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Abstract—Wireless Mesh Networks (WMNS) have emerged
in the last years as a cost-efficient alternative to traditional
wired access networks. In order to fully exploit the intrinsically
scarce resources WMNS possess, the use of dynamic routing
has been proposed. We argue instead in favour of separating
routing from forwarding (i.e. à la MPLS) and implementing a
dynamic load-balancing scheme that forwards incoming packets
along several pre-established paths in order to minimize a certain
congestion function. In this paper, we consider a particular but
very important scenario: a planned WMN where all bidirectional
point-to-point links do not interfere with each other. Due to its
versatility and simplicity, we use the sum over all links of the
mean queue length as congestion function. A method to learn this
function from measurements is presented, whereas simulations
illustrate the framework.

I. INTRODUCTION

Wireless Mesh Networks (WMNS) [1] have emerged in
the last years as a cost-efficient alternative to traditional
wired access networks. In particular, outdoor community mesh
networks [2] and rural deployments [3], [4] based on IEEE
802.11 have seen tremendous growth in the recent past. Under
this scenario, the typical architecture (see Fig. 1) includes one
or more gateways to the internet, and several relay routers.

The main challenge for this kind of networks, at the
wireless mesh backbone level, is routing and forwarding. In
the current standard [5] (and in several other proposals [6])
each link has an associated weight. This weight is expected to
change over time, and reflect current conditions (propagation
conditions, interference, etc.), so as to maximize a certain
criteria (e.g. throughput). To choose a path to its destination,
each router executes a shortest path algorithm. This procedure
is essentially the same than the one used in wired networks.
The main difference is that, just like in the internet until
the early eighties, links weights are allowed to change at a
time scale of some seconds [7]. The more static configuration
that is used nowadays is due to the oscillations that these
dynamic weights generated. It seems like history is repeating
itself, since early experiments with WMNS have also reported
routing oscillations [8], [9].

However, since resources are intrinsically scarce in WMNS,
a static solution is not suitable. We argue instead in favour of
a dynamic solution, but separating routing from forwarding.
We propose a dynamic load-balancing scheme that forwards
incoming packets along several pre-established paths in order
to minimize a certain objective function. If correctly designed,
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Fig. 1. Wireless Mesh Network (WMN) typical architecture.

load-balancing will bring improved performance over static
routing, without the difficult to avoid oscillations of pure
dynamic routing (for more arguments in favour of load-
balancing see the discussion presented in [10]). Due to its
versatility and simplicity, we use the sum over all links of the
mean queue length as objective function.

In this paper, we consider a particular but very important
scenario: a planned WMN, where all bidirectional point-to-
point links do not interfere with each other. This assumption
means that either all backhaul links use different channels or
links in the same channel are in different collision domains.
There are many scenarios where this assumption holds, for
example suburban or rural area networks and even campus
networks, deployed with high directional antennas with proper
RF design and channel assignment. This assumption also
implies that the network topology is already defined (typically
at infrastructure deployment phase), so we can not decide
which backhaul links to establish but only how to use them
(which traffic route through them). Unlike the wired case, the
mean queue size at a given interface now depends not only on
the incoming traffic, but also on the activity of the interface
at the other end of the link.

There are some recent related works that we highlight. In
[11] an optimization framework is presented to reach minimum
average delay in a single channel WMN, while a load-
aware routing metric was used in [12]. In [13] an heuristic
algorithm was proposed to tackle the dynamic gateway se-



lection problem. A recent thesis [14] introduced a MPLS-
based forwarding paradigm for WMNS using a splitting-based
routing policy.

Two major differences should be distinguished between our
proposal and previous works. The first one is the introduction
of a measurement-based model for 802.11 links, whereas most
of the literature is based on (arbitrary) MAC layer models
since Bianchi’s seminal paper [15]. The second important
difference is the time scale at which decisions are taken. Most
of routing algorithms proposed for WMNS are based on a
certain metric which changes at a time scale of seconds. The
presented framework operates at a flow level time scale, which
enables decoupling the link model learning phase from the
forwarding decision, and ensures better stability properties.

II. NETWORK MODEL AND PROBLEM FORMULATION

Firstly, let us remark that in the context of WMNS we may
safely assume that nodes are fixed and do not change position
very often and power is not an issue, so we will completely
ignore energy consumption. We will then concentrate on
the performance as perceived by packets in terms of delay,
dropping probability and throughput. In this case, throughput
will refer to a quantity proportional to the inverse of the time
that it takes any given packet to leave the network.

