
Noname manuscript No.
(will be inserted by the editor)

The non-parametric sub-pixel local point spread function

estimation is a well posed problem
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Abstract Most medium to high quality digital cam-
eras (DSLRs) acquire images at a spatial rate which

is several times below the ideal Nyquist rate. For this

reason only aliased versions of the cameral point-spread

function (psf) can be directly observed. Yet, it can

be recovered, at a sub-pixel resolution, by a numerical
method. Since the acquisition system is only locally sta-

tionary, this psf estimation must be local. This paper

presents a theoretical study proving that the sub-pixel

psf estimation problem is well-posed even with a sin-
gle well chosen observation. Indeed, theoretical bounds

show that a near-optimal accuracy can be achieved with

a calibration pattern mimicking a Bernoulli(0.5) ran-

dom noise. The physical realization of this psf estima-

tion method is demonstrated in many comparative ex-
periments. They use an algorithm estimating accurately

the pattern position and its illumination conditions.

Once this accurate registration is obtained, the local

psf can be directly computed by inverting a well condi-
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tioned linear system. The psf estimates reach stringent
accuracy levels with a relative error in the order of 2-

5%. To the best of our knowledge, such a regularization-

free and model-free sub-pixel psf estimation scheme is

the first of its kind.

Keywords subpixel convolution kernel estimation ·
aliasing · inverse problems · camera quality assessment ·
point spread function · modulated transfer function

1 Introduction

Extrinsic image blur can be observed when the cam-

era focal distance was wrong, when there are different

objects at different depths, or when there is a motion
blur. But there is a permanent intrinsic physical cam-

era blur due to light diffraction, sensor resolution, lens

aberration, and anti-aliasing filters. Our goal here is

to accurately estimate the point spread function - psf,

that models the intrinsic camera blur. This function can
be locally interpreted as the response of the camera to

a point light.

There are several key applications of psf estimation,

among them image super-resolution, image de-blurring
and camera quality evaluation. Traditionally sharp psfs

are considered to lead to better images, but too sharp

psfs (containing significant frequency components be-

yond the Nyquist frequency) cause aliasing effects that

may also affect the quality of digital images. An accu-
rate sub-pixel estimation of the psf is therefore crucial

to evaluate the image quality in terms of a trade-off

between sharpness and aliasing effects.

Image super-resolution is the longstanding problem
of increasing the resolution of an aliased imaging sys-

tem by interpolating a single-frame, or by fusing to-

gether several low-resolution images. For this difficult
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super-resolution process, an accurate psf is fundamen-

tal. Surprisingly, there are many more works on blind

de-convolution associated to image restoration or on

super-resolution, than on the accurate psf estimation.

Existing psf estimation methods can be classified
as blind or non-blind, parametric or non-parametric.

Blind methods estimate the psf from a single image

or from a set of acquired images, without any knowl-

edge of the scene. On the contrary, non-blind meth-
ods use a specially designed calibration pattern. Blind

methods endeavor to model features of the latent sharp

image and to find by optimization the most suitable

kernel that predicts them from the blurry observation.

Most of them attempt to detect edges in the blurred
image, modeling them as the result of blurring pure

step-edge functions [7,21,6,25]. However, in real im-

ages, a step-edge convolved with the psf kernel is gen-

erally not a good model of the observed edges ([17],
Chapter 4). Other blind approaches try to estimate the

psf based on statistical models of sharp images [7,24,

30,33]. Since the blind estimation is an ill-posed prob-

lem (blind source separation), strong kernel smoothness

assumptions or, equivalently, very simple parametric
models are necessary. These inaccurate approaches are

necessary to characterize and to blindly restore images

affected by contingent motion or out of focus blur.

Non-blind methods instead address the problem of
estimating accurately the inherent camera blur. They

rely on photographs of calibration patterns to estimate

the psf. These patterns range from pin-hole or slanted-

edge patterns to random noise images. The sub-pixel

psf estimation problem is generally treated as ill-posed.
Most of its algorithms therefore introduce a psf model

constraining the space of possible solutions. Paramet-

ric models, priors on the regularity of the psf or on its

symmetry are the most current assumptions. However,
these a priori assumptions can jeopardize the estima-

tion accuracy.

The ideal calibration pattern that comes to mind

would be a perfect pin-hole image simulating a Dirac

delta impulse, permitting to directly observe samples of
the psf. However, in such an observation the signal to

noise ratio would be very low, the spot support being

ideally infinitesimal. Furthermore, for producing sub-

pixel psf estimates several sub-pixel-shifted versions of

the spot image would be needed. Bar or sine patterns
can also help to sample the mtf, but only up to the

Nyquist frequency.

The iso 12233 standard [14] gives a normalized pat-

tern and a procedure for measuring the one-dimensional
mtf, i.e. the modulus of the Fourier transform of the

system’s impulse response (psf) in a particular ori-

entation. This standard is based on the slanted-edge

method [23], which is an extension of the step-edge tech-

nique to achieve sub pixel resolution on the estimation.

By aligning the step-edge slightly off the orthogonal

scan direction the effective sampling rate is increased.

Also, scan-line averaging successfully suppresses noise
and increases signal-to-noise ratio making the estima-

tion more stable. In [29] the authors propose a slanted-

edge non-parametric sub-pixel psf estimation method

that admits geometrical distortions. A parametric and
non-parametric edge spread function estimation proce-

dure is proposed in [9]. Non-uniform illumination is

also taken into account. However, the differentiation

step that gives back the psf requires regularization and

therefore loses accuracy. Since the previous methods are
based on estimating several one-dimensional responses,

several images or symmetry assumptions are needed to

reconstruct a full bi-dimensional psf.

The recent method by Joshi et al. [16,15] arguably
represents the current state of the art of slanted-edge

methods. It proposes a flexible blind and non-blind non-

parametric local psf estimation algorithm. Its approach

is based on the ability to detect edges with sub-pixel ac-

curacy. In order to get a precise local psf a specially
designed pattern formed by 120-degrees-arc-step-edges

is used. The method directly solves the de-convolution

and superresolution problem for a bi-dimensional sub-

pixel psf. To reach a sub-pixel accuracy a penalty term
on the norm of the psf gradient is introduced, the in-

verse problem being ill-posed. As we shall see in Section

5, this penalty causes inaccurate estimates in the high

frequency components of the psf. If the observed im-

age is under-sampled, which is highly probable and the
reason why a sub-pixel psf estimation will be proposed

here, interpolating it tramples high frequency informa-

tion.

As we shall try to prove, there are two main possible

improvements to the Joshi et al. method, and they are
linked: one is the use of a random noise pattern and the

other is the removal of any regularity term, thus trans-

forming the psf estimation problem into a well-posed

problem. The use of random noise patterns with known
power spectral density has been explored for mtf esti-

mation in [10,18,1,2]. In an ideal situation, the power

spectral density psd(f) of the observed digital image at

frequency f is equal to the input power spectral den-

sity psdi(f) times the squared mtf(f). The advantage
of this procedure is that the mtf can be directly cal-

culated. It does not require knowledge of the particu-

lar noise realization, relying only on statistical assump-

tions. A strong limitation of this approach is that the
estimation is done up to half the sampling frequency.

Consequently it does not reach a sub-pixel accuracy,

and aliasing effects are not taken into account.
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In [5] a random noise pattern is also used, but in

a completely different approach. The acquired image

is registered to match the target. Then, by doing de-

convolution with the almost flat spectrum noise target,

this method succeeds in characterizing locally the psf.
However, the method assumes that the camera over-

samples the signal, which is a correct hypothesis for

the particular multi-spectral-camera-lens system, but

unrealistic for a classical optical camera. This method
contemplates the possibility of a non-linear light sensor

response, but does not correct the non-projective dis-

tortion. Again, the question is treated as an ill-posed

problem and noise-free kernels are produced by regu-

larization.

