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Abstract

In most digital cameras, and even in high-end digital SLRs, the ac-

quired images are sampled at rates far below the Nyquist critical rate,

causing aliasing effects. This work introduces a blind algorithm for the

subpixel estimation of the point spread function of a digital camera from

aliased photographs. The numerical procedure simply uses two fronto-

parallel photographs of any planar textured scene at different distances.

The mathematical theory developed herein proves that the camera psf

can be derived from the inter-image kernel. Mathematical proofs supple-

mented by experimental evidence show the well-posedness of the problem

and the convergence of the proposed algorithm to the camera in-focus

psf. An experimental comparison of the resulting psf estimates shows

that the proposed algorithm reaches the accuracy levels of the best non-

blind state-of-the-art methods.

1 Introduction

Light diffraction, lens aberrations, sensor averaging and antialiasing filters are
some of the inherent camera factors that unavoidably introduce blur in images.
The blur that results from the combination of all these factors can be modeled
locally as a convolution kernel known as point spread function (psf), that cor-
responds to the space variant impulse response of the whole camera, including
the sensor, before the final sampling.

The area enclosed by the first zero crossing of the psf, usually called Airy
pattern, is arguably the most reasonable characterization of the optical system
resolution. Top camera/lens manufacturers use charts based on the psf Fourier
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spectrum modulus (the Modulated Transfer Function, mtf) to describe their
products. But accurate knowledge of the psf is not limited to quality assessment
of optical devices, and proves to be extremely useful or even necessary for several
image processing tasks such as deblurring [26], super-resolution [27] or shape
from defocus [9].

psf estimation procedures can be either blind or non-blind. Non-blind ap-
proaches assume perfect knowledge of a specially designed calibration pattern,
and perform local kernel estimation by comparing one or several photographs of
the calibration pattern with the ideal calibration pattern. Several patterns have
been used for psf estimation, ranging from pin-hole, slanted-edge [16, 29, 34, 10],
or arc-step-edge patterns [18, 17] to random noise images [11, 19, 2, 3, 6].

Blind approaches estimate the psf from a single or a set of photographs from
one or several scenes, whose exact knowledge or exhaustive descriptions are not
required. They do assume, however, that the scenes involved in the estimation
follow some statistical model of sharp images, or include a significant amount
of geometric cues such as sharp edges. Most blind psf approaches attempt to
detect edges, which are modeled as pure step-edge functions convolved with the
psf kernel [8, 22, 7, 30]. In this setting, blind estimation is very ill-posed; to solve
the inverse problem, the solution space has to be constrained by considering
kernels with a parametric model or with strong regularity assumptions. Such
blind estimation techniques are therefore much less accurate than their non-
blind counterparts.

The blind psf estimation problem is closely related to depth-from-defocus
(dfd) methods (see for example e.g [28]). However dfd methods typically
assume a one-parameter-model for the out-of-focus psf, e.g. a isotropic gaussian
blur or a pillbox kernel in order to regularize the estimation.

In most typical digital cameras, and even in high-end dslrs, the acquired
images are sampled at rates far below the Nyquist critical rate, causing alias-
ing effects. Until recently, all non-blind sub-pixel psf estimation methods from
aliased images reported in the literature led to ill-posed inverse problems that,
like in the blind case, required the imposition of simple parametric models, or
equivalently of priors on the regularity or symmetry of the psf. Nevertheless in
a recent work [13] the authors of the present paper have shown that such a priori
assumptions on the psf are actually unnecessary and jeopardize the estimation
accuracy. Using a realization of white Bernoulli noise as calibration pattern has
been demonstrated to be nearly optimal in terms of well-conditioning of the ma-
trix to be inverted. Thus, under reasonable lab conditions, the inverse problem
is actually well posed and can deliver a very accurate regularization-free subpixel
psf estimation. Surprisingly, while other approaches using noise patterns had
been previously reported, none of them had proposed a regularization-free sub-
pixel psf estimation scheme [11, 19, 2, 3, 6]. The main goal of the present paper
is to extend this methodology to non-blind psf estimation. This makes it far
more practical. Indeed, non-blind psf estimation approaches rely on a careful
setup. The calibration grid has to be properly assembled; a good quality print
is necessary. Also, although most methods can handle some variations in illu-
mination and projective deformations, some care in the photograph acquisition
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is also needed.
In contrast, the proposed acquisition procedure is simple and handy. It

ensures regularization-free subpixel recovery of the psf from a pair of two pho-
tographs of the same scene acquired at different distances with fixed camera
configuration. Last but not least, experimental evidence will show that the re-
sulting estimates do not exhibit any significant accuracy loss compared to their
best non-blind competitors. The choice of the photographed scene is not criti-
cal. For a wide range of everyday scenes, the acquired image pairs lead to well
posed inversions and highly accurate results.

The article is organized as follows: Section 2 presents a mathematical model
of the image formation carried out by the camera, modeling accurately the alias-
ing. This model is used in Section 3, where it is shown that the camera psf can
be recovered from a pair of unknown scaled images, under reasonable conditions.
The main algorithmic stages of the method derived mathematically in Section 3
are summarized in Section 4. Section 5 discusses a series of experiments on real
and simulated images. Finally, Section 6 closes with a brief recapitulation and
conclusions. The paper ends with appendices containing a detailed notation
and complete mathematical proofs.

Indeed, this paper is written with a dual use in mind: Mathematicians
and/or image processing specialists. We have tried to define accurately all
mathematical objects necessary to deal rigorously with image formation. An
accurate formalism is needed to justify the somewhat intricate interlacement of
sampling and convolution operations. This forces one to check on the compati-
bility of all function or distribution spaces the objects belong to, and to verify
that the formulas are mathematically consistent. Nevertheless the application-
oriented reader can skip the proofs and the functional space details at a first
reading, and simply focus on the standard image processing formalism and al-
gorithms. Most proofs are anyway placed at the end of the paper. A glossary
is appended to display all notation in a single place.

2 Image Formation Model

An accurate estimation of the psf requires a proper modeling of the digital im-
age formation process. The geometric component of this process is most often
modeled in computer vision by a pin-hole camera. An ideal pin-hole camera
with focal length f , shooting at a planar scene u from a distance d and at
fronto-parallel pose, will produce an image w(x) = u(λx) which is just an ho-
mothecy of zoom-out factor λ = d

f of the original planar scene u. If the pose is

not perfectly fronto-parallel, or the pin-hole camera is not ideal (non-standard
internal calibration parameters), then the relationship between w and u will
be a planar homography D, i.e. w = u ◦D. In a more accurate camera model
(pin-hole + geometric distortion) the distortion D takes the form of a more gen-
eral (but regular) diffeomorphism. This is required when the scene is a regular
close-to-planar surface (as is assumed here), or when the geometric distortion
due to the optical system is taken into account as suggested in [34, 18, 13].
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For the purpose of psf estimation this simple model needs to be augmented
with an accurate radiometric component, comprising at least the following ele-
ments:

1. A model of continuous to digital conversion at the image plane, i.e. a sam-
pling operator S1 and additive noise n due to measurement uncertainties;

2. The blurring kernel h due to intrinsic camera characteristics, such as
diffraction when light goes through a finite aperture, light averaging within
the sensor, lens aberration, etc.1

The whole image formation process can be summarized in a single equation

ṽ = g (S1 ((u ◦D) ∗ h)) + n,

where g(·) is a monotone non-decreasing function that describes the non-linear
sensor response. If the camera is working outside the saturation zone, the
response should be linear, since the procedure deals directly with raw images.
Therefore, the function g will be assumed linear. It boils down to a rescaling of
the dynamics of u and therefore disappears w.l.o.g. from the model. Hence, in
the sequel, the image formation model will be

(M) ṽ = S1 ((u ◦D) ∗ h) + n.

