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a b s t r a c t

To account for variations in the frequency, time, and space dimensions, dynamic re-use of
licensed bands under the cognitive radio (CR) paradigm calls for innovative network-level
sensing algorithms for multi-dimensional spectrum opportunity awareness. Toward this
direction, the present paper develops a collaborative scheme whereby CRs cooperate to
localize active primary user (PU) transmitters and reconstruct a power spectral density
(PSD) map portraying the spatial distribution of power across the monitored area per
frequency band and channel coherence interval. The sensing scheme is based on a
parsimonious model that accounts for two forms of sparsity: one due to the narrow-
band nature of transmit-PSDs compared to the large portion of spectrum that a CR can
sense, and another one emerging when adopting a spatial grid of candidate PU locations.
Capitalizing on this dual sparsity, an estimator of the model coefficients is obtained
based on the group sparse least-absolute-shrinkage-and-selection operator (GS-Lasso). A
novel reduced-complexity GS-Lasso solver is developed by resorting to the alternating
direction method of multipliers (ADMoM). Robust versions of this GS-Lasso estimator
are also introduced using a GS total least-squares (TLS) approach to cope with both
uncertainty in the regression matrices, arising due to inaccurate channel estimation and
grid-mismatch effects, and unexpected model outliers. In spite of the non-convexity of the
GS-TLS criterion, the novel robust algorithm has guaranteed convergence to (at least) a
local optimum. The analytical findings are corroborated by numerical tests.

Published by Elsevier B.V.

1. Introduction

To alleviate the inefficiency of the current rigid
license-based spectrum assignment and make a swath
of frequencies available to emerging wireless services,
research efforts have focused on dynamic spectrum (re-)
utilization techniques [1]. Prominent in this context is
the hierarchical spectrum access model, where cognitive
radios (CRs) are envisioned as autonomous devices able
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to spatio-temporally re-use the licensed bands in a non-
intrusive manner [2].

In lieu of coordination among primary users (PUs) and
CRs, autonomous spectrum sensing is of paramount im-
portance for the detection of ongoing PU transmissions,
and thus identification of the so-called ‘‘spectrum holes’’.
At the expense of increasing communication overhead
among CRs, cooperative sensing schemes exhibit improved
performance relative to non-cooperative alternatives [3].
Conceivably, through fusion of local measurements, co-
operative sensing can collect the available spatial diver-
sity provided by multipath propagation of the underlying
PU-to-CR channels. Representative past works on cooper-
ative spectrum sensing include [4], where a bank of en-
ergy detectors is used to monitor a large portion of the
spectrum, [5], where a test statistic is introduced to maxi-
mize the probability of detecting available primary bands,
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and [6], where individual sensing decisions are combined
using a linear-quadratic fusion rule; see also [7] for sequen-
tial alternatives.

Even if a primary band is occupied, there could be
locations where the transmitted power is low enough
so that these frequencies can be reused by CRs without
suffering from or causing harmful interference to any
PU. Thus, to enable opportunistic re-use of the licensed
resources under the primary–secondary hierarchy [1], the
sensing objective calls for cognition-enabling network-
level algorithms that make CRs aware of PU activities
across frequency, space, and time.

Initial efforts to this end have been devoted to
construct power spectral density (PSD) maps (one per
coherence interval), which essentially portray the PU
power present at each location of the monitored area.
To reconstruct the resultant PSD atlas starting from raw
power measurements, a spatial interpolation technique
was employed by Alaya-Feki et al. [8], and a smooth PSD
map was constructed in [9] using the method of splines
in order to account for shadowing. An atlas of channel
gains was constructed in [10] to provide link amplitudes
between any pair of points in a given geographical area;
such channel gain atlas can be also used to reconstruct
the PSD map provided that PU locations and transmission
powers are available at the CRs.

To further address the challenges encountered with
this multi-dimensional sensing vision, the present paper
presents a collaborative sensing scheme whereby CRs
cooperate to localize the actively transmitting PUs and
estimate their PSD across space in the presence of model
uncertainties. This network-level sensing algorithm can
be complemented by the channel gain atlas, so that the
CR system can effectively estimate the PSD distribution in
space and, thus, reveal areas where the CRs could re-use
the primary bands in a non-destructive manner.

The novel sensing scheme here is based on a parsimo-
nious system model accounting for the scarce presence of
active PUs in the same frequency band(s), in themonitored
area, due tomutual interference. Using a virtual grid-based
approach for the potential PU transmitter locations, a form
of spatial-domain sparsity emerges because actual PU trans-
mitters are present in only few of the potential (grid)
locations. A basis expansion model is then adopted to ap-
proximate the PU transmit-PSD distribution in frequency,
which renders the sensing objective tantamount to esti-
mating the PSD basis coefficients corresponding to each
grid point. Since individual PU transmissions are narrow-
band relative to the large swath of frequencies a CR can
sense, only few of the PSD basis coefficients are nonzero
— a fact giving rise to frequency-domain sparsity.

This parsimonious system model thus entails a form
of hierarchical dual-domain sparsity [11] in the PSD basis
coefficients that are to be estimated, in the sense that
groups of coefficients corresponding to locations with no
PUs will be collectively zero. In addition, some of the
basis coefficients within groups corresponding to active
PU locations will be zero. Capitalizing on this form of
hierarchical sparsity, a group sparse regression problem
is formulated, which is to be solved centrally by either a
fusion center (FC), or, individual CRs using their measured

PSDs. A novel low-complexity algorithm for solving such
a problem is developed using the alternating direction
method of multipliers (ADMoM) [12].

A critical issue for the proposed network-level sensing
problem is acquiring the grid-to-CR channel gains present
in the underlying regression matrix. One way to acquire
such information is through the channel gain cartography
approach of [10]. However, possible inaccurate channel
gains or adoption of a shadowing-agnostic path loss-
only model [13,14] could deteriorate the performance of
the sensing algorithm [15]. Also, a grid-based approach
introduces itself possible model offsets, as the actual PU
locations may not coincide with points of the grid. To
account for these uncertainties, a robust version of the
group sparse (GS) least-absolute-shrinkage-and-selection
operator (Lasso) is developed. The main contribution in
this direction consists in an extension of the sparse total
least-squares (TLS) framework of [16] to incorporate the
hierarchical sparsity inherent to this sensing application.
Combining the merits of Lasso, group Lasso, and TLS,
the proposed group sparse (GS-)TLS approach yields
hierarchically-sparse PSD estimates that are also robust to
model uncertainties induced by the random channel, grid
offsets, and basis approximation errors. In spite of the non-
convexity of the proposed GS-TLS criterion, an iterative
solver with guaranteed convergence to at least a locally-
optimal solution is developed.

Additional factors compromising accuracy of PSD
estimates at the CRs, are abrupt changes in shadow fading
that may be due to, e.g., moving obstacles or moving CRs,
and, possible failures of the sensing modules themselves.
A crude remedy for such effects is simple averaging of
all the PSD estimates at the FC. Instead, a robust GS-TLS
formulation is proposed here, that is capable of discerning
and removing such so-called model outliers [17], which in
turn leads to reliable PSD estimates. However, sorting out
unreliable measurements not only promotes estimation
accuracy, but also leads to self-healing and re-organization
mechanisms for the CRs network.

