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Abstract In the simplest Matérn point processes, one retains certain points of a Pois-
son point process in such a way that no pairs of points are at distance less than a
threshold. This condition can be reinterpreted as a threshold condition on an extremal
shot–noise field associated with the Poisson point process.This paper is focused on
the case where one retains points that satisfy a threshold condition based on anad-
ditiveshot–noise field of the Poisson point process. We provide an analytical charac-
terization of the intensity of this class of point processesand we compare the packing
obtained by the extremal and additive schemes and certain combinations thereof.

1 Introduction

Matérn type point processes were among the first point processes exhibiting repulsion
and for which closed form expressions were obtained for e.g.first and second moment
measures. These point processes are based on pairwise interactions between points.
They are defined as a non-independent thinning of a Poisson point process, where the
thinning can be seen as based on a threshold condition on the extremal shot–noise
field associated with the Poisson point process.

The aim of the present paper is to define a new class of point processes where
these pairwise interactions are replaced by more global interactions. More precisely,
the threshold condition on the extremal shot–noise is replaced by a threshold condi-
tion on an additive shot–noise field.

Matérn type point processes are used in a variety of contexts including forestry,
information theory and communication sciences to name a few. In the last domain,
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they were used to analyze exclusion mechanisms employed formedium access con-
trol [1] in wireless networks. These exclusion mechanisms aim at preventing nearby
nodes to transmit simultaneously and jam each other. The practical motivations of
the present paper stem from the last application domain. Within this context, these
additive Matérn type point processes allow one to analyze exclusion rules based on
the interference levelrather than pairwise interactions.

The paper is structured as follows. We first define the models:the extremal shot–
noise one, the additive shot–noise one and mixtures thereof. We then evaluate their
first moment measures by considering first the case in generaldimension and then a
special case in the Euclidean plane. We conclude by an analytical comparison of the
packings obtained by these point processes.

2 The models

Let Φ̃ = {(Xi,mi, Fi)} be an independently marked (i.m.) Poisson point process
(p.p.) with intensityλ in R

d where:

– Φ = {Xi} denotes the locations of the points;
– {mi} areR+-valued, independently and identically distributed (i.i.d.) marks with

distributionH and densityh;
– {Fi}i is an i.i.d. sequence of random vector withFi = (F i

j )j , where the compo-
nentsF i

j , j ∈ N are i.i.d. with distributionG.

We also define a deterministic functionL : Rd × R
d → R

+ whereL(Xi, Xj) =

l(|Xi −Xj|), with r → l(r) a decreasing function. Moreover, givenXi, Xj ∈ Φ̃, we
definef : Rd × R

d → R
+ asf(Xi, Xj) = L(Xi, Xj)F

j
i 1{mj<mi}.

In this paper, we focus on three different thinnings ofΦ̃ defined as follows:

Φext =

{
Xi ∈ Φ̃ : max

Xj∈Φ̃,j 6=i
f(Xi, Xj) < M0

}
, (1)

Φadd =



Xi ∈ Φ̃ :

∑

Xj∈Φ̃,j 6=i

f(Xi, Xj) < S0



 , (2)

Φadd
ext =



Xi ∈ Φ̃ : max

Xj∈Φ̃,j 6=i
f(Xi, Xj) < M0,

∑

Xj∈Φ̃,j 6=i

f(Xi, Xj) < S0



 . (3)

The default option is that the thresholdsM0 andS0 are positive constants.
These processes are compatible though non-independent thinnings of the original

Poisson p.p. where compatibility follows from the fact thatthe decision of retaining a
point depends on the universal mark at (or equivalently the p.p. seen from) this point.
This means that these processes are not Poisson in general.
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Remark 1Note that if the markFi is deterministic, thenΦext corresponds to a Matérn
hard core process [5]. In this case, a point is retained by thethinning iff it has the
smallest mark in a ball of fixed radius. This implies that there exists a minimum
distance between any two points of the process. In the non deterministic case, when
F i
j is a random variable with distributionG, Φext is a Matérn-like p.p. (see [1]). In

this case, the retained points have the smallest mark in a random set defined fromFi

rather than in a ball of fixed (or random) radius.