Since in practice our data consist exclusively of discrete sequences (or digital
images), the image formation model will be rewritten in terms of discrete se-
quences. This requires the introduction of additional notation. It would be
cumbersome to verify systematically all regularity requirements on all functions
and distributions needed in the proofs. Thus, all necessary results are given in
a precise form in the appendices. They will be invoked in the proofs and the
reader is invited to check that their use was licit.

NOTATION In the sequel, continuous images are defined for x ∈ R
2, whereas

digital images are sampled on a discrete grid k ∈ Z
2. F denotes the Fourier

transform and f̂ denotes the Fourier transform of a function f . The Shannon-
Whittaker interpolator defined as I1u(x) =

∑

k
u(k)sinc(x − k) is denoted by

I1, S1 is the 1-sampling operator such that u(k) = (S1u)(k) = u(k). The filter
Ww is an ideal low-pass filter that cuts the sprectrum of a continuous signal to
[−wπ,wπ]

2
. Let us denote by Ss the s-to-1-resampling operator Ss = S1HsI1

and the continuous homothecy Hλu(x, y) = λ2u(λx, λy). (i.e. λ > 1 is a zoom-
out). The digital Nyquist homothecy operator of parameter α is defined by
Hαu := S1W1HαI1u. We also denote the linear map associated to the convo-
lution with a digital image u by C[u]. Let L be a linear operator, and denote

1Note that other blur effects, like motion or defocus blur, that may change from one

snapshot to another will be carefully avoided by the experimental procedure.
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by L∗ its adjoint, and by L+ (if exits) its left pseudo-inverse L+ := (L∗L)−1L∗.

A more precise definition of each term is presented in Appendix A.

Suppose that the psf h is s-band-limited, that is supp(ĥ) = [−sπ, sπ]
2
.

Then, if sampled at a rate s, the Nyquist sampling theorem guarantees a perfect
reconstruction of h from its samples h = S1H 1

s
h. We are actually interested in

the case s > 1, usual for digital cameras. This means that the images obtained
from (M) are aliased, being obtained after convolution with h and 1-sampling.

The image formation model (M) can be written in terms of discrete se-
quences, which are the real numerical data that are dealt with:

ṽ = Ss(ūD ∗ h) + n, (1)

where the digital image ūD = S1W1H 1

s
u(D(·)) is a well-sampled version of

the distorted image u ◦ D. The value s is the resampling rate from the high
resolution lattice s×, where the psf estimation will take place, to the 1× sensor
grid. The derivation of Eq. (1) follows from Lemma 6, given in the appendix.

Equation (1) can be rewritten as

ṽ = SsC[ūD]h+ n. (2)

The numerical method will recover only a finite number of samples h of h.
Strictly speaking h being band limited cannot be compactly supported. Nonethe-
less, the error introduced by assuming that the support of h is bounded will
prove negligible in comparison to the other sources of error: image noise, quan-
tization, slight estimation errors of D, etc. Indeed, the retrieved solution h will
prove to be experimentally independent from variations of its assumed support
as long, as it is large enough for errors to be negligible, and small enough for
the operator to be still well conditioned.

When n is a zero-mean white discrete Gaussian noise, it follows from the
previous formula that he = (SsC[ūD])+ṽ is an unbiased estimator of h, as long
as the linear operator SsC[ūD] is injective. It can be shown that the estimator
variance is proportional to the Hilbert-Schmidt norm of (SsC[ūD]) (for matrices,
the Frobenius norm2), and that it is nearly minimal when uD is a white noise
realization (see [13]).

3 PSF Estimation from two unknown scaled im-

ages

Assume that we perfectly know the latent sharp image u that produced the
blurry aliased observation v. Under this non-blind assumption solving for the

2Recall that the Hilbert-Schmidt norm is
∑

i
‖Lei‖2, where {ei} is any Hilbert basis of

the domain of L. If the linear operator is a matrix then the Hilbert-Schmidt norm is the

Frobenius norm of the matrix.
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psf amounts to solve an inverse problem governed by the image formation
model (M). The common approach that relies on regularization techniques al-
lows to correctly recover the geometric and radiometric distortions (D and g),
but severely distorts the high-frequency components of h. Notwithstanding, it
is shown in [13] that this non-blind inverse problem is well posed as long as a
white noise image u is chosen as calibration pattern, and that it yields an unbi-
ased estimation of h, no regularization being used. In contrast the widespread
calibration patterns based on step-edges (see for instance [18]) lead to ill-posed
inverse problems, thus precluding an accurate subpixel estimation of h, unless
the family of admissible kernels h is drastically reduced by regularization tech-
niques.

Between these two extremes (perfect step edges and noise patterns), many
highly textured natural scenes exist which, while not being optimal, potentially
lead to a well-posed inverse problem. They will be exploited in this article to
circumvent the non-blind hypothesis, by taking two snapshots of the same scene.

More precisely, this section will prove that the complete recovery of the
camera psf is theoretically possible, from the estimate of the kernel blur between
two images of the same scene from different distances. The presentation is
divided in two parts. First this kernel will be characterized for a pair of fronto-
parallel views of a planar scene, and precise conditions will be given under which
this inter-image kernel can be estimated. Then the camera psf will be derived
from the inter-image kernel, under very weak and reasonable conditions.

3.1 Estimating the relative blur between two images

Consider two digital images ṽ1, ṽ2 of the same planar scene u, captured from
different distances in a fronto-parallel position with negligible rotation around
the optical axis. Let λ1 and λ2 denote the corresponding zooms between the
scene and each of the images. This can be written

ṽi = S1Hλi
u ∗ h+ ni for i = 1, 2 (3)

= S1vi + ni

= vi + ni,

where vi := Hλi
u ∗ h and vi := S1vi. We will realistically assume that

h ∈ L1 ∩ BL2
0(R

2) is non-negative with ‖h‖L1 = 1, and u ∈ L1(R2). (This
classic notation is recalled at the end of the paper. The reader may skip the
functional considerations at first reading). Also, it will be assumed that the
acquisition distances are such that sλ1 < λ2; the importance of this assumption
will soon become clear.

Definition 1. Let v1, v2 ∈ BL2
0(R

2) be two fronto-parallel continuous views of
the same scene, acquired from different distances λ1 and λ2 respectively. We
call inter-image kernel between v1 and v2, any kernel k ∈ BL2

0(R
2) satisfying

v2 = Hλ2/λ1
v1 ∗ k.
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The following lemma provides a characterization of the inter-image kernel.