The rest of the paper is organized as follows. Section 2
introduces the basis expansion model, and describes the
PSD observations used for the model fitting approach.
A centralized algorithm for solving GS-Lasso problems
is developed in Section 3, whereas perturbations in the
channel (regression) matrices are considered in Section 4.
The outlier-resilient sensing algorithm is devised in
Section 5, numerical results are provided in Section 6, and
Section 7 draws the conclusions.1

2. Systemmodel and problem formulation

Consider an incumbent PU system comprising Ns
transmitters (sources) located in a geographical area A ⊂

R2. Their activity over a frequency band B is to be

1 Notation: upper (lower) bold face letters are used to denote matrices
(column vectors); 1n and 0n denote the n× 1 vectors with all ones and all
zeros, respectively; (·)T denotes transposition; ∥X∥F the Frobenius norm
of matrix X, and ∥x∥p := (


i x

p
i )

1/p , p = 1, 2, the ℓ1- and ℓ2-norms,
respectively; finally, sgn(·) denotes the sign function and IN the N × N
identity matrix.
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Fig. 1. Basis expansion model with overlapping raised cosine pulses.

monitored via cooperation of Nr CRs, also located in A. Let
S := {xs ∈ A}

Ns
s=1 denote the PU locations. The sensing

objective is to localize the PU sources, and reveal available
portions of B for the CRs to transmit opportunistically.

Let us(t) be the (unknown) signal transmitted by PU
s at time t . Then, the signal received at CR position xr at
time t can be expressed as yr(t) :=

Ns
s=1

Lsr−1
l=0 hxs→xr

(t; l)us(t− l)+v(t), where hxs→xr (t; l) is the l-th tap of the
time-varying channel impulse response of the link xs →

xr , and v(t) denotes the additive white noise. Regarding
signals {us(t)}, the following is assumed.
(As1) Sources {us(t)} are stationary, mutually uncorrelated,
independent of {hxs→xr (t; l)},with vanishing correlation per
channel coherence interval.

Consider approximating the transmit-PSD of PU s using
the following basis expansion model [13]

Φs(f ) =

Nb
ν=1

θsνbν(f ), s = 1, 2, . . . ,Ns (1)

where Nb is assumed sufficiently large, and {θsν}
Nb
ν=1 are

nonnegative coefficients. Possible choices of {bν(f )}
Nb
ν=1

include the set of non-overlapping rectangles of unit
height spanning the bandwidth B of interest. In this case,
each θsν represents the power emitted by source s on
the frequency band corresponding to the basis function
bν(f ). Alternatively, overlapping raised cosine bases can be
employed with support Bν = [fν − (1 + ρ/2Ts), fν + (1 +

ρ/2Ts)], where ρ is the roll-off factor and Ts the symbol
period, can be employed; see also Fig. 1.

Channel {hxs→xr (t; l)} can be decomposed as [18]
hxs→xr (t; l) = (γxs→xr sxs→xr )

1
2 fxs→xr (t; l), where γxs→xr

stands for the path loss, sxs→xr the temporally- and
spatially-colored shadowing [19], and {fxs→xr (t; l)} for the
multi-path fast time-varying fading. The latter satisfies the
following.
(As2) Variables {fxs→xr (t; l)} are complex Gaussian with
zero mean and variance σ 2

f ,sr , stationary with respect to t ,
and uncorrelated across the lag variable l and the spatial
variables xs and xr . Without loss of generality, assume thatLsr

l=1 σ 2
f ,sr = 1 for every s and r .

Received samples {yr(t)} are parsed intoN-dimensional
blocks, where N is chosen equal to (or smaller than) the
coherence interval of the small-scale fading, over which
hxs→xr (t; l) remains approximately invariant with respect
to (wrt) t . These data blocks are hereafter indexed by n, so
that t = nN + m, with m = 0, 1, . . . ,N − 1.

Shadowing and small-scale fading are characterized by
different dynamics. The following is assumed regarding

channel propagation andmodeling; (see also, e.g., [19] and
references therein).
(As3) The coherence interval of shadow fading exceeds that of
fxs→xr (t; l). Also, shadowing variations are sufficiently slower
than the coherence interval of the PU signals.

Based on (As1)–(As3), it is possible to express the
PSD measured at location x due to Ns simultaneous PU
transmissions as

Φx(f ) =

Ns
s=1

gxs→xΦs(f ) + σ 2
v

=

Ns
s=1

gxs→x

Nb
ν=1

θsνbν(f ) + σ 2
v (2)

where σ 2
v denotes noise variance at the receiver, and

gxs→xr := γxs→xr sxs→xr the averaged channel gain.2
As neither the number of PU sources nor their locations

are known to the CRs, a set of Ng candidate transmit-PUs
is postulated on a grid of locations G := {xg ∈ A}

Ng
g=1.

Without prior knowledge of the area(s)where PUactivity is
more likely, the set of candidate locations G can be simply
formed by discretizing A to the set of grid points G.

Define the Nb × 1 vector θg := [θg1, . . . , θg Nb ]
T

collecting the basis coefficients that correspond to location
xg , and let θ := [θT

1, . . . , θ
T
Ng

]
T ; also, let Bxr be the N ×

NbNg matrix Bxr := [bxr (f1), . . . , bxr (fN)]T , with bx(fk)
having entries {gxg→xr ·bν(fk)}. Then, upon definingϕxr :=

[Φxr (f1), . . . , Φxr (fN)]T , the received PSD at CR location xr ,
sampled at frequencies {fk}Nk=1, can be compactly written
as [cf. (2)]

ϕxr = Bxr θ + σ 2
v 1N . (3)

The sensing objective of revealing PU locations and
the available portions (sub-bands) of B is tantamount to
estimating θ. To this end, CRs rely on the periodogram
estimate of Φxr (f ) at the sampling locations {xr}Nr

r=1, and
N frequency bins {fk}Nk=1. The fast Fourier transform of
samples {yr(t)}, namely Yr,N(n, f ), and the periodogram
φ̂xr ,N(n; f ) := (1/N)|Yr,N(n, f )|2 are computed per data
block n. To average out small-scale fading effects, and allow
for tracking of shadow fading as well as possible variations
of the PUs’ power spectra, the periodogramestimate at CR r
is formedusing an exponentiallyweightedmoving average
operation as

Φ̂xr (τ , f ) :=

τ
n=1

ατ−nφ̂xr ,N(n, f ) (4)

with α ∈ (0, 1] denoting the so-called forgetting factor. As
shown in [13], (4) gives an estimate of the PSD measured
at point xr and frequency f as

Φ̂xr (τ ; f ) = Φxr (τ ; f ) + exr ,N(τ ; f ) (5)

2 Shadow fading is assumed to be frequency-invariant over the
monitored PU band B; however, frequency-selective shadowing can be
readily incorporated.



4 E. Dall’Anese et al. / Physical Communication ( ) –

with (asymptotic) variance bounded as limN→∞ var[er,N
(τ ; f )] ≤

3
2 (1 − α)Φ2

xr (f ). After dropping τ for notational
brevity, let ϕ̂xr := [Φ̂x(f1), . . . , Φ̂x(fN)]T .

Based on the linear model (3), the sensing objective
is to estimate θ from the received-PSD estimate ϕ̂ :=

[ϕ̂x1 , . . . , ϕ̂xNr
]
T gathered at CR locations {xr}Nr

r=1.

