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Abstract

Internet traffic is highly dynamic and difficult to predict in current network scenarios, which enormously complicates
network management and resources optimization. To address this uncertainty in a robust and efficient way, two almost
antagonist Traffic Engineering (TE) techniques have been proposed in the last years: Robust Routing and Dynamic
Load-Balancing. Robust Routing (RR) copes with traffic uncertainty in an off-line preemptive fashion, computing a
single static routing configuration that is optimized for traffic variations within some predefined uncertainty set. On
the other hand, Dynamic Load-Balancing (DLB) balances traffic among multiple paths in an on-line reactive fashion,
adapting to traffic variations in order to optimize a certain congestion function. In this article we present the first
comparative study between these two alternative methods. We are particularly interested in the performance loss of RR
with respect to DLB, and on the response of DLB when faced with abrupt changes. This study brings insight into several
RR and DLB algorithms, evaluating their virtues and shortcomings, which allows us to introduce new mechanisms that
improve previous proposals.
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1. Introduction

As network services and Internet applications evolve,
network traffic is becoming increasingly complex and dy-
namic. The convergence of data, telephony and televi-
sion services on an all-IP network directly translates into
a much higher variability and complexity of the traffic
injected into the network. To make matters worse, the
presence of unexpected events such as network equipment
failures, large-volume network attacks, flash crowd occur-
rences and even external routing modifications induces
large uncertainty in traffic patterns. Moreover, current
evolution and deployment-rate of broadband access tech-
nologies (e.g. Fiber To The Home) only aggravates this
uncertainty.

But these are not the only problems network opera-
tors are confronted with. The ever-increasing access rates
available for end-users we just mentioned is such that the
assumption of infinitely provisioned core links could soon
become obsolete. In fact, recent Internet traffic studies
from major network technology vendors like Cisco Systems
forecast the advent of the Exabyte era [1, 2], a massive in-
crease in network traffic driven by high-definition video.
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In this context, simply upgrading link capacities may no
longer be an economically viable solution. Moreover, even
if overdimensioning would be possible, its environmental
impact is not negligible. For instance, the Information
and Communication Technology sector alone is responsi-
ble for around 2% of the man-made CO2, a similar figure
to that of the airline industry, but with higher increasing
perspectives [3]. An efficient and responsible usage of the
resources is then essential1.

In the light of this traffic scenario, we study the prob-
lem of intradomain Traffic Engineering (TE) under traf-
fic uncertainty. This uncertainty is assumed to be an ex-
ogenous traffic modification, meaning that traffic varia-
tions are not produced within the domain for which rout-
ing is optimized but are due to external and difficult to
predict events. More in particular, we are interested in
two almost antagonist approaches that have emerged in
the recent years to cope with both the increasing traffic
dynamism and the need for cost-effective solutions: Ro-
bust Routing (RR) [6, 7, 8] and Dynamic Load-Balancing
(DLB) [9, 10, 11].

In RR, traffic uncertainty is taken into account directly
within the routing optimization, computing a single rout-
ing configuration for all traffic demands within some un-
certainty set where traffic is assumed to vary. This uncer-
tainty set can be defined in different ways, depending on

1To learn more about this emerging discipline, the interested
reader should consult works related to so-called “green network-
ing” [4].
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the available information: largest values of links load pre-
viously seen, a set of previously observed traffic demands
(previous day, same day of the previous week), etc. The
criterion to search for this unique routing configuration is
generally to minimize the maximum link utilization (i.e.
the utilization of the most loaded link in the network) for
all traffic demands of the corresponding uncertainty set.
While this routing configuration is not optimal for any sin-
gle traffic demand within the set, it minimizes the worst
case performance over the whole set.

DLB copes with traffic uncertainty and variability by
splitting traffic among multiple paths in real-time. In
this dynamic scheme, each origin-destination (OD) pair
of nodes within the network is connected by several a pri-
ori configured paths, and the problem is simply how to
distribute traffic among these paths in order to optimize
a certain function. DLB is generally defined in terms of a
link-congestion function, where the portions of traffic are
adjusted in order to minimize the total network conges-
tion. Ideally, the traffic distribution is set so that at every
instant the objective function is optimized.

Those who promote DLB highlight among others the
fact that it is the most resource-efficient possible scheme,
and that given the configured paths it supports every pos-
sible traffic demand, all of this in an automated and de-
centralized fashion. In practice, the “always-optimized”
characteristic we mentioned above is achieved by means
of a distributed algorithm periodically executed by ev-
ery ingress router based on feedback from the network.
It is precisely this last characteristic that constitutes the
most challenging aspect of DLB. In fact, the deployment
of DLB has been, to say the least, limited. Two partic-
ular problems arise in DLB: convergence to the optimum
is not always guaranteed, and convergence speed might be
over-killing under large and abrupt changes in traffic de-
mands. Network operators are reluctant to use dynamic
mechanisms mainly because they are afraid of a possible
oscillatory behavior of the algorithm used by each OD
pair to adjust load-balancing. As the early experiences in
ArpaNet has proved [12], these concerns are not without
reason. (In particular, before July 1987, the links’ met-
ric was defined as the packet delay averaged over a 10 s
period. Although this adaptive routing scheme worked
correctly under light or moderate loads, it generated os-
cillations under relatively heavy loads. This resulted in
substituting the links’ metric by a fixed value as we use
it today, sacrificing optimality for stability.) Indeed, for
these adaptive and distributed algorithms, a trade-off be-
tween adaptability (convergence speed) and stability must
be found, which may be particularly difficult in situations
where abrupt traffic changes occur.

Those who advocate the use of RR claim that there
is actually no need to implement supposedly complicated
and possibly oscillatory dynamic routing mechanisms, and
that the incurred performance loss for using a single rout-
ing configuration is negligible when compared with the in-
crease in complexity. RR provides a stable routing con-

figuration for all the traffic demands within the uncer-
tainty set, avoiding possible oscillations and convergence
issues. However, RR presents some conception problems
and serious shortcomings in its current state which we
highlight and try to ease in this work. The first draw-
back of current RR is related to the objective function it
intends to minimize. Optimization under uncertainty is
generally more complex than classical optimization, which
forces the use of simpler optimization criteria such as max-
imum link utilization (MLU). The MLU is not the most
suitable network-wide optimization criterion; setting the
focus too strictly on MLU often leads to worse distribu-
tion of traffic, adversely affecting the mean network load
and thus the total network end-to-end delay, an important
QoS indicator. It is easy to see that the minimization of
the MLU in a network topology with heterogeneous link
capacities may lead to poor results as regards global net-
work performance. The second drawback of RR we iden-
tify is its inherent dependence on the definition of the un-
certainty set of traffic demands: the uncertainty set has to
be sufficiently “large” to allow traffic flexibility and to pro-
vide performance guarantees, but should not be excessively
“large” to avoid wasting network resources. Thus, consid-
ering a unique RR configuration to address both traffic in
normal operation and unexpected traffic variations is an
inefficient strategy, as a single routing configuration can-
not be suitable for both situations.

1.1. Contributions of this article

This article presents a fair and comprehensive compar-
ative analysis between RR and DLB mechanisms. The
analysis is comprehensive as it evaluates the performance
of both mechanisms based on different performance indi-
cators and considering normal operation as well as unpre-
dicted traffic events. We believe our comparison is fair
because it considers the particular characteristics of each
mechanism under the same network and traffic conditions.
To date and to the best of our knowledge this is the first
work that conducts such a comparative evaluation, neces-
sary indeed not only from a research point of view but also
for network operators who seek cost-effective and robust
solutions to face future network scenarios. Based on this
comparative analysis we develop and evaluate new variants
of RR and DLB mechanisms, improving some of the short-
comings found in both static and dynamic approaches.

