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Abstract— We present the design and implementation of an
electronic device that, based on analog discrete components,
implements the mathematical model of a cold receptor neuron
called Huber-Braun. This model describes the electrical behav-
ior of a certain kind of receptors when interacting with its
environment, and it consists of a set of differential equations
that has only been solved by numeric simulations. By these
means, a chaotic behavior has been found. An analog computer
can be relevant for further analysis and validation of the
model. The results obtained by means of numeric simulations
and through our analog circuit simulator are consistent. The
electronic device built allows the observation of all relevant
variables and most of the expected behavior (tonic firing,
chaotic, burst discharge, subthreshold oscillation and steady
state). In addition, bifurcation diagrams were successfully
rebuilt for temperature and external current.

I. INTRODUCTION

Neuronal modeling with electronics circuits can help to
understand biological systems. Physical circuit implementa-
tion has several advantages. In the first place, circuits that
perform specific operations typically operate much faster
than general purpose ones. In the second place, it is possible
to interface a hardware implementation with biological tissue
or operate it with experimentally collected data in real time.
In the third place, it enables integration with robotics system
[1].

There are several types of models, despite the fact that
IF (integrate-and-fire) and QIF (quadratic-integrate-and-fire)
have low implementation cost, they have poor biological
plausibility. Izhikevich neuron model, recently implemented
in sub-threshold VLSI [2], has an excellent trade-of between
implementation cost and biological plausibility, but this
model is not biophysically meaningful [3].

The Huber-Braun model [4] is a Hodgkin-Huxley
conductance-based model [5]. These kind of models are
important not only because their parameters are biophysically
meaningful and measurable, but also because they allow us to
investigate questions related to synaptic integration, dendritic
cable filtering, effects of dendritic morphology and other
issues related to single cell dynamics [3].

In addition, from the mathematical point of view, the
model equations are an interesting and complex problem,
that has not been formally resolved. It has not been shown
which is the qualitative behavior (part of the complexity
is in the high dimension of the system). The behavioral
characteristics are just known through numerical simulations
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and experimental comparison. The variation of the Huber-
Braun Model parameters shows different types of behaviors
and bifurcations. In particular, there is some evidence that the
behavior for some areas of the parameters is chaotic. Since
numerical simulations were not able to show this chaotic
behavior, it is assumed that an analog implementation could
help [6][7][8][9].

This paper presents the development of an electronic
device, based on analog discrete components, that simulates
the Huber-Braun cold receptor neuron model. It is expected
that this analog simulator can be helpful in the biologi-
cal/neuroscience field, as well as in the mathematical one.

II. HUBER-BRAUN MODEL

The Huber-Braun [4] is a Hodgkin-Huxley model
Hodgkin-Huxley of the nerve endings of the skin superficial
layer.

The modelated neuron is a cold receptor, which main func-
tion is “to respond” to low temperatures. The temperature
(T) is introduced into the model equations as a parameter.
From the physiological point of view, it is interesting to
observe the changes of the behavior that arise by varying
this parameter. This information is shown in the bifurcation
diagrams. Another parameter of interest is the external
current (I.,4) that represents the influence of the environment
on the neuron.

The full set of equations of the Huber-Braun model are
the following:
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o Temperature Scaling

p= 1.3(T—T0)/10°C; = 3.0(T—To)/10°C

The Membrane potential equation includes the membrane
capacitance C', the ionic currents I; and a member as-
sociated with losses for the transfer of ions, as well as a
conductance g and the equilibrium potential V;. The model
includes four membrane potential dependent ionic currents.
The depolarization currents are I; and I;4, fast and slow
respectively, and the repolarizing currents are I, and I, fast
and slow respectively. The variables a; are called activation
variables of each channel. Those are the ones that determine
the dynamics of the opening and closing of the respective
channels, and tend to the respective a;.,, which are called
asymptotic activation variables. These last ones are sigmoid
type function and are explained in more detail in section III.

The differential equations system has only been studied by
numerical simulations and physical experiments. By these
methods it is known that the regime behavior is like an
oscillator for most of the parameters values. Furthermore, the
system can be seen as composed by two simpler oscillators,
one fast and one slow, which are coupled in a non-clear
sense. These smaller subsystems arise from considering only
the fast or only the slow currents in each case.

The most important variable of the model and through
which the different behaviors are displayed is the mem-
brane potential. The neurons transmit information through
the spikes that occur in this variable. Therefore, the time
between two consecutive spikes, called I.SI (Inter Spike
Interval) is a relevant magnitude to be measured. Moreover,
the bifurcations will be reflected on this magnitude.

There are three different areas depending on the temper-
ature: the period doubling area, the chaotic area and the
addition of ISI area.

For the low temperatures area the membrane potential
presents a regular regime of a single spike per period called
tonic firing. As the temperature increases more spikes per
period appear, initially with the same time of separation
between them. What happens here is that the orbit passes
to travel twice the distance at the same speed, doubling the
period of the signals. This is because the limit cycle after the
bifurcation appears to make two laps near the previous limit
cycle before closing. Therefore, also doubles the number of
spikes per period, maintaining the value of the ISIs [8]. This
type of bifurcations will be called period doubling.

At the other end of the temperatures zone of interest a
different phenomena is observed. For temperatures above
35°C' the firing ceases and does not get to form spikes,
presenting first a subthreshold oscillation and tending then
to a steady state. By decreasing the temperature, initially
there is a single spike per period, then the burst discharges
appears and the number of spikes increases. When a new
spike is formed the sum of the intervals between the spikes
is kept constant (and equal to the period) [8]. This type of
bifurcations will be called addition of ISI.