3 Intensities

In this section we calculate the intensity of the three thinnings previously defined. To
achieve this, we relate the condition to be retained with a shot noise associated to the
original process. This shot noise can be extremal or additive.

First of all, observe that the intensity of each one of the defined processes will
beλp0, wherep0 is the probability that a “typical point” (in the sense of thePalm
distribution ofΦ̃) is retained.

3.1 Extremal Matérn Point Processes (EMPP)

Let us concentrate first onΦext, which, as mentioned above, is a Matérn like p.p.. If
the mark of the pointXi ismi = t, it is retained byΦext iff

M t(Xi) ≡ max
Xj∈Φ̃t

F j
i l(|Xi −Xj |) < M0,

whereΦ̃t =
{
Xj ∈ Φ̃ : mj < t

}
. SinceΦ is a Poisson p.p. with intensityλ, Φ̃t is

also a Poisson p.p. with intensityλH(t).
Assume there exists an i.i.d. sequence of random fieldsy ∈ R

2 → Fi(y) ∈ R
+

such thatFi(Xj) = F i
j for all i 6= j. Then

M t(y) = max
Xj∈Φ̃t

Fj(y)l(|y −Xj |)

is anextremal shot noise(ESN) associated with the Poisson p.p.Φ̃t. The distribution
ofM t(y) is known (see for instance [1]) and this will be used to calculate the intensity
ofΦext. The key point here is that, thanks to the Slivnyak-Mecke theorem, the random
variableM t(Xi) has the same distribution asM t(0).

Analogously, a pointXi with markmi = t is retained byΦadd iff

St(Xi) ≡
∑

Xj∈Φ̃t

F j
i l(|Xi −Xj |) < S0.

As above, one can associate with the i.i.d. random fields{Fi(.)} and the Poisson p.p.
Φ̃t anadditive shot noise(ASN) field

St(y) =
∑

Xj∈Φ̃t

Fi(y)l(|y −Xj |). (4)
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This additive shot noise has been extensively studied and wewill use some of its main
properties below. We will also use the the Slivnyak-Mecke theorem to show that the
random variableSt(Xi) has the same distribution asSt(0).

Similar constructions will be used for the third modelΦadd
ext , which is a combina-

tion of the previous two cases.

Proposition 1 The probabilityp ext
0 that a typical point is retained byΦext is:

p ext
0 =

1− e−N(M0)

N (M0)
where N (M0) = λ

∫

Rd

(
1−G

(
M0

l(|x|)

))
dx. (5)

Proof See [5,1].

Remark 2Below we will assume that the integral definingN (M0) is finite so that
p ext
0 is positive. This is not guaranteed. For instance, if we taked = 2, M0 = 1 and

l(r) = r−β with β > 2, which is natural in the applications that motivate this work,
the finiteness of this integral is equivalent to

∫

R+

(1−G(v))v
2
β
−1dv < ∞

and we get for Lemma 1 p. 150 in [2] thatN (M0) is finite if and only if the distribu-
tionG has a finite moment of order2/β i.e. if

∫

R+

x
2
β G(dx) < ∞.

Remark 3Note that the probability does not depend on the distribution H of the
marksm.

Remark 4As we mentioned above,Φext is a Matérn like p.p. and under the Palm
probability of the underlying Poisson p.p., the point at theorigin is retained if it has
the smallest mark in the random set:

N (M0) =
{
Xj ∈ Φ̃, Xj 6= 0 : h(0, Xj) ≥ M0

}

=
{
Xj ∈ Φ̃, Xj 6= 0 : F j

0 l(|Xj|)1{mj<m0} ≥ M0

}
.

The number of point of̃Φ in N (M0) has a Poisson distribution andN (M0) can be
interpreted as the mean number of points in this set.