Lemma 1. Let h ∈ L1∩BL2
0(R

2) be non-negative, band-limited with supp(ĥ) ⊂

[−sπ, sπ]2 and ĥ(0) = 1. Let ρ be the largest positive number such that ĥ(ζ) > 0
for every ‖ζ‖

∞
< ρπ and assume that λ2ρ ≥ sλ1. Then there is an inter-image

kernel k ∈ BL2
0(R

2) with support in [−sπ, sπ]2 between (fronto-parallel views)
v1 and v2 that satisfies

Hλh ∗ k = h, where λ =
λ2

λ1
. (4)

If û does not vanish inside [−s π
λ2

, s π
λ2

] then the inter image-kernel is unique
and only depends on h and λ.

Proof. In the Fourier domain

F(Hλv1)(ζ) = v̂1 (ζ/λ) = û (ζ/λ2) ĥ (ζ/λ) .

On the other hand
v̂2 (ζ) = û (ζ/λ2) ĥ (ζ) .

If k is an inter image kernel between v1 and v2 we have

F(Hλv1)(ζ)k̂(ζ) = v̂2(ζ).

Thus by Definition 1 k is an inter-image kernel if and only if

û (ζ/λ2) ĥ (ζ/λ) k̂(ζ) = û (ζ/λ2) ĥ (ζ) .

Thus any kernel k satisfying ĥ (ζ/λ) k̂(ζ) = ĥ (ζ) where û (ζ/λ2) is not zero will
be an inter-image kernel.

Since ĥ is the Fourier transform of an L1(R2) image, it is continuous and,

since ĥ(0) = 1 > 0, then ρ is necessarily positive. In addition, as λ > s
ρ by

hypothesis, F(Hλh)(ζ) = ĥ(ζ/λ) does not vanish inside [−sπ, sπ]2. Thus

k̂(ζ) =
ĥ(ζ)

ĥ(ζ/λ)
(5)

is well defined all over its support supp(k̂) ⊂ [−sπ, sπ]
2
and therefore so is

k. Moreover, k ∈ L2(R2), being bandlimited with k̂ is continuous. Finally, if

û (ζ/λ2) is not zero in the support of ĥ, k is unique.

Remark 1. In the previous Lemma 1 it is assumed that the psf h is the same
for the two images. This has at least two practical implications. First, extreme
precautions should be taken to ensure that both images are strictly in focus to
avoid inconsistence with the mathematical formulation. Also, we are assuming
that as long as both images are taken in focus the psf remains constant (of
course with all the other camera parameters fixed). Secondly, since the common
area between v1 and v2 is an important part of the closest image, i.e. v1 psf

space variance all over the image v1 may degrade the estimation. This can be
avoided taking images that cover only the central part of the image, where the
assumption of having a uniform kernel is reasonable.
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Remark 2. The constraint on λ > s/ρ ensures that the continuous zoomed-in
image is not destroying any necessary information to generate the continuous
zoomed-out version.

The next goal is to estimate k. Some intuition will be built up first on how
to derive the proposed estimator. Conditions will also be given under which the
estimator is unbiased. Being s-bandlimited k can be exactly reconstructed from
its s× samples denoted by k. Let us denote by v̊1 = S1W1Hλ

s
v1 a well sampled

homothety of parameter λ
s of v1.

Proposition 1. Under the assumptions of Lemma 1 if the operator SsC[̊v1] is
injective, then

k = (SsC[̊v1])
+v2.

Proof. Since k satisfies Eq. (4), it is an inter-image kernel between v1 and v2.
Then,

v2 = S1(v2)

= S1(Hλv1 ∗ k).

Using that k is s-band-limited, it follows that

v2
(14)
= S1(WsHλv1 ∗Wsk). (6)

By applying the Nyquist-Shannon theorem for a band-limited signal, and other
properties that are detailed in the Appendix we have

v2
s>0
= S1HsH 1

s
(WsHλv1 ∗Wsk)

(16)
= S1Hs(H 1

s
WsHλv1 ∗H 1

s
Wsk)

(15)
= S1Hs(W1Hλ

s
v1 ∗W1H 1

s
k)

(12)
= S1HsI1S1(W1Hλ

s
v1 ∗W1H 1

s
k)

(17)
= S1HsI1(S1W1Hλ

s
v1 ∗ S1W1H 1

s
k)

def
= S1HsI1 (̊v1 ∗ k)

def
= Ss(̊v1 ∗ k)

def
= SsC[̊v1]k. (7)

The result follows from the fact that SsC[̊v1] is injective, thus it can be left
inverted.

Remark 3. If λ < s then the convolution of k with v̊1 is not invertible so
the operator SsC[̊v1] will not be injective. This constraint on λ ensures that the
zoomed-in image presents enough information to generate the digital zoomed-out
version.
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All digital images are in practice defined in a compact domain. It can be
assumed realistically that the kernel support k is much smaller than the support
of ṽ2. It is shown in [13] that for a typical s = 4 value the operator SsC[Hλ

s
ṽ1]

is injective and the pseudo inverse is well posed as long as ṽ1 is close to white
noise. Therefore the chosen scene image u should exhibit the characteristics of
a white noise.

Of course, in practice we do not have access to v1 (or v̊1) nor to v2, but to
their noisy, aliased versions ṽ1 and ṽ2. Thus k must be estimated in the same
way, with the sequences that are available.

Hλ
s
ṽ1

def
= S1W1Hλ

s
I1v1 + n

= S1W1Hλ
s
v1 + S1W1Hλ

s
(I1v1 − v1) + n

def
= v̊1 + r+ n,

where n = Hλ
s
n1, and r = S1W1Hλ

s
(I1v1 − v1) is the aliasing term introduced

when sampling v1.

Neglecting the aliasing It was assumed that the aliasing term r could be ne-
glected. Let us explore under which conditions this is a reasonable assumption.
Since

r = S1W1Hλ
s
(I1v1 − v1)

(15)
= S1Hλ

s
W s

λ
(I1v1 − v1),

the estimation will only be affected by aliasing if there are aliasing components

in the frequency interval
[

− s
λπ,

s
λπ

]2
. This allows us to choose v1 = Hλ1

u such

that supp(v̂1) ⊂
[

−2π + s
λπ, 2π − s

λπ
]2

(see Figure 1). Last, to minimize the
impact of the aliasing term the images should be acquired from a pair of fronto-
parallel locations as far as possible one from the other, since that amounts to
increase the value of λ.

Finally, one simple way of estimating k is by considering the least squares
estimator

ke :=
(

SsC[Hλ
s
ṽ1]

)+

ṽ2.

This estimator will be accurate as long as the noise is much smaller than
the signal power and the aliasing term r = S1W1Hλ

s
(I1v1 − v1). More details

of the estimation stability are presented in Section 4.

3.2 From relative to absolute blur

Notice that h appears on both sides of Equation (4). However, it can be obtained
from k by calculating the following limit

h = lim
n→∞

Hλn−1k ∗ . . . ∗Hλk ∗ k.
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aliasing
terms

Figure 1: Neglecting the aliasing The estimation will only be affected by aliasing

if there are aliasing components in the interval
[

− s
λπ,

s
λπ

]2
. Hence, to avoid

aliasing one can choose v1 = Hλ1
u such that supp(v̂1) ⊂

[

−2π + s
λπ, 2π − s

λπ
]2
.