Regarding the RR approach, we will introduce some
modifications that strive to alleviate the two problems
identified in current proposals. We will first study which is
the best objective function to minimize, and propose the
mean link utilization instead of the MLU. The mean link
utilization provides a better image of network-wide per-
formance, as it does not depend on the particular load or
capacity of each single link in the network but on the aver-
age value. However, a direct minimization of the mean link
utilization does not assure a bounded MLU, which is not
practical from an operational point of view. Thus, we min-
imize the mean link utilization while bounding the MLU

2



by a certain utilization threshold a priori defined. This
adds a new, and maybe difficult to set, constraint to the
problem, namely how to define this utilization threshold.
We further improve our proposal by providing a multiple
objective optimization criterion, where both the MLU and
the mean link utilization are minimized simultaneously.
We evaluate the improvements of our proposals from a
QoS perspective, using the mean path end-to-end queuing
delay as a measure of global performance.

The second problem we address in RR is the trade-
off between routing performance and routing reliability.
In [13] we have recently proposed a solution to manage
this trade-off, known as Reactive Robust Routing (RRR).
Basically, RRR consists of constructing a RR configura-
tion for expected traffic in nominal operation, adapting
this nominal routing configuration after the detection and
localization of a large and long-lived traffic modification.
RRR provides good performance for both nominal oper-
ation and unexpected traffic, but it is difficult to deploy
in a real implementation, because of the routing reconfig-
uration step. Reconfiguring the routing of an entire Au-
tonomous System is a nontrivial task. In this article we
modify the RRR approach, using a preemptive Load Bal-
ancing algorithm to balance traffic among pre-established
paths after the localization of a large volume traffic modi-
fication (preemptive in the sense of preventing a situation
from occurring).

In what respects DLB, we evaluate the use of so-called
no-regret algorithms as the distributed optimization algo-
rithm used by ingress routers to adapt load-balancing. The
authors of a recent paper [14] proved that if all OD pairs
use algorithms of this kind, convergence to the optimum is
guaranteed. Special attention will be paid on the behavior
of the algorithm when faced with abrupt and unexpected
changes in the traffic demands. We shall introduce simple,
and yet effective, modifications to the algorithm to assure
a fast convergence to the new optimum in this case.

As we shall see in the following subsection, several pre-
viously proposed DLB algorithms strive to minimize the
MLU by means of a greedy algorithm in the paths uti-
lization (i.e. each ingress router increases the amount of
traffic sent along the path with the smallest utilization).
As proved in a recent paper [15], convergence to the op-
timum for such algorithms may not be guaranteed, in the
sense that they may converge to a situation in which the
MLU is not minimized. In fact, we shall present an exam-
ple in which the difference with the optimum of the MLU
is non-negligible. In this work we will present an alterna-
tive path cost function, so that greedy algorithms that use
it do converge to the optimum equilibrium.

1.2. Related Work

There is a large literature on routing optimization with
uncertain traffic demands. Thus, here we shall only men-
tion a few papers, and do not expect our list to be exhaus-
tive.

Traditional algorithms rely on a single or a small group
of expected traffic demands to compute optimal and reli-
able routing configurations. An extreme case is presented
in [16], where routing is optimized for a single estimated
traffic demand and is then applied for daily routing. Traf-
fic uncertainty is characterized by multiple traffic demands
in [17] (set of traffic demands from previous day, same day
of previous week, etc.), where different mechanisms to find
optimal routes for the set are presented. As discussed for
instance in [18], this perspective is no longer suitable for
current and future dynamic scenarios. These approaches
require a “leap of faith” to perform well, mainly because
they assume that traffic patterns do not change that much
over time. However, even a relatively small difference
between the “real” traffic demand and the one used for
the routing optimization may lead to an important per-
formance degradation. Such a difference may arise in the
event of unexpected traffic variations (which are more com-
mon nowadays), or even be due to an error in the traffic
estimation.

A different approach has emerged in the recent years to
cope with the increasing traffic dynamism and the need for
cost-effective solutions, Dynamic Load-Balancing (DLB)
[9, 10, 11, 19]. In DLB, traffic is split among a priori es-
tablished paths in order to avoid network congestion. The
two most well-known proposals in this area are MATE and
TeXCP. In MATE [9], a convex link congestion function
is defined, which depends on the link capacity and the
link load. The objective is to minimize the total network
congestion, for which a simple gradient descent method is
proposed. In [19], we propose to use a link congestion func-
tion based on measurements of the queueing size, which
results in better global performance from a QoS perspec-
tive. TeXCP [10] proposes a somewhat simpler objective:
in order to minimize the MLU, they minimize the biggest
utilization each traffic demand obtains in its paths. An-
other DLB scheme which has the same objective but a
relatively different mechanism is REPLEX [11].

The last category of algorithms consists of Robust Rout-
ing techniques [6, 7, 8, 20, 21]. The objective in RR is to
find a unique static routing configuration that fulfills a
certain criterion for a broad set of traffic demands, gener-
ally the one that minimizes the maximum link utilization
over the whole set of demands. In [6], authors capture
traffic variations by introducing a polyhedral set of de-
mands, which allows for easier and faster linear optimiza-
tion. This robust technique is applied in [20] to compute
a robust MPLS routing configuration without depending
on traffic demand estimation, and corresponding meth-
ods for robust OSPF optimization are discussed. Oblivi-
ous Routing [7] also defines linear algorithms to optimize
worst-case MLU for different sizes of traffic uncertainty
sets. The author of [21] analyzes the use of robust rout-
ing through a combination of traffic estimation techniques
and its corresponding estimation error bounds, in order
to shrink the set of traffic demands. In [8] authors intro-
duce COPE, a RR mechanism that optimizes routing for
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predicted demands and bounds worst-case MLU to ensure
acceptable efficiency under unexpected traffic events. The
idea behind COPE is similar to ours, in the sense that
it strives to alleviate performance degradation due to un-
foreseen traffic modifications. Nevertheless, it proposes a
single routing configuration to handle expected as well as
large and abrupt traffic variations, which is clearly not the
best solution.

The same paper [8] presents, to the best of our knowl-
edge, the only previous comparative study between RR
and DLB. The authors of the paper compare the per-
formance of COPE with a dynamic approach which they
claim models the behavior of mechanisms such as MATE
and TeXCP. Given a time series traffic demands, this dy-
namic approach consists of computing an optimal routing
for each traffic demand i and evaluate its performance with
the following traffic demand i+1. There are two important
shortcomings of this DLB simulation. Firstly, adaptation
in DLB is iterative and never instantaneous. Secondly, in
all DLB mechanisms paths are set a priori and remain un-
changed during operation. This is not the case in their
dynamic approach, where each new routing optimization
may change not only traffic portions but paths themselves.
For these reasons, we believe that the comparison provided
in [8] is biased against dynamic schemes.

The remainder of this article is organized as follows. In
Sec. 2 we introduce the network model and notation, while
Sec. 3 and 4 introduce a preliminary version of the RR and
DLB mechanisms. Some first results are discussed in Sec.
5. Section 6 presents new variants to the former mech-
anisms which alleviate the shortcomings detected. The
evaluation of the complete set of algorithms under differ-
ent traffic scenarios is conducted in Sec. 7. We finally draw
conclusions of this comparative analysis in Sec. 8.

2. Network Model and Performance Indicators

Let us begin by introducing the notation used in this
article. The network topology is defined by n nodes and
a set L = {l1, . . . , lq} of q links, each with a correspond-
ing capacity ci, i = 1, . . . , q. The Traffic Matrix (TM)
X = {xi,j} denotes the traffic demand (expressed in, for
example, Mbps) between every origin node i and every
destination node j (i 6= j) of the network; we shall note
each of these origin-destination pairs as OD pairs, and
each origin-destination traffic demand xi,j as OD flows. In
practice, each traffic demand is measured every T minutes
(usually 5’ or 10’ [5]), and its value simply corresponds
to the cumulative number of bytes observed between two
consecutive measurements, divided by the polling time T .
Let X = {xk} be the vector representation of the TM,
where we have reordered OD flows by index k = 1, . . . ,m
(m = n.(n− 1)). Let N = {OD1, . . . ,ODm} be the set of
m OD pairs. We consider a multi-path network topology,
where each OD flow xk can be arbitrarily split among a
set of pk origin-destinations paths Pk. In this sense, we

shall call rkp the portion of traffic flow xk sent along path

p ∈ Pk, where 0 6 rkp 6 1 and
∑

p∈Pk
rkp = 1.