Remark 5The probabilityp ext
0 is asymptotically equivalent to1/N (M0) whenλ

tends to+∞.

Remark 6Assuming thatM0 is exponentially distributed with parameterγ, the prob-
ability p̂ ext

0 that a typical point is retained byΦext is given by:

p̂ ext
0 =

∫ ∞

0

1− e−N (s)

N (s)
γe−γsds. (6)
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This follows directly by conditioning on the value ofM0:

p̂ ext
0 =

∫

R

P (M t(0) < M0)h(t)dt =

∫

R

∫ ∞

0

P (M t(0) < s)γe−γsdsh(t)dt

=

∫

R

∫ ∞

0

1− e−N (s)

N (s)
γe−γsdsh(t)dt =

∫ ∞

0

1− e−N(s)

N (s)
γe−γsds.

3.2 Additive Matérn Point Processes (AMPP)

Consider nowΦadd and lete0 be the indicator function that the point at the origin is
retained by this process under the Palm distribution of the underlying p.p. i.e.

e0 = 1




∑

Xj∈Φ̃

f(X0,Xj)<S0






,

with X0 = 0. Then, the Palm probabilityp add
0 that this point is retained byΦadd is:

p add
0 = E0(e0) =

∫ +∞

0

P 0(e0 = 1|m0 = t)h(t)dt =

∫ +∞

0

P (St(0) < S0)h(t)dt,

whereSt(.) is the ASN defined in (4) and where we used the Slivnyak-Mecke the-
orem to get the last expression. The distribution ofSt(0) is then needed. However,
except for some particular cases that will be discussed later, there is no known explicit
formula for this distribution. However, the Laplace transform can be calculated:

Proposition 2 The Laplace transform of the additive shot noiseSt(0) is:

LSt(0)(s) = exp {−H(t)K(s)} where K(s) = λ

∫

Rd

(1− LG(sl(|x|))) dx,
(7)

with LG(.) the Laplace transform ofG.

Proof The result follows from the Laplace transform of a Poisson p.p.:

LSt(0)(s) = E


exp



−s

∑

Xj∈Φ̃t

Fj(0)l(|Xj|)








= exp

{
−λH(t)

∫

Rd

(
1−

∫

R+

e−sul(|x|)G(du)

)
dx

}

= exp

{
−λH(t)

∫

Rd

(1− LG(sl(|x|))) dx
}

= exp {−H(t)K(s)} .

Prop. 3 below is proved in [1]. It allows one to computepadd0 from LSt(0) in the
case where the thresholdS0 is deterministic.
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Proposition 3 Under some simple conditions (see [1]), for allt, the random variable
St(0) admits a density and its distribution can be obtained from its Laplace transform
by the following integral formula:

P (a ≤ St(0) ≤ b) =

∫

R

LSt(0)(2iπs)
e−2iπas − e−2iπbs

2iπs
ds.

The last integral expression leads to closed forms in certain particular cases [3].
If the thresholdS0 is an exponential random variable, we can calculate the inten-

sity ofΦadd directly from the Laplace transform:

Proposition 4 Assume thatS0 is an exponentially distributed random variable with
parameterγ, independent of everything else. Then the probabilityp̂ add

0 that a typical
point is retained byΦadd is:

p̂ add
0 =

1− e−K(γ)

K(γ)
where K(γ) = λ

∫

Rd

(1− LG(γl(|x|))) dx. (8)

Proof

p̂ add
0 =

∫ +∞

0

P 0(St(0) < S0)h(t)dt

=

∫ +∞

0

∫ +∞

0

P (s < S0)PSt(0)(ds)h(t)dt

=

∫ +∞

0

∫ +∞

0

e−γsPSt(0)(ds)h(t)dt

=

∫ +∞

0

LSt(0)(γ)h(t)dt

=

∫ +∞

0

exp {−H(t)K(γ)} h(t)dt

=

∫ 1

0

exp {−uK(γ)} du =
1− e−K(γ)

K(γ)
.