The proof is given in Appendix (Proposition 5). This proves that one can recover
the camera psf at s× resolution h from the inter-image kernel k = HsI1k.

4 The complete PSF Estimation Procedure

This section describes the algorithmic steps that lead to local subpixel psf esti-
mates. The complete chain is summarized in the block diagram of Fig. 2. The
next paragraphs present brief summaries for each block.

Image Alignment In order to estimate the geometric transformation be-
tween both images, they need to be precisely aligned. For that purpose sift

descriptors [21] which are scale and contrast-change invariant are obviously the
right choice. The IPOL implementation of asift [24, 25] was chosen because of
the efficiency of the Optimized Random Sampling Algorithm (orsa) rejection
of false matches.

Geometric Transform Estimation The complete geometric transformation
from one image to the other was approximated with thin-plate splines [5, 31]
from the matched sft pairs. Modeling the geometric transformation in this
way, permits to correct small non-affine distortions, especially in the zoomed-
in view and little deviations from the parallel assumption when interpolating
ṽ2 to generate Hλ

s
ṽ2. Of course, if the distortion is significant the assumed

inter-image kernel Eq. (4) will not be accurate. The thin-plate representation
as affine + non-affine parts of the geometric distortion is specially handful to
estimate the relative scale λ = (λx, λy) between both views, since this can be
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Figure 2: Algorithm Description. Both captured images are aligned via sift

feature matching followed by the estimation of a smooth geometric distortion
through thin-plate approximation of matched features. The relative geometric
distortion and gray-level corrections are applied to a low-pass (unalised) version
of the finest scale image 1. Then the interpolated image 1 and image 2 are com-
pared to obtain a relative blurring kernel h0 which is later iteratively updated
to obtain the absolute camera psf.

directly estimated from the affine part.

Gray level adjustment Both snapshots should be taken with exactly the
same camera configuration. This implies that (provided that the scene illumi-
nation remained unchanged) it should not be necessary to compensate the gray
levels between the two scenes.

Resampling and Distortion Correction of v1 To generate the rescaled
samples Hλ

s
ṽ1 from the digital image ṽ1 requires its interpolation at the de-

sired scale λ
s . This is done by using the estimated geometric transformation.

Notice that since ṽ1 is not very aliased, one can correctly interpolate it without
introducing artifacts and thus correct small non-homothetic distortions between
both views without affecting the kernel estimation.

Numerical Methods for Inter-Image Kernel Estimation Suppose that
the image ṽ2 has size m × n. The goal is to estimate k at s× the resolution
of ṽ2 (camera sensor resolution). Also suppose that the estimated support
of the inter-image kernel k is inside a r × r image. The matrix SsC[Hλ

s
ṽ1]

corresponding to the s-downsampling operator and the convolution with the
interpolated Hλ

s
ṽ1 image, has size mn× r2. Then, the problem to be solved is
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formally written as

(P ) argmin
k

∥

∥

∥
SsC[Hλ

s
ṽ1]k− ṽ2

∥

∥

∥

2

.

Problem (P ) can be solved by a simple least-squares algorithm. If the noise
and the aliasing term are small then the solution to (P) will be close to the
solution of SsC[̊v1]

+v2. This is a direct consequence of applying Lemma 6 with
matrix A = SsC[̊v1] and perturbated matrix A+ ∆A = SsC[Hλ

s
ṽ1], and the

respective vector b = v2 and b+ δb = ṽ2.

Transforming the kernel: from k to h Recovering the camera psf h
requires to obtain the limit

h = lim
n→∞

Hn−1
λ k ∗ . . . ∗Hλk ∗ k.

Since k samples of k have been estimated at a small enough rate to be well
sampled according to Shannon theory, one can interpolate them to generate k.
Ideally this would require using a Shannon-Nyquist interpolator but a smoother
one, the cubic spline, was adopted, which is reasonable, k proving a posteriori
to be very smooth.

Directly working with the digital sequences requires some care about how
the successive convolutions are computed. For example, since k is bandlimited
Hλk should be lowpass filtered before applying the homothecy operator in order
to avoid aliasing artifacts when convolving with k (consequence of Lemma 17
and the fact that λ > 1). To avoid this inconvenient one can re-state the limit
convolution as follows:

h = lim
n→∞

Hλn(k ∗H 1

λ
k . . . ∗H 1

λn
k).

If implemented in this way, the successive convolutions can be computed without
any special care. Thus one can proceed as follows:

1. Initialize u0 = k, n = 1

2. Compute H1/λnk by using λ = (λx, λy) (from thin-plates affine part).

3. Calculate un = H1/λnk ∗ un−1.

4. If min{λn
x , λ

n
y} > λmax go to 5. Else update n := n+1 and repeat from 2.

5. Calculate h = Hn
λun.

The algorithm converges after a few iterations since λn grows very fast.
Setting λmax = 50, since the convolution with the inter-image kernel zoomed-
out 50× or greater produces a negligible change in the final result.

Finally, since negative light does not exist the estimated psf should be pos-
itive. We can therefore constrain the solution to be non-negative projecting the
result to the non-negative hyperplane.



BLIND PSF ESTIMATION 13

5 Experimental Results

Since there is no psf ground-truth available, the validation of the proposed
method was carried out by simulations and also by comparing the results with
state-of-the-art non-blind methods [18, 17, 13, 20]. We opted to compare only to
non-blind algorithms, the accuracy of blind methods being significantly lower.
The behavior of the proposed approach was tested for several different image
pairs and for super-resolution rates ranging from 1× to 4×. The experiments
were performed using a a Canon EOS 400D camera equipped with a Tamron
AF 17-50mm F/2.8 XR Di-II lens. The focal length was fixed to 50.0 mm. A
complete algorithmic description, an online demo facility and a source code can
be found at the IPOL workshop by [14].

Simulation as a Sanity Check A synthetic random image u was generated
and re-interpolated 4× in order to get the “continuous” sharp homothecy of the
image u. Next both images were convolved with a psf like kernel (in this case
a Gaussian isotropic kernel), and down-sampled to get the respective observed
digital images at the camera resolution (i.e. 1×). The kernel was chosen so that
the low resolution image presents aliasing artifacts. By generating the views of
u in this way, there are no aliasing artifacts in the camera resolution zoomed-in
image. This experiment was done as a sanity check of the proposed method. A
4× kernel was estimated from the observed image pairs. The results are shown in
Figure 3 and 4. The camera kernels estimation used the automatic registrations
from the detected sift points / thin-plates and the ideal known alignment. Both
estimations are accurate. Nevertheless, as shown in the difference images the
automatic alignment introduces a small mis-alignment. Since the two images
were simulated at distances in a 4× ratio, the difference between the inter-image
kernel and the psf are very small due to the large λ value (shown in figure 3
bottom row, on the right).

Blind vs. Non-blind Figure 6 shows the 4× psf estimated by the proposed
blind method from a pair of views of a wall shown in Figure 5. The estimation
was conducted for one of the green channels (half of the green pixels of the Bayer
matrix), with the camera aperture set to f/5.7. The estimated psf is quite close
to the one obtained with by the non-blind algorithm described in [13, 12]. In
particular their sizes are similar and their corresponding mtfs present zeros at
the same locations.