Let λp
l be an indicator variable that takes value 1 if

path p traverses link l and 0 otherwise, and Y = {ρ1, . . . , ρq}
a vector representation of links traffic load. Then X and
Y are related through the routing matrix R, a q ×m ma-
trix R = {rkl } where rkl =

∑

p∈Pk
λp
l . r

k
p . The variable rkl

indicates the fraction of OD flow xk routed along link l;
this results in the following relation:

Y = R .X (1)

Given X , the multi-path routing optimization problem
consists in choosing the set of paths Pk for each OD pair k
and computing the routing matrix R, in order to optimize
a certain objective function g(X,R). A simplified version
of this problem is the load-balancing optimization problem
which, given a set of paths, calculates R. In this work
we shall consider different performance indicators, which
result in different objective functions.

A very important link-level performance indicator is
the link utilization ul = ρl/cl; a value of ul close to one
indicates that the link is operating near its capacity. Net-
work operators usually prefer to keep links utilization rela-
tively low in order to support sudden traffic increases and
link/node failures. A network-wide performance indicator
is the maximum link utilization umax:

umax (X,R) = max
l∈L

{ul} (2)

The maximum link utilization constitutes by far the
most popular TE objective function. However, its mini-
mization presents a clear drawback: setting the focus too
strictly on the most utilized link often leads to a worse
distributions of traffic, adversely affecting the overall per-
formance in the network. In this sense we will consider the
mean link utilization umean as another possible objective
function:

umean (X,R) =
1

q

∑

l∈L

ul (3)

Minimizing umean may provide better network-wide per-
formance, as long as the maximum link utilization remains
bounded; we will further discuss this issue in Sec. 6.

The last performance indicator we shall consider in this
work is the queuing delay (i.e. the time that spans between
the moment a byte enters the router and leaves it). This
choice is justified by two aspects. Firstly, its algebra is
relatively simple, in the sense that the total delay of a path
is the addition of the delay at each link. Secondly, it is a
very versatile indicator. A big queueing delay means more
delay and jitter for streaming traffic. Moreover, a link
with an important queueing delay is traversed by several
bottlenecked flows, meaning that elastic traffic may obtain
better throughput in other, less loaded, links. The mean
queueing delay may be regarded then as a numerical value
of the congestion on the link.
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Assume then that the queuing delay on link l is given by
the function dl(ρl). Given this function we can compute
the queuing delay of path p as dp =

∑

l∈p dl(ρl). As a
measure of the network-wide performance, we consider the
expected end-to-end (e2e) queuing delay dmean defined as:

dmean (X,R) =
∑

k∈N

∑

p∈Pk

(

rkp . xk

)

dp =
∑

l∈L

ρl . dl(ρl) (4)

That is to say, dmean is a weighted mean e2e queuing
delay, where the weight for each path is how much traffic
is sent along it (rkp . xk), or in terms of links, the weight
for each link is how much traffic is traversing it (ρl). We
prefer a weighted mean queuing delay to a simple total
delay because it reflects more precisely performance as
perceived by traffic. Two situations where the total de-
lay is the same, but in one of them most of the traffic
is traversing heavily delayed links should not be consid-
ered as equivalent. Note that, by Little’s law, the value
fl(ρl) = ρl . dl(ρl) is proportional to the volume of data in
the queue of link l. We will then use this last value as the
addend in the last sum in (4), since it is easier to measure
than the queuing delay. Finally, note that, differently to
umax, a large mean e2e queuing delay translates into bad
performance for the majority of the traffic and not only
for the traffic that traverses a particularly loaded link.

Based on these definitions we will introduce the differ-
ent optimization algorithms that strive to minimize some
of these performance indicators, considering either the RR
or DLB approach.

3. Stable Robust Routing

Finding a multi-path routing configuration minimizing
umax is an instance of the classical multi-commodity flow
problem which can be formulated as a linear program [22].
For a single known traffic matrix X , the problem can be
easily solved by linear programming techniques [23]. How-
ever, as we have previously discussed, traffic demands are
uncertain and difficult to predict, and all we can expect is
to find them within some bounded uncertainty set.

In a robust perspective of the multi-path routing op-
timization problem, demand uncertainty is taken into ac-
count within the routing optimization, computing a single
routing configuration for all demands within some uncer-
tainty set. In this work we consider a polyhedral uncer-
tainty set X, more precisely a polytope as in [6], based
on the intersection of several half-spaces that result from
linear constraints imposed to traffic demand.

As an example, let us define an uncertainty set X based
on a given routing matrix Ro and the peak-hour links traf-
fic load Y peak obtained with this routing matrix:

X =
{

X ∈ R
m, Ro.X 6 Y peak, X > 0

}

Observe that this definition of the uncertainty set has
a major advantage: routing optimization can be performed

r
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Figure 1: The uncertainty set X as a polytope.

minimize umax

subject to:

∑

k∈N

∑

p∈Pk

λ
p

l . r
k
p . x(k) 6 umax.cl ∀ l ∈ L, ∀ X ∈ X

∑

p∈P (k)

rkp = 1 ∀ k ∈ N

rkp > 0 ∀ p ∈ Pk, ∀ k ∈ N

umax 6 1

Table 1: The Robust Routing Optimization Problem (RROP)

from easily available links traffic load Y without even know-
ing the actual value of the traffic demand X . Figure 1 de-
picts the obtained uncertainty set, based on the convex in-
tersection of q half-spaces of the form rio ·X 6 ρpeaki , ∀i ∈ L,
where rio stands for the i-th row of the routing matrix Ro.

The traditional Robust Routing Optimization Problem
(RROP) defined in Table 1 consists of minimizing the max-
imum link utilization umax, considering all demands within
X. The solution to the problem is twofold: on the one
hand, a routing configuration Rrobust, and on the other
hand, a worst-case performance threshold urobust

max :

Rrobust = argmin
R

max
X∈X

umax(X,R)

urobust
max = max

X∈X

umax(X,Rrobust)

Given a suitable definition of the uncertainty set, the
obtained robust routing configuration Rrobust is applied
during long periods of time; in this sense, we refer to Ro-
bust Routing as Stable Robust Routing (SRR). The au-
thors of [6] have shown that the RROP can be efficiently
solved by linear programming techniques, applying a com-
bined columns and constraints generation method. This
method iteratively solves the problem, progressively adding
new constraints and new columns to the problem.

The new constraints are the extreme points of the un-
certainty set X, and the new columns represent new paths
added to reduce the objective function value. Only ex-
treme points of X are added as new constraints, as it is
easy to see that every traffic demand X ∈ X can be ex-
pressed as a linear combination of these extreme demands.
Regarding new added paths, the algorithm in [6] may not
be the best choice from a practical point of view since the
number of paths for each OD pair is not a priori restricted
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and the characteristics of added paths are not controlled.
For example, it would be interesting to have disjoint paths
to route traffic from each single OD pair, improving re-
silience. For this reason we modify the algorithm to select
new paths, both limiting the maximum number of paths in
Pk and taking as new candidates the shortest paths with
respect to link weights wi

l :

wi
l =

1

ǫ+
(

1− rkl
i
) (5)

where rkl
i
corresponds to the fraction of traffic flow xk that

traverses link l after iteration i and ǫ is a small constant
that avoids numerical problems. If OD pair k uses a single

path p at iteration i, rkl
i
= 1 for every link l ∈ p, and so this

path is removed from the graph where new shortest paths
are computed (wl → ∞, ∀l ∈ p). While this may result in
a sub-optimal performance, it allows a real and practical
implementation. In case there are no disjoint paths for OD
pair k, we use the column constraint generation method
used in [6] to add new paths for OD pair k.