3. Spectrum sensing via group sparse Lasso

The number of active PUs transmitting over the same
spectral band in a given area is naturally limited bymutual
interference. As a consequence, the number of PU sources
(Ns) is far smaller than Ng , for a sufficiently dense grid.
Absence of PU sources in most grid locations xg ∈ G \ S
gives rise to a group sparsity of the vector θ, since θg =

0Nb for each of the locations xg that are not occupied
by a PU transmitter. In addition to space, sparsity in
the vector θ is also manifested in the frequency domain
because of the parsimonious linear model (2). Compared
to the possibly large swath of frequencies that the CRs
can sense, individual PU transmissions typically occupy
small portions of the spectrum (say, in the order of MHz).
Sparsity in the frequency domain implies that individual
entries within each group θg are zero.

The most popular criterion for estimating θ is the (non-
negative) least-squares (LS) [20]. However, LS fails to pro-
vide a parsimonious model estimate involving only the
prominent variables. The Lasso [21] and the so-called
group Lasso [22] on the other hand,were proposed to over-
come such a limitation of LS. In the Lasso criterion, the
LS cost is augmented with the ℓ1-norm ∥θ∥1 to encourage
sparsity at the single-coefficient level; while in the group
Lasso, the regularization term RG(θ) :=

Ng
g=1 ∥θg∥2 en-

forces group sparsity.
Combining Lasso [21] with group Lasso [22], the so-

called group sparse (GS-) Lasso [11,23] provides a parsi-
monious model estimate, where sparsity is accounted for
both at the group- and at the single-coefficient levels. This
hierarchical sparsity is possible by regularizing the con-
ventional LS cost with the term RG(θ) :=

Ng
g=1 ∥θg∥2

combined with ∥θ∥1.
Taking also into account the non-negativity of PUpower

spectra, θ can be estimated by solving the following sparse
regression problem:

θ̂ = arg min
θ≽0NbNg


1
2

Nr
r=1

ϕ̂xr − Bxr θ − σ 2
v 1N

2
2

+ λ1 ∥θ∥1 + λ2RG(θ)

 (6)

where the coefficient λ1 ≥ 0 enforces sparsity at individ-
ual entries, whereas λ2 ≥ 0 promotes group sparsity. For
λ1 = 0 (λ2 = 0), (6) reduces to the Lasso (group Lasso)
based estimate. PU localization and PSD estimation was
viewed as a sparse linear regression model in [13]; here,
the formulation of [13] is considerably broadened by tak-
ing into account both individual and group sparsity.

To obtain regression matrices {Bxr }, the channel gains
{gxg→xr } need to be estimated. To this end, CRs can simply
neglect shadowing, and as in [13,14] resort to the distance-
dependent path loss model ĝxg→xr = min{1, (∥xg − xr∥2/

d0)−η
}, where d0 and η are preselected constants depend-

ing on the propagation environment. Alternatively, more
sophisticated techniques can be employed [10,24]. Pertur-
bations in the regressionmatrices {Bxr } arising due to inac-
curate channel estimation and grid-mismatch effects will
be dealt with in Section 4.

3.1. PSD atlas

It is worth re-iterating that identifying the support
of the vector θ reveals not only the primary sub-bands
occupied, but also the locations where the active PU
transmitters reside. Complementing this information with
either the PUs’ channel gain maps [10] or a simple path
loss-based propagation model, CRs can readily reconstruct
the PSD atlas; that is, estimate PSD maps at any location of
the monitored area as

Φ̂x(f ) =

Ng
g=1

ĝxg→x

Nb
ν=1

θ̂gνbν(f ), ∀ x ∈ A (7)

with ĝxg→x the estimate of gxg→x [13,10,14]. Having
available estimates of the PSD map across space per
frequency band (hence the term atlas), CRs can adjust their
transmit power to prevent harmful interference inflicted
to the PUs. In fact, the positions of potential PU receivers
can be deduced from the PSD atlas [10]; and thus, CR
transmission powers can be properly adapted [25].

3.2. ADMoM-based solver

In this section, a reduced-complexity algorithm attain-
ing the optimal solution of GS-Lasso problems will be
developed using the alternating direction method of mul-
tipliers (ADMoM). The crux is to show that (6) admits an
equivalent reformulation that can be solved via ADMoM.
Before doing so, the following lemmas are needed.

Lemma 1. Consider the following convexminimization prob-
lem in the variable y ∈ RN

y∗
= argmin

y

 c
2
yTy − yTa + λ∥y∥2


. (8)

Albeit non differentiable, (8) admits a closed-form solution.
Specifically, the global minimizer y∗ is given by the following
soft-thresholding vector operation expressed in terms of
[a]+ := max{0, a} as

y∗
=

a
c∥a∥2

[∥a∥2 − λ]+ . (9)

Proof. It will be argued that the solver of (8) takes the
form y = z a for some scalar z ≥ 0. This is because
among all y with the same ℓ2-norm, the Cauchy–Schwarz
inequality implies that the maximizer of aTy is collinear
with (and in the same direction of) a. Substituting y = za
into (8) renders the problem scalar in z ≥ 0, with solution
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z∗
= (∥a∥ − λ)+ / (c∥a∥2), which completes the proof.

For completeness, note that the same result can be alter-
natively obtained by resorting to the subdifferential [26]
of the cost in (8). �

Lemma 2. Consider the following non-smooth convex prob-
lem in the vector variable y ∈ RN

y∗
= argmin

y

 c
2
yTy − aTy + λ∥y∥1


. (10)

Using operator Tλ(·) defined as

Tλ(a) := [sgn(a1)[|a1| − λ]+, . . . , sgn(aN)[|aN | − λ]+]
T

the global minimized of (10) can be written as

y∗
=

1
c
Tλ (a) . (11)

If non-negativity of the entries in y is imposed, the solution
of (10) subject to y ≽ 0N is obtained by using the vector soft-
thresholding operator

T +

λ (a) := [max{0, a1 − λ}, . . . ,max{0, aN − λ}]
T

as

y∗
=

1
c
T +

λ (a) . (12)

Proof. Note first that (12) can be solved element-wise;
specifically, each entry yi of y is found by solving the scalar
problem y∗

i = argminyC(y) := ( c
2y

2
− aiy + λ|y|), which

has a non-differentiable cost. The necessary and sufficient
condition for y∗

i to minimize C(y) is [27, p. 92]
|ai| ≤ λ, if y∗

i = 0

cy∗

i − a + λ
y∗

i

|y∗

i |
= 0, if y∗

i ≠ 0 (13)

which is satisfied by y∗

i = sgn(ai)[|ai| − λ]+; see also [21].
When y is enforced to be non-negative, solution (12) can
be easily derived from (13) element-wise. �

Consider now the NbNg × 1 auxiliary vector variables γ
and ξ, and neglect irrelevant terms to re-write theGS-Lasso
problem as

{θ̂, γ̂, ξ̂} = argmin
θ,γ,ξ


1
2
θTRθ−θT r + λ1 ∥ξ∥1 + λ2RG(γ)


(14)

s.t. ξ ≽ 0NbNg

θ = γ, θ = ξ

where R :=
Nr

r=1 B
T
xrBxr , r :=

Nr
r=1 B

T
xr ϕ̄xr , and ϕ̄xr :=

ϕ̂xr − σ 2
v 1N . For simplicity, σ 2

v is assumed to be known;
however, it could be incorporated in (14) and estimated as
the intercept.

