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Subpixel Point Spread Function Estimation from Two Photographs at Different
Distances∗
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Abstract. In most digital cameras, and even in high-end digital single lens reflex cameras, the acquired images
are sampled at rates below the Nyquist critical rate, causing aliasing effects. This work introduces
an algorithm for the subpixel estimation of the point spread function (PSF) of a digital camera from
aliased photographs. The numerical procedure simply uses two fronto-parallel photographs of any
planar textured scene at different distances. The mathematical theory developed herein proves that
the camera PSF can be derived from these two images, under reasonable conditions. Mathematical
proofs supplemented by experimental evidence show the well-posedness of the problem and the
convergence of the proposed algorithm to the camera in-focus PSF. An experimental comparison of
the resulting PSF estimates shows that the proposed algorithm reaches the accuracy levels of the
best nonblind state-of-the-art methods.
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1. Introduction. Light diffraction, lens aberrations, sensor averaging, and antialiasing
filters are some of the inherent camera factors that unavoidably introduce blur in photographs.
The blur that results from the combination of all these factors can be modeled locally as a
convolution kernel known as point spread function (PSF), which corresponds to the space
variant impulse response of the whole camera, including the sensor, before the final sampling.

The area enclosed by the first zero crossing of the PSF, usually called Airy pattern, is ar-
guably the most reasonable characterization of the optical system resolution. Top camera/lens
manufacturers use charts based on the PSF Fourier spectrum modulus (the modulated trans-
fer function (MTF)) to describe their products. But accurate knowledge of the PSF is not
limited to quality assessment of optical devices, and it proves to be extremely useful or even
necessary for several image processing tasks such as deblurring [28], superresolution [29, 31],
or shape from defocus [10].
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In most typical digital cameras, both compact and high-end digital single lens reflex cam-
eras, images are sampled at frequencies below the Nyquist critical rate. Consequently, only
aliased versions of the camera PSF can be directly observed. Yet, to fully characterize the
PSF, it is necessary to recover it at a subpixel resolution.

PSF estimation methods can be classified as nonblind or blind, depending on whether
they use a snapshots of a specially designed calibration pattern. Blind approaches try to
estimate the PSF from photographs from an unknown scene. They do assume, however, that
the scene involved in the estimation follows some statistical model of sharp images or includes
a significant number of geometric cues such as sharp edges. Most of these PSF approaches
attempt to detect edges, which are modeled as pure step-edge functions convolved with the
PSF kernel [9, 24, 8, 4]. In this setting, the estimation is very ill-posed; to solve the inverse
problem, the solution space has to be constrained by considering kernels with a parametric
model or with strong regularity assumptions. Therefore, such blind estimation techniques
do not lead to accurate PSF estimates and are normally an ingredient in image restoration
problems, where precision is not the main objective. For this reason, accurate PSF estimation
procedures rely on the use of specially designed calibration patterns. A local kernel estimation
is performed by comparing the ideal calibration pattern to its photographs.

Several patterns have been used for PSF estimation, ranging from pin-hole, slanted-edge
[19, 30, 38, 11], or arc-step-edge patterns [21, 20] to random noise images [12, 22, 2, 3, 7].
Until recently, even nonblind subpixel PSF estimation methods reported in the literature led
to ill-posed inverse problems. The inversion required the imposition of simple PSF parametric
models or other regularity or symmetry priors. In a recent work [14] we have shown that
such a priori assumptions on the PSF are actually unnecessary and jeopardize the estimation
accuracy. More precisely, by carefully modeling the image acquisition system, a calibration
pattern made of a white noise realization is nearly optimal in terms of well-conditioning of the
problem. This procedure leads to very accurate regularization-free subpixel PSF estimation.

The purpose of the present work is to explore the feasibility of obtaining accurate PSF
estimates, while avoiding the explicit use of a calibration pattern. The motivation comes from
the fact that, although very precise, the use of a calibration pattern can be sometimes tedious
and impractical: these approaches rely on a careful setup, and the calibration grid has to be
properly assembled where a good quality print is essential.

We show that, instead of using a photograph of a known calibration pattern, two pho-
tographs of the same scene acquired at different distances with fixed camera configuration are
enough to recover a regularization-free subpixel PSF. The proposed acquisition procedure is
simple and handy in comparison to a nonblind approach. Experimental evidence will show
that the resulting estimates do not exhibit any significant accuracy loss compared to their best
nonblind competitors. The choice of the photographed scene is important but not critical.
For a wide range of everyday textured scenes, the acquired image pairs lead to well-posed
inversions and highly accurate results.

This paper is written with a dual public in mind: mathematicians and/or image processing
specialists. We have tried to define accurately all mathematical objects necessary to deal
rigorously with image formation. An accurate formalism is needed to justify the somewhat
intricate interlacement of sampling and convolution operations. This forces one to check on
the compatibility of all function or distribution spaces to which the objects belong and to
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verify that the formulas are mathematically consistent. Nevertheless, the application-oriented
reader can skip the proofs and the functional space details at a first reading and simply focus
on the standard image processing formalism and algorithms. Most proofs are placed at the
end of the paper. A glossary is appended to display all notation in a single place.

The article is organized as follows: section 2 presents a mathematical model of the digital
image acquisition system. This model is used in section 3, where it is shown that the camera
PSF can be recovered from a pair of unknown scaled images. We define the notion of blur
between such a pair of images, and we propose a method to perform its estimation. Then we
prove that the camera PSF can be recovered from this interimage blur. Section 4 presents an
algorithm that implements the complete PSF estimation procedure described in section 3. In
section 5 we discuss a series of experiments on real and simulated images. Finally, section 6
closes with a brief recapitulation and conclusions. The paper ends with appendices containing
detailed notation and complete mathematical proofs.

2. Image formation model.

2.1. Generalized digital pin-hole camera. An accurate estimation of the PSF requires
a proper modeling of the digital image formation process. The geometric component of this
process is most often modeled in computer vision by a pin-hole camera. An ideal pin-hole
camera with focal length f , shooting at a planar scene u from a distance d and at fronto-
parallel pose, will produce an image w(x) = u(λx) which is just a homothecy of scale factor
λ = d

f of the original planar scene u.
If the pose is not perfectly fronto-parallel or the pin-hole camera presents noncanonical

internal calibration parameters, w and u are related by a planar homographyD, i.e., w = u◦D.
In a more accurate camera model the distortion D takes the form of a more general (but
regular) diffeomorphism. This is required when the scene is a regular close-to-planar surface
(as is assumed here) or when the geometric distortion due to the optical system is taken into
account as suggested in [38, 21, 14].

For the purpose of PSF estimation this simple model needs to be augmented with an
accurate radiometric component, comprising at least the following elements.

Blurring. The PSF kernel h models blur due to intrinsic camera characteristics, such as
diffraction when light goes through a finite aperture, light averaging within the sensor, and lens
aberration. Other blur sources such as motion, atmospheric turbulence, or defocus blur, which
may change from one snapshot to another, will be minimized by the experimental procedure,
and it is not the goal of the present work to estimate them. Another implicit assumption
that is usually made is that as long as the camera is in focus, the PSF is independent of
the focus position, i.e., the relative distance between the sensor array and the lens system.
Therefore in focus images captured with the same camera configuration are affected by the
same PSF.