4. Dynamic Load Balancing

4.1. Routing Games and Wardrop Equilibrium

As mentioned before, the objective in DLB is to mini-
mize a certain objective function g(X,R) in a distributed
fashion (i.e. without relying on any centralized entity).
Algorithms that achieve this are typically greedy, which
present the desirable property of requiring minimum co-
ordination among border routers. In this kind of mech-
anisms, a path cost function φp is defined, and each OD
pair greedily minimizes the cost it obtains from each of
its paths. This context constitutes an ideal case study for
game theory, and is known as Routing Game in its termi-
nology [24, 25].

Since each OD pair may arbitrarily balance traffic among
its paths, we will assume that OD pairs are constituted of
infinitely many agents. These agents control an infinitesi-
mal amount of traffic, and decide along which path to send
their traffic. In this context rkp represents then the fraction
of agents of OD pair k that have p as their choice. If each
of these agents acts selfishly, then the system will be at
equilibrium when no agent may decrease its cost by uni-
laterally changing its path decision. This situation consti-
tutes what is known as a Wardrop Equilibrium (WE) [26],
which is formally defined as follows:

Definition 1. The paths vector {rkp}k∈N,p∈Pk
is a Wardrop

Equilibrium if for each OD pair k ∈ N and for each couple
of paths p, q ∈ Pk with rkp > 0 it holds that φp ≤ φq.

Intuitively speaking, a WE is a situation where each
OD pair uses only those paths with minimum cost (for the
given OD pair). Anyway, the path cost φp is in turn de-
fined in terms of a certain nonnegative, nondecreasing and

continuous link cost function φl(ρl). There are roughly
two kinds of games depending on the definition of φp. A
Congestion Routing Game defines the path cost as φp =
∑

l∈p φl(ρl). On the other hand, a Bottleneck Routing
Game defines φp = max

l∈p
φl(ρl).

Much effort has been put into characterizing the re-
sulting equilibrium of these games. In this sense, a certain
social cost function is defined, which measures the dis-
satisfaction of the OD pairs as a whole (i.e. an optimum
paths vector is one that minimizes this function), and the
objective is to quantify the difference between the opti-
mum and the resulting WE. In the case of a congestion
game, the typical social cost function is the same as in (4)
(i.e.

∑

l∈L ρldl(ρl) :=
∑

l∈L fl(ρl)), whereas for a bottle-
neck game the social cost is usually the maximum φl(ρl)
over all links (i.e. max

l∈L
φl(ρl)).

It may be proved that the WE of a congestion game co-
incides with the unique minimum of the so-called potential
function Φ(R) =

∑

l∈L

∫ ρl

0
φl(x)dx [24]. This means that if

fl(ρl) is continuous differentiable, non-decreasing and con-
vex, the WE of a congestion game with φl(ρl) = f ′

l (ρl) is
socially optimum. In this sense, to minimize dmean through
DLB, we will play a Congestion Routing Game with a link
cost equal to the derivative of the link mean queue size. In
the sequel we shall note this game as MinDG (Minimum
Delay Game).

On the other hand, characterization of the WE of a
bottleneck game is somewhat more complicated. In fact,
it is relatively easy to see that in this case the WE is not
even unique. Moreover, and rather unfortunately, it has
been proved in [15] that even if there always exist at least
one WE that is socially optimum, nothing may be guar-
anteed about the rest (if any). However, the same paper
proved that every WE that fulfills the so-called efficiency
condition is optimum, where this condition is defined as
follows:

Definition 2. Let B(p) denote the number of network
bottlenecks over p; that is to say B(p) =

∣

∣

{

l ∈ p : φl(ρl) =

max
m∈L,ρm>0

{φm(ρm)}
}∣

∣. Then, a WE is said to satisfy the

efficiency condition if all OD pairs route their traffic along
paths with a minimum number of network bottlenecks;
i.e. for all k ∈ N and p, q ∈ Pk with rkp > 0 it holds that
B(p) ≤ B(q).

This result, which is relatively new, was not applied in
the design of neither TeXCP or REPLEX, both of which
strive to minimize the maximum link utilization by means
of a greedy algorithm in the path utilization (i.e. a bottle-
neck game with φp = max

l∈p
ul). It could then be the case

that these algorithms converge to a sub-optimal WE. Pos-
sible consequences on the obtained performance of ignoring
this result will be further discussed later in the article. In
any case, we shall note this game as MinUG (Minimum
Utilization Game).
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4.2. No-Regret Algorithms

We will now briefly discuss how, given the path cost
function φp, the WE may be achieved for both routing
games. In a recent article [14], the authors proved that if
all OD pairs use no-regret algorithms, the global behavior
will approach the WE. To be more precise, for a given TM
X , and for most time steps, the instantaneous paths vector
{rkp}k∈N,p∈Pk

is very close to the WE, and this difference
vanishes with time.

This result is very general, in the sense that it does
not specify any algorithm in particular. Its only require-
ment is the use of no-regret algorithms by all OD pairs
(for an overview of some of them see [27]). In partic-
ular, we will consider the Weighted Majority Algorithm
(WMA)[28], which originated in the context of online learn-
ing (more precisely from the online prediction using expert
advice problem), and whose pseudo-code for OD pair k is
described in Algorithm 1.

Algorithm 1 Weighted Majority Algorithm (WMA)

1: for t = 1, . . . ,∞ do

2: Obtain path costs φp ∀p ∈ Pk

3: for every path p ∈ Pk do

4: if φp > min
q∈Pk

φq then

5: rkp ← β × rkp
6: end if

7: end for

8: Normalize the rkp
9: end for

At each iteration t, those paths whose cost is bigger
than the minimum are punished by multiplying their re-
spective rkp by a certain constant β < 1 (throughout our
simulations we have used β = 0.95, a value that we empir-
ically verified obtains very good results). Actually, and in
order to avoid unnecessary changes in the traffic distribu-
tion, we shall only update rkp when the corresponding path
cost is bigger than the minimum cost plus a certain margin
(in the case of MinUG we fixed the margin at 0.005, and
for MinDG we used 5% of the minimum).

5. A Preliminary Comparison

In this section we shall present some first simulations
that will help us to gain insight into the mechanisms and
highlight some of their respective shortcomings. Before,
we will discuss how we performed these and the rest of the
simulations.

As the reference network we used Abilene, a high-speed
Internet2 backbone network. Abilene consists of 12 router-
level nodes connected by 30 optical links (we only consider
intra-domain links). The used router-level network topol-
ogy and traffic demands are available at [29]. Traffic data
consists of 6 months of traffic matrices collected every 5
minutes via Netflow from the Abilene Observatory [30].
As measured traffic demands do not significantly load the
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Figure 2: Mean queue size: measurements and approximations

network, we re-scaled them by multiplying all their entries
by a constant. The dataset in [29] also provides the static
routing configuration Ro deployed in Abilene during the
6-month long TMs measurement campaign.

In the case of MinDG, fl(ρl) is typically chosen based
on a simplistic model (e.g. the M/M/1 model which yields
fl(ρl) = ρl/(cl − ρl)) [9]. In order to avoid such arbitrary
and unprecise choice, in [19] we proposed instead to learn
this function (and its derivative) from measurements. Fig-
ure 2 depicts the real mean queue size of an operational
network link at Tokyo obtained from [31], together with
the M/M/1 estimation fM/M/1

l (ρl) and the non-parametric

regression f̂l(ρl). It is clear that fM/M/1

l (ρl) consistently

underestimates the real queue size value, while f̂l(ρl) pro-
vides quite accurate results.