Table 1 summarizes some of the existing algorithms

for psf estimation. It first gives the abbreviations for

the five criteria characterizing calibration methods. The

above analysis suggests that an ideal method must be
non-blind (NB), with no regularization. The kernel esti-

mation must be 2D, local (L), sub-pixel (sp). The main

systematic perturbations in imaging (optical distortion

(I), non uniform illumination (I), non linear sensor re-

sponse (G)) must be corrected when comparing the
ideal pattern to the photographed one. In short, an

ideal method must be (NB,R,2D-L-sp, DIG) with no

(C,P,K). The closest to this ideal in the state of the art

is the Joshi et al. method, but it includes a regulariza-
tion which be shown fatal to the high frequency kernel

content. The proposed method here has all “good” fea-

tures. It shows mathematically and practically that an

adequate noise pattern permits to avoid any regulariza-

tion. The camera kernel is directly recovered from the
comparison of the ideal noise pattern to the observed

one by the inversion of a well-conditioned matrix. We

will also verify that this is not possible with an edge

based pattern.

By correctly choosing the calibration target, a sub-

pixel psf estimation is therefore feasible without a pri-

ori kernel model, without regularization, and with a

single aliased input image capture. Nevertheless, this

requires the careful correction of the geometrical dis-
tortion, of the non-uniform illumination, and of the

non-linearity of the sensor response. In short, with a

noise pattern, and thanks to this careful elimination

of all bias, the psf sub-pixel estimation becomes well-
posed. Theoretical bounds will also demonstrate the

quasi-optimality of white noise calibration patterns to

that purpose. Given that the psf is space variant, due

to lens aberrations or sensor non uniformity, the esti-

mation must be done as local as possible.

This article is organized as follows. Section 2 de-

scribes the general mathematical digital camera model

used for psf estimation method. Section 3 proposes a

Item Code Description

Blindness
B blind
NB non-blind

Model
E edge-based
R random pattern
N natural image model

Regularity
C Circular Symmetry
P Parametric Estimation
K Other Regularization on the Kernel

Estimation

1 one-image estimation
k k-image estimation

1D, 2D uni/bi-dimensional estimation
L local estimation
sp Sub-pixel Estimation

Features
D Geometrical distortion considered
I non-uniform illumination considered
G non-linear sensor response considered

Algorithm Blind Model Regul. Estim. Feat.

[21] B E P 1-2D -
[25,6] B E P 1-1D -

[24,30,33] B N C-P 1-2D -
[7] B E-N K 1-2D -
[29] NB E - k-2D-L-sp D
[9] NB E P-K k-2D-sp I
[23] NB E - 1-1D-sp -
[16] NB E K 1-2D-L-sp D

[10,18,2,1] NB R C 1-1D -
[5] NB R K 1-2D-L G

Proposed NB R - 1-2D-L-sp DIG

Table 1: psf estimation algorithm summary.

mathematical theory of optimal patterns. It studies the
optimality of the calibration pattern in terms of the

well-posedness of the psf estimation problem, and con-

cludes with the proposition of a near optimal and phys-

ically feasible random noise pattern. Section 4 describes
all the steps of the proposed psf estimation protocol.

In Section 5 experimental results generated with both

simulated and real camera data are presented, cross-

validated, and compared with the results of state of the

art previous methods. Section 6 is a final discussion.

2 Image Formation Model

An accurate estimation of the psf requires a proper

modeling of the digital image formation process. The

basic pin-hole camera model consists of a perspective

projection of the 3D world scene into the focal plane.
In real cameras, a system of lenses is needed to con-

centrate the light rays toward the focal point, passing

through a finite but non pin-hole aperture. Hence, the
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perspective projection is followed by geometric distor-

tions, which are always present in any camera/lens sys-

tem. This process can be faithfully modeled as a diffeo-

morphism from the focal plane into itself. The blur of

the resulting image in the focal plane is modeled by a
kernel that captures all psf like effects (diffraction due

to finite aperture, lens aberration, olpf, sensor light

integration, etc). Finally the resulting analog image is

sampled into a discrete image by the sensor array.

If we consider that the observed scene is a planar

scene u, the perspective projection is reduced to a pla-

nar homography that will be denoted by H . The whole
image formation process can therefore be summarized

in a single equation

(M’) v = S1 (g (F (H(u)) ∗ h)) + n,

where F (·) is the geometric distortion field, h is the

convolution kernel due to all psf like effects and g(·) is
a monotone non-decreasing function that describes the

non-linear sensor response (camera response function -
crf). The operator S1 is the bi-dimensional ideal sam-

pling operator due to the sensor array, and n models

the CCD noise.

The blur kernel h is space variant, but evolves smoothly.
Thus, the symbol ∗ is understood as a local convolution

product, the kernel h varying smoothly with the posi-

tion in the image domain.

The model can be further simplified by noticing

that, in order to estimate h, the geometric transfor-

mation F ◦ H can be considered as a whole: there is

not need to estimate separately the projective and non-

projective parts. We shall therefore denote by D the
whole geometric transformation, and the image forma-

tion model finally is

(M”) v = S1g (uD ∗ h) + n,

where uD is the geometrically transformed image, namely

uD(x) = u(D(x)). This model can be further simplified.

Indeed the sampling and the contrast change g com-
mute, so that S1g (uD ∗ h) = g (S1uD ∗ h) . As we shall

see, the contrast change g can be recovered from the im-

age samples. Thus we shall first focus on the simplified

formation model

(M) v = S1(uD ∗ h) + n,

and explain later on how the g term can be eliminated.

The next section discusses the structure of the optical

kernel h.

2.1 Diffraction-Limited Optical Systems

Ideal optical systems present psfs only caused by the

optical light diffraction. In the case where there are no

aberrations the diffraction kernel is determined by the

shape and size of the aperture, the focal length, and

the wavelength of the considered monochromatic light.
If the shape and size of the aperture is known, the far

field approximation (Fraunhofer diffraction) can be ex-

plicitly computed as the square of the Fourier trans-

form modulus of the aperture function [11]. As a trivial

consequence the psf diffraction kernel is always non-

negative.

Optical aberrations degrade this ideal system where

only diffraction is considered, producing larger kernels

[27]. In addition, optical anti-aliasing filters - olpf may
be introduced in the camera before sampling. They are

typically made of several birefringent crystals that sepa-

rate a light spot into several divergent light spots, lead-

ing to an effect similar to having a larger pixel pitch. An
analysis of the filters commonly used in digital cameras

can be found in [32].

In most cameras, the digitization process is per-

formed by a rectangular grid of photo-sensors (ccd or

cmos) located on the focal plane. Each photo-sensor
integrates the light arriving at a particular exposure

time. This sensor light integration can be modeled by

a convolution with a kernel hsensor = 1C , the indica-

tor function of the photo-sensor region C. In [28] the
author performs a theoretical analysis of the mtf for

the active area shape and deduces explicit formulas for

the transfer function for cmos pixel arrays with square,

rectangular and L shaped active areas, which are regu-

larly used. In conclusion, the unknown kernel h results
from the convolution of some three different kernels, all

nonnegative.

3 Optimality criterion and quality measure for

calibration patterns

Assume we can unveil exactly the latent sharp image
that produced the blurry aliased observation. Then,

solving for the psf amounts to solve an inverse problem

governed by the image formation model (M). The first

step toward solving this problem is to carefully model

the re-sampling operator that produced an aliased ob-
servation. The inverse problem to be solved can be

stated in terms of the re-sampling rate and of the ob-

served pattern image uD, which is a function of the cal-

ibration pattern. It follows, as will soon become clear,
that the accuracy of the estimation of h depends on how

well we can invert an operator that depends on the re-

sampling operator and on the calibration pattern. In
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this section we show that a nearly optimal conditioning

is obtained when the calibration pattern is a realization

of a white noise. While this may not be new (noise pat-

terns have been used in non-blind psf estimation, see

e.g. [10,18,2,1,5]), the novelty presented in this section
is that the use of white noise patterns allows one to

solve for super-resolved psfs without the need for any

regularization, and without any prior model for h. In

other words, the system is well posed as long a white

noise image is chosen as the calibration pattern.