Bayer channels estimations Two pictures of a another textured wall shown
in Figure 7 were used to estimate the psf of the four color Bayer channels (raw
camera output). This wall texture presents characteristics similar to white noise.
The results for the 4× psf estimated at the image center are shown in Fig. 7.
Notice that the red channel psf is wider than the green and the blue one, as
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expected from the physics of diffraction-limited optical systems, since the wave-
lengths associated to red light are larger than the rest. The differences between
the dominant orientations of the red/blue and green psf spectra can be ex-
plained by the sensor shape. In fact, the sensor active zone is usually L-shaped
(see for example [33]). Thus the red/blue sensors in the Bayer pattern should
have, as observed, the same sensor term mtf and will be rotated 90◦ with re-
spect to the green channels.

Different kinds of scenes The images of a wall shown in the previous exper-
iments present good characteristics to use our blind psf estimation algorithm.
Despite having white noise appearance, they present enough structure to give
sufficiently accurate sift points. The counterpart is that the spectrum will not
be flat, thus the estimation at high frequencies may be affected. The sift de-
scriptors are not robust in high aliasing situations. Hence, there is a trade-off
between having accurate sift matches and textures with high frequency infor-
mation. The texture shown in Figure 7 is an example of a good compromise for
this trade-off.

Figure 8 shows the 1× to 4× psf estimations for the first green channel from
an image pair of a photograph from a magazine. The estimation was done at
the image center for the camera working at f/5.7 aperture. All the subpixel
estimations are consistent. As can be seen in this figure, they have overlap-
ping mtfs in the common regions. These newspaper images produce accurate
sift points. However the 4× psf estimation is noticeably noisier than the one
produced from the wall images. The main reason is that the spectrum of this
magazine image, made of edges, has a faster decay. Despite of this, the quality
of the 4× psf estimation is still reasonable.

What kind of textures should be used? It follows from the previous anal-
ysis that textures composed by elements with different sizes, are preferable, to
produce simultaneously good sift points and a sufficiently slow frequency decay.
3D textures like those shown in Figure 9 can be problematic for this approach.
Even though they respect the two previous conditions, their 3d nature produces
disparities and occlusions which change the image beyond a simple zoom. Like-
wise, non-Lambertian surfaces and dynamical scenes are not appropriated.

Comparison to non-blind methods Figure 10 shows a comparison of sev-
eral non-blind methods with the blind method proposed here, obtained from
the pair of wall images shown in Fig. 7. Since the non-blind methods achieve a
much higher accuracy than blind methods, the choice was to compare the blind
results obtained by the proposed method against those of state of the art non-
blind algorithms. Among the non-blind methods is the recent one introduced
in [13], which outperforms all methods shown in Figure 10. For this reason,
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the mtf estimated from this later non blind method will serve as ground-truth.
The Imatest commercial software for mtf estimation [20] is one of the evaluated
methods. The Imatest estimation is performed from a slanted-edge image and
only gives an estimate of the mtf at the direction orthogonal to the slanted-edge.

The Figure clearly shows that the proposed blind method performs at least
as well as the other two non-blind methods under comparison. The Joshi et. al.
non-blind algorithm [18, 17] shows similar performance for a carefully, manually
chosen regularization parameter. Indeed, this slanted-edge algorithm depends
on a regularization parameter which must be carefully chosen.

6 Discussion

This work has presented a blind subpixel accurate algorithm for the estimation
of the point spread function of a digital camera from aliased photographs. The
procedure is based on taking two fronto-parallel photographs of the same flat
textured scene, from different distances leading to different geometric zooms,
and then estimating the kernel blur between them.

The estimation method is regularization-free. In that sense, the technique is
closely related to the recent non-blind estimation method [13] using a random
noise pattern. This later paper shows that with such patterns the estimation
problem is well posed and leads to accurate regularization-free estimates. The
main difference is that non blind methods can estimate directly the psf using
the perfect knowledge of the pattern. In the blind methods the question is far
more intricate because only an inter-image kernel can be recovered. Thus a
mathematical analysis and new algorithms have been introduced proving how
the psf can be recovered from the inter-image kernel.

To reach a high accuracy, images of textured scenes with flat enough spec-
trum are preferable. It was experimentally verified that many textures found
in nature are well adapted to these requirements. A comparison of the result-
ing psf estimates with other subpixel psf estimation methods shows that the
proposed algorithm reaches similar accuracy levels to non-blind state of the art
methods, with the advantage of not requiring any special acquisition setup, thus
being much more practical.
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The authors would like to thank Säıd Ladjal for fruitful comments and dis-
cussions. Research partially funded by the Centre National d’Etudes Spatiales
(R&T), the European Research Council advanced grant Twelve Labours, the
Office of Naval Research (grant N00014-97-1-0839), STIC-AmSud (11STIC-01 -
MMVPSCV), and the Uruguayan Agency for Research and Innovation (ANII)
under grant PR-POS-2008-003.



BLIND PSF ESTIMATION 16

zoomed-in image zoomed-out image

 

 

0

0.2

0.4

0.6

0.8

1

groundtruth

manual alignment

 

 

0

0.2

0.4

0.6

0.8

1

 

 

−0.05

−0.03

−0.01

0.01

0.03

0.05

sift based alignment

 

 

0

0.2

0.4

0.6

0.8

1

 

 

−0.05

−0.03

−0.01

0.01

0.03

0.05

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Groundtruth
manual
SIFT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

 

 

Groundtruth
manual
SIFT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Groundtruth
manual
inter−image

Figure 3: Synthetic example. 4× psf estimation for simulated data. Top row:
the two views zoomed-in / zoomed-out images. Middle row: the simulated psf

(ground truth) and the respective psf estimations using the automatic sift

points / thin-plates alignment and the ideal alignment. Both estimations are
accurate. However, as shown in the difference images the automatic alignment
introduces a small mis-alignment. This can also be seen in the phase and mod-
ulus of the psf Fourier Transform vertical profile which is shown in the bottom
row. Since the two images are simulated at distances ranging from 1 to 4, the
difference between the inter-image kernel and the psf are very small due to the
large λ value (bottom row, on the right).