Remark 7Note that, as for the extremal case, the probability does notdepend on the
distributionH of the marksm.

Remark 8As in the extremal case, it is not always the case thatp̂ add
0 > 0 (or equiva-

lently thatK(γ) < ∞). Consider again the cased = 2 andl(r) = r−β . The property
K(γ) < ∞ reads

∫

R+

(
1− LG(γr

−β)
)
rdr =

γ
2
β

β

∫

R+

(1− LG(v)) v
−1− 2

β dv < ∞.

If G has exponential moments, i.e. ifLG(s) < ∞ for somes < 0, thenLG(s) is
analytic ats = 0, so that whenv → 0,

(1− LG(v)) = E(F )v + o(v),
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with E(F ) < ∞. It is then easy to show that this implies that the last integral is finite.
If G is such that

1−G(x) ∼x→∞
1

Γ (1− a)
x−aL(x), (9)

with L slowly varying at infinity1 anda < 1, then it follows from Tauberian theorems
(see e.g. [2] p. 447) that

1− LG(v) ∼v→0 vaL

(
1

v

)
. (10)

Hence, under (9), a sufficient condition forK(γ) < ∞ is thata > 2
β .

Corollary 1 In this random case, the probabilitŷp add
0 is asymptotically equivalent

to 1/K(γ) whenλ tends to+∞.

Remark 9Note also thatp ext
0 andp̂ add

0 have similar formulae. The termN (M0) is
replaced byK(γ), where the difference is that the Laplace transform of the distribu-
tionG appears instead of the distribution itself.

3.3 Extremal–Additive Matérn Point Process (EAMPP)

Proposition 5 Assume that the thresholdS0 is exponentially distributed with param-
eterγ, independent of everything else and thatM0 is a positive constant. Then the
probabilitypext,add0 that a typical point is retained byΦadd

ext is:

pext,add0 =
1− e−C(γ,M0)

C(γ,M0)
, (11)

where

C(γ,M0) = λ

∫

Rd

(
1− E

(
e−γF l(|x|)

1{Fl(|x|)≤M0}
))

dx, (12)

with F a random variable with distributionG.

The proof of the proposition (given below) is based on the following result proved in
[4].

Proposition 6 For an extremal shot noiseM = M(0) and an additive shot noise
S = S(0) associated to the same realization of a Poisson process of intensityλ, let

L(u)
S (t) = E(e−tS

1{M≤u}).

Then:

L(u)
S (t) = exp

{
−λ

∫

Rd

1− E
(
e−tF l(|x|)

1{Fl(|x|)≤u}
)
dx

}
. (13)

1 L is said to be slowly varying at infinity if for all fixedx, L(tx)
L(t)

→ 1 whent → ∞.
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Proof (of Proposition 5)Given that the mark of a typical point ism0 = t, the indi-
cator that it is retained byΦadd

ext is given by:

e0 = 1{St(0)≤S0,Mt(0)≤M0}.

Then:

pext,add0 =

∫ +∞

0

P (e0 = 1|m0 = t)h(t)dt

=

∫ +∞

0

L(M0)
St(0)(γ)h(t)dt

=

∫ +∞

0

exp

{
−λH(t)

∫

Rd

1− E
(
e−γF l(|x|)

1{Fl(|x|)≤M0}
)
dx

}
h(t)dt

=

∫ 1

0

exp {−uC(γ,M0)} du =
1− e−C(γ,M0)

C(γ,M0)
.

Remark 10As before, the probability does not depend on the distributionH of the
marksm. Moreover, it is asymptotically equivalent to1/C(γ,M0) whenλ tends to
∞.

Remark 11The constantC(γ,M0) is closely related toN (M0) andK(γ). If M0

tends to∞, which means that the condition over the maximum is not considered, we
obtain the result already proved forΦadd since:

C(γ,M0) →
M0→∞

λ

∫

Rd

1−E(e−γF l(|x|))dx = λ

∫

Rd

1−LG(γF l(|x|))dx = K(γ).

