operating costs but will try to 
minimize the maximum value of that cost. Ie instead of 
minimizing the average values of the histogram (which is an 
estimate of the expected value) will attempt to minimize the 
maximum values of the histograms. 

Fixed an exceedance probability for risk measurement 
(usually 5%) say that the operator is 100% risk-averse if the 
objective of optimization is to minimize the value at risk VaR 
and say that is 0% risk-averse when operating minimizing 
expected value VE. 
Defining a Coefficient of Risk Aversion: 

CAR∈[0,1]  
we can define the objective function of the operation with that 
level of risk aversion: 

(6) 

Now we show the application of this cost function with risk 
aversion on the stochastic dynamic programming algorithm for 
optimal operating policy of a dynamic system minimizing the 
future cost of operation with a coefficient of risk aversion 
given. 
Having examined the state at the beginning of a time step, and 
a realization of uncontrolled input vector and applying the 
procedure described in Section III can be calculated 
recursively a representation of the distribution function of the 
future cost for each system state. This representation allows us 
to evaluate the objective function (6) in the state of arrival 

x '= f ( x , r , u , k )
And gain control vector u that achieves minimize the cost of 
step 

cek (xk , uk , rk , k )
more objective point of arrival 

J ( x ' , k +1)
Observe that given a realization rk minimize the sum 

p y ( y)

VaR= ∫
y=VeR

y=+∞

y . p y . dy

VeR=Y ∈D y /P ( y>Y )=u

J =CAR. VaR+(1�CAR). VE
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cek (xk , uk , rk , k )+J ( x ' , k +1)

is to minimize the cost of the equation (6). 

Knowing the couple ( )
k

r
k

x , and for each value of 

uk is calculated: 
cek (xk , uk , rk , k )

and 
x '= f ( xk ,uk , r k , k )

 .

V.  CASE OF APPLICATION.

For the purpose of verifying the operation of the deployment is 
executed for optimizing the operating policy corner of Lake 
Bonete for the last week of November 2017. 
This room was chosen as one SimSEE room in which there is 
an abundance of wind power. This room was calculated 
operating policy, No Risk aversion and two values of the 
probability of exceedance PE = 0.05 and 0.10 for the risk 
measure, we performed the same optimization CAR = 0.00, 
0.25, 0.50, 0.75 and 1.00. 
The number of points for representation of the histograms was 
400. 

Fig. 4: Politics of operation for PE = 5% for different values of CAR 

Fig. 5: Politics of operation for PE = 10% for different values of CAR 

As you can see the value of the power plant's Rincon del 
Bonete grows inversely proportional to PE and directly 
proportional to the CAR as expected, since the operator to be 
more risk averse is expected to assume greater costs. 

It also presents the average level evolves plant Rincon del 
Bonete for CAR = 100% for different values of PE over 2017. 

Fig. 6: Politics of operation for PE = 10% for different values of CAR 

We interpret this graph that the lower PE, the higher the 
average level of the plant, since the operator to be more 
adverse to the tail of probability using other resources (usually 
more expensive) before using the water from this plant that has 
seasonal capacity. 

VI. CONCLUSIONS.

The implementation SimSEE optimize the possibility of an 
electrical system being risk averse, it works correctly in all 
cases analyzed. 
It is easy to see the increased costs associated in operating 
policies as well as conservative in the use of short-term lake 
system is the more risk averse operation becomes.  
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