BLIND PSF ESTIMATION 17

 

 

40

60

80

100

120

140

160

180

200

zoomed-out image

 

 

−1.5

−1

−0.5

0

0.5

1

1.5

difference manual

 

 

−20

−10

0

10

20

difference sift

Figure 4: Synthetic example. 4× psf estimation for simulated data. From left
to right: Top row: the zoomed-out image, and the residual image Ss(H s

λ
ṽ1 ∗

k) − ṽ2 with the estimated kernel from the ideal alignment and the automatic
alignment through the sift points. The residual in the automatic alignment case
is significantly larger than in the ideal alignment case. However, the difference
in the psf seems to be negligible up to a subpixel translation as is shown in
Figure 3.
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Figure 5: Wall image: blind vs. non-blind estimation. Two distant, parallel
views of a textured wall.
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Figure 6: Wall image: blind vs. non-blind estimation. 4× psf estimation for
one of the green channels from a camera raw output. Top row: two distant,
parallel views of a textured wall. Middle row: the psf estimated with the pro-
posed algorithm and the one estimated using the previous non-blind algorithm.
Bottom row: mtf vertical profile. Both estimations seem to be quite close. In
particular the associated airy disks have similar sizes and the mtfs vanish in
the same locations.
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Figure 7: Different color channels. 4× psf estimation for the four Bayer pattern
channels (two greens, red and blue) from a camera raw output. Top row: two
distant, parallel views of a concrete wall. Middle row: the 4× psf estimated for
the four channels and their corresponding Fourier spectrum modulus. Bottom
row: mtf horizontal profile. The estimation was performed with images cap-
tured at aperture f/5.7. The red psf is larger than the green and the blue ones.
Since the wavelengths associated to red are larger than the rest, the diffraction
components for the red channel will be larger than those for green and blue for
the same camera configuration. Also notice the differences between the shape
of the red/blue and green psf spectra (bottom row). Red and blue mtf seem
to be 90◦ rotated with respect to the green ones. This symmetrical behavior is
plausible for an L-shaped active zone sensor array ([33]).
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Figure 8: Magazine image : ×1, ×2, ×3 and ×4 estimations for the first green
channel from an image pair of a newspaper. The estimation was done at the
image center for the camera working at f/5.7 aperture. All the estimations are
consistent. As we can be observed in this figure, they have overlapping mtfs in
the common regions. The 4× psf estimation is noisier than the one produced
from the wall images. The main reason is that the faster spectral decay of
this magazine image. However, the quality of the 3× psf estimation is still
acceptable.
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Figure 9: Examples of problematic textures. Their 3d nature produces dis-
parities and little changes in the angle-of-view would result in accuracy loss.
Non-Lambertian surfaces and dynamical scenes are not appropriated either.
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Figure 10: Comparison of psf/mtf estimation methods Our implementation
of Joshi et al. psf estimation algorithm [18, 17], Imatest commercial software
[20], the previously proposed non-blind random pattern based algorithm [13]
and the blind two-scaled proposed in this work (applied to the images of the
wall shown in Fig. 7). All estimations are done at the center of the image
with a camera at aperture f/5.7 for one of the green channels. On the low
frequencies all algorithms gave very similar estimations, while on the higher
frequencies the Joshi et al. estimation depends strongly on the regularization
level. Although much effort was made to get a noise free mtf estimation from
the Imatest software, the final estimation is quite noisy. The Imatest estimation
is done from a slanted-edge image and only gives an estimation for the mtf at
the slanted-edge orthogonal direction. The proposed blind algorithm is the one
presenting closest estimation to the non-blind estimation from [13], considered
as ground-truth in virtue of its high accuracy.
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A Mathematical framework and physical mod-

eling

Functional spaces :

• R
2 is the set of pairs of real numbers x = (x1, x2) and Z

2 the set of
pairs of integers k = (k1, k2). L1(R2) is the set of integrable functions
on R

2, L2(R2) the set of quadratically integrable functions, C0
b (R

2) the
set of continuous bounded functions, C∞(R2) the set of infinitely dif-
ferentiable functions, S(R2) the Schwartz class of C∞ functions whose
derivatives of all orders have fast decay, S ′(R2) its dual, the space of
tempered distributions, E ′ the subset of S ′(R2) of compactly supported
distributions. We shall use the properties of the convolution L1 ∗L2 ⊂ L2,
L1 ∗ L1 ⊂ L1, L2 ∗ L2 ⊂ C0, E ′ ∗ S ′ ⊂ S ′.

• A non classical but convenient notation in Shannon sampling theory will
be to denote by BL2(R2) (or shortly BL2) the set of L2 functions that are
band limited inside [−π, π]2.

• More generally, BL2
0 denotes the space of L2 functions with compactly

supported Fourier transform. This function space will play a particular
role in what follows.

The following conventions and notations will be used in the sequel:

• F is the Fourier Transform operator defined on S ′; F(f)(ζ) = f̂(ζ) =
∫

e−ix·ζf(x)dx defines it for a function f ∈ L1(R2) in a point ζ = (ζ1, ζ2).
This formula is still valid for functions belonging to Lp(R2) with 1 < p ≤ 2
(see e.g. [32, 4]).

• Continuous images are defined for x ∈ R
2, whereas digital images are

sampled on a discrete grid k ∈ Z
2.

• S1 : C0
b → ℓ∞(Z2) is the 1-sampling operator such that u(k) = (S1u)(k).

From the distribution viewpoint S1 is the product by a Dirac comb Πs :=
∑

k
δsk with s = 1, namely S1u = Π1.u where u must be a continuous

function. Both representations of the sampling operator will be identified,
and it will be clear from the context, which one of both representations is
intended. 3

• A digital image u will be represented either as a sequence (u(k))k in
ℓ∞(Z2) or as the corresponding Dirac comb u :=

∑

k∈Z2 u(k)δk.

3Sampling at other rates s 6= 1 will be introduced later on, in terms of a scaling operator Hs

which comes with the corresponding multiplicative constant. This helps to avoid cumbersome

normalization factors.
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• Continuous images will be assumed to be functions in BL2
0(R

2). This
choice is consistent, since these functions are continuous (actually C∞)
and the sampling is well defined. Moreover, as suggested in [23] and later
in [1, Appendix A] this choice is sufficiently general to model the contin-
uous landscape observed by a camera just before sampling takes place at
the sensors.
In fact, even if the raw physical image before blur and sampling is, real-
istically, a positive Radon measure O (due to the photon-counting nature
of sensitive digital systems) with compact support (imposed by the finite
number of photons), it will still be blurred by a kernel h which will be
regular enough for h ∗O to be in BL2

0.
How regular can it be realistically assumed to be? The kernel h originates
in several physical phenomena from diffraction, through out-of-focus-blur
to sensor integration. Each one of these phenomena, and their combina-
tion as well, lead to model h as a nonnegative function with finite mass
∫

h = 1 (normalized to 1). In addition the diffraction part ensures that ĥ
is compactly supported. From this one deduces that h ∈ BL2

0 ∩ L1.
We now turn to the problem of simplifying O to a more manageable func-
tion u0, which is indistinguishable from O after convolution with the psf

h.
Let B = suppĥ be the (compact) spectral support of the psf h. Hence
h can be idempotently written as h = h ∗ h0, where h0 ∈ S ′ has a com-
pactly supported spectrum satisfying ĥ0(η) = 1 for η ∈ B. The function

ĥ can easily constructed by an explicit formula as a C∞ and compactly
supported function satisfying ĥ(η) = 1on[−π, π]2. Then its inverse Fourier
transform has all required properties.

So we have
u = h ∗O = h ∗ u0, where u0 = h0 ∗O.

In consequence, the observed landscape can be assumed w.l.o.g. to be
u0 = h0 ∗O instead of O. Being the convolution of a compactly supported
positive Radon measure O ∈ E ′ with h0 ∈ BL2

0 ∩ L1, u0 also belongs to
BL2

0, and its convolution with h ∈ BL2
0∩L

1 is the observed image u ∈ BL2
0.