Let n = 1, ..., N be the set of static wireless mesh
routers (including gateways) which we shall call nodes and
l = 1, ..., L the backbone bidirectional links in the network.
Each node may have several wireless interfaces and we will
assume that a single FIFO queue is attached to each interface
(all packets are treated equally). We will focus on the mesh
core, so only backhaul links and aggregated traffic at mesh
routers will be considered. We will assume that this traffic
uses different channels (e.g. 802.11a) than the ones used with
mobile hosts (e.g. 802.11b/g). We shall further assume that
channels within the mesh core do not interfere with each other.

The traffic matrix is defined by a set of possible origin-
destination (OD) pairs, which we shall index by the integer
s = 1, ..., S. The amount of traffic generated by OD pair s will
be noted by ds. As mentioned in Sec. I, each pair will have a
set of ns fixed, established a priori paths, which we shall note
as Ps. Each of the elements in Ps will be noted by Psi for
i = 1, ..., ns. The amount of traffic sent along path Psi shall be
noted as dPsi , which complies to the following two constraints:∑

i dPsi = ds and dPsi ≥ 0. We further define the column
vector d as follows: d = [dP11

...dP1n1
dP21

...dPS1
...dPSnS

]T .
Within this context, for each link l we have two traffic loads,

one for each direction of the communication, which we shall
call ρl1 and ρl2 taking any arbitrary convention (see Fig. 2).
Given a demand vector d, the total traffic load on link l in
one direction (e.g. ρl1 ) is given by the sum over all OD pairs
of the demand of those paths dPsi

which use the link in that
direction. Let Dl1 be the average amount of time a packet
spends at the queue of link l in the direction of load ρl1 . This
non-decreasing function depends on the load ρl1 and the load
in the opposite direction ρl2 , because of the 802.11 medium
access control. Let DP be the average end-to-end delay of a
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Fig. 2. Wireless link queues and flows in both directions.

path. Note that, as mentioned above, the throughput of path P
is proportional to the inverse of DP . We will use the mean total
delay D(d) as the total network congestion measure, defined
as below. Then, it is easy to prove that:

D(d) :=

S∑
s=1

∑
P∈Ps

dPDP =

L∑
l=1

Dl1ρl1 +Dl2ρl2 (1)

Let Ql1 and Ql2 be the mean amount of bytes of link l
queues on each direction. Then, by Little’s law we obtain the
following result: Ql1 = Dl1×ρl1 and Ql2 = Dl2×ρl2 . Finally
D(d) is given by:

D(d) =

L∑
l=1

Ql1 +Ql2 =

L∑
l=1

Ql (ρl1 , ρl2) (2)

In the next section we will present a measurement-based
scheme to characterize Ql (ρl1 , ρl2). As mentioned in Sec. I,
we believe that the traffic distribution (i.e. the vector d) should
be set so as to minimize the addition over all links of Ql. That
is to say, we should strive at solving the following problem:

min
d

L∑
l=1

Ql (ρl1 , ρl2) s.t. dPsi
≥ 0

∑
dPsi

= ds

We will now justify our choice of the objective function.
Equation 1 suggests that our objective function may be re-
garded as a weighted mean end-to-end delay, where the weight
of each path is how much traffic is being sent along it. This
means that

∑
lQl considers both delay and throughput at

the same time. Concerning dropping probability, the last of
the three performance indicators cited before, it should be
clear that a bigger value of it will result in a bigger queue
at the output air interface, resulting in a bigger

∑
lQl. The

conclusion of this discussion is that
∑

lQl is a number that
is affected by the three performance indicators, and as such
reflects the three of them. We referred to this when we said
before that

∑
lQl is a versatile indicator.

III. SIMULATION EXPERIMENTS

In order to test the proposed framework we performed
several simulations with the ns-3 simulator [16]. Wireless links
were set to 802.11a, all with a distance = 100m and fixed
RSS = −65 dBm as propagation model. To generate each
flow with the desired traffic load ρ, we used a combination
of random TCP and UDP flows (80% and %20 respectively).
TCP flows were generated with exponential file sizes with
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Fig. 3. Learnt function example (log-scale) for the link average queue length.

mean 500 Kbytes. UDP flows were generated with a fixed rate
of 100 kbps and exponential length with mean 30 seconds. The
arrival rate distribution was also exponential for both cases,
with mean according with the desired traffic loads.

A. Wireless Link - Average Queue Length Function

The function Ql (ρl1 , ρl2) is not trivial as we are dealing
with wireless links with medium access control mechanisms
like 802.11. Several works since [15] have tried to find the
relation between wireless link parameters and the correspond-
ing TCP and UDP achievable throughput. We used a different
approach, that has already proved suitable for wired links [17],
which is learning the function from measurements. The func-
tion Ql (ρl1 , ρl2) is assumed to be continuous, monotonous
increasing and convex, which guarantees the existence and
uniqueness of an optimum demand vector d, and it is approx-
imated by a convex piecewise linear function. Differently to
the wired case, the mean queue size at a given link is now a bi-
variable function, because it depends not only on the incoming
traffic, but also on the traffic in the opposite direction.