3.1 Inverse problem statement in terms of the

re-sampling operator and the calibration pattern

Suppose that h is band-limited within supp(ĥ) = [−δπ, δπ].

If the psf is sampled at a rate s, where s > δ, the

Nyquist sampling theorem guarantees a perfect signal

reconstruction. We will consider the case where δ > 1,
which corresponds to aliased images, as in practice most

digital cameras introduce aliasing.

In the following, F denotes the Fourier Transform.

We denote by f̂ the Fourier Transform of a function f .

The s-Shannon-Whittaker interpolator defined as Isu(x) =
∑

n
u(n)sinc(x

s
− n) is denoted by Is, Ss is the s-over-

sampling operator Ssu(n) = u(s−1n) and lpfw is the

frequency cut-off low pass filter that cuts the spectrum

of a signal to [−wπ,wπ].

Lemma 1 (Discrete Convolution) Let u and h be

images in L2(R2) such that h is band-limited, i.e. supp(ĥ) =

[−sπ, sπ]. Then

u ∗ h = Is (ũ ∗ h) ,

where h = Ssh and

ũ = Sslpfsu.

Proof Set ũ := lpfsu = F−1
(

û · 1[−sπ,sπ]

)

, so that

ũ = Ssũ and ˆ̃u = û ·1[−sπ,sπ]. This implies that u ∗h =

ũ ∗ h. Indeed,

F−1
(

ûĥ
)

= F−1
(

û · ĥ · 1[−sπ,sπ]

)

= F−1
(

ˆ̃uĥ
)

.

Now, since both ˆ̃u and ĥ are supported in [−sπ, sπ], it
follows that

ũ ∗ h = IsSs(ũ) ∗ IsSs(h)

= Is(ũ) ∗ Is(h)
= Is(ũ ∗ h).

⊓⊔

Remark 1 Note that u does not need to be band-limited,

only h. Notwithstanding, if we can find the spectral cut-

off ũ of u, then this lemma implies that the continuous

convolution u ∗ h can be simulated exactly with a dis-

crete set of samples.

Let us denote by Ss the s-to-1-sub-sampling opera-

tor

Ss = S1Is.

It follows from Lemma 1 that the image formation model

(M) can be rewritten in terms of discrete sequences as

v = SsũD ∗ h+ n,

where h and ũD are sampled at rate s such that s > δ

for h to be well sampled. The value s is the over-
sampling rate to the high resolution lattice, where the

psf estimation is going to take place, from the 1× sen-

sor grid.

Assuming that n is a zero-mean stationary white

Gaussian noise, the kernel samples h can be obtained
by solving

argmin
h

‖SsũD ∗ h− v‖22 (1)

Here, ũD is the the result of the Shannon-sampling on

the s× grid of the distorted continuous pattern signal

ũD = Sslpfsu(D(x)), and v the blurred degraded dig-

ital observation on the camera 1× sensor grid.
As inferred by the above discussion, to estimate the

psf by a non-blind method raises the following issues:

– to choose a good psf characterization target;
– to estimate the function g(·), the non-linear ccd

response;

– to estimate the geometric deformation D(·);
– to generate ũD from the sharp latent pattern image

u;
– to find numerical algorithms calculating the psf.

So far h is only assumed to be band-limited. The

numerical method will recover only a finite number of
samples of h, which is well localized, and therefore in

practice compactly supported. Strictly speaking h being

band limited cannot be compactly supported. However,

the error introduced by a restriction on the support will

prove negligible in comparison to the other sources of
error: image noise, quantization, slight estimation er-

rors of g, D,... The found solution h is experimentally

independent from variations of its assumed support.

The problem in (1) can be rewritten in matrix form,

(P) argmin
h

‖SsUh− v‖22,

where U is the convolution matrix by ũD. (This matrix

is applied to the sample vector h). Assuming that the
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observed image v is of size m× n, the sizes of ũD and

h are ms×ns and r× r, respectively. The matrix Ss is

the downsampling matrix of size M ×Ms2, where M =

m × n. As mentioned above, we need s > δ to recover

h from its samples. Thus, s is an integer greater than
δ, which facilitates the construction of the subsampling

matrix (Ssu)(m,n) = u(ms, ns). Then SsU is of size

M ×N , with N = r × r.

The solution of (P) is easily obtained using a least
squares estimation procedure, and is given by

he = (SsU)+v,

where (SsU)+ = ((SsU)t(SsU))
−1

(SsU)t is the Moore-

Penrose pseudo-inverse of (SsU). Depending on the

condition number of this matrix, the inversion would
be well-posed and the solution would be unique. Since

(SsU)h+ n = v,

the estimation error is given by ne = (SsU)+n. The

noise has zero-mean, thus the estimator he is unbiased

and its variance is

E
{

‖ne‖22
}

= E
{

∥

∥(SsU)+n
∥

∥

2

2

}

= E







M
∑

j=1

(

N
∑

i=1

(SsU)+ijni

)2






=

M
∑

j=1

N
∑

i=1

N
∑

k=1

(SsU)+ij(SsU)+kjE {nink} .

Since n is white and stationary, with zero mean, it fol-

lows that

E
{

‖ne‖22
}

=

M
∑

j=1

N
∑

i=1

(SsU)+ij
2
σ2
n = ‖(SsU)+‖2Fσ2

n,

where σ2
n denotes the noise variance, and ‖ · ‖F is the

Frobenius norm of a matrix.
If all singular values of SsU are non zero, the sin-

gular values of (SsU)+ are the inverses of the singular

values of (SsU). If some singular value is zero, the sys-

tem is ill posed and the estimation problem cannot be
solved, unless some kind of regularization on h is im-

posed.

Let {σ1, σ2, . . . , σN} be the singular values of SsU.

Then

‖(SsU)+‖2F =

N
∑

i=1

σ−2
i .

In order to minimize the variance of the estimator he

(i.e. to minimize the noise amplification), one has to

minimize the function

γ(SsU) :=

N
∑

i=1

σ−2
i

It should be pointed out that γ depends on the rate

s and on the samples ũD. The super-resolution rate s is

determined by the spectral support of the psf. The se-

quence ũD depends on the adopted continuous pattern

u, on the geometric transformation D (that includes
the perspective projection associated to the particular

pattern’s view) and also to other possible distortions

presented in the camera-lens system. Hence, for the s×
sub-pixel psf estimation problem, γ measures the qual-
ity of any given view of a calibration pattern.

In order to find the best ideal pattern independently

of the view and distortion, we will consider first the
discrete problem of finding the best sequence ũD, min-

imizing the γ value. To simplify the notation we write

uij = (ũD)ij . This motivates the following definition.

Definition 1 (Optimal digital pattern) Given a ker-

nel support N = r × r and a window observation size
M = m × n, the optimal pattern for the s× sub-pixel

psf estimation is the digital calibration pattern u∗ such
that

u∗ = argmin
a≤uij≤b

γ(SsU).

where the constraints on uij are linked to the physi-
cal realization of the pattern and to the sensibility of

the sensors. (The conclusions of the analysis will prove

independent of the particular value of these bounds.)

3.2 Characterization of optimal digital calibration

patterns

In this section, we derive a lower bound for γ(SsU)
that will be used to design calibration patterns. Indeed,

it will then be shown that for a realization of white

stationary Bernoulli noise, the γ value is so close to this

bound, that in practice these patterns can be considered

to be optimal.

Lemma 2 Let Φ be a M ×N matrix, M > N , with all

its entries in [a, b]. Let σ1 ≥ σ2 ≥ · · · ≥ σN denote its

singular values. Then

N
∑

i=2

σ2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN.