The diffraction kernel is determined by the shape and size of the aperture, the focal length,
and the wavelength of the considered monochromatic light. Under the Fraunhofer far-field
approximation, for incoherent light this kernel is the squared Fourier transform modulus of
the camera’s aperture indicator function [15]. It follows that the PSF diffraction kernel is
always nonnegative and band-limited.
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Besides the kernel due to diffraction, other sources of blur inherent to the optical system
are present in real cameras. These are mainly optical aberrations, and antialiasing filters
(which reduce aliasing but do not completely cancel it) introduced in the system prior to
sampling [35, 39]. The sampling process also introduces blur. Indeed, each photo-sensor in
the rectangular sampling grid integrates the light arriving at a particular exposure time. This
corresponds to a convolution with the indicator function of the photo-sensor active area. To
sum up, the unknown PSF results basically from the convolution of three nonnegative kernels
(diffraction, aberration and antialiasing filters, and sensor averaging), one of them being band-
limited. No parametrical model on the PSF will be adopted here. Nonetheless, the physical
modeling justifies our assumption that the PSF is band-limited and nonnegative.

Sampling. We model the continuous to digital conversion at the image plane by introduc-
ing an ideal sampling operator S1 and additive noise n due to measurement uncertainties.
Physical models of digital camera sensors, both for CCD and CMOS sensors, suggest that the
readout noise n is a mixture of luminance independent (Gaussian, thermal) noise, and lumi-
nance dependent (Poisson or photon counting) noise [16, 34, 25]. A usual simplification of this
model, which we follow here, assumes the noise is image independent, white, and Gaussian,
with constant variance.

The whole image formation process can then be summarized in a single equation:

ṽ = g (S1 ((u ◦D) ∗ h)) + n,

where g(·) is a monotone nondecreasing function that describes the nonlinear sensor response.
If the camera is working outside the saturation zone, in the raw camera output this response
can reasonably be assumed to be linear [14]. This boils down to a rescaling of the dynamics of
u and therefore disappears without loss of generality from the model. Hence, in what follows,
the image formation model will be

(M) ṽ = S1 ((u ◦D) ∗ h) + n.

2.2. Inverse problem statement in terms of digital sequences. Since in practice our data
consist exclusively of discrete sequences (or digital images), the image formation model will be
rewritten in terms of discrete sequences. This requires the introduction of additional notation,
summarized in Table 1 (a more precise definition of each term is presented in Appendix A).
It would be cumbersome to verify systematically all regularity requirements on all functions
and distributions needed in the proofs. Thus, all necessary results are given in a precise form
in the appendices. They will be invoked in the proofs, and the reader is invited to check that
their use was licit.

Suppose that the PSF h is s-band-limited, that is, supp(ĥ) = [−sπ, sπ]2. Then, if sam-
pled at a rate s, the Nyquist sampling theorem guarantees perfect reconstruction of h from
its samples h = S1H 1

s
h. We are actually interested in the case s > 1, usual for digital cam-

eras. This means that the images obtained from (M) may be subject to aliasing. Following
Lemma C.3 (equation (C.4)), the image formation model (M) can be written in terms of
discrete sequences:

ṽ = Ss(ūD ∗ h) + n

= SsC[ūD]h+ n.(2.1)
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Table 1
Notation used in this paper.

u, v Images defined on continuous domain x ∈ R
2

u, v Digital images are sampled on a discrete grid k ∈ Z
2

F Fourier transform

f̂ Fourier transform of a function f
I1 Shannon–Whittaker interpolator: I1u(x) =

∑
k u(k)sinc(x− k)

S1 1-sampling operator: u(k) = (S1u)(k) = u(k)

Ww Ideal low-pass filter that cuts the spectrum of continuous signals to [−wπ,wπ]2

Ss The s-to-1-resampling operator Ss = S1HsI1
Hλ Continuous homothecy: Hλu(x, y) = λ2u(λx, λy). (λ < 1 dilation, λ > 1 contraction)
Hα Digital Nyquist homothecy operator of parameter α: Hαu := S1W1HαI1u
C[u] Linear map associated to the convolution with a digital image u
L∗ Adjoint of a linear operator L
L+ Pseudoinverse L+ := (L∗L)−1L∗ of a linear operator L

L1 Integrable functions on R
2 (L1(R2))

L2 Square integrable functions (L2(R2))
BL2 L2 functions, band-limited in [−π, π]2

BL2
0 L2 functions with compactly supported Fourier transform

The digital image ūD = S1W1H 1
s
uD is a well-sampled version of the distorted image uD =

u ◦D. The value s is the resampling rate from the high resolution lattice s×, where the PSF
estimation will take place, to the 1× sensor grid.

The numerical method will recover only a finite number of samples h of h. Strictly
speaking, h, being band-limited, cannot be compactly supported. Nonetheless, the error
introduced by assuming that the support of h is bounded will prove negligible in comparison
to the other sources of error: image noise, quantization, slight estimation errors of D, etc.
Indeed, the retrieved solution h will prove to be experimentally independent from variations
of its assumed support as long as it is large enough for errors to be negligible and small enough
for the operator to still be well-conditioned.

When n is a zero-mean white discrete Gaussian noise, it follows from the previous formula
that he = (SsC[ūD])

+ṽ is an unbiased estimator of h, as long as the linear operator SsC[ūD] is
injective. It can be shown that the estimator variance is proportional to the Hilbert–Schmidt
norm of (SsC[ūD]) (for matrices, the Frobenius norm1), and that it is nearly minimal when
ūD is a white noise realization (see [14]).

3. PSF estimation from an unknown pair of scaled images. Assume that we have perfect
knowledge of the latent sharp image u that produced the blurry aliased observation ṽ. Under
this nonblind assumption, solving for the PSF amounts to solving an inverse problem governed
by the image formation model (M). Of course, this would require the use of a specially designed
calibration pattern. We are now interested in investigating to what extent the use of such a
pattern could be circumvented. We will propose a method that allows us to accurately estimate
the PSF from a pair of snapshots of the same scene, captured from different distances. In this

1Recall that the Hilbert–Schmidt norm is
∑

i ‖Lei‖2, where {ei} is any Hilbert basis of the domain of L.
If the linear operator is a matrix, then the Hilbert–Schmidt norm is the Frobenius norm of the matrix.
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method, the closest image will play a role similar to that of a calibration pattern in a classical
nonblind approach.

In a previous work, we have shown that the highest accuracy in the PSF estimation is
obtained by using a realization of a Bernoulli white noise as calibration target [14]. However,
many highly textured scenes do exist in nature which, while not being optimal, may still lead
to a well-posed inverse problem. In what follows, we prove that from two far apart snapshots
of this kind of scene, complete recovery of the camera PSF is theoretically possible based on
the estimation of the blur between this pair.