To be as fair as possible, all mechanisms use the same
set of paths, namely those calculated by SRR as discussed
in Sec. 3. The TMs are fed to the mechanisms in consecu-
tive temporal order. Both DLB mechanisms (MinUG and
MinDG) are initiated at arbitrary values of rkp , which will
be updated as new link load measurements arrive. We have
assumed that each OD pair receives these measurements
every minute, meaning that for each new TM five updates
of their corresponding rkp values will be performed (recall
that TMs are collected every 5min). Results are shown
then for every minute. As a reference, we also computed
the optimum values uopt

max and doptmean for every TM X of
the dataset.

In this example we consider a traffic scenario that pres-
ents an abrupt and large volume increase due to an exter-
nal routing modification. This corresponds to the TMs
with indexes between 1050 and 1200 from dataset X23 in
[29]. The evaluation starts with a normal low traffic load
situation, but after the 100th minute one of the OD flows
abruptly increases its traffic volume, loading the links it
traverses until the end of the evaluation.

Regarding SRR, in what follows we shall use the term
RROP as a reference to SRR, recalling that the robust
routing optimization problem is the one described in Table
1. Based on the static routing matrix of Abilene Ro we
define two different polytopes, the former adapted to the
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Figure 3: Maximum link utilization and mean end-to-end queuing
delay. Traffic demand volume abruptly increases after the 100th
minute.

Low Traffic Load period (LTL period, before the 100th
minute) and the latter adapted to the High Traffic Load
period (HTL period, after the 100th minute):

X
LTL = {X ∈ R

m, Ro.X 6 Y LTL, X > 0}

X
HTL = {X ∈ R

m, Ro.X 6 Y HTL, X > 0}

We assume that traffic is known in advance in both defi-
nitions, and take Y LTL and Y HTL as the maximum link load
values observed during the LTL and HTL periods respec-
tively. We compute two different robust routing configu-
rations for both polytopes; RROP-LTL corresponds to the
SRR configuration for polytope XLTL, and RROP-HTL for
polytope XHTL. As we mentioned before, both RROP-LTL
and RROP-HTL use the same set of paths, namely the
paths obtained from Table 1 for polytope X

LTL. Solving
RROP for a given set of paths consists of only adding new
extreme points of polytope X (i.e., only new constraints
are added).

Results are presented in Fig. 3, which depicts (a) the
maximum link utilization umax and (b) the mean end-to-
end queuing delay dmean during the evaluation period. Let
us first focus the attention on the performance of RROP-
HTL after the 100th minute. Despite achieving an almost
optimal performance as regards umax (a relative difference
with respect to the optimum smaller than 4%), RROP-
HTL obtains a queuing delay that constantly exceeds the
optimum by almost 40% under a moderate network load.
Such a difference may not be even acceptable from a QoS
perspective, where end-to-end delays are even more im-
portant than network congestion. As we will show later,
this loss in performance is a direct consequence of the local
criterion used in RROP.

A second interesting observation comes from the differ-
ence between RROP-HTL and RROP-LTL performances
before and after the abrupt traffic volume increase; Fig. 3(a)
shows that, despite an almost negligible network load,
RROP-LTL outperforms RROP-HTL by almost 50% of
relative utilization during the LTL period, while the op-
posite happens during the HTL period. The difference
is not that big as regards delay before the 100th minute,
but it becomes significant after the volume increase, where

RROP-LTL obtains a very bad performance. These results
are somehow expected given the polytopes definition, and
brings to light both the dependence of RROP on the un-
certainty set definition and the inherent consequence of us-
ing a single static routing configuration under large traffic
variations. Let us highlight the fact that in this example
we have considered that traffic was known in advance for
the definition of both polytopes X

LTL and X
HTL. While

traffic during the LTL period is easy to predict, the defini-
tion of X HTL in a real traffic scenario is a challenging task.
We will come back to this issue in the following section.

Let us now discuss the results obtained by the dy-
namic schemes. A first important observation is that they
present an important overshoot, with an absolute differ-
ence with the optimum uopt

max of approximately 40%. Re-
garding MinDG in particular, convergence after the anom-
aly is very slow, taking more than 600 sec. However, it
should be noted that when it eventually converges, it ob-
tains a dmean that is very similar to the optimum. In terms
of umax, the difference with respect to the optimum is ap-
proximately 10%.

Special attention deserves the case of MinUG. After
a shorter convergence time (approximately 100 sec.), the
resulting value of umax is not the optimum. Let us re-
call that this kind of game (which models schemes such
as REPLEX of TeXCP) is used to converge to a routing
configuration that minimizes the maximum link utiliza-
tion [10, 11]. However, in this case, the difference is more
than 15%. Both of these problems will be further discussed
in the following section.

6. Improving the Algorithms Performance

The simple evaluation conducted in the previous sec-
tion shows some conception drawbacks of the SRR and
DLB algorithms presented in Sec. 3 and 4 respectively. In
this section we shall explain the origin of these problems
and present enhanced mechanisms to overcome them.

6.1. Improving Stable Robust Routing

6.1.1. Network-Wide Performance

As we showed in Fig. 3(b), the minimization of umax

leads to a distribution of traffic that results in an exces-
sive end-to-end delay. Using the mean delay dmean as the
objective function in RROP (cf. Table 1) would be an in-
teresting approach to ease the problem; however, fl(ρl) is a
non-linear function and the optimization problem becomes
too difficult to solve. As we previously said, optimization
under uncertainty is more complex than classical optimiza-
tion and simple optimization criteria should be used. In
this sense, we could use instead the mean link utilization
umean as the objective function.

The mean link utilization considers at the same time
the load of every link in the network and not only the
utilization of the most loaded link; as we will show in the
results, such an objective function provides a better global
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minimize umean

subject to:

∑

l∈L

∑

k∈N

∑

p∈Pk

1
cl
λ
p

l . r
k
p . x(k) 6 umean.q ∀ X ∈ X

∑

k∈N

∑

p∈Pk

λ
p

l . r
k
p . x(k) 6 uthres

max .cl ∀ l ∈ L, ∀ X ∈ X

∑

p∈P (k)

rkp = 1 ∀ k ∈ N

rkp > 0 ∀ p ∈ Pk, ∀ k ∈ N

Table 2: Robust Routing Mean Utilization Optimization Problem
(RRMP)

performance as regards end-to-end delay. However, a di-
rect minimization of umean does not assure a bounded max-
imum link utilization, which is not practical from an oper-
ational point of view. In this sense, we propose to change
the objective function in RROP by umean, while bounding
the maximum link utilization by a certain threshold uthres

max

defined a priori. The resulting problem, which we shall call
the Robust Routing Mean Utilization Optimization Prob-
lem (RRMP), is defined in Table 2.

RRMP is solved in the same way as RROP, using the
same recursive algorithm proposed in [6]. Note that the
difference between the two problems is only a new con-
straint per each new traffic demand in X (in fact, for each
extreme point of X). The drawback of RRMP is its depen-
dence on the value of uthres

max , which directly influences the
routing performance as we will shortly see. An interest-
ing choice for uthres

max would be to use the output of RROP,
namely urobust

max . To some extent this would result in a sim-
ilar routing solution but with better traffic balancing.