Proof Let ϕij be the (i, j) entry of Φ, and ϕj its j-th

column. Let also ϕ̄j = 1
M

∑M

i=1 ϕij denote each col-
umn’s mean, and ϕ̂j = ϕj − ϕ̄j1.

The Frobenius norm of Φ can be expressed as

‖Φ‖2F = trace(ΦtΦ) =

N
∑

j=1

ϕt
jϕj .
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Since ϕ̃ij :=
ϕij−a

b−a
∈ [0, 1], we have ϕ̃2

ij ≤ ϕ̃ij , and then

ϕt
jϕj =

M
∑

i=1

ϕ2
ij ≤

M
∑

i=1

(a+b)ϕij−abM = M(a+b)ϕ̄j−abM

Thus,

‖Φ‖2F ≤ M(a+ b)

N
∑

j=1

ϕ̄j − abMN. (2)

On the other hand, for all x such that ‖x‖ = 1, ‖Φ‖2 ≥
‖Φx‖. Let us take x = 1√

N
1. Then

‖Φ‖22 ≥ ‖Φx‖22 =
1

N

∥

∥

∥

N
∑

j=1

ϕj

∥

∥

∥

2

=
1

N

∥

∥

∥

N
∑

j=1

ϕ̂j +

N
∑

j=1

ϕ̄j1
∥

∥

∥

2

=
1

N





∥

∥

∥

N
∑

j=1

ϕ̂j

∥

∥

∥

2

+
∥

∥

∥

N
∑

j=1

ϕ̄j1
∥

∥

∥

2



+

1

N





N
∑

j=1

ϕ̂j





t



N
∑

j=1

ϕ̄j1





=
1

N





∥

∥

∥

N
∑

j=1

ϕ̂j

∥

∥

∥

2

+
∥

∥

∥

N
∑

j=1

ϕ̄j1
∥

∥

∥

2





≥ 1

N

∥

∥

∥

N
∑

j=1

ϕ̄j1
∥

∥

∥

2

=
M

N





N
∑

j=1

ϕ̄j





2

. (3)

Thus, by Eqs. (2) and (3), we have:

‖Φ‖2 ≥ ‖Φ‖2F + abMN√
MN(a+ b)

.

Then, since ‖Φ‖2 = σ1,

σ1 ≥ ‖Φ‖2F + abMN√
MN(a+ b)

=

∑N
i=1 σ

2
i + abMN√

MN(a+ b)

Finally,

N
∑

i=2

σ2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN.

⊓⊔

Lemma 3 (A bound on γ) Let Φ be a M×N matrix,

M > N , with all its entries ϕij in [a, b]. Then

min
ϕij∈[a,b]

γ(Φ) ≥ 1

MN

(

1

b2
+

4(N − 1)2

(b− a)2

)

.

Proof According to Lemma 2, for any matrix Φ with

entries in [a, b], and in particular for the ones that at-

tains

γ∗ = min
σ1,...,σN

N
∑

i=1

σ−2
i ,

the inequality
∑N

i=2 σ
2
i ≤ (a+b)

√
MNσ1−σ2

1 −abMN

holds.

Thus

min
ϕij∈[0,1]

γ(Φ) ≥ min
σ∈D

f(σ),

where σ = (σ1, . . . , σN ),

D := {σ | σi ≥ 0,

N
∑

i=1

σ2
i−(a+b)

√
MNσ1+abMN ≤ 0},

and f(σ) :=
∑N

i=1 σ
−2
i . The function f being strictly

convex on D, which is itself a convex and compact do-

main, it follows that the minimum of f on D is at-

tained at a unique point. D and f being invariant by

any permutation of σ2, . . . , σN , the minimum point be-
ing unique satisfies σ2 = · · · = σN . Since this minimum

belongs to D,

N
∑

i=2

σ2
i = (N − 1)σ2

2 ≤ (a+ b)
√
MNσ1 − σ2

1 − abMN.

By noting that the maximum value of

σ1 7→ (a+ b)
√
MNσ1 − σ2

1 − abMN

is ( b−a
2 )2MN , it follows that

σ2
2 ≤

(

b− a

2

)2
MN

N − 1
.

On the other hand for any point of D we have

σ2
1 ≤ (a+ b)

√
MNσ1 − abMN.

Then, it follows that σ2
1 ≤ b2MN . Consequently,

min
σ∈D

f(σ) =

N
∑

i=1

σ−2
i ≥ 1

MN

(

1

b2
+

4(N − 1)2

(b − a)2

)

.

⊓⊔

Remark 2 It should be noted that in the proof of the

previous lemma, the condition that the entries of Φ be-

long to [a, b] was replaced by the weaker condition given

by the inequality proved in Lemma 2. This amounts to
enlarge the space of matrices that was originally con-

sidered, thus the real optimum that can be attained by

matrices with entries in [a, b] will necessarily lead to

higher values of γ.
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Remark 3 Notice also that in Lemma 3 we did not

solve the complete constrained optimization problem

minσ1,...,σN

∑N

i=1 σ
−2
i subject to

∑N

i=2 σ
2
i ≤ (a+b)

√
MNσ1−

σ2
1 − abMN . While this problem can be solved via the

Karush-Kuhn-Tucker conditions, according to the pre-
vious remark it would still lead to a lower bound on γ.

The solution of this constrained minimization problem

leads to a closed form which is significantly less hand-

ier than the bound that was obtained in Lemma 3, and
is worthless since both bounds are extremely close, as

shown in Figure 1 for a = 0, b = 1.
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Fig. 1: Comparison of the lower bound given by Lemma 3 and
the one obtained by solving the KKT conditions for the case
a = 0, b = 1. Both bounds are shown in (a), as a function of
M . The plot in (b) shows their difference, also as a function
of M .

Proposition 1 (Non-asymptotic bound for opti-

mal patterns) Let u = {uij} be a ms × ns digital

image with all its values in [a, b]. Let SsU be the opera-

tor associated to the convolution of the r×r kernel with

the image u, followed by the downsampling operator of

rate s. Then

min
a≤uij≤b

γ(SsU) ≥ 1

MN

(

1

b2
+

4(N − 1)2

(b− a)2

)

.

where M = m × n is the observation window size and

N = r × r is the kernel size .

Proof The result follows directly from Lemma 3, since

the operator SsU associated to u is a M × N matrix
with all its entries in [a, b]. ⊓⊔

We will propose as calibration pattern a realization

of a white Bernoulli(0.5) stationary noise. It will be

shown that this calibration pattern is so close to the
γ(SsU) lower bound given by Lemma 3 that for prac-

tical calibration purposes, it can considered to be opti-

mal.

The motivation for choosing stationary white noise
patterns is not new: white noise has been widely used

for system identification applications, since it optimizes

the minimum variance of unbiased estimators. Now, the

choice of Bernoulli(0.5) distribution can be explained

as follows. Suppose u = {uij}, where uij ∈ [a, b] are

mutually independent random variables, identically dis-

tributed with mean mu and variance σ2
u. In this case,

it can easily be shown that

E
{

(SsU)t(SsU)
}

= M
(

m2
u11

t + σ2
uI
)

.

This is a direct consequence of the non-correlated
nature of u and that subsamples of white noise remain

white noise. Observe that M
(

m2
u11

t + σ2
uI
)

has only

two different eigenvalues: σ1 = M(m2
u + σ2

u) and σ2 =

· · · = σN = Mσ2
u. Thus, its γ value is

γ =
1

M

(

1

Nm2
u + σ2

u

+
N − 1

σ2
u

)

.

On the one hand, in order to minimize γ, mu and σ2
u

values should be as large as possible. On the other hand

there is a trade-off between both values and they can-
not be simultaneously maximized. Indeed, any random

variable with support [a, b] satisfies

σ2
u ≤ (mu − a)(b−mu).