3.1. Relative blur between two images: The interimage kernel. Consider two digital
images ṽ1, ṽ2 of the same planar scene u, captured from different distances in a fronto-parallel
position with negligible rotation around the optical axis. Let λ1 and λ2 denote the corre-
sponding scale factors between the scene and each of the images. Then,

ṽi = S1Hλi
u ∗ h+ ni for i = 1, 2(3.1)

= S1vi + ni

= vi + ni,

where vi := Hλi
u ∗ h and vi := S1vi. We will realistically assume that h ∈ L1 ∩ BL2

0 is
nonnegative with ‖h‖L1 = 1, and u ∈ BL2

0 (details on the appropriateness of these assumptions
are given in Appendix A.1). Also, it will be assumed that the acquisition distances are such
that sλ1 < λ2; the importance of this assumption will soon become clear.

Definition 3.1. Let v1, v2 ∈ BL2
0 be two fronto-parallel continuous views of the same scene,

acquired from different distances λ1 and λ2, respectively. We define an interimage kernel
between v1 and v2 as any kernel k ∈ BL2

0 satisfying

v2 = Hλ2/λ1v1 ∗ k.

The following lemma provides a characterization of the interimage kernel.
Lemma 3.2. Let h ∈ L1 ∩BL2

0 be nonnegative, band-limited with supp(ĥ) ⊂ [−sπ, sπ]2 and
ĥ(0) = 1. Let ρ be the largest positive number such that |ĥ(ζ)| > 0 for every ‖ζ‖∞ < ρπ,
and assume that λ2ρ > sλ1. Then there is an interimage kernel k ∈ BL2

0 with support in
[−sπ, sπ]2 between (fronto-parallel views) v1 and v2 that satisfies

(3.2) Hλh ∗ k = h, where λ =
λ2

λ1
.

If û does not vanish inside [−s π
λ2
, s π

λ2
], then the interimage kernel is unique and depends only

on h and λ.
Proof. If k is an interimage kernel between v1 and v2, according to Definition 3.1 it must

satisfy

F(Hλv1)(ζ)k̂(ζ) = v̂2(ζ).

Since vi := Hλi
u ∗ h, the right-hand side of the previous equation is given by

v̂2 (ζ) = û (ζ/λ2) ĥ (ζ) .
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In the same way, for the left-hand side,

Hλv1 = Hλ(Hλ2u ∗ h) (C.3)
= Hλ2u ∗Hλh,

i.e., F(Hλv1)(ζ)k̂(ζ) = û (ζ/λ2) ĥ (ζ/λ). Hence,

û (ζ/λ2) ĥ (ζ/λ) k̂(ζ) = û (ζ/λ2) ĥ (ζ) .(3.3)

It follows that a sufficient condition for k to be an interimage kernel is ĥ (ζ/λ) k̂(ζ) = ĥ (ζ) .
Since h ∈ L1, ĥ is continuous. It follows that ρ is necessarily positive, since ĥ(0) = 1 > 0. In
addition, as λ > s

ρ by hypothesis, F(Hλh)(ζ) = ĥ(ζ/λ) does not vanish inside [−sπ, sπ]2 and

(3.4) k̂(ζ) =
ĥ(ζ)

ĥ(ζ/λ)

is well defined all over its support, supp(k̂) ⊂ [−sπ, sπ]2. Finally, if û (ζ/λ2) does not vanish
within the support of ĥ, from (3.3) k is unique.

Remark 1. In Lemma 3.2 it is assumed that the PSF h is the same for the two images.
This has at least two practical implications. First, we assume that both images are taken in
perfect focus through proper refocusing. The only camera parameter allowed to change is the
focus (i.e., aperture and focal distance remain unchanged). Second, the common area between
v1 and v2 covers an important part of v1, and consequently its PSF may exhibit some space
variance that may degrade the estimation. This can be avoided by taking snapshots with their
common area covering only the central part of the frame, where the kernel does not change
significantly.

3.2. Estimation of the interimage kernel. The next goal is to estimate the interimage
kernel k. Since k is an s-band-limited function, we will work with its s× samples k = S1H 1

s
k.

We will show that under reasonable conditions, k can be recovered from the noisy aliased
observations ṽ1 and ṽ2. Let us first build up some intuition on how to derive the proposed
estimator. In what follows, v̊1 = S1W1Hλ

s
v1 denotes a well-sampled homothecy of parameter

λ/s of v1.
Proposition 3.3. Under the assumptions of Lemma 3.2,

(3.5) v2 = (SsC[̊v1])k.

Proof. Since k is an interimage kernel between v1 and v2, it satisfies (3.2). Then,

v2 = S1(v2)

= S1(Hλv1 ∗ k).

Since k is s-band-limited, it follows that

v2
(C.1)
= S1(WsHλv1 ∗Wsk).(3.6)
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Using the Nyquist–Shannon theorem for a band-limited signal and a set of properties detailed
in Appendices B and C yields

v2
s>0
= S1HsH 1

s
(WsHλv1 ∗Wsk)

(C.3)
= S1Hs(H 1

s
WsHλv1 ∗H 1

s
Wsk)

(C.2)
= S1Hs(W1Hλ

s
v1 ∗W1H 1

s
k)

(B.5)
= S1HsI1S1(W1Hλ

s
v1 ∗W1H 1

s
k)

(C.4)
= S1HsI1(S1W1Hλ

s
v1 ∗ S1W1H 1

s
k)

def
= S1HsI1(̊v1 ∗ k)
def
= Ss(̊v1 ∗ k)
def
= SsC[̊v1]k.

Of course, in practice we do not have access to v̊1 or to v2, but only to their noisy, aliased
versions ṽ1 and ṽ2. Thus k cannot be directly estimated from (3.5). However, a relationship
between v̊1 and ṽ1 can be established as follows:

Hλ
s
ṽ1 = Hλ

s
(v1 + n1) + v̊1 − v̊1

= v̊1 + S1W1Hλ
s
(I1v1 − v1)︸ ︷︷ ︸
r

+Hλ
s
n1,(3.7)

where the last equality results from the definition of the discrete homothecy operator. The
term r is a consequence of aliasing when sampling v1 and introduces an unknown bias in
the estimation of k. While this bias cannot be fully controlled, its impact can be mitigated.
Indeed, since

r = S1W1Hλ
s
(I1v1 − v1)

(C.2)
= S1Hλ

s
W s

λ
(I1v1 − v1),

the aliasing term r will be nonzero only if there are aliasing components in the frequency inter-
val

[− s
λπ,

s
λπ

]2
. This allows us to choose v1 = Hλ1u such that supp(v̂1) ⊂

[−2π + s
λπ, 2π − s

λπ
]2

(see Figure 1). Thus, to minimize the impact of the aliasing term, the images should be ac-
quired from a pair of fronto-parallel locations as far as possible one from the other, since that
amounts to increasing the value of λ.

From now on, we assume that the snapshots are acquired following the previous consider-
ations. Therefore, we can ignore the aliasing term in (3.7), which leads to

v2 = (SsC[̊v1])k = (SsC[Hλ
s
v1 −Hλ

s
n1])k,

that is,
(SsC[Hλ

s
ṽ1 −Hλ

s
n1])k = ṽ2 − n2.
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aliasing
terms

Figure 1. Neglecting the aliasing. The estimation will be affected by aliasing only if there are alias-
ing components in the interval

[− s
λ
π, s

λ
π
]2
. Hence, to avoid aliasing one can choose v1 = Hλ1u such that

supp(v̂1) ⊂
[−2π + s

λ
π, 2π − s

λ
π
]2
.