An alternative approach is to minimize both the value
of umax and umean at the same time, which constitutes
a problem of multi-objective optimization (MOO). MOO
problems are generally more difficult to solve because tra-
ditional single-objective optimization techniques cannot be
directly applied. Nevertheless, the problem of finding all
the Pareto-efficient solutions to a linear MOO problem is
well known and different approaches can be used to treat
the problem [32, 33]. In this work we consider an intuitive
and easy approach to solve a MOO problem with standard
single-objective optimization techniques. The approach
consists in defining a single aggregated objective function
(AOF) that combines both objective functions. We define
a weighted linear combination of umax and umean as the
new objective function uaof = α . umax + (1 − α) . umean,
where 0 6 α 6 1 is the combination fraction. Despite its
simple form, this new objective is very effective and pro-
vides accurate results for both performance indicators. We
shall call this new optimization problem as Robust Routing
AOF Optimization Problem (RRAP), defined in Table 3.
As before, RRAP is solved with the same algorithms used
in RROP.

minimize uaof = α . umax + (1− α) . umean

subject to:

∑

l∈L

∑

k∈N

∑

p∈Pk

1
cl
λ
p

l . r
k
p . x(k) 6 umean.q ∀ X ∈ X

∑

k∈N

∑

p∈Pk

λ
p

l . r
k
p . x(k) 6 umax.cl ∀ l ∈ L, ∀ X ∈ X

∑

p∈P (k)

rkp = 1 ∀ k ∈ N

rkp > 0 ∀ p ∈ Pk, ∀ k ∈ N

Table 3: Robust Routing AOF Optimization Problem (RRAP)

6.1.2. Comparison between RRMP and RRAP

We will now evaluate both the RRMP and RRAP ver-
sions of SRR in the traffic scenario previously considered
in Sec. 5. In order to appreciate the dependence of RRMP
on the maximum link utilization threshold uthres

max , two dif-
ferent thresholds are used in the evaluation: uthres

max1
= 1

(which corresponds to the constraint umax 6 1 in Table
1), and uthres

max2
= urobust

max , where urobust
max is the output of

RROP-HTL in Sec. 5. In the case of RRAP, the weight
α is set to 0.5, namely an even balance between umax and
umean. This may impress as a somewhat naive approach
to the reader, but practice shows that this choice provides
in fact very good results.

Figures 4 depicts the results in this case. Let us fo-
cus our attention on the operation after the 100th minute,
as all robust routing configurations use X

HTL as the un-
certainty set. To be as fair as possible, both RRMP and
RRAP use the same set of paths as those used by RROP
in Fig. 3. The figure clearly shows that the performance
of RRMP strongly depends on the threshold uthres

max . In the
case of uthres

max1
, the attained maximum link utilization is

well beyond the optimal values, reaching almost a 70% of
relative performance degradation. This overload directly
translates into huge mean end-to-end queuing delays. Re-
sults are quite impressive when considering the second
threshold, both as regards umax and dmean. RRMP using
uthres
max2

provides a highly efficient robust routing configura-
tion, showing that it is possible to improve current imple-
mentations of SRR with a slight modification of the objec-
tive function. However, this dependence on the threshold
uthres
max introduces a new tunable parameter, something un-

desirable when looking for solutions that simplify network
management.

As regards RRAP, obtained results are slightly worse
than those obtained by RRMP uthres

max2
, but still very close

to the optimal performance, with a relative performance
degradation of about 10% as regards umax and dmean with
respect to an optimal routing configuration. Nevertheless,
RRAP has no tunable parameter apart from the combina-
tion factor α, which in fact is set to a half independently
of the traffic situation.
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Figure 4: Maximum link utilization and mean end-to-end queuing
delay for RRMP and RRAP.

6.1.3. The Reactive Robust Routing

As we showed in Sec. 5, the definition of the uncer-
tainty set has a major impact on the performance of SRR.
In particular, we saw that using a single definition of un-
certainty set under highly variable traffic cannot provide
routing efficiency for both normal operation traffic and
unexpected traffic events. Despite being one of its most
important features, using a single SRR configuration is not
the best strategy.

In [13] we proposed an adaptive version of SRR, known
as the Reactive Robust Routing (RRR). The basic idea in
RRR consists in computing a primal robust routing con-
figuration R o

robust for expected traffic variations in normal
operation within a primal polytope Xo. This polytope is
defined as in Sec. 3, based on a certain fixed routing config-
uration Ro and the expected links traffic load we shall call
Yo = {ρoi}. Additionally, a set ofm anomaly polytopes Xj

are defined, and a preemptive robust routing configuration
Rj

robust is computed for each of these anomaly polytopes.
Let us explain the concept of an anomaly polytope. In

Fig. 3, the abrupt increase in traffic volume is caused by a
single anomalous OD flow xk that unexpectedly carries a
many times bigger traffic load θ due to an external routing
modification. After this exogenous unexpected event, the
traffic demand X takes the value X ’ = X + θ.δk, where
δk = (δ1,k, . . . , δk,k, . . . , δm,k)

T , δi,k = 0 if i 6= k and
δk,k = 1. We shall designate this unexpected traffic in-
crease in OD flow xk as anomalous traffic event Ak. The
anomaly polytope Xk results from expanding the primal
polytope Xo in the directions of the links that traverses the
anomalous OD flow xk, with respect to Ro. The reader
should bear in mind that the kind of unexpected traffic
events we deal with are independent of the intradomain
routing; these events originate outside the network and
propagate between origin-destination nodes. This justifies
the relevance of the polytope expansion with respect to Ro.
The obtained polytope Xk is the smallest polytope that
contains the unexpected traffic demand X ’ and thus, the
corresponding robust routing configuration Rk

robust pro-
vides a relatively good performance under its occurrence.
Figure 5 explains the idea of the multiple anomaly poly-
tope expansion. As before, rio stands for the i-th row of

Xo
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Figure 5: Different anomaly polytopes for preemptive robust routing
computation.

the routing matrix Ro.
Note that in a real scenario it is not possible to predict

the size of the anomalous traffic θ. As a consequence,
the primal polytope Xo is expanded to the limits of link
capacities, obtaining the following anomaly polytope for
each anomalous traffic event Ak:

Xk =
{

X ∈ R
m, Ro.X 6 Y Ak , X > 0

}

, ∀k ∈ N (6)

In (6), the i-th component of Y Ak takes the value ρoi if
ri,ko = 0, or the value ci if r

i,k
o > 0, being ri,ko the element

(i, k) of Ro.
Given the primal and the m preemptive robust routing

configurations R o
robust and Rj

robust, RRR uses an on-line
anomaly detection/localization sequential algorithm to de-
tect the occurrence of an anomalous event Ak, switching
routing from R o

robust to Rk
robust (and from Rk

robust back
to R o

robust when normal operation is regained). We re-
fer the reader to [13] for additional details on the de-
tection/localization algorithms and the implementation of
RRR.

RRR can handle large and unexpected traffic variations
in single OD flows quite effectively (the case of multiple si-
multaneous anomalies is beyond the scope of RRR). How-
ever, given the difficulty involved in modifying the routing
configuration of a large scale network in an on-line fash-
ion, the contributions of RRR are mainly theoretical. This
problem can be solved by using a load balancing technique
instead of a complete routing reconfiguration. In load bal-
ancing, we keep the same set of paths Pk for each OD
pair k, and only modify the fractions of traffic sent along
each path. Load balancing can be easily performed on-
line and does not require any additional modifications in
current path-based networks such as MPLS. We shall refer
to the load balancing variant of RRR as Reactive Robust
Load Balancing (RRLB), stressing the difference between
routing reconfiguration and load balancing.

RRLB uses the same set of anomaly polytopes Xj de-
fined in RRR, but the computation of the m preemptive
robust routing configurations Rj

robust is slightly modified.
The same set of paths Pk obtained during the computation
of R o

robust is used in every Rj
robust. As in Sec. 5 and 6.1.2,
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routing configurations Rj
robust are obtained with a simpli-

fied version of the former optimization algorithm, where
only new traffic demands are progressively added and no
extra paths are created.

6.2. Improving Dynamic Load Balancing

6.2.1. Convergence Time

The DLB algorithms evaluated in Sec. 5 present an
important overshoot and a significant settling time in the
presence of sudden and large traffic variations. If the traf-
fic anomaly is a perfect step, then the overshoot is un-
avoidable. We will try to address the long settling time
instead. The reason behind this problem is relatively sim-
ple, as shown in Fig. 6. The graph depicts the evolution
over time of the corresponding rkp values of the anomalous
OD pair for MinDG in the example of Sec. 5. We may
see that, although the rkp change exponentially fast, at the
moment of the anomaly the values that should increase are
so small that it takes them a very long time to converge.
A possible solution is to impose a minimum value to all
rkp . However, this will affect the precision of the algorithm
and will still result in significant settling times.