Nonetheless, the equality holds for the Bernoulli distri-

bution. Hence, from now on we restrict the analysis to

the Bernoulli case which, from the previous reason, is

optimal. Therefore we can express γ as

γ =
1

M

(

1

Nm2
u + (mu − a)(b−mu)

+
N − 1

(mu − a)(b −mu)

)

.

It can be shown that the mu ∈ [a, b] value where γ at-

tains its minimum is always very close to mu = a+b
2 .

This happens independently of M and N . However, the

exact value depends on N . It is therefore convenient,
to avoid dependence on N , to fix mu = a+b

2 by us-

ing an equiprobable Bernoulli distribution. Finally, the

γ value for the expected operator SsU when using a

Bernoulli(0.5) pattern is

γ =
4

M

(

1

N(a+ b)2 + (b − a)2
+

N − 1

(b− a)2

)

.

This value is very close to the bound provided by Lemma 3.

Indeed, for M ≥ N ≫ 1 we have γ∗ − γ ≈ 4
M(b−a)2 .

This small difference is illustrated in Figure 2 for the

particular case a = 0, b = 1. Notice also that since

E {(SsU)t(SsU)} = limM→∞(SsU)t(SsU), large M
values may be required in order to reach the optimal

γ. However, this is clearly not our case of interest, our

goal being to perform a local kernel estimation. Never-

theless, we may still be interested in exploring the use
of a realization of white stationary Bernoulli(0.5) noise

as calibration pattern, for finite and realistic values of

M and N (the non-asymptotic case).
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Fig. 2: Comparison of the lower bound given by Lemma 3 and
the gamma obtained from the expected SsU operator when
using a Bernoulli(0.5) random noise target. Both bounds are
shown in (a), as a function of M whereas the Plot (b) shows
their difference, also as a function of M .

In order to show that the choice of such a calibra-

tion pattern can be considered to be optimal for prac-

tical psf estimation, we generated a white random bi-

nary image uij ∈ {0, 1}, Bernoulli(0.5), and evaluated
γ(SsU) for fixed down-sampling rate s = 4. Figure 3

shows that the obtained γ is very close to the non-

asymptotic lower bound (Lemma 3), indicating that

this pattern is optimal in a practical sense.
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(a) r = 17, m,n = 50 − 150
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(b) r = 9, 17, 25, 33, m,n =
128

Fig. 3: Reaching theoretical bounds. A random Bernoulli bi-
nary image is used to generate the SsU. We set s = 4 and
estimate γ for different observed image sizes (m,n values)
(a) and different kernel sizes (r value) (b). The proximity be-
tween the obtained γ and the theoretical bound shows the
tightness of the derived γ lower bound.

Concluding Remark The mathematical argument and
experiments above show that near-optimal γ values are

reached with a Bernoulli random noise pattern for rea-

sonable observation, kernel and pattern sizes. Slightly

better γ values could be achieved if we allowed the pat-
tern to adapt to the kernel size. This is nevertheless

not practical. The payoff would be a negligible improve-

ment of the well-posedness, and the exact psf support

size being anyway a priori unknown.

3.3 From continuous patterns to digital patterns

Based on the previous section it comes into view that

good psf estimation patterns are those that produce
very contrasted random ũD sequences. However, we

cannot choose directly the values inside the SsU op-

erator. Indeed, the γ value depends on ũD, obtained

by sampling on the s× grid the distorted continuous

pattern image.

Consider the set of analogical patterns formed of
constant uij gray value squares regions, u(x) =

∑

i,j uij1‖x−(i,j)‖≤ 1
2
.

Since signals in optical systems are non-negative in na-

ture and bounded, we can assume w.l.o.g. that 1 ≥
uij ≥ 0.

For the mathematical exploration of optimal pat-

terns, we will restrict ourselves to the case where the

geometrical transformation D is a zoom-out with fac-
tor t−1, Zt−1 . This assumption will almost be verified,

the views of the pattern taken frontally. Notice that

the s-sampling operator can be written as Ss = S1Zs.

Thus,

ũD = SslpfsuD

= S1lpf1ZsuD

= S1lpf1ZsZt−1u

= c ∗ u

where c is the digital filter

ci,j =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

sinc(
s

t
ζ − i)sinc(

s

t
η − j)dζdη.

As mentioned earlier the goal is to produce values (ũD)ij
as independent and contrasted as possible. This moti-

vates the following simplification. Suppose that the set
up realizes t = s.

An ideal unattainable situation would be that the
re-sampling operator and the low-pass filter do not pro-

duce inter-symbol interference (i.e. the discrete filter c

does not change the input signal u). Then each of the

square gray values would be equal to the sample af-
ter low-pass filtering ũD ≈ uij . In this particular case

we would have a perfect one-to-one correspondence be-

tween the gray values of the pattern and the ũD digital

signal which would be a Bernoulli pattern. Due to the

constraints on uij the best we can do is to choose iid

Bernoulli(0.5) u ∈ {0, 1}. Yet, while this perfect geo-

metric situation is unattainable, the experiments show

that γ stays close to its optimal value when s/t is be-

tween 0.7 and 2, as it is shown in in Figure 4. The
resulting ũDij

for distances in a range from s/t = 1

produce γ values close to the γ bound for entries in

[0, 1].
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(a) Value of γ (gamma) vs
kernel size (window size =
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(b) Value of γ (gamma) vs
window size (kernel Size =
17×17) s=4

Fig. 4: Random Pattern Analysis. Sensitivity of the γ value
to the kernel support size (a) and to the t/s zoom factor (b)
s = 4. The larger the support of the kernel, the noisier the
estimation when the gamma value increases with the kernel
support size (a). The zoom factor s/t is closely related to
the focal distance and to the distance from the camera to
the pattern. For example if the distance to the pattern is too
small (small s/t value) the pattern will look like a step-edge
pattern because of the zoom-in. The corresponding γ value
will be higher than the optimal. On the other hand, if the
distance to the pattern is large then the γ value will also be
larger than the optimal one, because of the contrast loss due
to the zoom-out. In agreement with the theoretical study, the
views with zoom factors close to one (i.e. t ≈ s) produce the
best γ values.

3.4 Comparison of calibration patterns

The γ factor introduced above permits to compare the

suitability of different patterns for the psf estimation

problem. Since the noise amplification is governed by

the sum of the inverses of the singular values, it is de-

sirable to use patterns that produce singular values that
are all as large as possible. For this purpose, and justi-

fied by the previous theory, we shall use a binary ran-

dom pattern. The proposed noise pattern consists of a

matrix of 256 × 256 black and white random squares
generated from an equiprobable Bernoulli distribution.

The pattern was printed at a high enough resolution

so that artifacts introduced by the printer could be ne-

glected. Several cross marks and white/black flat re-

gions were added, to easily align the acquired image
with the target, and to correct non-uniform illumina-

tion. Fig 5 shows the proposed random pattern, com-

pared to a pattern designed by Joshi et al. consisting

of 120◦ arc step edges.

Suppose we want to do a s = 4× psf estimation.
As shown in the previous section, the pattern should

be photographed at such a distance that the pattern

covers more or less 256/4 × 256/4 pixels. In practice,

this permits a very local psf estimation.

Fig. 6 shows the eigenvalues of the SsU matrix for
s = 4, an observed window with size 80× 80, and vary-

ing kernel sizes, for Joshi et al.’s pattern and for the

proposed random target. The random pattern produces

(a) random pattern (proposed)

(b) pattern Joshi et al. [16] (c) local pattern Joshi et
al. [16]

Fig. 5: Calibration patterns for local psf estimation

secondary eigenvalues very similar in contrast to the

fast decay shown by the eigenvalues of the slanted-edge

Joshi pattern. The γ values for the corresponding pat-

terns are shown in Table 2. In all cases, the random

pattern significantly outperforms the Joshi et. al. pat-
tern. The γ bound value was computed by taking into

account the effective observed window size, that is, leav-

ing out the auxiliary region with the checkerboard and

flat regions.