Analogously, ifγ tends to zero, which means that the condition over the sum is not
considered, we obtain again the result forΦext:

C(γ,M0) →
γ→0

λ

∫

Rd

1−E(1{Fl(|x|)≤M0})dx = λ

∫

Rd

1−G(M0/l(|x|))dx = N (M0).

Remark 12Here are some sufficient conditions forC(γ,M0) to be finite. It follows
from association that for allx,

E
(
e−γF l(|x|)

1{Fl(|x|)≤M0}
)
≥ E

(
e−γF l(|x|)

)
P (Fl(|x|) ≤ M0) .

Hence, a sufficient condition forC(γ,M0) to be finite is that
∫

Rd

(
1− E

(
e−γF l(|x|)

)
P (Fl(|x|) ≤ M0)

)
dx < ∞.

In the particular case considered above, withd = 2 andl(r) = r−β with β > 2, the
last integral is finite when
∫

R+

(
1− LG(γr

−β)G(M0r
β
)
rdr =

∫

R+

(1− LG(γv)G(M0/v)) v
−1− 2

β dv < ∞.
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If G has exponential moments, then whenv → 0,

1− LG(v) ∼ E(F )v and 1−G(1/v) ≤ e−κ/v,

for someκ > 0. This implies that the last integral is finite.
If we assume thatG is of the form (9), then, we deduce from (10) that a sufficient

condition for the last integral to be finite is again thata > β/2.

4 A Particular Case

In this section we concentrate on a particular case for the dimension, the distribution
of the marks and the functionL. This particular choice has two purposes. On the
one hand, it allows us to find closed form formulae for the intensity of Φadd when
the thresholdS0 is not a random variable. On the other hand, we can quantify the
differences between the intensities of the introduced point processes. We will show
in particular that, asymptotically, the difference only depends on the functionl(r).

Assume now thatd = 2, the distributionG of the marksF i
j is exponential with

parameterµ andl(r) = (Ar)−β with A > 0 andβ > 2. We have already seen that
the results do not depend on the distributionH of the marksm.

4.1 Extremal Matérn Point Processes

We proved above that when the thresholdM0 is deterministic or exponentially dis-
tributed ((5) and (6)):

p ext
0 =

1− e−N (M0)

N (M0)
,

p̂ ext
0 =

∫ ∞

0

1− e−N (s)

N (s)
γe−γsds.

In both cases, the result only depends on the functionN (.), that we calculate now for
the particular case of this section:

Proposition 7 For this particular case, we obtain that:

N (s) =
2πλΓ (2/β)

βA2(µs)2/β
, (14)

whereΓ (a) =
∫∞
0

e−tta−1dt is the Gamma function.

Proof The result follows from a direct calculation:

N (s) = 2πλ

∫ ∞

0

e−µs(Ar)βrdr =
2πλ

β

∫ ∞

0

e−µsAβtt2/β−1dt =
2πλ

β

Γ (2/β)

(µsAβ)2/β
.
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Corollary 2 In this case, we obtain the following asymptotic results forthe intensi-
ties ofΦext with deterministic and random threshold respectively:

lim
λ→∞

λp ext
0 = (µM0)

2/βA
2

π

1

Γ (1 + 2/β)
(15)

lim
λ→∞

λp̂ ext
0 =

βA2

2πΓ (2/β)
µ2/β

∫ ∞

0

γe−γss2/βds

=
βA2

2πΓ (2/β)
µ2/β

(
1

γ

)2/β

Γ (1 + 2/β)

=

(
µ

γ

)2/β
A2

π
. (16)

The last equality follows from the property of the Gamma function: Γ (1 + z) =
zΓ (z).

Remark 13We compare now the intensity ofΦext for the random and deterministic
threshold whenλ goes to infinity. The ratio depends only on the decay exponentβ of
the functionl(r):

lim
λ→∞

λp̂ ext
0

λp ext
0

= Γ (1 + 2/β). (17)

See Sec.4.3 for more details in this relation.