Between the two mentioned areas the chaotic behavior is

observed. This means that small variations of 7' produces
very perceptible variations in the qualitative dynamic be-
havior of the system, observed by the ISI. In the chaotic
area bifurcations appear to fill out the parameter region (see
Figure 7).

By setting the temperature and varying the current I, the
same phenomena appears as varying the temperature, which
can be seen in the bifurcation diagram of Figure 8.

ITII. CIRCUIT DESIGN

The design was made considering all variables and pa-
rameters of the model as voltages in the circuit. This led to
implement the model equations (section II) based on the fol-
lowing basic blocks: Potencial, Sigmoid, Adder-Subtractor,
Amplifier, Integrator and Multiplier.

For the Adder-Subtractor, Amplifier and Integrator the
classic implementations with operational amplifiers were
used [10].

The multiplication was implemented with the AD633 of
Analog Devices which performs this operation with precision
and allows wide dynamic range both in inputs and outputs.

For the potential we adapted the design presented in [11]
by adjusting the exponent. This design is based on the
property: klog(a) = log(a®), where the logarithm of the
signal is made and then amplified.

A sigmoid function simulates two possible states and the
transition between them. The plot presents two asymptotes
and tends from one to the other. In this case, the expression
is:

1
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and the possible states (asymptotes) are 0 and 1. In the
model it represents a continuous way of turning ON and
OFF the ionic channels; open and close.

To implement this block we used a differential pair, whose
response is: tanh(kz). This is a sigmoide type function, and
is related to 1 as follows:

s(x) = tanh(;) +1 2

Starting from 2, a circuit that respondes like 1 can be
implemented with a differential pair by adding amplifications
and tension references (see figure 3).

Some of the implementations of the different equations
with these basic blocks can be seen in figures 1 and 2.

Once every basic block was designed we implemented
the whole system in a single board, obtaining an analog
simulator of the Huber-Braun model (see figure 4).

Finally, it is noteworthy that the design and the imple-
mentation developed are flexible in many aspects. Firstly, all
the variables of interest can be observed and the parameters
can be set in all the specified range (femperature between 0
and 36°C, external current between 0.1 and 1.4A4/cm?). In
addition, other parameters that are constant in the model can
be modified. Particularly, this is the case of the poles that
determine the time scaling (which is an advantage of analog
simulators). In this way, the relation between the speed of the
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Fig. 1. Implementation of the equations of the ionic currents.

Fig. 2. Implementation of the equations of the activation variables.

simulator and the real system can be adjust; in our case, the
simulator can be set up to 100 times faster than the original
system.

IV. RESULTS

Measuring the outputs of the circuit, we were able to
observe the different behaviors of the membrane potencial by
changing the values of the parameters (tonic firing, chaotic,
burst discharge, subthreshold oscillation and steady state).
Figures 5 and 6 show both the measures taken from the
circuit and the numeric simulations of the model made in
Matlab [12] for different states of the neuron. In these figures
the difference in the time scale can be seen.

In addition, bifurcation diagrams were successfully rebuilt
for both parameters (which can be seen in figure 7 and 8, for
T and I, respectively). In order to do this, the membrane
potencial was measured directly from the circuit for a great
number of parameter values with a digital oscilloscope, and
processed afterwards with Matlab.

Regarding the bifurcations, we were able to observe
clearly the addition of ISI, but because of the noise we
could not distinguish the first period doubling before chaos
is reached.

Moreover, the implemented system appears to be faster
than expected. A small deviation on the values of the poles
(of the activation variables) was found but does not seem to
explain the difference, neither does the difference in velocity
(comparing with the numeric simulations) of the slow and
fast oscillators that were analyzed separately. However, the
slow oscillator appears to be notoriously bigger in amplitud

T
o e i Lol ]

W
3
:

Fig. 3.
pair.

Implementation of the sigmoid function with a differential

Fig. 4.

Implemented board

than expected. We estimate that this can lead to an early reach
of the threshold level, increasing therefore the frequency of
the spikes when simulating the whole system.

V. CONCLUSION

We developed an electronic device, based on analog
discrete components, that simulates the Huber-Braun cold
receptor neuron model. The results obtained by means of
numeric simulations and through our analog circuit simu-
lator are consistent. The electronic device built allows the
observation of all relevant variables and most of the expected
behavior (tonic firing, chaotic, burst discharge, subthreshold
oscillation and steady state). In addition, bifurcation dia-
grams were successfully rebuilt for 7" and I.,.

The signals of interest (including the membrane potencial
and the parameters) are presented as voltages in output pins,
and may be observed with an oscilloscope or a PC by means
of a data acquisition board. Furthermore, it is possible to vary
both parameters with presets in the specified range. Through
the membrane potencial we were able to identify the different
states of the neuron and most bifurcations.

Calibration presets were included to make an accurate
adjustment of the factors over which the system is more
sensitive. This makes it possible to study the dynamics when
changing values other that 7" and I.,;. In addition, it is
possible to analyze the fast and the slow oscillators separately
by disconnecting the corresponding currents. Finally, the
time scaling is also configurable with presets allowing the
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Fig. 6. Burst discharges. Comparison between Matlab simulations
(bottom) and measures from the circuit (top).

device to simulate the neuron dynamics in real time or faster.
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Fig. 7. Bifurcation diagram varying 7'. Matlab simulations (bottom)
and measures from the circuit (top).
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