9× 9 17× 17 25 × 25 33 × 33
Joshi 99.44 1133.05 6445.87 58419.08
Random 0.19 0.69 1.54 2.98
Bound 0.10 0.35 0.70 1.15

Table 2: A comparison of pattern realizations through the γ
value. The random pattern produces significantly smaller γ
values than the slanted-edge Joshi pattern.

4 The complete psf Estimation Procedure

In this section we describe the steps that lead to a local
sub-pixel psf estimates. The complete chain is summa-

rized in the block diagram of Fig. 7. The next para-

graphs present brief summaries for each block.
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Fig. 7: Algorithm Description. The captured image is precisely aligned to the analytic pattern through intentionally inserted
checkerboard markers. Non-uniform illumination and non-linear camera response function impact - crf are corrected from the
captured image to allow an artifact-free s× psf estimation.
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Fig. 6: Pattern Comparison I. Proposed Random Pattern vs
Joshi et al slanted-edge-circles target. Observed Window of
size 81×81, psf support size 25×25, s = 4. Eigenvalues sorted
from highest to lowest. The random pattern produces very
similar eigenvalues, and the decay its very slow in comparison
to the ones from the Joshi et al. pattern.

Feature Detection

In order to deal with geometric distortions the ideal

pattern and its observation have to be precisely locally
aligned. To that purpose checkerboard corners were in-

troduced along the boundary of the noise calibration

pattern. Assuming that the psf is (approximately) sym-

metric, these x-corners will not suffer from shrinkage.

Several methods to detect checkerboard corners have
been reported in the Computer Vision literature (e.g.

[13], [8], [20]), ranging from differential operators such

as the Harris detector to more specific correlation meth-

ods. We used a Harris-Stephens based corner detector
implemented by Bouguet [4], that allows to iteratively

refine the detected corner positions to reach sub-pixel

accuracy.

Geometric Transform Estimation

The estimation of the psf does not require a decompo-
sition of the distortion into its homography and non-

homography parts, as it is done in classical geomet-

ric camera calibration [31], where a global radial lens

distortion model is usually adopted. In order to avoid

that computation and to utilize a more flexible model

that may capture local lens distortion, the complete

geometric distortion was approximated with thin-plate
splines. While thin-plates splines were originally con-

ceived as an exact interpolation method [3] they can

be easily extended to the approximation problem [26].

The mapping from the non-distorted to the distorted

space is estimated from the detected corners {p̃i}, and
their correspondences in the ideal pattern {Pi}, whose
coordinates are perfectly known.

Illumination Estimation and Normalization

In order to match the gray levels in the sharp pattern to
those in the observed image, black and white square flat

regions were included along the boundary of the noise

pattern. These regions permit to estimate the mapping

between black and white colors and the corresponding
observed gray level values. The presence of these con-

stant regions all around the pattern permit to estimate

a black (white) image that models the black (white) in-

tensity level at each pixel. These light images have been

modeled by second order polynomials whose coefficients
are estimated by least squares from the known pairs

(value, position). In continuation each pixel value in

the observed image is linearly rescaled within the range

[0, 1], by considering the respective estimated black and
white values.

CRF Estimation g(·)

Once the nonuniform illumination has been compen-

sated, the camera response function can finally be esti-
mated and the non-linear response of the sensors cor-

rected. The estimation and correction procedure is based

on a strong property of our pattern: the white noise
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pattern was generated assigning equal probabilities to

black and white values (0 and 1 respectively, after nor-

malization). Consequently, since the psf has unit area,

the mean gray value within the observed image should

be 0.5.

The solution is defined as a parabolic function u 7→
αu2 + (1− α)u where α is chosen so that the the mean

of the pattern after the correction is 1/2.

Pattern Rasterization

In order to generate the samples ũD from the ideal con-

tinuous pattern image u, we need to sample this image

at the desired s resolution after deforming it by the

estimated geometric transformation. For that purpose
the distorted continuous pattern uD must be low pass

filtered to be bandlimited in [sπ, sπ]. (Remember that

the camera resolution is 1×. Thus the digital pattern

has an s× over-sampling). The procedure is:

1. The continuous pattern u is sampled at a very high
resolution. From the vectorial description of the pat-

tern a digital image is generated (this procedure is

called rasterization) by replacing each one of the flat

squares by a 4×4 block of pixels with the same gray

value. The re-sampling starts from these samples u
instead of the continuous pattern;

2. Frequencies higher than sπ are cut off from the dig-

ital pattern u to get ũ;

3. By help of the previously computed geometric dis-
tortion the filtered pattern ũ is bi-cubically interpo-

lated at the desired resolution s× ũD.

Numerical Methods for psf Estimation

We have seen that light diffraction, optical low pas fil-

tering, and sensor light integration all produce non-
negative kernels. Thus the estimated psf must be non-

negative. We can therefore constrain the solution to

be non negative, thus reducing the space of solutions.

Section 5, Fig. 17 shows that not imposing this non-
negativity assumption yields essentially the same re-

sults, which in fact verifies the correctness of the pro-

posed image formation model. Hence, we can opt to

solve a non-negative least squares, or to simply solve a

least squares problem and then threshold the solution
to eliminate very little components.

Suppose that the local grid pattern observation v

has size m × n and that we want to estimate a psf

at s× sub-pixel resolution. Also suppose that the esti-

mated support of the psf is inside a r × r image. The

matrix SsU corresponding to the s-down-sampling of

the convolution with the distorted calibration pattern,

has size mn × r2. Thus, the problem to be solved can

be formally written as

(P ) argmin
h

‖SsUh− v‖2

subject to hi ≥ 0, i = 1, . . . , r2.

Problem (P ) can be solved using standard convex op-

timization solvers such as cvx [12]. A simpler Newton
interior point algorithm proposed in [22] was used and

always converged rapidly.

5 Experimental Results

This section is dedicated to the evaluation of the pro-
posed non-blind sub-pixel psf estimation method, and

to the comparison of its performance with two state of

the art proposed approaches. We selected a method re-

cently reported in the literature by Joshi et al. [16,15],

and a mtf commercial software, Imatest [19]. Since we
do not have real camera ground truth for the psf, the

performance evaluation was first carried out on simu-

lated data. A real psf estimation on real cameras was

in continuation tried under varying acquisition condi-
tions. Particular attention was paid to the aliasing effect

caused by sampling under the Nyquist frequency.

5.1 Simulations for Objective Evaluations

The simulation of the camera acquisition process was as

follows. The grid pattern was rasterized at a very high
resolution (i.e. 8×), convolved with a psf like kernel

(in this case a Gaussian isotropic kernel), and down-

sampled to get the observed digital image at the cam-

era resolution (i.e. 1×). The kernel was chosen so that
the low resolution image presented aliasing artifacts.

We also added white Gaussian noise of standard devi-

ation σ = 0.02. We compared the performance of the

proposed approach to that of Joshi et al. using their

calibration pattern and our implementation of their ap-
proach, with different regularization levels. A 4× kernel

was estimated for both algorithms from the observed

window of size 110× 110 pixels.

Figure 8 shows the results for 4× psf estimation
from the simulated observation. Solutions with the Joshi

et al. method with three levels of regularization are

presented, along with the proposed approach (which

is regularization-free). In this experiment the proposed
method significantly outperform’s Joshi et al.’s algo-

rithm, achieving a much less noisier estimation. Joshi’s

algorithm needs a strong regularization to stabilize the
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estimation and to avoid an amplification of high fre-

quency noise. Consequently, its estimation tends to pe-

nalize high frequency components and to produce a bi-

ased kernel with amplified lower frequency components.