Letting η and µ denote the Lagrange multipliers
associated with the equality constraints θ = γ and θ =

ξ, respectively, the quadratically augmented Lagrangian
function of problem (14) is

L (θ, γ, ξ, η, µ) =
1
2
θTRθ − θT r + λ1 ∥ξ∥1

+ λ2RG(γ) + ηT (θ − γ)

+ µT (θ − ξ) +
c1
2

∥θ − γ∥
2
2

+
c2
2

∥θ − ξ∥2
2 (15)

where c1, c2 > 0 are arbitrary constants. Then, for any
initial vectors γ (0), ξ(0), η(0), µ(0), the ADMoM algorithm
entails the following primal–dual iterative updates

θ(j)
= argmin

θ
L


θ, γ (j−1), ξ(j−1), η(j−1), µ(j−1) (16a)

{γ (j), ξ(j)
} = arg min

γ,ξ≽0
L


θ(j), γ, ξ, η(j−1), µ(j−1) (16b)

η(j)
= η(j−1)

+ c1

θ(j)

− γ (j) (16c)

µ(j)
= µ(j−1)

+ c2

θ(j)

− ξ(j) (16d)

where j = 1, 2, . . . is the iteration index. The first step
updates the primal vector θ(j) by using the values of the
auxiliary variables and the Lagrange multipliers obtained
at the previous iteration j − 1; since L(·) is quadratic in
θ, the convex optimization problem (16a) can be solved in
closed form as

θ(j)
=


R + (c1 + c2)INbNg

−1

×

r + c1γ (j−1)

+ c2ξ(j−1)
− η(j−1)

− µ(j−1) . (17)

Next, variables γ and ξ can be updated using the newly
computed vector θ(j), with the Lagrange multipliers fixed
from the previous iteration. Inspection of the function
L


θ(j), γ, ξ, η(j−1), µ(j−1)


reveals that (16b) can be split

into two sub-problems, where minimization over γ and
ξ can be performed separately. After neglecting irrelevant
terms, minimization of (16b) wrt γ reduces to the
following non-differentiable convex problem

γ (j)
=argmin

γ

 c1
2

γTγ−γT 
c1θ(j)

+ η(j−1)
+ λ2RG(γ)


(18)

which, in turn, can be separated in the following Ng sub-
problems

γ (j)
g = argmin

γg

 c1
2

γT
gγg − γT

g


c1θ(j)

g

+ η(j−1)
g


+ λ2∥γg∥2


, g = 1, . . . ,Ng (19)

where γg and ηg are Nb × 1 sub-vectors of γ and

η, respectively, collecting elements {γn}
Ng g
n=Ng (g−1)+1 and

{ηn}
Ng g
n=Ng (g−1)+1.
From Lemma 1, the global minimizer of each sub-

problem (19) is given by

γ (j)
g =


θ(j)
g + c−1

1 η(j−1)
g

 
∥c1θ(j)

g + η
(j−1)
g ∥2 − λ2


+

∥c1θ(j)
g + η

(j−1)
g ∥2

. (20)
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Upon neglecting constant terms, minimization of (16b)
wrt the non-negative variable ξ can be obtained after
solving the following non-smooth convex problem

ξ(j)
= argmin

ξ≽0

 c2
2

ξT ξ − ξT

µ(j−1)

+ c2θ(j)
+ λ1∥ξ∥1


(21)

which, from Lemma 2, admits the following closed-form
solution

ξ(j)
=

1
c2

T +

λ1


c2θ(j)

+ µ(j−1) . (22)

The overall ADMoM-based solver for GS-Lasso problems is
tabulated as Algorithm 1.

Algorithm 1 ADMoM-based GS-Lasso solver
Initialize γ (0)

= 0NbNg , ξ
(0)

= 0NbNg , η
(0)

= 0NbNg , and µ(0)
=

0NbNg
Form R and r
for j = 0, 1, . . . do

Update θ(j) via (17)
Update γ

(j)
g via (20) for all g = 1, . . . ,Ng

Update ξ(j) via (22)
Update η(j)

= η(j−1)
+ c1


θ(j)

− γ (j)


Update µ(j)
= µ(j−1)

+ c2

θ(j)

− ξ(j)


end for

The distinct feature of the proposed ADMoM-based
algorithm for solving the GS-Lasso problem (14) is
its computationally affordable implementation, offered
by the closed-form expressions for the primal variable
updates; aswell as the simple updates of the dual variables
η(j) and µ(j). Furthermore, since ADMoM has provable
convergence to the global minimizer when the considered
problem is convex, convergence of the proposed algorithm
to θ̂ in (6) is ensured as stated next.

Proposition 1. For any c1, c2 > 0 and any initializing vec-
tors γ (0), ξ(0), η(0) and µ(0), the iterates (17) for θ(j), (20) for
{γ

(j)
g }, (21) for ξ(j), and (16c)–(16d) for η(j) and µ(j), respec-

tively, are convergent. Also, θ(j) converges to the solution of
the GS-Lasso (6); i.e., limj→+∞ θ(j)

= θ̂. �

A couple of remarks are now in order.

Remark 1. Shadow fading as well as possible slow tempo-
ral variations of the PU transmit-PSDs lead to time-varying
{Φxr (f )}. Following the lines of [20], time-varying PSDs can
be tracked by employing the following time-weighted ver-
sion of the GS-Lasso [cf. (6)]

θ̂(t) = arg min
θ≽0NbNg


1
2

t
τ=1

βτ ,t

Nr
r=1

ϕ̄xr (τ )

− Bxr (τ )θ
2
2 + λ1 ∥θ∥1 + λ2RG(θ)

 (23)

where βτ ,t ∈ (0, 1] is the so-called forgetting factor, and
index τ = 1, . . . , t emphasizes the temporal variability
of channels and received PSDs. Also, to address the need
for real-time processing, the estimation of θ in (23)
can be performed on-line [20], where each iteration of
the ADMoM algorithm is performed after acquiring new
estimates {ϕ̂xr (τ )}. In this case, the ADMoM iteration index
j coincides with the temporal index τ . �

Remark 2. Algorithm 1 is centralized, meaning that the
whole set of PSD estimates {ϕ̂xr }

Nr
r=1 must be available

at either an FC or a CR cluster head. To reduce the
considerable message-passing overhead associated with
globally sharing PSD measurements across CRs, and to
address scalability and robustness concerns (FC constitutes
an isolated point of failure), a distributed counterpart of
Algorithm 1 can be derived along the lines of [9,28]. �

4. Spectrum sensing under channel uncertainties

4.1. Group sparse total least-squares

Uncertainty in the matrices {Bxr } is manifested because
of (i) errors in the estimates of {gxg→xr } (with or
without accounting for shadowing [13,10,14]); (ii) grid
offsets when PUs are located between grid points; and,
(iii) basis expansion approximation errors. To cope with
these perturbations, a robust version of the GS-Lasso is
developed in this section.

TLS is the workhorse used for estimating non-sparse
vectors obeying an over-determined linear system of
equations with uncertainty present in both the regression
matrix and the observations (fully-perturbed model) [29].
Sparsity in the estimate was taken into account in [16],
where the TLS framework was extended to solve sparse
under-determined fully-perturbed linear systems. The
sparse TLS approach is broadened here to account for
sparsity present both at individual entries, and also at
groups of entries.