Actually, rkp may be regarded as an indicator of the
performance of path p in the previous iterations. A very
small rkp means that p performed very badly with respect
to the rest of the paths in the past. However, when the
anomaly occurs, conditions severely change and history is
no longer as relevant. If we consider that we are in such
situation, we could for instance completely ignore history
and restart the game by setting rkp = 1/|Pk| ∀k ∈ Pk.

Before deciding how to reassign rkp , we will discuss how
an OD pair may decide if it should restart its game or not.

Consider a situation where most of the traffic for OD
pair k is routed along a path that is not the cheapest, and
that the rkp corresponding to the minimum-cost path is
very small. This could mean that although the former per-
formed better in the past, this is no longer true and some
traffic should be re-routed to the latter. This is more so as
the difference in cost increases. However, this “suspicious”
situation could be due to noisy measurements. To make
sure that the game has actually changed and that it should
be restarted, we will require such a situation to persists
during a certain number of consecutive iterations. Once
we detected that the game should be restarted, we will
re-route some of the traffic that was being routed along
the path with the biggest rkp to the cheapest one. The
amount will be proportional to the relative difference in
cost to avoid overreacting. Finally, remember that with

WMA fast adaptation is achieved when the rkp are not too
small. The objective with this “game restart” is simply to
move rkp from critically small values. The algorithm will
then rapidly converge to the optimum. We now present
the pseudo-code of the complete algorithm for OD pair k:

Algorithm 2 WMA with Restart (WMA-R)

1: for t = 1, . . . ,∞ do

2: Obtain path costs φp ∀p ∈ Pk

3: Determine pmin = argmin
p∈Pk

φp and pmax = argmax
p∈Pk

rkp

4: if (rkpmin
< 0.1) and (φpmin

+ φth < φpmax
) then

5: nk
e ← nk

e + 1
6: else

7: nk
e ← 0

8: end if

9: if nk
e ≤ nk

th then

10: Perform a normal iteration of WMA (cf. Algorithm 1)
11: else

12: nk
e ← 0

13: ∆r ← min
{

φpmax

φpmin

− 1, 1
}

×
rkpmax

−rkpmin

2

14: rkpmax
← rkpmax

−∆r

15: rkpmin
← rkpmin

+∆r

16: end if

17: end for

The new variable nk
e counts the number of consecutive

occurrences of a “suspicious” situation (we used nk
th = 3).

The threshold φth is to make sure that the difference in cost
between paths is significant. In particular, for MinUG we
used φth = 0.005 and for MinDG φth = 0.2φpmin

. Finally,
note that when the game is restarted, we re-route a cer-
tain amount of traffic from pmax to pmin, but at most the
amount of traffic routed along each path is equalized.

6.2.2. Converging to the Social Optimum in Bottleneck
Games

In Sec. 5 we showed an example in which MinUG does
not converge to the optimum, and obtains a difference of
15% with respect to the optimum MLU. The reason be-
hind this poor performance is simply that MinUG does not
take into account the result regarding the optimality of the
WE and the efficiency condition discussed in Sec. 4.1 and
originally presented in [15]. This result states that if at
a WE all OD pairs send their traffic along paths with a
minimum number of network bottleneck links (those with
the maximum utilization in the whole network), the WE
is optimal. The problem we analyze now is how to design
a path cost function φp that takes into account this condi-
tion, so that when using it, the load-balancing algorithm
converges, when possible, to the correct WE. Note that
the condition is only sufficient, meaning that a WE that
fulfills the efficiency condition may not exist. A simple ex-
ample of such case is a single OD pair with two paths with
different lengths, where all links have the same capacity.
Anyhow, the two main difficulties in the design of such
path cost are the following. Firstly, the number of bottle-
neck links in a path is an integer (thus not continuous on
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rkp ). Secondly, the probability of two links having exactly
the same utilization is zero, and as such we should con-
sider the number of links that have an utilization similar
to the network bottleneck.

The objective is then to find a cost function that penal-
izes paths in which several links have similar utilizations
(and that this utilization is the maximum in all the net-
work), and that it does not switch between values to avoid
oscillations. A candidate φp that fulfills these two condi-
tions is the so-called log-sum-exp function. Consider a set
of arbitrary numbers A = {ai}, the log-sum-exp function
g(A) is defined as follows:

g(A) =
1

γA
log





∑

i=1,...,|A|

eγAai



 =

ai∗ +
1

γA
log



1 +
∑

i=1,..,|A| ∧ i6=i∗

eγA(ai−ai∗ )



 (7)

Consider the special case in which ai∗ = max A. It
should be clear that if ai∗ is significantly bigger than the
rest of the elements in A, the above convex and non-
decreasing function constitutes an excellent approxima-
tion of ai∗ . In fact, it easy to prove that ai∗ ≤ g(A) ≤
ai∗ + log(|A|)/γA, meaning that we may control the preci-
sion of the approximation through the parameter γA (the
bigger this parameter, the more precise the resulting ap-
proximation). Moreover, as more elements in A are sim-
ilar to the maximum, g(A) approaches the upper bound,
reaching it when all elements are the same.

We will then use the second term of (7) as a penalty to
those paths with several links whose utilization is similar
to umax (the maximum utilization in the network). More
precisely, given a path p, let Up = {ul}l∈p be the utiliza-
tions in the path, and l∗ ∈ p be the link with the biggest
utilization in p. We will then use the penalty function with
the alternative set U∗

p , which has the same elements as Up,
but substitutes ul∗ by umax. This results in the following
cost function:

φp = ul∗ +
1

γp
log



1 +
∑

l∈p ∧ l 6=l∗

eγp(ul−umax)



 (8)

Even if this new cost function penalizes paths with
several network bottleneck links, it also penalizes longer
paths, which was not our original objective. A good choice
of γp will alleviate this side-effect. For instance, we used
γp = log(|p|)/max{0.01, ul∗/10}. This way, we try to min-
imize the effect of log(|p|) and relativize the penalization
to ul∗ . The following section presents the results obtained
by this new path cost function, which we will still call
MinUG.

7. Evaluation and Discussion

In this section we evaluate the performance of the dif-
ferent RR and DLB algorithms presented in this work,
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Figure 7: Maximum link utilization and mean end-to-end queuing
delay under normal operation.

considering both normal operation and anomalous traffic
situations. We present and discuss three simulation case-
scenarios: starting from a normal traffic variation scenario,
we increase the number of OD pairs that present anoma-
lous traffic variations. This allows for performance com-
parison at different levels of traffic variability. As both
RRAP and RRMP provide similar results (when uthres

max is
correctly defined for RRMP), we will only consider the
RRAP mechanism in the evaluation. Finally, we shall use
RRLB-OP and RRLB-AP to designate the Reactive Rout-
ing Load Balancing variants of RROP and RRAP respec-
tively.

7.1. Normal Operation

The first case-scenario corresponds to traffic in nor-
mal operation. The only variability is due to typical daily
fluctuations. Figure 7 presents the evolution of umax and
dmean for RROP and RRAP, using a set of 260 TMs from
dataset X01 in [29] (specifically, those with indexes be-
tween 420 and 680). All algorithms perform similarly as
regards maximum link utilization, depicted in Fig. 7(a).
This may be further appreciated in the boxplot summary
presented in Fig. 8(a), where values are relative to those
obtained with an optimal routing configuration. Note that
the relative performance degradation is around 10% in
most cases.

Figures 7(b) and 8(b) show that results are quite dif-
ferent as regards mean queuing delay. We may verify that
the best results are obtained by MinDG, followed closely
by RRAP. However, both RROP and MinUG systemat-
ically obtain a significant difference with respect to the
optimum, generally between 30% and 40%. These results
further highlight the limitations of RROP and MinUG as
previously discussed: using umax as a performance objec-
tive results in a relatively low maximum utilization, but
neglects the rest of the links, impacting the network-wide
performance.