We present an example for one link to illustrate the pro-
cedure followed for every link in the network in the learning
phase. In the example we generated a dataset of 484 measure-
ments, 228 used for learning the function and the remaining
256 for testing the regression performance. Each measurement
corresponds to the average traffic load in both directions
(ρ1, ρ2) and the average queue length Ql, where averages are
considered over 100 seconds. In Fig. 3 we present the resulting
function after the regression in logarithmic scale. Queue size is
expressed in packets because both ns-3 simulator and typical
wireless equipment use 802.11 packet-based queues [18]. The
RMSE for training data was 4.3 packets, while the RMSE
for test data was 5.5 packets. The relative RMSE for training
data was 2.9% with a maximum of 14.2%, while for test
data was 4% with a maximum of 15.2%. This results show
that the function approximation is suitable, which justifies the
assumption of convexity.

GW 0 GW 1

�2

�01

�3

�10

node 2 node 32

31

Fig. 4. Network topology and traffic flows considered on simulations.

B. Optimization

In order to validate the framework we tested the proposed
minimum queue length load-balancing (MQLLB) algorithm
with simulations over the topology and flows shown in Fig. 4.
We considered downlink flows to nodes 2 and 3 with traffic
loads ρ2 and ρ3 respectively. This traffic flows are distributed
between the two gateways. We called pGW0−2 and pGW0−3 the
traffic portion of ρ2 and ρ3 respectively, that is routed through
gateway GW 0. Note that this gateway selection problem can
be treated as a multipath forwarding problem. Both gateways
could be considered as the same traffic origin (internet) and
then the optimization problem to solve is exactly the same. We
also considered the possibility to have inter-gateways flows, in
this case ρ01 (from 0 to 1) and ρ10 (from 1 to 0).

In order to drive the network to the desired operation point,
we have to solve the optimization problem detailed in Sec.
II. We used a gradient descent method to iteratively update
the demand vector d by setting the proper load balance that
leads to the optimum. Each iteration is performed every 100
seconds, the same time used for average measurements. The
equation for updating d at the step n+ 1 is:

dn+1
Psi

=

dnPsi
− γ

∑
l:l∈Psi

∂Ql

∂ρlsi

(
ρnl1 , ρ

n
l2

)+

where ρlsi is the traffic load of link l that corresponds to
path Psi. After updating d we have a normalization step to
guarantee the restrictions on the demands. Parameter γ was
fixed in 5× 10−4 for all the experiments.

We used 200 measurements in the learning phase for each
link, which is 5.56 hours of training data. We implemented
the MQLLB method which uses the described optimization
framework to iteratively update d, taking the forwarding
decision with a flow level granularity.

In order to explain our algorithm operation we will analyze
the case-scenario where traffic loads are ρ01 = ρ10 = 3 Mbps
and ρ2 = ρ3 = 10 Mbps. The total queue evolution is shown
in Fig. 5(a), where simulation starts at t = 0s with both
flows routed through GW 0 (pGW0−2 = pGW0−3 = 1). At
the beginning MQLLB is off which produces congestion at
link 1, in the queue from GW 0 to node 2 (see Fig. 4). At
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Fig. 5. Optimization evolution for a simulation with traffic loads ρ01 =
ρ10 = 3 Mbps and ρ2 = ρ3 = 10 Mbps.

time t = 1000s MQLLB starts running which produces an
abrupt change in the total queue, which corresponds to the
traffic portion which starts to be routed through GW 1. After
two optimization steps (t = 1200s) we reached convergence
to the optimum total queue. In Fig. 5(b) we can see the total
queue evolution compared with the most important queues in
this example, from GW 0 to node 2 and GW 1 to node 3.

Now, we will take a look at another simulation example
where traffic loads are ρ01 = ρ10 = 3 Mbps, ρ2 = 15 Mbps
and ρ3 = 5 Mbps. In this case network started operating at
t = 0s with pGW0−2 = 1 and pGW0−3 = 0, which corresponds
to shortest path routing with hop count as routing metric. The
heavy traffic load from GW 0 to node 2 produces congestion
at link 1, which is visible in Fig. 6(a) where the total average
queue evolution is shown from t = 400s, when we have
already reached stationarity. MQLLB started operating at
t = 1000s and reached convergence at t = 1200s. The final
total average queue length as we reached convergence is 79
packets, which is almost 50% smaller than before starting
MQLLB where it was 154 packets (with peaks up to 235).
The evolution of pGW0−2 and pGW0−3 during the optimization
is shown in Fig. 6(b).