Define B := [BT
x1 , . . . , B

T
xNs

]
T , and let ϕ̄ := [ϕ̄T

x1 , . . . ,

ϕ̄T
xNg

]
T , and E a NNr ×NgNb matrix capturing perturbations

corrupting the matrix B. Consider now estimating θ as
follows

{θ̂, Ê} = arg min
E

θ≽0NbNg


1
2

∥ϕ̄ − (B + E) θ∥2
2

+
1
2
∥E∥2

F + λ1 ∥θ∥1 + λ2RG(θ)


. (24)

Relative to the classical TLS [29], the cost in the
group sparse (GS-)TLS problem (24) is augmented with
the regularization terms accounting for the two forms of
sparsity inherent to θ. Compared to [16], problem (24)
includes also the term λ2RG(θ).

Problem (24) is generally non-convex due to the
presence of the product Eθ; thus, it is in general difficult
to obtain a globally-optimal solution. However, a novel
reduced-complexity algorithmwith provable convergence
to a stationary point of (24) will be developed in the
ensuing section.
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4.2. Alternating descent solver

The cost in (24) will be optimized here iteratively using
a block coordinate descent algorithm, which cyclically
minimizes it wrt E (keeping θ fixed), and wrt θ after fixing
E [30]. Specifically, the following two steps are performed
at the i-th iteration:

(i1) Fix E = Ê(i−1), and update θ̂
(i)

as

θ̂
(i)

= arg min
θ≽0NbNg


1
2

ϕ̄ −


B + Ê(i−1)


θ

2

2

+ λ1 ∥θ∥1 + λ2RG(θ)


. (25)

(i2) Fix θ = θ̂
(i)
, and obtain Ê(i) as

Ê(i)
= argmin

E

1
2

ϕ̄ − Bθ̂
(i)

− Eθ̂
(i)

2

2
+

1
2
∥E∥2

F . (26)

By fixing Ê(i−1), (24) boils down to a GS-Lasso problem;
thus, θ̂

(i)
can be computed by using the ADMoM-based

solver of Section 3.2 after replacing (17) with the following
update, where j still represents the index for the (inner)
ADMoM iterations:

θ̂
(i,j)

=


B + Ê(i−1)

T 
B + Ê(i−1)


+ (c1 + c2)INbNg

−1

×


B + Ê(i−1)

T
ϕ̄ + c1γ (j−1)

+ c2ξ(j−1)
− η(j−1)

− µ(j−1)


. (27)

The quadratic convex problem (26) admits the following
closed-form solution

Ê(i)
= (1 + ∥θ̂

(i)
∥
2
2)

−1

ϕ̄ − Bθ̂

(i)
θ̂

(i) T
(28)

which can be obtained after equating the derivative of the
cost in (26) with zero. The overall solver for GS-TLS is
tabulated as Algorithm 2.

Algorithm 2 GS-TLS

Initialize Ê(0)
= 0NbNg×NbNg

while Stopping criterion is not satisfied (i iteration index) do
Initialize γ (0)

= 0NbNg , ξ
(0)

= 0NbNg , η
(0)

= 0NbNg , µ
(0)

=

0NbNg
while Stopping criterion is not satisfied (j iteration index)do

Update θ(i,j) via (27)
Update γ

(j)
g via (20) with θ(i,j) in place of θ(j), for all g =

1, . . . ,Ng

Update ξ(j) via (22) with θ(i,j) in place of θ(j)

Update η(j)
= η(j−1)

+ c1

θ(i,j)

− γ (j)


Update µ(j)
= µ(j−1)

+ c2

θ(i,j)

− ξ(j)


end while
Update θ̂

(i)
= θ(i,j)

Update Ê(i)
= (1 + ∥θ̂

(i)
∥
2
2)

−1

ϕ̄ − Bθ̂

(i)
θ̂

(i) T

end while

Under certain conditions, the block coordinate descent
algorithm is known to converge (at least) to a local
optimum point, as asserted next.

Algorithm 3 Robust GS-TLS

Initialize ô(0)
= 0NbNg and Ê(0)

= 0NbNg×NbNg
while Stopping criterion is not satisfied (i iteration index) do

Initialize γ (0)
= 0NbNg , ξ

(0)
= 0NbNg , η

(0)
= 0NbNg , µ

(0)
=

0NbNg
while Stopping criterion is not satisfied (j iteration index)do

Update θ(i,j) via (37)
Update γ

(j)
g via (20) with θ(i,j) in place of θ(j), for all g =

1, . . . ,Ng

Update o(i,j) via (38)
Update ξ(j) via (22) with θ(i,j) in place of θ(j)

Update η(j)
= η(j−1)

+ c1

θ(i,j)

− γ (j)


Update µ(j)
= µ(j−1)

+ c2

θ(i,j)

− ξ(j)


end while
Update θ̂

(i)
= θ(i,j) and ô(i)

= o(i,j)

Update Ê(i)
= (1 + ∥θ̂

(i)
∥
2
2)

−1

ϕ̄ − Bθ̂

(i)
+ ô(i)


θ̂

(i) T

end while

Proposition 2. For any initialization {θ̂
(0)

, Ê(0)
}, the iterates

{θ̂
(i)

, Ê(i)
} in (25)–(26) converge monotonically to a station-

ary point of problem (24).

Proof. The proof uses the result of [16, Prop. 3]. Concisely,
the cost function in (24) satisfies the Assumptions
(B1)–(B3) and (C2) in [30], thus ensuring convergence
of {θ̂

(i)
, Ê(i)

} to a minimum point of the cost as proved
in [30, Thm. 5.1]. �

5. Outlier-resilient spectrum sensing

5.1. Robust GS-TLS

The problemdealtwith in the previous section accounts
for uncertainty in the entries of the regression matrix
B. However, due to particularly abrupt local shadow
fading, failures of the sensing modules, or unexpected
narrow-band impulsive noise and/or interference, CRs
observations may be affected by abundant errors. This
section develops schemes for discerning and removing
the observations that largely deviate from the underlying
model (a.k.a. outliers) [31,17].

A simple heuristic to detect unreliable data could be
to estimate θ via (24), compute the residuals and, then,
reject the PSD observations whose residuals exceed a
certain threshold. A systematic method that accounts for
possible outliers canbe found in [32],where theunderlying
linear regression model is augmented by an auxiliary
outlier vector. Using this model, the receiver PSD at the CR
locations ϕ̄ can be expressed as

ϕ̄ = (B + E)θ + o + e (29)

where the nonzero entries of the NNr × 1 real vector
o capture outliers; and e is a proper vectorization of
the periodogram estimation errors [cf. (5)]. Since few
outliers are expected compared to the total number of data
collected in ϕ̄, the vector o is sparse.