One could be tempted to solve for k in the previous equation using a total least squares based
approach:

(TLS) argmin
k,δ,ε

‖δ‖+ κ‖ε‖ subject to SsC[Hλ
s
ṽ1 + δ]k = ṽ2 + ε.

However, the particular structure of the operator SsC[Hλ
s
ṽ1+δ] makes this problem a difficult

one. Instead we prefer to follow a simpler approach, which results from neglecting the noise
term Hλ

s
n1. This yields to the least squares estimation problem

(LS) argmin
k,ε

‖ε‖ subject to SsC[Hλ
s
ṽ1]k = ṽ2 + ε,

whose solution is given by

(3.8) ke =
(
SsC[Hλ

s
ṽ1]

)+
ṽ2.

If the noise n1 is small compared to v1, this solution would be very close to the one that
would be obtained from (TLS). If, in addition, n2 is small compared to v2, both solutions
would be close to the actual interimage kernel k = (SsC[̊v1])

+v2. This follows directly from
the continuity and injectivity assumptions on SsC[̊v1], as a consequence of Lemma D.1. This
being said, we will consider the estimator of the interimage kernel in (3.8).

Remark 2. If λ < s, the convolution between k and Hλ
s
ṽ1 is not invertible so the operator

SsC[Hλ
s
ṽ1] will not be injective. This constraint on λ is necessary but not sufficient to make

SsC[Hλ
s
ṽ1] invertible. In addition, it is required that the spectrum of the imageHλ

s
ṽ1 exhibits

slow decay. Indeed, it is shown in [14] that the flatter the spectrum of the image scene is,
the better conditioned is the inverse problem. For that reason, in order to obtain accurate
estimates of k, it is desirable that the chosen scene u exhibits white noise characteristics.
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3.3. From relative to absolute blur. Now that we have a method for estimating the
interimage kernel k, we will concentrate on how to recover the camera PSF. Notice that h is
related to k by Hλh ∗ k = h, and therefore its derivation is not straightforward. However, as
we prove in Appendix C (Lemma C.5), it holds that

h = lim
n→∞Hλn−1k ∗ · · · ∗Hλk ∗ k.(3.9)

This equality shows that it is possible to recover the camera PSF h from the interimage kernel
k. Recall that in practice we have access only to discrete sequences; therefore it is convenient
to derive a discrete equivalent of the previous limit. Since k is s-band-limited,

S1H 1
s
(Hλk ∗ k) (C.1)

= S1H 1
s
(WsHλk ∗ k)

(C.3)
= S1(H 1

s
WsHλk ∗H 1

s
k)

(C.2)
= S1(W1Hλ

s
k ∗H 1

s
k)

(C.5)
= S1W1Hλ

s
k ∗ S1H 1

s
k

def
= Hλk ∗ k.

Iteratively applying this result to (3.9) yields

h = lim
n→∞Hλn−1k ∗ · · · ∗Hλk ∗ k.(3.10)

4. The complete PSF estimation procedure. This section describes the algorithmic steps
that lead to local subpixel PSF estimates. The complete chain is summarized in the block
diagram of Figure 2. The next paragraphs present brief summaries for each block.

Image alignment. In order to estimate the geometric transformation between both images,
they need to be precisely aligned. This alignment can be obtained by matching SIFT de-
scriptors [23], which have the advantage of being scale invariant. We chose to use the ASIFT
descriptor [27], more precisely, the implementation [37] that includes rejection of false matches
by means of the optimized random sampling algorithm (ORSA).

Geometric transform estimation. The complete geometric transformation from one image
to the other was approximated with thin-plate splines [6, 32] from the matched SIFT pairs.
This permits the correction of small nonaffine distortions, and allows for deviations from the
fronto-parallel assumption in the acquisition. Of course, if the distortion is significant the
assumed interimage kernel, (3.2) will not be accurate. The thin-plate representation as affine
+ nonaffine parts of the geometric distortion is especially helpful in estimating the relative
scale λ = (λx, λy) between both views, since this can be directly estimated from the affine
part.

Gray level adjustment. Both snapshots should be acquired with exactly the same camera
configuration and constant scene illumination. This ensures that there is no contrast change
between them.
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Figure 2. Algorithm description. Both captured images are aligned via SIFT feature matching followed
by the estimation of a smooth geometric distortion through thin-plate approximation of matched features. The
relative geometric distortion and gray-level corrections are applied to a low-pass (unaliased) version of the finest
scale image ṽ1. Then the interpolated image Hλ

s
ṽ1 and image ṽ2 are compared to obtain the interimage kernel

k, which is later iteratively updated to obtain the absolute camera PSF h.

Resampling and distortion correction of ṽ1. The generation of the rescaled samples Hλ
s
ṽ1

requires the interpolation of ṽ1 at the desired scale λ/s. This is done by using the estimated
geometric transformation with bicubic interpolation. Notice that since ṽ1 is not very aliased,
one can correctly interpolate it without introducing artifacts.

Numerical methods for interimage kernel estimation. Suppose that the image ṽ2 has size
m× n. The goal is to estimate k at s× the resolution of ṽ2 (camera sensor resolution). Also
suppose that the estimated support of the interimage kernel k is contained in an r× r patch.
Then the matrix SsC[Hλ

s
ṽ1] is of size mn × r2. A simple least squares procedure yields the

interimage kernel estimator:

ke = argmin
k

∥∥∥SsC[Hλ
s
ṽ1]k− ṽ2

∥∥∥2 .
Transforming the kernel: From k to h. Recovering the samples of the camera PSF h

amounts to evaluating the limit in (3.10). Directly working with the digital sequences requires
some care in how the successive convolutions are computed. Since λ > 1, the application of
Hλ would require a low-pass filter to avoid aliasing artifacts. To bypass this inconvenience
one can restate the limit convolution as follows:

h = lim
n→∞Hλn(k ∗H 1

λ
k ∗ · · · ∗H 1

λn
k).

If implemented in this way, the successive discrete convolutions can be computed without any
special care. To apply the discrete homothecy operator to k, we need to resample k using
the Shannon–Whittaker interpolator. Because of its slow decay, in order to reduce ringing
and other windowing effects, we opted to use bicubic interpolation. The whole derivation of
h from k is summarized as follows.

This algorithm converges after a few iterations since λn grows very fast. In practice, we
set λmax = 50, since the convolution with a 50× scale-contracted interimage kernel produces
a negligible change in the final result (it amounts to convolving with a Kronecker delta).
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Algorithm 1. From interimage kernel to PSF.

1. Initialize w0 = k, n = 1.
2. Compute H1/λnk by using λ = (λx, λy) (from thin-plates affine part).
3. Calculate un = H1/λnk ∗wn−1.
4. If min{λn

x, λ
n
y} > λmax go to 5. Else update n := n+ 1 and repeat from 2.

5. Calculate h = Hn
λwn.

In theory, as we already stated, the estimated PSF should be nonnegative. In practice,
small negative values may be observed, due to deviations from model assumptions and nu-
merical artifacts. To correct for these deviations, we simply set all negative values to zero.