See caption for details.
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Fig. 8: Synthetic example I. Performance comparison for sim-
ulated data. A 4× kernel is estimated using the Joshi et al.
algorithm, with varying regularization level, and the proposed
approach. The observed window has 110×110 pixels. The top
row shows the kernel estimation and the middle row the dif-
ference image between the estimation and ground truth for
one of the realizations. The proposed method significantly
outperforms the Joshi et al. algorithm, achieving a much less
noisier estimation as shown by the difference images and by
the peak signal to noise ratios. The bottom row shows cen-
tral horizontal profiles for all the estimated mtfs (0.5 is the
Nyquist frequency). Notice that in the Joshi et al. method
the estimation is unstable. The estimates show extremely
noisy components for frequencies higher than the sampling
frequency, when the amount of kernel regularization is too
small. On the other hand, if a strong regularization is im-
posed, the penalization of the kernel gradient adopted by
Joshi et al. tends to produce kernels with under-estimated
high frequency components. The method proposed here does
not rely on a regularization and produces nonetheless noise-
less and unbiased results.

5.2 Experiments with Real Camera Images

In this section we present several local 4× psf estima-

tion examples from real camera acquisitions. In all cases

a Canon EOS 400D camera provided with a Tamron

AF 17-50mm F/2.8 XR Di-II lens was used. The focal

length was fixed at 50.0 mm. Based on these experi-
ments the behavior of the proposed method was ana-

lyzed with varying camera aperture. The impact of the

crf estimation/correction was evaluated, and the psf

estimates obtained for the four color channels in the
Bayer pattern compared. Variations of the kernel esti-

mates depending on their location in the image were

also explored. This was followed by an evaluation of

the stability of the estimation procedure, and of the in-

fluence of the kernel support size. Finally the results

were again compared with the Joshi et al. algorithm

and with Imatest, applied to real cameras.

Different Apertures The estimation was conducted us-

ing the proposed random pattern captured at five differ-

ent apertures. For each acquisition, a 4× psf estimation

for one of the green channels ((half of the green pixels
of the Bayer matrix) was performed. Results are shown

in Figure 9. The estimations were performed at the im-

age center from a window of size 90× 90 pixels. Notice

that kernels at apertures f/32 and f/16 are significantly

larger than the rest, as predicted by diffraction theory
(see caption for details). An example of the acquired

blurry image is shown in Figure 12.

Fig. 11 shows the diffraction-limited mtf for a circu-

lar f/5.7 aperture and green monochromatic light (See
the end of Sec. 2.1). The estimated response for our

camera-lens system at aperture f/5.7 and for the green

channel is under the ideal diffraction-limited response.

This can be a consequence of the light integration in

the sensor array but also of the optical low pass filter
specifically included to avoid aliasing.

Estimation of Camera Response Function This exper-

iment evaluates the impact of the non-linearity of the

camera sensors response. To conduct this experiment,
the camera response curve was computed using a spe-

cially designed pattern for crf estimation. In order to

assess the impact of the crf on the psf estimation,

the observed image was corrected using the special pur-
pose crf estimate, to compare the results that yield the

psf estimation algorithm.

Fig. 13(a) compares the crf estimated using the

special purpose pattern with the crf estimate embed-

ded in the proposed psf estimation algorithm. Notice
that both estimates are hardly non-linear and extremely

close to each other, so the psf estimation algorithm

seems to be capable of giving a reasonable crf estima-

tion.
Fig. 13(b) shows the mtfs obtained under four dif-

ferent situations:

– psf estimation with embedded crf correction from

the raw observed values (psf-crf).
– psf estimation without any crf correction from the

raw observed values (psf-nocrf).

– psf estimation without embedded crf correction

from the adjusted values after correction via the spe-

cial purpose crf estimate (psf-nocrf-eq).

In all cases, the estimation yielded very similar results.
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(b) Vertical profile (mtf)

Fig. 9: Different apertures. Taken at different apertures, green
channel g1, 100 iso, 50mm. All estimated 4× kernels are quite
smooth. Fig. (a): The top and bottom rows show respectively
the estimated psfs and a few level lines of the correspond-
ing mtfs that prove that the kernels are not exactly axis-
symmetric. The kernels at apertures f/32 and f/16 are consid-
erably larger than the rest in agreement with diffraction the-
ory. This phenomenon also stands out in the modulus of the
estimated psf spectra, which also shows that the psfs/mtfs
are not axis symmetric. Figure (b): Vertical cuts of the spec-
trum modulus. The camera seems to have the sharpest re-
sponse from apertures f/3.2 to f/12.9. At apertures f/32 and
f/16 the camera cuts high frequencies significantly more than
the rest, as predicted by diffraction theory. Notice that in all
cases, except at aperture f/32, the mtf at the Nyquist fre-
quency (f = 0.5) is significantly greater than zero. Hence,
the camera introduces aliasing.

Color Estimation The goal of this experiment is to

compare the psf estimates for all four channels from the
Bayer raw camera output (two greens, red and blue).

The estimation was performed using the random pat-

tern captured at apertures f/5.7. The results for the 4×
psf estimation located in the image center are shown

in Fig. 14. It is easily seen that the red psf is larger
than the green and the blue one (i.e. produces blurry

images). This is reasonable, since the wavelengths as-

sociated to red are smaller than the rest. Hence the red

diffraction kernel will be larger than the green and blue
kernels for the same camera configuration. The differ-

ences between the shapes of the red/blue and green psf

spectra can be explained by the sensor shape. If we ac-

Fig. 10: Real camera example. Taken at f/5.7. An example
image, to show how local the psf estimation is (left), and a
zoom of the observed window of size 110× 110 pixels (right).
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diffraction−limit

Fig. 11: Diffraction-limited System. Theoretical diffraction
mtf for monochromatic green light with circular f/5.7 aper-
ture and the estimation for the green channel at the same
aperture. The estimated response for our camera-lens system
is under the ideal diffraction-limited response. This can be
consequence of the light integration in the sensor array, but
also of the optical low pass filter specifically included to avoid
aliasing.

cept that the sensor active zone is L-shaped, then by

the red/blue sensors in the Bayer pattern will have the

same sensor term mtf and will be rotated 45◦ with re-
spect to the green channels.

Location Figure 15 displays the 4× psf estimates for

one of the green channels, at different image locations,
for f/5.7. Kernels closer to image borders are larger and

more asymmetrical than the kernel at the image center.

This seems to be a consequence of lens aberrations that

deteriorate the system performance.

Stability of the estimation procedure

A set of thirteen images of the noise calibration pat-
tern were acquired with exactly the same camera con-

figuration (f/5.7), from similar viewpoints. For each ac-

quisition, the 4× psf of one of the green channels at
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Fig. 12: otf phase. Estimation done for the green channel g1,
100 iso, 50mm, f/5.7 at the center of the sensor array. The
Figure on the top shows the modulus of a horizontal profile
of the optical transfer function - otf and its real component.
Both curves coincide, implying that the otf is real and thus
the psf is symmetric. This is also seen in the bottom figure
that shows that the otf phase is 0 or π.
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(a) crf estimates
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(b) Vertical profile of mtfs)

Fig. 13: Dependence on the crf correction, for a 4×psf es-
timation of the green channel, at aperture f/5.7. Figure (a):
crf estimates obtained with the estimation embedded in the
proposed psf estimation algorithm (crf-psf estimation),
and with the one generated independently from a special
purpose crf calibration pattern (crf-pattern). Both esti-
mates are very similar and hardly non-linear. Figure (b): ver-
tical profile of mtfs. The estimates from the raw gray val-
ues with and without crf estimation/compensation (psf-crf
and psf-nocrf, resp.) gave very similar results. After com-
pensation of the gray values using an external special pur-
pose estimation of the crf, the psf estimation procedure
(psf-nocrf-eq) also led to very similar results.

the image center were estimated. Figure 16 shows the
average mtf vertical profile, and its standard deviation

band. It is clear from the small value of the standard de-

viation that the estimation method is highly stable, in

agreement with the fact that the corresponding linear
system to be inverted is very well-posed. More details

are given in Fig. 16 caption.
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(b) Horizontal profile (mtf)

Fig. 14: Different color channels. 4× psf estimation for the
four Bayer pattern channels (two greens, red and blue) from
a camera raw output. Top row: psf estimation. Middle row:
the corresponding Fourier spectrum modulus. Bottom row:
mtf horizontal and vertical profiles. The estimation was per-
formed using the random pattern captured at aperture f/5.7.
The red psf is larger than the green and the blue ones. Since
the wavelengths associated to red are smaller than the rest,
the diffraction components for the red channel will be larger
than those for green and blue for the same camera configu-
ration. Also notice the differences between the shape of the
red/blue and green psf spectra (bottom row). Red and blue
mtf seem to be 45◦ rotated with respect to the green ones.
This symmetrical behavior is plausible for an L-shaped active
zone sensor array.