Capitalizing on the three forms of sparsity emerging
from (i) the grid-based model (group sparsity), (ii) the PSD
basis expansion (single-coefficient sparsity) and (iii) the
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outliers (single-coefficient sparsity), and accounting for
perturbations in the regression matrix, the following
robust GS-TLS is considered:

{θ̂, Ê, ô} = arg min
o
E

θ≽0NbNg


1
2

∥ϕ̄ − (B + E) θ + o∥2
2

+
1
2
∥E∥2

F + λ1 ∥θ∥1 + λ2RG(θ) + λ3 ∥o∥1


(30)

where λ3 ≥ 0 promotes the (single-coefficient) sparsity
of vector ô. The nature of the perturbations captured in E
and o is in general different: o collects unmodeled errors,
whereas E describes (small) perturbations. It is also worth
noticing that the support of ô reveals the unreliable CR
data.

5.2. Alternating descent algorithm

Although (30) is generally a non-convex problem, a
block coordinate descent algorithm can still be employed.
In this case, the cost in (30) will be iteratively minimized
wrt E and {θ, o}; that is, the following two updates are
performed at the i-th iteration:

(i1) Fix E = Ê(i−1) and solve
θ̂

(i)
, ô(i)


= arg min

o
θ≽0NbNg


1
2

ϕ̄ −


B + Ê(i−1)


θ + o

2

2

+ λ1 ∥θ∥1 + λ2RG(θ) + λ3 ∥o∥1


. (31)

(i2) Fix θ = θ̂
(i)

and o = ô(i) and update Ê(i) as

Ê(i)
= argmin

E

1
2

ϕ̄ − Bθ̂
(i)

+ Eθ̂
(i)

+ ô(i)
2

2
+

1
2
∥E∥2

F .

(32)

The quadratic problem (32) can be solved in closed
form, to obtain

Ê(i)
= (1 + ∥θ̂

(i)
∥
2
2)

−1

ϕ̄ − Bθ̂

(i)
+ ô(i)


θ̂
i T

. (33)

As for (31), the ADMoMcan be employed to find its optimal
solution. To this end, (31) can be re-formulated as [cf. (14)]
θ̂

(i)
, γ, ξ, ô(i)


= arg min

θ≽0NbNg
γ,ξ,o


1
2

ϕ̄ −


B + Ê(i−1)


θ

+ o
2

2
+ λ1 ∥ξ∥1 + λ2RG(γ) + λ3 ∥o∥1


s.t. ξ ≽ 0NbNg

θ = γ, θ = ξ

(34)

with γ and ξ denoting auxiliary vector variables. Letting
again η and µ denote the Lagrange multipliers associated
with the constraints θ = γ and θ = ξ, respectively,

the quadratically augmented Lagrangian function (34) is
given by

L (θ, γ, ξ, o, η, µ) =
1
2

ϕ̄ −


B + Ê(i−1)


θ + o

2

2

+ λ1 ∥ξ∥1 + λ2RG(γ) + λ3 ∥o∥1

+ ηT (θ − γ) + µT (θ − ξ)

+
c1
2

∥θ − γ∥
2
2 +

c2
2

∥θ − ξ∥2
2. (35)

Starting from any initial vectors o(0), γ (0), ξ(0), η(0), µ(0),
each iteration j of the ADMoM (within each iteration i of
the block coordinate descent) proceeds in these steps:

θ(i,j)
= argmin

θ

L

θ, γ (j−1), ξ(j−1), o(i,j−1), η(j−1), µ(j−1) (36a)

γ (j)
= argmin

γ

L

θ(i,j), γ, ξ(j−1), o(i,j−1), η(j−1), µ(j−1) (36b)

ξ(j)
= argmin

ξ≽0

L

θ(i,j), γ (j), ξ, o(i,j−1), η(j−1), µ(j−1) (36c)

o(i,j)
= argmin

o

L

θ(i,j), γ, ξ(j−1), o, η(j−1), µ(j−1) (36d)

η(j)
= η(j−1)

+ c1

θ(j)

− γ (j) (36e)

µ(j)
= µ(j−1)

+ c2

θ(j)

− ξ(j) . (36f)

Since (34) is convex and satisfies the requirements for the
ADMoM to be convergent [12], iterates {θ(i,j), o(i,j)

} will

converge to the solution {θ̂
(i)

, ô(i)
} of (31).

Problem (36a) admits the closed-form solution given by

θ(i,j)
=


B + Ê(i−1)

T 
B + Ê(i−1)


+ (c1 + c2)INbNg

−1

×


B + Ê(i−1)

 
ϕ̄ + o(i,j−1)

+ c1γ (j−1)
+ c2ξ(j−1)

− η(j−1)
− µ(j−1)


(37)

where γ (j) and ξ(j) are still computed via (20) and (22).
Using Lemma 2, it is possible to show that the solution of
(36d) is computed via soft-thresholding as

o(i,j)
= Tλ3


ϕ̄ − (B + Ê(i−1))θ(i,j)


. (38)

At each step of theADMoMalgorithm the soft-thresholding
in (38) tags as outliers the (current) residuals ϕ̄ − (B +

Ê(i−1))θ(i,j) that exceed λ3. The overall solver is tabulated
as Algorithm 3.

With arguments similar to Proposition 2, the following
result can be asserted.

Proposition 3. For any initialization {θ̂
(0)

, ô(0), Ê(0)
}, the

iterates {θ̂
(i)

, ô(i), Ê(i)
} in (32)–(31) converge monotonically

to a stationary point of problem (30).
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Fig. 2. CR network topology.

6. Simulations

Consider a set of Nr = 50 CRs uniformly distributed
in an area of 100 m × 100 m, cooperating to localize
Ns = 2 active PUs and estimate their PSD map. CRs and
PU sources are marked with blue circles and red triangles,
respectively, in Fig. 2. PUs transmit raised cosine pulses
with unitary amplitude (0dB), roll-off factor ρ = 0.5,
and bandwidth W = 10 MHz. They share the band B =

[100, 200] MHz with spectra centered at frequencies fc =

115 and 175 MHz for ‘‘PU 1’’ and ‘‘PU 2’’, respectively. CRs
adopt a path loss-only model to accomplish the sensing
task.

Transmitted signals are searched over a grid of Nb = 10
evenly spaced center frequencies fc = 95 + νW , ν ∈

{1, . . . , 10}. Each CR computes periodogram samples at
N = 64 frequencies at signal-to-noise-ratio (SNR) −5 dB,
and averages them across τ = 100 time-slots to form
Φ̂xr (τ , fk), k = 1, . . . , 64, as in (4).

In the first experiment, the PSD generated by PU s ex-
periences only small-scale fading in its propagation from
xs to any location x, where it is measured in the presence
of noise with variance σ 2

v = 0.1. To simulate small-scale
fading {hxs→x}, a 6-tap Rayleigh model with exponential
power delay profile is adopted. Since the expected gain ad-
heres to a path loss propagation law, the regression matrix

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

{θ
i(j)

}

Iteration index j

Fig. 4. Evolution of the entries of θ(j) .

is in this case perfectly known. Fig. 3(a) depicts the true PSD
map summed across frequencies, which peaks at the active
PU locations. To localize and estimate the transmit-PSDs,
a grid of Ng = 100 equidistant points is used. The map
obtained by using the GS-Lasso-based sensing algorithm is
shown in Fig. 3(b), which also depicts the estimated po-
sitions of the transmitting PUs along with their transmis-
sion powers (in dB) represented by the coefficients of the
normalized raised-cosines. One can readily notice that ‘‘PU
1’’ is perfectly localized and its transmit-PSD is estimated
accurately. As for ‘‘PU 2’’, its location is revealed although
spurious power is also leaked to an adjacent grid point.
The sparsity-promoting parameters λ1 and λ2 are set to
λ1 = 30 · max{BT ϕ̂} and λ2 = 10 · maxr{∥BT

xr ϕ̂∥2}, re-
spectively [9]. Fig. 4 corroborates the convergence of the
GS-Lasso solver by showing the evolution of the elements
of θ(j) [cf. Fig. 3(b)].