• The operator I1 : ℓ2(Z2) → BL2(R2) denotes the Shannon-Whittaker in-
terpolator, defined by I1u(x) =

∑

k∈Z2 u(k)sinc(x − k), where sinc(x) =
sin(πx)

πx
sin(πy)

πy . We therefore have I1u = F−1(
∑

k
u(k)e−ik·ξ1[−π,π]2). When

u ∈ ℓ2, F(I1u) therefore belongs to L2 and is compactly supported. Thus
I1u ∈ BL2 and we have S1I1 = Id.

• The filter Wwu = F−1(û · 1[−wπ,wπ]2) is an ideal low-pass filter that cuts

the spectrum of u to [−wπ,wπ]
2
. It is defined if û is a function.

• Hλu(x) = λ2u(λx) is the continuous homothety (i.e. λ > 1 is a zoom-
out); the rationale for its normalization is to preserve the image mean
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(its zero-frequency coefficient). In Fourier F(Hλ
u
)(ζ) = û( ζλ), so if u is

α-band-limited then H 1

α
u is band-limited.

• Ss : ℓ
2(Z2) → ℓ2(Z2) denotes the s-to-1-resampling operator Ss = S1HsI1

(i.e. s > 1 is a subsampling by s).

• C[u] : ℓ2(Z2) → ℓ2(Z2) denotes the linear map associated to the convo-
lution with a digital image u. The convolved sequence belongs to ℓ2(Z2)
which in general is satisfied if u ∈ ℓ1(Z2).

• The digital Nyquist homothety operator Hα : ℓ2(Z2) → ℓ2(Z2) is defined
by Hαu := S1W1HαI1u. It is a digital zoom out if α > 1.

• Let L be a bounded linear operator over a Hilbert space. L∗ is its adjoint
and L+ (if it exists) its pseudo-inverse, i.e. the minimum-norm solution
of (L∗L)L+ := L∗.

B Standard results from Fourier analysis

The following two main results from standard Fourier analysis and distribution
theory are stated without proof. The reader is referred to e.g. [32, 15] for the
proofs in the particular setting chosen here.

Proposition 2 (Convolution through Fourier transform). The relation

F(f ∗ g) = F(f) ·F(g) (8)

is valid in any of these cases

1. g ∈ L1(R2) and f ∈ Lp(R2) for 1 ≤ p ≤ 2. Then f ∗ g belongs to Lp(R2)
(see [32, Theorem 2.6]).

2. g ∈ E ′ and f ∈ S ′. Then f ∗ g belongs to S ′ (see [15, Theorem 7.1.15]).

Applying the Fourier transform on both sides of Equation (8) and recalling
that the squared Fourier Transform operator F2(u) = (2π)2[x 7→ u(−x)] is
almost the identity (except for flipping and a constant factor), we obtain the
following:

Corollary 1 (Product through Fourier transform). The relation

F(f · g) =
1

(2π)2
F(f)∗F(g)

F−1(f · g) = F−1(f)∗F−1(g)

(9)

holds when ĝ ∈ E ′ and f ∈ S ′. Then f · g belongs to S ′.
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Proposition 3 (Poisson Formula in R
2 for tempered distributions [15]).

Π̂1 = (2π)2Π2π. (10)

The Shannon-Whittaker sampling theorem is then a direct consequence of the
two previous results:

Lemma 2. If û ∈ E ′, then

F(Π1 · u) = Π2π ∗ û. (11)

Proof. We can apply the first form of Corollary 1 where f = Π1 ∈ S ′ and
ĝ = û ∈ E ′ to obtain

F(Π1 · u) = (2π)−2Π̂1 ∗ û = Π2π ∗ û

where the last equality is deduced from the Poisson formula (10).

Proposition 4 (Nyquist-Shannon Theorem). If u ∈ BL2(R2), then

u = I1S1u. (12)

Proof. We can apply Lemma 2
Multiplying both sides of Equation (11) by F(sinc) = 1[B] we obtain

F(sinc) · F[S1u] = F(sinc) · [Π2π ∗ û]

=
∑

k∈Z2

û(·+ 2πk)1[B]

= û

where in the right-hand side the only non-null term is k = 0 because u is
bandlimited in B = [−π, π]2 and F(sinc) = 1[B]. Finally, using the second form
of Corollary 1 we obtain

sinc ∗(S1u) = u

and the left term is by definition I1S1u.

Corollary 2. If u ∈ L2 is s-band-limited then

u = HsI1S1H 1

s
u (13)

C Proof of Main Results of Sections 2 and 3

Common hypotheses

According to the discussion in Appendix A, and in order to justify all the
Lemmas and Propositions we will require that

- h ∈ BL2
0 ∩ L1(R2), non-negative, ĥ(0) = 1.

- u0 ∈ BL2
0

This ensures that the convolution u0 ∗ h = u is well defined with u ∈ BL2
0.

For the uniqueness of the inter-image kernel we shall additionally assume
that ĥ does not vanish inside [− s

λ2

π, s
λ2

π].
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Main Results

We now prove several properties that are used throughout the article.

Lemma 3. If u ∈ BL2
0, then S1u ∈ ℓ2(Z2).

Proof. As u is in BL2
0 there exists s > 0 such that û ⊂ [−sπ, sπ]. Furthermore,

since û ∈ E ′ applying (11) we have F(S1u) = (2π)2Π2π ∗ û. Since u belongs
to L2 then û is again in L2. Thus, Π2π ∗ û is the 2π-periodic version of a L2

function in [−sπ, sπ]. Consequently the inverse Fourier transform of Π2π ∗ û is a
Dirac comb whose coefficients are the Fourier series coefficients of û. Thus the
coefficients of S1u form a ℓ2 sequence.

Proposition 5. Let h ∈ L1(R2) and u, v ∈ L1∪L2(R2). The following equalities
hold:

W1(h ∗ v) = W1h ∗ v = h ∗W1v (14)

W1Hλv = HλW 1

λ
v (15)

Hα(u ∗ v) = Hαu ∗Hαv (16)

Proof. The proof of (14).
In Fourier,

F(W1(h ∗ v))
def
= F(h ∗ v) · I[−π,π]2

(8)
= F(h) ·F(v) · I[−π,π]2

Thus,
F(h) · F(v) · I[−π,π]2 = F(h) · I[−π,π]2 · F(v) · I[−π,π]2

and all results are dedudced from this last statement.

Proof. The proof of (15).

F(Hλv) = λ2F(v(λ·)) = λ2 1

λ2
v̂(

.

λ
) = λ2H 1

λ
v̂.

Thus

F(W1Hλv)
(8)
= F(Hλv) · I[−π,π]2 = λ2H 1

λ
v̂ · I[−π,π]2 ;

On the other hand,

F(HλW 1

λ
u) = λ2H 1

λ
F(W 1

λ
v)

(8)
= λ2H 1

λ
(û · I[−π

λ
,π
λ
])

= λ2(H 1

λ
v̂) · I[−π,π]2 .
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Proof. The proof of (16). The proof is a mere change of variables:

Hα(u ∗ v)(x) = α2

∫

u(s)v(αx− s)ds

= α4

∫

u(αs)v(αx − αs)ds

= (Hαu ∗Hαv)(x).