5. Experimental results. Since there is no PSF ground truth available, the validation of
the proposed method was carried out by simulations and by comparing the results with state-
of-the-art methods [21, 20, 14, 18]. Comparison was made only to nonblind, target-based
methods, as the accuracy of blind methods is significantly lower. A complete algorithmic
description, an online demo facility, and a reference source code can be found at the IPOL
workshop [13].

5.1. Simulations as a sanity check. A synthetic random image u was generated and
reinterpolated 4× in order to get the “continuous” sharp homothecy of the image u. Next,
both images were convolved with a PSF-like kernel (in this case a Gaussian isotropic kernel)
and downsampled to get the respective observed digital images at the camera resolution (i.e.,
1×). The kernel was chosen so that the low resolution image presents aliasing artifacts. By
generating the views of u in this way, there are no aliasing artifacts in the closest image. This
experiment was done as a sanity check of the proposed method. A 4× kernel was estimated
from the observed image pair. The results are shown in Figures 3 and 4.

The procedure was tested for both automatic SIFT-based registration and the ideal
(known) alignment. Although both estimates are significantly accurate, the automatic regis-
tration introduces a small misalignment, as shown in the difference images. See the captions
of Figures 3 and 4 for details.

5.2. Real camera examples. The behavior of the proposed approach was tested for sev-
eral different image pairs and for superresolution estimations ranging from 1× to 4×. The
experiments were performed using a Canon EOS 400D camera equipped with a Tamron AF
17–50mm F/2.8 XR Di-II lens. The focal length was fixed to 50.0 mm.

Two-scale versus nonblind, target-based method. In [14] we proposed a nonblind method
that uses a realization of white noise as calibration pattern. It was proved that, until now,
this method is the one that estimates the PSF with highest accuracy. Therefore, the PSF
resulting from this method will be used here as ground truth. Figure 5 shows the 4× PSF
estimated by the proposed two-scale method from a pair of views of a wall shown in Figure 6.
The estimation was conducted for one of the green channels (half of the green pixels of the
Bayer matrix), with the camera aperture set to f/5.7. The estimated PSF is quite close to
the one obtained by using our random target-based approach. In particular their sizes are
similar, and their corresponding MTFs present zeros at the same locations.
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closest image farthest image (rescaled)

 

 

0

0.2

0.4

0.6

0.8

1

groundtruth

ideal alignment

 

 

0

0.2

0.4

0.6

0.8

1

 

 

−0.05

−0.03

−0.01

0.01

0.03

0.05

sift based alignment

 

 

0

0.2

0.4

0.6

0.8

1

 

 

−0.05

−0.03

−0.01

0.01

0.03

0.05

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Groundtruth
manual
SIFT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

 

 

Groundtruth
manual
SIFT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Groundtruth
manual
inter−image

Figure 3. Synthetic example: 4× PSF estimation for simulated data. Top row: the closest and farthest
images. Middle row: the simulated PSF (ground truth) and the respective PSF estimations using the automatic
SIFT points/thin-plate alignment and the ideal alignment. Both estimations are accurate. However, as shown
in the difference images, the automatic registration introduces a small misalignment. This can also be seen in
the phase and modulus of the PSF Fourier transform vertical profile, shown in the bottom row. Bottom row
(right): comparison of the interimage and PSF kernels. Since both input images are simulated at distances in
a ratio of λ = 4×, h is very close to k.
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Figure 4. Synthetic example: 4× PSF estimation for simulated data, residual image. From left to right:
farthest image and residual images Ss(Hλ

s
ṽ1 ∗ k) − ṽ2 with the estimated kernel from ideal and automatic

alignment. The residual in the automatic alignment case is significantly larger than in the ideal alignment case.
However, the difference in the PSFs seems to be negligible up to a subpixel translation as shown in Figure 3.

Color filter array estimations. Two pictures of another textured wall shown in Figure 7 were
used to estimate the PSF of the four color Bayer channels (raw camera output). This wall
texture presents characteristics similar to those of white noise. The results for the 4× PSF
estimated at the image center are shown in Figure 7. Notice that the red channel PSF is wider
than the green and the blue one, as expected from the physics of diffraction-limited optical
systems, since the wavelengths associated to red light are larger than the rest. The differences
between the dominant orientations of the red, green, and blue PSFs can be explained by
the sensor shape and layout. In fact, each sensor active zone is usually L-shaped, and the
red and blue sensors are rotated 90◦ with respect to the green ones (see, for example, [36]).
These rotations are consistently observed in the PSFs and MTFs estimated with our two-scale
method. This clearly illustrates the accuracy of the proposed approach.

Different kinds of scenes. The wall images in the previous experiments are well adapted
for our two-scale PSF estimation method, since their spectra show slow decay. A priori one
would think that images from pure white noise would yield better estimates, since this is what
happens in our previous target-based approach [14]. But for our two-scale approach, this would
be true if both snapshots could be precisely aligned, which is not the case in practice. Indeed,
SIFT descriptors are not stable in the presence of aliasing. Hence, there is a trade-off between
having accurate SIFT matches and textures with high frequency information. The texture
shown in Figure 7 is an example of an appropriate trade-off.

Figure 8 shows two snapshots of a photograph in a magazine, with the corresponding 1×–
4× PSF estimations for the first green channel. The estimation was performed at the image
center for the camera working at an f/5.7 aperture. All the subpixel estimations are consistent:
their MTFs exhibit good overlap in common regions. While these newspaper images produce
accurate SIFT points, their spectra decay faster than those of the wall images. Consequently,
the high frequencies in the PSF estimate are noisier. This can be readily seen by comparing
both estimates at 4× resolution.

What kind of textures should be used? It follows from the previous analysis that, in order
to simultaneously produce good SIFT points and a sufficiently slow frequency decay, textures
composed of elements with different sizes are to be preferred. Three-dimensional (3D) textures
like those shown in Figure 9 can be problematic for this approach. Even though they respect
the two previous conditions, their 3D nature produces disparities and occlusions which change



1248 M. DELBRACIO, A. ALMANSA, J.-M. MOREL, AND P. MUSÉ
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Figure 5. Wall image: two-scale versus white noise target-based estimation. Estimation at 4× PSF
resolution for one of the green channels from the camera raw output. Top row: two distant, parallel views
of a textured wall. Middle row: the PSF estimated with the proposed algorithm and the one estimated using the
random target method. Bottom row: vertical profile of the MTF. Both estimations are close. In particular the
associated airy disks have similar sizes, and the MTFs vanish in the same locations.

the image beyond a simple zoom. Likewise, non-Lambertian surfaces and dynamical scenes
are not appropriated either.

Comparison to other methods. In this experiment we compare the performance of the
two-scale method proposed here with three state-of-the-art nonblind methods: that of Joshi
and colleagues [21, 20], Imatest commercial software [18], and our previous random target
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farthest snapshot closest snapshot

Figure 6. Wall image: two-scale versus white noise target-based estimation. Two distant, parallel views of
a textured wall.

method [14]. All the estimates were computed at the image center, with aperture f/5.7. For
the two-scale approach, we used the wall image pair shown in Figure 7. Joshi and colleagues
and Imatest use two different kinds of slanted-edge calibration patterns. The algorithm by
Joshi requires setting a regularization parameter; we show the results obtained for three
different levels of regularization.