In Fig. 5, the transmit-PSDs undergo not only small-
scale fading but also log-normal shadowing. As the CRs
employ a path loss-based model, shadowing here perturbs
the regression matrix. Expressed in logarithmic scale, the
shadowing process has zero mean and standard deviation
6dB. The estimated PSD maps obtained by using the
‘‘plain’’ GS-Lasso and the GS-TLS-based sensing algorithm
of Section 4.1 are compared in Fig. 6.

Fig. 6(a) illustrates that the GS-Lasso is unable to
localize the two PUs, as clouds of PU sources are falsely
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Fig. 3. PU PSD maps (path loss-only propagation).
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Fig. 5. True PSD map (shadowing propagation effects).

revealed around the actual locations of ‘‘PU 1’’ and ‘‘PU
2’’. Also, it does not accurately estimate their PSDs. On the
other hand, theGS-TLS algorithm reveals the exact location
of both PUs, although a rather small amount of spurious
power is leaked to a grid point close to ‘‘PU 1’’. Note also
that the transmit-powers are estimated with considerably
higher accuracy. Numerical experiments have shown that
only a few (5–10) iterations suffice for the alternating
descent algorithm to converge.

The enhanced localization and power estimation capa-
bilities impact also the subsequent CR power allocation
task, which relies on the estimated coverage region of the
PU-transmitters to re-use the licensed bandswithout caus-
ing harmful interference to any potential PU receiver [25].
GS-Lasso will be preferable if a coarse description of the
‘‘interference-heavy’’ areas in terms of PU activity is de-
sired over say accurate localization and transmit-power es-
timation of the PUs. Such a coarse can be useful for e.g.,
temporal (rather than spatio-temporal) frequency re-use
purposes.

As mentioned in Section 5, abrupt local shadow fading
may severely compromise the PSD estimates at CRs, and
thus degrade the sensing performance. This is the case
considered in Fig. 7, where an obstacle positioned in the
upper-left part of the monitored area causes deep fades of
the receive-power at some CRs. Fig. 8(a) demonstrates that
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Fig. 7. True PSD map (deep shadowing caused by an obstacle).

‘‘plain’’ GS-Lasso fails to localize the two PU transmitters.
Activity is revealed around the actual location of ‘‘PU
1’’, and shadowing causes the false detection of a third
low-power PU in position xg = (80, 70) transmitting
over the same band of ‘‘PU 2’’. This false-detection event
is not present in Fig. 8(b), where the robust GS-TLS
algorithm of Section 5 is used. In fact, ‘‘PU 2’’ is well-
localized and its transmit-PSD is estimated accurately. A
small amount of power is still dribbled on an adjacent
grid point of ‘‘PU 2’’. With λ3 = 30 · max{BT ϕ̂}, further
analysis of the data reveals that 15% of the periodogram
samples, specifically those collected by the ‘‘faded CRs’’,
was declared unreliable, and was thus discarded.

7. Concluding remarks

Spatio-temporal and dynamic re-use of the licensed
bands calls for collaborative CR network sensing algo-
rithms able to portray the ambient power spectral den-
sity at arbitrary locations in space, frequency, and time.
The present paper addressed this ambitious task through
a parsimonious model of the PSD in frequency and space,
which reduces the sensing task to estimating a sparse vec-
tor of unknown parameters. An estimator of the model
parameters was developed based on the GS-Lasso, and
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Fig. 6. Estimated PSD maps of Fig. 5.
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Fig. 8. Estimated PSD maps of Fig. 7.

a low-complexity solver based on the ADMoM was pre-
sented. The location and transmit-PSD information con-
veyed by the estimated model parameters, complemented
with either a path loss-based or more elaborated propaga-
tion models was shown to allow CRs to accurately recon-
struct the PSD atlas of the primary system. To cope with
uncertainty in the regression matrix, a provably conver-
gent sensing algorithm was introduced which combines
themerits of the TLS frameworkwith the hierarchical spar-
sity inherent to the network-level sensing problem. To
account for outliers, a robust algorithm able to discern
and reject unreliable PSD data was also developed. The
novel robust GS-TLS approach capitalizes on the sparsity of
the unknown parameters and the outliers, and offers sys-
tematic estimation of the spectrum holes jointly in space,
frequency, and time while taking into account channel un-
certainties and unmodeled errors.

References

[1] Q. Zhao, B.M. Sadler, A survey of dynamic spectrum access, Signal
Process. Mag. IEEE 24 (3) (2007) 79–89.

[2] X. Hong, C. Wang, H. Chen, Y. Zhang, Secondary spectrum access
networks, IEEE Veh. Technol. Mag. 4 (2) (2009) 36–43.

[3] G. Ganesan, Y. Li, B. Bing, S. Li, Spatio-temporal sensing in cognitive
radio networks, IEEE J. Sel. Areas Commun. 26 (1) (2008) 5–12.

[4] Z. Quan, S. Cui, H.V. Poor, A.H. Sayed, Collaborativewideband sensing
for cognitive radios, IEEE Signal Process. Mag. 25 (6) (2008) 60–73.

[5] J. Ma, G. Zhao, Y. Li, Soft combination and detection for cooperative
spectrum sensing in cognitive radio networks, IEEE Trans. Wireless
Commun. 7 (11) (2008) 4502–4507.

[6] J. Unnikrishnan, V.V. Veeravalli, Cooperative sensing for primary
detection in cognitive radio, IEEE J. Sel. Top. Signal Process. 2 (1)
(2008) 18–27.

[7] S.-J. Kim, G.B. Giannakis, Sequential and cooperative sensing for
multichannel cognitive radios, IEEE Trans. Signal Process. 58 (8)
(2010) 4239–4253.

[8] A.B.H. Alaya-Feki, S.B. Jemaa, B. Sayrac, P. Houze, E. Moulines,
Informed spectrum usage in cognitive radio networks: interference
cartography. In Proc. of the PIMRC Conf., 1–5, Cannes, France, Sep.
2008.

[9] J.A. Bazerque, G. Mateos, G.B. Giannakis, Group-lasso on splines for
spectrum cartography, IEEE Trans. Signal Process. 59 (10) (2011)
4648–4663.

[10] E. Dall’Anese, S.-J. Kim, G.B. Giannakis, Channel gain map tracking
via distributed kriging, IEEE Trans. Veh. Technol. 60 (3) (2011)
1205–1211.

[11] J. Friedman, T. Hastie, R. Tibshirani, A note on the group Lasso and a
sparse group Lasso Preprint, 2010. Downloadable fromhttp://www-
stat.stanford.edu/~tibs.

[12] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[13] J.-A. Bazerque, G.B. Giannakis, Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity, IEEE Trans. Signal
Process. 58 (3) (2010) 1847–1862.

[14] B. Mark, A. Nasif, Estimation of maximum interference-free power
level for opportunistic spectrum access, IEEE Trans. Wireless
Commun. 8 (5) (2009) 2505–2513.