Lemma 4. Let u, v ∈ BL2
0(R

2). If either u or v is band-limited then

S1(u ∗ v) = S1ū ∗ S1v̄, (17)

where we have called ū = W1u and v̄ = W1v .

Proof. We will prove this statement in the tempered distribution sense. We will
consider S1u = Π1 · u =

∑

k
δk · u is a Dirac comb. The application of S1 to ū,

v̄ and u ∗ v is well defined as all functions are in BL2(R2) and by consequence
they are in C∞. Recall that if u ∈ D′ and f is C∞ then f · u ∈ D′ thus in this
framework we need a function to be in C∞ to be sampled.

From Lemma 3 we know that the coefficients sequence of S1ū and S1v̄ are
in ℓ2(Z2). Thus (S1ū) ∗ (S1v̄) is a bounded sequence and therefore every term
is well defined.

Finally F(S1(u ∗ v)) = Π2π ∗ (û.v̂) = (Π2π ∗ û) · (Π2π ∗ v̂) is true because
all considered functions happen to be 2π-periodizations of compactly supported
functions in (−π, π)2, namely û, v̂ and their product.

Proposition 6. (Discrete Camera Model) Let u ∈ L2(R2) and h ∈ L1 ∩ BL2
0,

band-limited in [−sπ, sπ]2. Then

S1(u ∗ h) = Ss(ū ∗ h), (18)

where we have called ū = S1W1H 1

s
u and h = S1H 1

s
h.

Proof. We first derive the expression and then justify the application of each
result.

S1(u ∗ h) = S1HsH 1

s
(u ∗ h)

(14)
= S1HsH 1

s
(Wsu ∗ h)

(16)
= S1Hs(H 1

s
Wsu ∗H 1

s
h)

(15)
= S1Hs(W1H 1

s
u ∗H 1

s
h)

(12)
= S1HsI1S1(W1H 1

s
u ∗H 1

s
h)

(17)
= S1HsI1(S1W1H 1

s
u ∗ S1H 1

s
h)

def
= S1HsI1(ū ∗ h)

def
= Ss(ū ∗ h).
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First notice that as u and h are in L1 we can apply (14) (16) directly. As
W1u is in L2 we can apply (15). Nyquist theorem (12) is valid since u, h ∈ L1

then W1H 1

s
u ∗H 1

s
h belongs to BL2 .

Both W1H 1

s
u and H 1

s
h are band-limited finite energy functions so we are

free to apply (17). Since the sequence (ū∗h) is the sampling of the bandlimited
L2 function W1H 1

s
u∗H 1

s
h it belongs to ℓ2 (Lemma 3). Finally, the interpolation

I1(ū ∗ h) is well defined.

Lemma 5. Let h ∈ L1 ∩BL2
0(R

2) and k ∈ BL2
0 such that k̂(ζ) = h(ζ)

h( ζ
λ
)
. Assume

λ large enough to ensure ĥ(ζ/λ) does not vanish in the support of k̂. Then if
λ > 1 we have

lim
n→∞

Hλn−1k ∗ . . . ∗Hλk ∗ k = h

where the limit is in L2 ∩C0.

Proof. Let us call un = Hλn−1k ∗ . . . ∗Hλk ∗ k. Then in the Fourier domain we
have

lim
n→∞

ûn(ζ) = lim
n→∞

n−1
∏

i=0

k̂

(

ζ

λi

)

= lim
n→∞

ĥ(ζ)

ĥ(ζ/λn)

Since h ∈ L1(R2) then ĥ ∈ C0(R2) and we have

lim
n→∞

ĥ(ζ/λn) = ĥ(0) = 1

The convergence is uniform on a fixed compact set because ĥ is continuous and
compactly supported. This implies that the convergence holds in L1 and L2.
Therefore

Hλn−1k ∗ . . . ∗Hλk ∗ k
L2

∩C0

−→ h

D Stability of the inter image kernel estimation

Lemma 6. Let A be a full-rank m× n matrix, with m > n and ∆A a pertur-
bation of the matrix A such that A+∆A is full rank and ‖A‖‖∆A‖ < 1. Let
b be a m× 1 vector and ∆b a perturbation of b then the solution of x = A+b

and x∗ = (A+∆A)+(b+ δb) satisfy:

‖x∗ − x‖

‖x‖
≤

cond(A)

1− ‖A+∆A‖

(

‖δb‖

‖b‖
+

‖∆A‖

‖A‖

)

. (19)
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Proof. First notice as A is full rank the pseudo-inverse is the left-inverse of A,
namely A+A = I. Since ‖A‖‖∆A‖ < 1 we have that

(A+∆A)+ = (I+A+∆A)−1A+

and we also have

‖(I+A+∆A)−1‖ =
∥

∥

∥

∑

(A+∆A)k
∥

∥

∥
≤

∑

‖(A+∆A)‖k =
1

1− ‖A+∆A‖
.

Hence,

x∗ − x = (A+∆A)+(b+ δb)−A+b

= (I+A+∆A)−1A+(b+ δb)−A+b

therefore

(I+A+∆A)(x∗ − x) = A+(b+ δb)−A+b−A+∆AA+b

= A+(δb−∆Ax)

and then

‖x∗ − x‖

‖x‖
≤

‖A+‖

1− ‖A+∆A‖

‖δb‖+ ‖∆Ax‖

‖x‖

=
cond(A)

1− ‖A+∆A‖

‖δb‖+ ‖∆Ax‖

‖A‖‖x‖

≤
cond(A)

1− ‖A+∆A‖

(

‖δb‖

‖Ax‖
+

‖∆A‖‖x‖

‖A‖‖x‖

)

≤
cond(A)

1− ‖A+∆A‖

(

‖δb‖

‖b‖
+

‖∆A‖

‖A‖

)
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VI, J. Allebach and S. Süsstrunk, eds., San Jose, USA, January 17–21 2010,
SPIE-IST Vol. 7537, p. to appear.

[7] David Capel, Image Mosaicing and Super-Resolution (Cphc/Bcs Distin-
guished Dissertations.), SpringerVerlag, 2004.

[8] Bernard Chalmond, Psf estimation for image deblurring, CVGIP:
Graphical Models and Image Processing, 53 (1991), pp. 364 – 372.

[9] S. Chaudhuri and AN Rajagopalan, Depth from defocus: a real aper-
ture imaging approach, Springer Verlag, 1999.

[10] Christopher D. Claxton and Richard C. Staunton, Measurement
of the point-spread function of a noisy imaging system, J. Opt. Soc. Am.
A, 25 (2008), pp. 159–170.

[11] A. Daniels, G.D. Boreman, A.D. Ducharme, and E. Sapir, Random
transparency targets for modulation transfer function measurement in the
visible and infrared regions., Optical Engineering, 34 (1995), pp. 860 – 868.

[12] M. Delbracio, P. Musé, and A. Almansa, Non-parametric sub-
pixel local point spread function estimation, Image Processing on
Line, workshop, algorithmic description, online demo and source code
accessible at http://www.ipol.im/pub/algo/admm\_non\_blind\_psf\

_estimation (2011). 2011.
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