7.2. One Anomalous OD Pair

The second case-scenario is the one considered in Sec.
5, where there is a sudden and abrupt increase of the traffic
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Figure 8: Maximum link utilization and mean end-to-end queuing
delay under normal operation, boxplot performance summary. De-
picted results are relative to the optimal values.

volume carried by one OD flow. As a difference with re-
spect to the evaluation in Fig. 3, where traffic was assumed
known in advance, this case-scenario corresponds to a real
situation where traffic anomalies can not be forecast.

Firstly, notice in Fig. 9 how the improvements dis-
cussed in Sec. 6.2.1 for MinUG and MinDG result in a
relatively smaller overshoot than before, but most impor-
tantly the settling time has been significantly decreased
(in the case of MinDG, from 600min. to less than 50min).
Moreover, note how the modified cost function proposed
in Sec. 6.2.2 results in MinUG converging to the socially
optimum WE.

Regarding umax, both RRLB-OP and RRLB-AP ob-
tain similar results, with a relative performance degrada-
tion generally smaller than 15% (this may be easily appre-
ciated in the boxplot summary in Fig. 10). Note that while
relatively important, this performance degradation is sur-
prisingly small if we consider that traffic increases more
than 500% in less than 10 minutes. The same may be
said about MinDG, which obtains a degradation between
20% and 25%. In terms of dmean, MinUG and RRLB-AP
perform similarly. They both clearly outperform RRLB-
OP, achieving a relative mean queuing delay almost 30%
smaller. These results reinforces once again our observa-
tions about the difficulty in RROP to attain global perfor-
mance, and the advantages of using a simple network-wide
objective function in a robust routing algorithm. More-
over, they also illustrate the difference between MinUG
and RROP. Even when MinUG was designed with the
same objective than RROP (namely to minimize umax),
the fact that in MinUG each OD pair greedily minimizes
the path utilization results in a different overall behavior.

7.3. Two Anomalous OD Pairs

In this case-scenario two OD pairs largely increase their
traffic demand, one at approximately the 150th minute
and the other at the 320th (they correspond to TMs with
indexes between 160 and 280 from dataset X06 in [29]).
They both present this anomalous traffic until the end of
the simulation. We shall then separate the simulation in
three parts: the first third where traffic is normal, the
second third were only one OD pair is anomalous, and
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Figure 9: Maximum link utilization and mean end-to-end queuing
delay under one anomalous OD pair.
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Figure 10: Maximum link utilization and mean end-to-end queuing
delay under one anomalous OD pair, boxplot performance summary.
Depicted results are relative to the optimal values.

the last third were both OD pairs are anomalous. The
anomaly localization algorithm of RRR was designed for
the case of one single anomalous OD pair. Because of this,
we will further illustrate the tradeoff between size of the
considered uncertainty set and efficiency of the obtained
routing, and chose the uncertainty polytope by the traffic
loads seen after the second anomaly.

In Fig. 11(a) we may see that, as expected, the umax

obtained by both RROP and RRAP in the last third of
the simulation are very close to the optimum. However, in
the rest of the simulation the difference may be important,
specially in the second part where the absolute difference
for RRAP is almost 20%. It is important to highlight the
results obtained by MinDG and MinUG. Notice that the
overshoot this time is much smaller than before (a maxi-
mum of 0.1 in umax for MinDG) and the settling time is
negligible. These good results may be further appreciated
in the boxplot summary of Fig. 12. In this case-scenario
the increase in traffic of the anomalous OD pairs is more
gradual than before, which clearly favors dynamic schemes
in their performance.

8. Conclusions and Future Work

From the study we presented in this article we may
reach several conclusions. The most important is proba-
bly that we have shown that using a single routing config-
uration is not a cost-effective solution when traffic is rel-
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Figure 11: Maximum link utilization and mean end-to-end queuing
delay under two anomalous OD pair.
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Figure 12: Maximum link utilization and mean end-to-end queuing
delay under two anomalous OD pair, boxplot performance summary.
Depicted results are relative to the optimal values.

atively dynamic. Stable Robust Routing obtains a rather
poor performance either when faced with non considered
traffic demands (tight uncertainty sets) or when designed
to manage as many traffic demands as possible (big uncer-
tainty sets). It is clear from our study that some form of
dynamism is necessary, which could be either RRLB (Re-
active Robust Load Balancing) or DLB (Dynamic Load-
Balancing).

RRLB computes a nominal operation routing config-
uration, and has an alternative routing (using the same
paths than in normal operation) for certain possible anoma-
lous situations. In order to detect these anomalous situ-
ations, link load measurements have to be gathered [13].
On the other hand, DLB gathers these same measurements
but also requires updating load-balancing in a relatively
small time-scale. The added complexity is then to dis-
tribute these measurements to all ingress routers (instead
of a central entity) and updating the load-balancing in
real-time.

Our results show that the additional complexity in-
volved in DLB is not justified when the variability (or the
anomalies) are not very significant. However, the use of
DLB under highly dynamic traffic is very appealing and
generally provides better results than RRLB. Moreover, if
the anomalies may not be correctly detected or localized
(as in Sec. 7.3), the only effective solution is DLB.

Regarding RR in particular, we saw that using a local
performance criterion such as the maximum link utiliza-

tion (MLU) is not a suitable objective function as regards
network-wide performance and QoS provisioning. In par-
ticular, we showed that an almost optimal robust routing
configuration with respect to MLU can experience rather
high mean end-to-end queuing delays, a very important
performance indicator for all types of traffic. The max-
imum link utilization is widely used in current network
optimization problems, particularly in most Robust Rout-
ing proposals, thus we believe that this simple evidence
can help and should be considered in enhanced future im-
plementations.

In fact, we have shown that objective optimization
functions can be kept simple, and yet better network-wide
performance can be attained. By using a simple combi-
nation of performance indicators such as the maximum
and the mean link utilization, we obtained a robust rout-
ing configuration that definitely outperforms current im-
plementations from a global end-to-end perspective, while
achieving very similar results as regards worst-case link
utilization.

The framework of Aggregated Objective Functions (A-
OF) we used provides interesting results as regards multi-
objective optimization, particularly in the context of ro-
bust optimization. An AOF approach can be used to con-
struct better objective functions from simple performance
indicators, avoiding the need of more complex Multi-Ob-
jective Optimization (MOO) techniques. As part of our
ongoing work we are currently analyzing the trade-off be-
tween using a simple AOF approach against a more com-
plex but more complete MOO approach, computing all
Pareto-efficient solutions for a polyhedral uncertainty set
and comparing their performance.

In what respects DLB, dynamic approaches are gener-
ally met with reluctance due to their transient behavior
under strong traffic variations. However, we have shown
that this transient behavior can be effectively controlled,
or at least alleviated, by simple mechanisms. Concerning
the two different games we presented, conclusions are sim-
ilar to those of RR. Striving to minimize dmean instead of
umax results in a somewhat bigger maximum utilization,
but a (sometimes much) better global performance.

It should also be highlighted that this article repre-
sents one of the first studies using no-regret algorithms for
load-balancing, and as such much exploration is left to be
done. In this sense, let us remark that WMA is arguably
the simplest no-regret algorithm in the literature. For in-
stance, it is easy to see that not all β < 1 guarantee a non-
oscillatory behavior of the algorithm (consider for example
β = 0). There exist other more sophisticated algorithms
of this kind, that do not require any parametrization at
all (including β) and still guarantee convergence (see for
instance [34]), whose exploration is left for future work.
However, an important conclusion of the current article is
that, whatever the no-regret algorithm we choose, we will
still require a “restart” feature as in WMA-R.

Our study also highlighted a problem with previously
proposed DLB algorithms, namely the wrong assumption
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that OD pairs that greedily minimize the path utilization
converge to a routing configuration that minimizes MLU.
Based on a recent result [15], we have explored the pos-
sibility of modifying the path cost function so that the
resulting routing configuration is actually optimum. Pre-
liminary results presented in this article are very promising
and encourage us to further study this new cost function
(e.g. characterize the resulting WE or consider other al-
ternative penalization functions).
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