C. Implementation Issues

The application of the proposed framework in a real-world
network is relatively simple. First of all we need a routing
protocol to establish the multiple routes for each OD pair
defined by the wireless network topology. Once we have
learnt Ql for every link l, each ingress router receives the
values ρl from the links used by the OD flows with origin
in that ingress router. A routing protocol that supports traffic
engineering such as OSPF-TE may be used for this purpose.
With that information, each ingress router is able to update
the traffic portion that has to be routed through each path.
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Fig. 6. Simulation under heavy traffic load conditions (ρ01 = ρ10 =
3 Mbps, ρ2 = 15 Mbps and ρ3 = 5 Mbps).

This process is repeated indefinitely every some seconds. This
update period should be long enough so that the obtained
measurements’ quality is reasonable, but not too long to avoid
unresponsiveness (e.g. we used 100 seconds).

With respect to the flow-based multipath implementation,
the idea is to use an MPLS-based solution, similar to the
wired case. Although an standard of MPLS over WMNS
does not exist yet, several proposals were already presented.
For example in [14] the proposal considers traffic splitting at
every router and optimization over the average of all possible
traffic matrices. Our proposal could be implemented reusing
the same splitting-based scheme, but considering splitting only
at ingress routers over all the different end-to-end paths and
enabling dynamic load-balancing for the average load at each
moment.

Regarding the learning phase we envisage several possibil-
ities, differing in the resulting architecture distribution. One
possibility is that a central entity gathers the measurements,
performs the regression and communicates the obtained pa-
rameters to all ingress routers. This option has the advantage
that the required new functionalities on routers are minimal.
However, as all centralized schemes, it may not be suitable
for some network scenarios, and handling the failure of this
central entity could be very complicated. An alternative is that
for each wireless link only the two directly involved routers
perform the regression. They should keep the average queue
size measurements for themselves, perform the regression and
communicate the result to the corresponding ingress routers.

Another aspect that has different possibilities is what char-
acterization (i.e. Ql learnt function) use at each moment and
which measurements to keep for the training set. Measure-
ments could be gathered every day, the regression performed,
and its result could be used the next day or the same day the



next week. In addition, it is clear that newer measurements
should be given priority over older ones. A possible way to
manage training data is to keep always the newer measure-
ments and use weights in the regression to introduce temporal
information (e.g. exponential decay). It may also be necessary
to force keeping particular measurements to ensure a proper
coverage density of the whole range of possible load values.

For the gateway selection problem there is an important
issue to solve for a real-world implementation. In this case we
cannot perform path selection at the ingress routers because the
gateway is usually defined by the routers which are directly
connected to mobile hosts, which are egress routers for the
dowlink traffic (typically the heavier load). One solution to this
problem is to take the decision at these egress routers keeping
a flow granularity, which implies to decide which gateway
should be used for each client when a flow starts (e.g. joint
with NAT). A simpler alternative is to make gateway selection
with client granularity. In that case, these egress routers may
decide the proper gateway for each client. In order to have a
better resolution to define the amount of traffic coming from
each gateway, these egress routers could monitor each client
traffic demand. This way, the optimization process could use
a client granularity but adding the client demand information,
which allows a better traffic forwarding update at each step.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an algorithm for dynamic mul-
tipath forwarding in a WMN. The algorithm enables load-
balancing and conducts the network to operate at the minimum
average congestion. The proposed framework also allows to
solve the gateway selection problem in a WMN. This was
achieved learning the average queue length function from
measurements for each link and applying an optimization
method in order to reach the minimum average queue length
in the network. The proper evolution and convergence of the
proposed method was verified by our packet-level simulations
in a simple topology which serve as a proof of concept.

In our future work we will perform the learning phase with
real data which includes among other issues the non-zero
channel error rate, typical of a real-world wireless link. All
the simulations presented in this paper are done with synthetic
stationary traffic. We will extend our work to non-stationary
real data which seems not to be a problem to the framework.
It would be very interesting to perform a statistical analysis
of the behaviour of the mean queue size with respect to the
load. A possible analysis would be to study how often does the
regression function change over time (i.e. answer the question
of whether the mean queue size function changes over time,
and how often it does). Another aspect of our future work
is the implementation of the proposed framework in a real-
world network which will serve as a testbed and could be
used for enhancing the algorithm and detecting real-world
driven problems that need to be solved. An interesting point
which could be more profoundly studied in the future is the
optimization phase. This problem could be solved by several
different methods and was not analyzed in the present paper.

In particular, it could be worthwhile to study a parameter-
free optimization method. Finally, we would like to extend the
proposed framework, which was developed for a link disjoint
WMN, to scenarios that have not only point to point links but
also point to multipoint links.
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