Figure 10 shows the MTF profiles of the obtained PSF estimates. The proposed two-scale
method performs at least as well as the nonblind methods under comparison. The method of
Joshi and colleagues shows similar performance for a carefully, manually chosen regularization
parameter. See the caption of Figure 10 for details.

6. Conclusion. In this work we presented an algorithm for the subpixel estimation of the
point spread function (PSF) of a digital camera from aliased photographs. The procedure is
based on taking two fronto-parallel photographs of the same flat textured scene, from different
distances leading to different geometric scales, and then estimating the kernel blur between
them.

The estimation method is regularization-free. In that sense, the technique is closely related
to our recent nonblind estimation method [14], which uses a random noise pattern. This later
paper [14] shows that with such patterns the estimation problem is well-posed and leads to
accurate regularization-free estimates. The main difference is that nonblind methods can
estimate the PSF directly using the perfect knowledge of the pattern. In the proposed two-
scale method the question is far more intricate because only the blur between the acquisitions
can be estimated. Thus a mathematical analysis and new algorithms have been introduced
proving how the PSF can be recovered from the interimage kernel.

To reach high accuracy, images of textured scenes with sufficiently flat spectra are pre-
ferred. It was experimentally verified that many textures found in nature are well adapted to
these requirements. A comparison of the resulting PSF estimates with other subpixel PSF es-
timation methods shows that the proposed algorithm reaches accuracy levels similar to those
of state-of-the-art methods, with the advantage of not requiring any special acquisition setup
or calibration pattern and thus being much more practical.
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Figure 7. Different color channels: PSF estimation at 4× resolution for the four Bayer channels (two
greens, red, and blue). Top row: two distant, parallel views of a concrete wall. Middle row: the 4× PSF
estimated for the four channels. Bottom row: their corresponding Fourier spectrum moduli. The estimation
was performed with images captured at aperture f/5.7. The red PSF is larger than the blue and green ones.
This is consistent with the diffraction phenomenon: the red wavelengths are larger than the rest; thus their
diffraction kernel is wider. Also notice the differences between the shape of the red, blue, and green PSF spectra
(bottom row). Red and blue MTFs are rotated 90◦ with respect to the green ones. This symmetric behavior is
consistent with the layout of L-shaped sensors [36].

Appendix A. Mathematical framework and physical modeling.

Functional spaces and other notation.
• R

2 is the set of pairs of real numbers x = (x1, x2), and Z
2 is the set of pairs of integers

k = (k1, k2). L
1(R2) is the set of integrable functions on R

2, L2(R2), the set of square
integrable functions, C0

b (R
2) is the set of continuous bounded functions, C∞(R2) is the

set of infinitely differentiable functions, S(R2) is the Schwartz class of C∞ functions
whose derivatives of all orders have fast decay, S ′(R2) is its dual, the space of tempered
distributions, and E ′ is the subset of S ′(R2) of compactly supported distributions. We
shall use the properties of the convolution L1 ∗ L2 ⊂ L2, L1 ∗ L1 ⊂ L1, L2 ∗ L2 ⊂ C0,
E ′ ∗ S ′ ⊂ S ′.
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Figure 8. Magazine image: 1×, 2×, 3×, and 4× estimations for the first green channel from a pair of
photographs of a newspaper image. The estimation was done at the image center for the camera working at
f/5.7 aperture. All the estimations are consistent: their MTFs show good overlap. The 4× PSF estimation is
noisier than the one produced from the wall images. The main reason is that the spectrum of the magazine
image decays faster.

• We denote by BL2(R2) (or BL2 for short) the set of L2 functions that are band-limited
inside [−π, π]2. More generally, BL2

0 denotes the space of L
2 functions with compactly

supported Fourier transform.
The following conventions and notation will be used in what follows:
• F is the Fourier transform operator defined on S ′; F(f)(ζ) = f̂(ζ) =

∫
e−ix·ζf(x)dx
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Figure 9. Examples of textures which are not adapted to the two-scale approach. Their 3D nature produces
disparities, and little changes in the angle-of-view would result in accuracy loss. Non-Lambertian surfaces and
dynamical scenes are not appropriated either.
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Figure 10. Comparison of PSF/MTF estimation methods. Our implementation of the PSF estimation algo-
rithm [21, 20] of Joshi and colleagues, Imatest commercial software [18], our previous random target method [14],
and the two-scale method proposed in this work (applied to the images of the wall shown in Figure 7). On the
low frequencies all algorithms produced very similar estimates, while on the higher frequencies the estimation by
Joshi and coauthors depends strongly on the regularization level. Although much effort was made to get a noise-
free MTF estimation from the Imatest software, the final estimation is quite noisy. The Imatest estimation is
done from a slanted-edge image and only gives an estimation for the MTF at the slanted-edge orthogonal direc-
tion. The proposed two-scale algorithm is the one presenting an estimation closest to the nonblind estimation
from [14], considered as ground truth by virtue of its high accuracy.

defines it for a function f ∈ L1(R2) in a point ζ = (ζ1, ζ2). This formula is still valid
for functions belonging to Lp(R2) with 1 < p ≤ 2 (see, e.g., [33, 5]).

• Continuous images are defined for x ∈ R
2, whereas digital images are sampled on a

discrete grid k ∈ Z
2.
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• S1 : C0
b → �∞(Z2) is the 1-sampling operator such that u(k) = (S1u)(k). From the

distribution viewpoint S1 is the product by a Dirac comb Πs :=
∑

k δsk with s = 1,
namely S1u = Π1.u, where u must be a continuous function. Both representations of
the sampling operator will be identified, and it will be clear from the context which
representation is intended.

• A digital image u will be represented either as a sequence (u(k))k in �∞(Z2) or as the
corresponding Dirac comb u :=

∑
k∈Z2 u(k)δk.

• The operator I1 : �
2(Z2) → BL2(R2) denotes the Shannon–Whittaker interpolator, de-

fined by I1u(x) =
∑

k∈Z2 u(k)sinc(x−k), where sinc(x) = sin(πx)
πx

sin(πy)
πy . We therefore

have I1u = F−1(
∑

k u(k)e
−ik·ξ1[−π,π]2). When u ∈ �2, F(I1u) belongs to L2 and is

compactly supported. Thus I1u ∈ BL2, and we have S1I1 = Id.
• The filter Wwu = F−1(û · 1[−wπ,wπ]2) is an ideal low-pass filter that cuts the spectrum

of u to [−wπ,wπ]2. It is defined if û is a function. Note that if u ∈ L1 ∪L2, then W1u
is in BL2.

• Hλu(x) = λ2u(λx) is the continuous homothecy (i.e., λ > 1 is a contraction); the
rationale for its normalization is to preserve the image mean (its zero-frequency coef-
ficient). In the Fourier domain F(Hλ

u
)(ζ) = û( ζλ), so if u is α-band-limited, then H 1

α
u

is band-limited.
• Ss : �

2(Z2) → �2(Z2) denotes the s-to-1-resampling operator Ss = S1HsI1 (i.e., s > 1
is a subsampling by s).