Support We can consider that the proposed approach

has only one main parameter: the kernel support size.

The choice of this size implies a trade-off between the
model validity and the feasibility of the estimation. On

the one hand, if the support is too large the kernel es-

timation will be very noisy, since the γ factor increases

with the support size. On the other hand, if the kernel

support is too small the considered image formation
model will not be accurate.

Fig. 18 shows the 4× psf estimation for various

kernel support sizes. All estimations for the supports
17×17, 25×25 and 33×33 turn out to be very close to

each other. Nevertheless, the 9× 9 kernel support does

not seem to be large enough to correctly model the psf.

Hence, as soon as the support size exceeds such a lower
bound, the proposed algorithm does not appear to be

sensitive to this parameter.
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left center right

Fig. 15: Different locations. Taken at f/5.7 for one of the
green channels. The psfs estimated far from image center are
larger and more asymmetrical than the one estimated at the
center. This is certainly due to lens aberrations, which are
more significant near the image borders.
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Fig. 16: Stability of the estimation. Average and stan-
dard deviation statistics were generated from 13 estima-
tions computed at f/5.7 (for one of the green channels).
The small standard deviation in the vertical profile of
the Fourier spectrum modulus is shown in (a). The rela-
tive mtf sensitivity vs region threshold is shown in (b).
We define the relative mtf sensitivity in a region Ω as:
s(Ω) = mean(std(mtf))/mean(mtf) where the mean values
are computed inside the region Ω. In this case we construct
Ω(threshold) = {x : mtf(x) ≥ threshold}. The relative sensi-
tivity in the whole spectrum does not exceed 0.08 and what
is more if the mtf values smaller than 5% are not consid-
ered, then the relative sensitivity is less than 3%. The small
standard deviation and sensitivity demonstrate the algorithm
stability.

Comparison of several methods This section ends up

with a comparison between the Joshi et al. method,

Imatest, and the proposed approach to non-blind sub-
pixel psf estimation [19]. Imatest is a commercial mtf

estimation software. The Imatest estimation is performed

from a slanted-edge image and only gives an estimate

of the mtf at the direction orthogonal to the slanted-
edge. The estimation was conducted with images taken

at aperture f/5.7 with patterns located at the center of

the image.
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Fig. 17: Non-negative Constraint. This experiment analyzes
how the psf estimation changes by not assuming the non-
negative hypothesis. On the left we show both estimations:
the no-constrained and the non-negative 4× psf for the green
channel, f/5.7 at the center of the image. Since there is no
structure in the image produced by subtracting both estima-
tions and since the relation between the energy of the image
difference and the energy of the non-negative estimation is
0.001, we can conclude that both estimations are extremely
close. This is confirmed by observing in the left figure a hor-
izontal profile of the mtf for both estimations.
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Fig. 18: Changing support size. This experiment analyzes how
the psf estimation changes with the desired psf support size.
Several psf estimations for various kernels support sizes (left).
Only the central 9×9 regions are shown. All the estimates are
very close, specially 17 × 17, 25 × 25 and 33 × 33. However,
the 9 × 9 kernel support seems to be hardly sufficient for
correctly modeling the psf, as indicated by the mtf vertical
profiles on the right. The proposed algorithm does not appear
to be sensitive to this parameter as soon as the kernel support
exceeds this minimal size .

Figure 19 shows the horizontalmtf profiles obtained

with the Joshi et al. method using various regulariza-

tion levels, with Imatest, and with the proposed ap-

proach for one of the green channels. In the low frequen-
cies Joshi and the proposed approach yield very similar

results. However, for higher frequencies the Joshi et al.

results vary strongly with the regularization level. The

Imatest estimate is quite noisy and does not resolve fre-
quencies above twice the sampling rate. The proposed

random pattern algorithm generates much more infor-

mation than the typical slanted-edge mtf calibration.
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Fig. 19: Comparison of psf/mtf estimation methods applied
to a real camera. Our implementation of Joshi et al. psf esti-
mation algorithm, the Imatest commercial software and the
proposed random patter algorithm. All estimations are done
at the center of the image with a camera at aperture f/5.7
for one of the green channels. On the low frequencies all al-
gorithms gave very similar estimations, while on the higher
frequencies the Joshi et al. estimation depends on the regu-
larization level. Although we did our best to get a noise free
mtf estimation from the Imatest software, the final estima-
tion is quite noisy. The Imatest estimation is done from a
slanted-edge image and only gives an estimation for the mtf

at the slanted-edge orthogonal direction.

6 Discussion

This work is an attempt to define an optimal non-

blind sub-pixel psf estimation method from a single
aliased image. The method is successful, but its set

up is tight. The pattern must be large enough (some

70cm in our experiments), printed with good quality

ink. The random squares must be large enough to avoid
any ink soaking bias, and a good quality print is recom-

mended. The mathematical analysis demonstrated that

a Bernoulli pattern is nearly optimal in terms of well-

conditioning of the matrix to inverse. The pattern was

therefore placed in an approximately frontal position.
The photographs were taken at the right distance to

ensure that the camera sampling grid and the pattern

grid had similar meshes. These position requirements

are not strict, though, the experiments showing only a
slow degradation of the results when the distance varies

around the optimal position. The method is also very

strict in the precautions to compensate for the varia-

tions in illumination and to estimate the exact defor-

mation between the ideal pattern and the observed one.

Nevertheless, the pay off of this careful procedure
is high. The method delivers a very accurate estimate

of the psf, as amply shown in the manifold compara-

tive experiments, with quite stringent accuracy levels

(relative error in the order of 2-5%). It remains to won-
der why the former methods added regularizing terms

or a priori models if these were not needed. Yet, the

numerical experiments have confirmed that the inverse

estimation problem is indeed ill-posed with slanted edge

patterns, which accounts for the necessity of regulariza-

tion terms for such patterns. Although random noise

patterns have been widely used in the past, up to our

knowledge no regularization-free sub-pixel psf estima-
tion scheme had been previously proposed. For these

previous methods with noise patterns, the lack of a

careful correction for all perturbations may explain the

need for a regularization or an a priori model. The ex-
periments here have confirmed that for typical DSLR

cameras, each color channel is under-sampled with re-

spect to the ideal Nyquist rate given by the psf, by

a factor of 2 or even 4. This fact was confirmed, even

with DSLR models including an optical anti-aliasing
filter on the sensor. This more than justifies a poste-

riori the need of a sub-pixel estimation procedure. As

usual, a locality-accuracy trade-off had to be resolved.

The locality of the order of a few hundred pixels can be
achieved under common noise conditions.

Of course a wholesome local camera calibration re-
mains a heavy procedure. According to the above set-

ting, some 100 snapshots of the pattern are needed

to cover the whole image domain to get an accurate

enough psf estimate everywhere. Indeed, the experi-
ments show that this kernel varies significantly, partic-

ularly near the image boundaries. The only solution to

avoid these many photographs would be to print a very

large random pattern covering a whole wall, which is

actually quite doable in lab conditions.
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