[15] M.A. Herman, T. Ströhmer, General deviants: an analysis of
perturbations in compressive sensing, IEEE J. Sel. Top. Signal Process.
4 (2010) 342–349.

[16] H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-
squares for perturbed compressive sampling, IEEE Trans. Signal
Process. 59 (2011).

[17] Y. Zhang, N. Meratnia, P. Havinga, Outlier detection techniques for
wireless sensor networks: a survey, IEEE Commun. Surveys Tuts. 12
(2) (2010) 159–170.

[18] T.S. Rappaport, Wireless Communications: Principles & Practice,
Prentice Hall, 1996.

[19] C. Oestges, N. Czink, B. Bandemer, P. Castiglione, F. Kaltenberger,
A.J. Paulraj, Experimental characterization andmodeling of outdoor-
to-indoor and indoor-to-indoor distributed channels, IEEE Trans.
Veh. Technol. 59 (5) (2010) 2253–2265.

[20] D. Angelosante, J.A. Bazerque, G.B. Giannakis, Online adaptive
estimation of sparse signals: where RLS meets the ℓ1-norm, IEEE
Trans. Signal Process. 58 (7) (2010) 3436–3447.

[21] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R.
Stat. Soc. 58 (1) (1996) 267–288.

[22] M. Yuan, Y. Lin, Model selection and estimation in regression with
grouped variables, J. R. Stat. Soc. 68 (2006) 49–67.

[23] P. Sprechmann, I. Ramírez, G. Sapiro, Y.C. Eldar, C-HiLasso:
A collaborative hierarchical sparse modeling framework, IEEE
Transactions on Signal Processing 9 (59) (2011) 4183–4198.

[24] S.-J. Kim, E. Dall’Anese, G.B. Giannakis, Cooperative spectrum
sensing for cognitive radios using kriged Kalman filtering, IEEE J. Sel.
Top. Signal Process. 5 (2011) 24–36.

[25] E. Dall’Anese, S.-J. Kim, G.B. Giannakis, S. Pupolin, Power allocation
for cognitive radio networks under channel uncertainty, in: Proc. of
the Intl. Conf. on Communications, Kyoto, Japan, Jun. 2011.

[26] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univer-
sity Press, 2004.

[27] A. Ruszczynski, Nonlinear Optimization, Princeton Univ. Press,
Princeton, NJ, 2006.

[28] G. Mateos, J.-A. Bazerque, G.B. Giannakis, Distributed sparse linear
regression, IEEE Trans. Sig. Proc. 58 (10) (2010) 5262–5276.

[29] S. Van Huffel, J. Vandewalle, The total least-squares problem:
computational aspects and analysis, in: ser. Frontier in Applied
Mathetatics, SIAM, Philadelphia, 1991.

[30] P. Tseng, Convergence of block coordinate descent method for
nondifferentiable maximation, J. Optim. Theory Appl. 109 (3) (2001)
475–494.

http://www-stat.stanford.edu/~tibs
http://www-stat.stanford.edu/~tibs
http://www-stat.stanford.edu/~tibs


12 E. Dall’Anese et al. / Physical Communication ( ) –

[31] P.J. Huber, E.M. Ronchetti, Robust Statistics, Wiley, New York, 2006.
[32] J.J. Fuchs, A new approach to robust linear regression. in: Proc. of

14th IFAC world congress, pp. 427–432, Beijing, 1999.

Emiliano Dall’Anese (S’08, M’10) was born in
Belluno, Italy, on 10 March, 1983. He received
the Laurea Triennale (B.Sc degree) and the Lau-
rea Specialistica (M.Sc degree) in telecommu-
nication engineering from the University of
Padova, Italy, in 2005 and 2007, respectively,
and the Ph.D in Information Engineering at the
Department of Information Engineering (DEI),
University of Padova, Italy, in 2011. From Jan-
uary 2009 to September 2010, he was a visit-
ing scholar at the Department of Electrical and

Computer Engineering, University of Minnesota, USA. He is currently a
post-doctoral associate at the Department of Electrical and Computer En-
gineering, University of Minnesota, USA.

His research interests lie in the areas of communication theory and
statistical signal processing. His current research focuses onwireless cog-
nitive radio systems, sensor networks, distributed signal processing, and
smart grid.

Juan Andrés Bazerque (S’06) received his B.Sc.
degree in Electrical Engineering from Univer-
sidad de la República (UdelaR), Montevideo,
Uruguay in 2003. Since August 2006 he has been
a research assistant at the University of Min-
nesota (UofM), Minneapolis, where he received
his M.Sc. in Electrical Engineering in August
2009, and continues working towards the Ph.D.
degree. From 2000 to 2006 hewas a teaching as-
sistantwith theDepartment ofMathematics and
Statistics, and with the Department of Electrical

Engineering (UdelaR). From 2003 to 2006 he worked as a telecommuni-
cations engineer at the Uruguayan company Uniotel S.A. developing ap-
plications for Voice over IP.

His broad research interests lie in the general areas of networking,
communications, and signal processing. His current research focuses
on distributed signal processing, cooperative wireless communications,
compressive sampling, sparsity-aware statistical models, and gene
expression networks.

Juan Andrés Bazerque is the recipient of the UofM’s Distinguished
Master’s Thesis Award 2009-2010, and co-recipient of the best student
paper award at the 2nd International Conference on Cognitive Radio
Oriented Wireless Networks and Communication 2007.

Georgios B. Giannakis (Fellow’97) received
his Diploma in Electrical Engr. from the Ntl.
Tech. Univ. of Athens, Greece, 1981. From
1982 to 1986, he was with the Univ. of
Southern California (USC), where he received
his MSc. in Electrical Engineering, 1983, MSc. in
Mathematics, 1986, and Ph.D. in Electrical Engr.,
1986. Since 1999, he has been a professor with
the Univ. of Minnesota, where he now holds an
ADC Chair in Wireless Telecommunications in
the ECE Department, and serves as director of

the Digital Technology Center.
His general interests span the areas of communications, networking

and statistical signal processing-subjects on which he has published
more than 300 journal papers, 550 conference papers, two edited
books and two research monographs. Recent and current research
focuses on distributed and sparsity-aware signal processing, machine
learning, compressed sensing, network coding, cognitive radios, cross-
layer designs for wireless mobile networks, and social networks. He is
the (co-) inventor of 21 patents issued, and the (co-) recipient of seven
paper awards from the IEEE Signal Processing (SP) and Communications
Societies, including the G. MarconiPrize Paper Award in Wireless
Communications. He also received Technical Achievement Awards from
the SP Society (2000), from EURASIP (2005), a Young Faculty Teaching
Award, and the G. W. Taylor Award for Distinguished Research from the
University of Minnesota. He is also a Fellow of EURASIP, and has served
the IEEE in a number of posts, including that of a Distinguished Lecturer
for the IEEE-SP Society.


	Group sparse Lasso for cognitive network sensing robust to model uncertainties and outliers
	Introduction
	System model and problem formulation
	Spectrum sensing via group sparse Lasso
	PSD atlas
	ADMoM-based solver

	Spectrum sensing under channel uncertainties
	Group sparse total least-squares
	Alternating descent solver

	Outlier-resilient spectrum sensing
	Robust GS-TLS
	Alternating descent algorithm

	Simulations
	Concluding remarks
	References