• C[u] : �2(Z2) → �2(Z2) denotes the linear map associated to the convolution with a
digital image u. The convolved sequence belongs to �2(Z2) which in general is satisfied
if u ∈ �1(Z2).

• The digital Nyquist homothecy operator Hα : �2(Z2) → �2(Z2) is defined by Hαu :=
S1W1HαI1u. It is a digital contraction if α > 1.

• Let L be a bounded linear operator over a Hilbert space. L∗ is its adjoint, and L+ (if
it exists) is its pseudoinverse, i.e., the minimum-norm solution of (L∗L)L+ := L∗.

A.1. Physical and mathematical modeling of continuous images. Continuous images
will be assumed to be functions in BL2

0(R
2). This choice is consistent since these functions

are continuous (actually C∞) and the sampling is well defined. Moreover, as suggested in
[26] and later in [1, Appendix A], this choice is sufficiently general to model the continuous
landscape observed by a camera just before sampling takes place at the sensors.

In fact, even if the raw physical image before blur and sampling is, realistically, a positive
Radon measure O (due to the photon-counting nature of sensitive digital systems) with com-
pact support (imposed by the finite number of photons), it will still be blurred by the camera
PSF h which will be regular enough for h ∗O to be in BL2

0.
How regular can it realistically be assumed to be? The kernel h originates in several

physical phenomena, namely diffraction, antialiasing filtering, and sensor integration. Each
one of these phenomena, and their combination as well, lead to model h as a nonnegative
function with finite mass

∫
h = 1 (normalized to 1). In addition the diffraction part ensures

that ĥ is compactly supported. From this one deduces that h ∈ BL2
0 ∩ L1.

We now turn to the problem of simplifying O to a more manageable function u, which is
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indistinguishable from O after convolution with the PSF h. Let B = supp(ĥ) be the (compact)
spectral support of the PSF h. Hence h can be idempotently written as h = h ∗ h0, where
h0 ∈ S ′ has a compactly supported spectrum satisfying ĥ0(η) = 1 for η ∈ B. The function ĥ0
can easily be constructed by an explicit formula as a C∞ and compactly supported function
satisfying ĥ0(η) = 1 on B. Then its inverse Fourier transform has all required properties.

So we have
v = h ∗O = h ∗ u, where u = h0 ∗O.

Consequently, the observed landscape can be assumed without loss of generality to be u =
h0 ∗O instead of O. Being the convolution of a compactly supported positive Radon measure
O ∈ E ′ with h0 ∈ BL2

0 ∩ L1, u also belongs to BL2
0, and its convolution with h ∈ BL2

0 ∩ L1 is
the observed image v ∈ BL2

0.

Appendix B. Standard results from Fourier analysis. The following two main results
from standard Fourier analysis and distribution theory are stated without proof. The reader
is referred to, e.g., [33, 17] for the proofs in the particular setting chosen here.

Proposition B.1 (convolution through Fourier transform). The relation

F(f ∗ g) = F(f) · F(g)(B.1)

is valid in either of these cases:
1. g ∈ L1(R2) and f ∈ Lp(R2) for 1 ≤ p ≤ 2. Then f ∗ g belongs to Lp(R2) (see [33,

Theorem 2.6]).
2. g ∈ E ′ and f ∈ S ′. Then f ∗ g belongs to S ′ (see [17, Theorem 7.1.15]).
Applying the Fourier transform on both sides of (B.1) and recalling that the squared

Fourier transform operator F2(u) = (2π)2[x �→ u(−x)] is almost the identity (except for
flipping and a constant factor), we obtain the following corollary.

Corollary B.2 (product through Fourier transform). The relation

(B.2)
F(f · g) = 1

(2π)2
F(f) ∗F(g),

F−1(f · g) = F−1(f) ∗ F−1(g)

holds when ĝ ∈ E ′ and f ∈ S ′. Then f · g belongs to S ′.
Proposition B.3 (Poisson formula in R

2 for tempered distributions [17]).

Π̂1 = (2π)2Π2π.(B.3)

Lemma B.4. If û ∈ E ′, then

F(Π1 · u) = Π2π ∗ û.(B.4)

Proof. We can apply the first form of Corollary B.2, where f = Π1 ∈ S ′ and ĝ = û ∈ E ′,
to obtain

F(Π1 · u) = (2π)−2Π̂1 ∗ û = Π2π ∗ û,
where the last equality is deduced from the Poisson formula (B.3).
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The Shannon–Whittaker sampling theorem is then a direct consequence of the two previous
results.

Proposition B.5 (Nyquist–Shannon theorem). If u ∈ BL2(R2), then

u = I1S1u.(B.5)

Proof. We can apply Lemma B.4
Multiplying both sides of (B.4) by F(sinc) = 1[B], we obtain

F(sinc) · F[S1u] = F(sinc) · [Π2π ∗ û]
=

∑
k∈Z2

û(·+ 2πk)1[B]

= û,

where in the right-hand side the only nonnull term is for k = 0 because u is band-limited in
B = [−π, π]2 and F(sinc) = 1[B]. Finally, using the second form of Corollary B.2, we obtain

sinc ∗(S1u) = u,

and the left term is by definition I1S1u.
Corollary B.6. If u ∈ L2 is s-band-limited, then

u = HsI1S1H 1
s
u.(B.6)

Appendix C. Proof of main results of sections 2 and 3.

Common hypotheses. According to the discussion in Appendix A, and in order to justify
all of the lemmas and propositions, we will require that

– h ∈ BL2
0 ∩ L1(R2), nonnegative, ĥ(0) = 1;

– u ∈ BL2
0.

This ensures that the convolution u ∗ h = v is well defined with u ∈ BL2
0.

For the uniqueness of the interimage kernel we shall additionally assume that û does not
vanish inside [− s

λ2
π, s

λ2
π].

Main results. We now prove several properties that are used throughout the paper.
Lemma C.1. If u ∈ BL2

0, then S1u ∈ �2(Z2).
Proof. As u is in BL2

0, there exists s > 0 such that û ⊂ [−sπ, sπ]. Furthermore, since
û ∈ E ′, applying (B.4) we have F(S1u) = (2π)2Π2π ∗ û. Since u belongs to L2, then û is again
in L2. Thus, Π2π ∗ û is the 2π-periodic version of an L2 function in [−sπ, sπ]. Consequently
the inverse Fourier transform of Π2π ∗ û is a Dirac comb whose coefficients are the Fourier
series coefficients of û. Thus the coefficients of S1u form an �2 sequence.

Proposition C.2. Let h ∈ L1(R2) and u, v ∈ L1 ∪ L2(R2). The following equalities hold:

W1(h ∗ v) = W1h ∗ v = h ∗W1v,(C.1)

W1Hλv = HλW 1
λ
v,(C.2)

Hα(u ∗ v) = Hαu ∗Hαv.(C.3)
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Proof. This is the proof of (C.1). In the Fourier domain,

F(W1(h ∗ v)) def= F(h ∗ v) · 1[−π,π]2
(B.1)
= F(h) · F(v) · 1[−π,π]2.

Thus,

F(h) · F(v) · 1[−π,π]2 = F(h) · 1[−π,π]2 · F(v) · 1[−π,π]2,

and all results are deduced from this last statement.
Proof. This is the proof of (C.2). Since

F(Hλv) = λ2F(v(λ·)) = λ2 1

λ2
v̂(

.

λ
) = λ2H 1

λ
v̂,

we have

F(W1Hλv)
(B.1)
= F(Hλv) · 1[−π,π]2 = λ2H 1

λ
v̂ · 1[−π,π]2 .

On the other hand,

F(HλW 1
λ
u) = λ2H 1

λ
F(W 1

λ
v)

(B.1)
= λ2H 1

λ
(û · 1[−π

λ
,π
λ
])

= λ2(H 1
λ
v̂) · 1[−π,π]2.

Proof. This is the proof of (C.3). The proof is a mere change of variables:

Hα(u ∗ v)(x) = α2

∫
u(s)v(αx − s)ds

= α4

∫
u(αs)v(αx − αs)ds

= (Hαu ∗Hαv)(x).

Lemma C.3. Let u, v ∈ BL2
0(R

2). If either u or v is band-limited, then

S1(u ∗ v) = S1ū ∗ S1v̄,(C.4)

where we have called ū = W1u and v̄ = W1v.
Proof. We will prove this statement in the tempered distribution sense. We will consider

S1u = Π1 · u =
∑

k δk · u as a Dirac comb. The application of S1 to ū, v̄, and u ∗ v is well
defined as all functions are in BL2(R2) and by consequence they are in C∞. Recall that if
u ∈ D′ and f is C∞, then f · u ∈ D′; thus in this framework we need a function to be in C∞

to be sampled.
From Lemma C.1 we know that the sequences of coefficients from S1ū and S1v̄ are in

�2(Z2). Thus (S1ū) ∗ (S1v̄) is a bounded sequence, and therefore every term is well defined.
Finally F(S1(u∗v)) = Π2π ∗(û.v̂) = (Π2π ∗ û) ·(Π2π ∗ v̂) is true because all considered func-

tions happen to be 2π-periodizations of compactly supported functions in (−π, π)2, namely
û, v̂, and their product.
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Proposition C.4 (discrete camera model). Let u ∈ BL2
0 and h ∈ L1 ∩ BL2

0, band-limited in
[−sπ, sπ]2. Then

S1(u ∗ h) = Ss(ū ∗ h),(C.5)

where we have called ū = S1W1H 1
s
u and h = S1H 1

s
h.

Proof. We first derive the expression and then justify the application of each result:

S1(u ∗ h) = S1HsH 1
s
(u ∗ h)

(C.1)
= S1HsH 1

s
(Wsu ∗ h)

(C.3)
= S1Hs(H 1

s
Wsu ∗H 1

s
h)

(C.2)
= S1Hs(W1H 1

s
u ∗H 1

s
h)

(B.5)
= S1HsI1S1(W1H 1

s
u ∗H 1

s
h)

(C.4)
= S1HsI1(S1W1H 1

s
u ∗ S1H 1

s
h)

def
= S1HsI1(ū ∗ h)
def
= Ss(ū ∗ h).

First note that as u ∈ BL2
0 and h ∈ L1, we can apply (C.1) and (C.3) directly. As W1u

is in BL2, we can apply (C.2). The Nyquist theorem (B.5) is valid since u ∈ L2 and h ∈ L1;
then W1H 1

s
u ∗H 1

s
h belongs to BL2.

Both W1H 1
s
u and H 1

s
h are band-limited finite energy functions so we are free to ap-

ply (C.4). Since the sequence (ū ∗ h) is the sampling of the band-limited L2 function
W1H 1

s
u ∗ H 1

s
h, it belongs to �2 (Lemma C.1). Finally, the interpolation I1(ū ∗ h) is well

defined.
Lemma C.5. Let h ∈ L1∩BL2

0 and k ∈ BL2
0 such that k̂(ζ) = h(ζ)

h( ζ
λ
)
. Assume λ large enough

to ensure that ĥ(ζ/λ) does not vanish in the support of k̂. Then if λ > 1, we have

lim
n→∞Hλn−1k ∗ · · · ∗Hλk ∗ k = h,

where the limit is in L2 ∩ C0.
Proof. Let us call un = Hλn−1k ∗ · · · ∗Hλk ∗ k. Then in the Fourier domain we have

lim
n→∞ ûn(ζ) = lim

n→∞

n−1∏
i=0

k̂

(
ζ

λi

)

= lim
n→∞

ĥ(ζ)

ĥ(ζ/λn)
.

Since h ∈ L1, ĥ ∈ C0 and we have

lim
n→∞ ĥ(ζ/λn) = ĥ(0) = 1.
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The convergence is uniform on a fixed compact set because ĥ is continuous and compactly
supported. This implies that the convergence holds in L1 and L2. Therefore

Hλn−1k ∗ · · · ∗Hλk ∗ k L2∩C0−→ h.

Appendix D. Stability of the interimage kernel estimation.
Lemma D.1. Let A be an injective bounded linear operator (IBLO) defined on a Banach

space X and let ΔA be a perturbation of A such that A+ΔA is also an IBLO and ‖A‖‖ΔA‖ <
1. Let b ∈ X and let Δb be a perturbation of b. Then, the solutions of x = A+b and
x∗ = (A+ΔA)+(b+ δb) satisfy

‖x∗ − x‖
‖x‖ ≤ cond(A)

1− ‖A+ΔA‖
(‖δb‖

‖b‖ +
‖ΔA‖
‖A‖

)
,(D.1)

where cond(A) = ‖A‖‖A+‖.
Proof. First note that as A is full rank, the pseudoinverse is the left inverse of A, namely

A+A = I. Since ‖A‖‖ΔA‖ < 1, we have that

(A+ΔA)+ = (I+A+ΔA)−1A+,

and we also have

‖(I +A+ΔA)−1‖ =
∥∥∥∑(A+ΔA)k

∥∥∥ ≤
∑

‖(A+ΔA)‖k =
1

1− ‖A+ΔA‖ .

Hence,

x∗ − x = (A+ΔA)+(b+ δb) −A+b

= (I+A+ΔA)−1A+(b+ δb) −A+b;

therefore

(I+A+ΔA)(x∗ − x) = A+(b+ δb) −A+b−A+ΔAA+b

= A+(δb−ΔAx),

and then

‖x∗ − x‖
‖x‖ ≤ ‖A+‖

1− ‖A+ΔA‖
‖δb‖ + ‖ΔAx‖

‖x‖
=

cond(A)

1− ‖A+ΔA‖
‖δb‖ + ‖ΔAx‖

‖A‖‖x‖
≤ cond(A)

1− ‖A+ΔA‖
( ‖δb‖
‖Ax‖ +

‖ΔA‖‖x‖
‖A‖‖x‖

)

≤ cond(A)

1− ‖A+ΔA‖
(‖δb‖

‖b‖ +
‖ΔA‖
‖A‖

)
.
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