4.2 Additive Matérn Point Processes

When the thresholdS0 is an exponentially distributed random variable, the intensity
of Φadd is given by (8):

p̂ add
0 =

1− e−K(γ)

K(γ)
.

Proposition 8 For the particular case of this section, we obtain that:

K(γ) =
2πλΓ (2/β)Γ (1− 2/β)

βA2

(
γ

µ

)2/β

. (18)

Proof The result follows from a direct calculation:

K(γ) = 2πλ

∫ ∞

0

1− L(γl(r))rdr = 2πλ

∫ ∞

0

1

1 + µ
γl(r)

rdr

=
2πλ

β

∫ ∞

0

u2/β−1

1 + µAβ

γ u
du =

2πλ

βA2

(
γ

µ

)2/β ∫ ∞

0

v2/β−1

1 + v
dv

=
2πλ

βA2

(
γ

µ

)2/β
π

sin 2
βπ

=
2πλ

βA2

(
γ

µ

)2/β

Γ (2/β)Γ (1− 2/β).
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Corollary 3 In this case, we obtain the following asymptotic for the intensity of
Φadd:

lim
λ→∞

λp̂ add
0 =

(
µ

γ

)2/β
A2

π

1

Γ (1 + 2/β)Γ (1− 2/β)
. (19)

We have already analyzedΦadd with deterministic threshold, but we did not find
an explicit formula for the distribution ofSt(0). However for the particular case of
this section and consideringβ = 4, there is a closed form formula for the distribution
of St(0):

Proposition 9 If d = 2, the distributionG of the marksF i
j is exponential with pa-

rameterµ andl(r) = (Ar)−β with β = 4, then the distribution ofSt(0) is:

FSt(0)(s) = 1− erf

(
λH(t)π2

4A2

√
1

sµ

)
, (20)

whereerf is the error function:erf(x) = 2√
π

∫ x

0
e−s2ds.

Proof From (7) and (18) we have, forβ = 4:

LSt(0)(s) = exp {−H(t)K(s)} = exp
{
−
√
2cs1/2

}

where
√
2c =

λH(t)π2

2A2

(
1

µ

)1/2

.

Then,St(0) follows a Lévy distribution with parameterc, and the cdf isFSt(0)(s) =

1− erf
(√

c
2s

)
. This gives (20).

From the previous result we can calculate the intensity ofΦadd with a deterministic
threshold in this particular case:

Proposition 10 Under the conditions of the previous proposition, we have:

p add
0 = erfc(a) +

1− e−a2

√
πa

, (21)

wherea = λπ2

4A2

√
1

S0µ
anderfc(a) = 1− erf(a).
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Proof By conditioning on the markm of the typical point and by (20), it results that:

p add
0 =

∫ ∞

0

P (St(0) ≤ S0)h(t)dt

= 1−
∫ ∞

0

erf(aF (t))h(t)dt

= 1−
∫ 1

0

erf(as)ds

= 1−
∫ 1

0

2√
π

∫ a

0

e−u2s2sduds

= 1− 2√
π

∫ a

0

1− e−u2

2u2
du

= 1− 1√
π

(
−1 + e−a2

a
+
√
πerfa

)
= erfc(a) +

1− e−a2

√
πa

.

Corollary 4 The intensity ofΦadd in this case is asymptotically equivalent to4A2

π2

√
S0µ
π .

Interestingly, we find the same relation between the intensity of Φadd under the
random or deterministic threshold assumption as forΦext (17):

Remark 14Using (21) withS0 = 1/γ and (18) forβ = 4 we obtain that:

lim
λ→∞

λp̂ add
0

λp add
0

=

√
π

2
= Γ (1 + 1/2). (22)

Note thatΓ (1 + 1/2) = Γ (1 + 2/β). We may then conjecture that for allβ > 2:

lim
λ→∞

λp̂ add
0

λp add
0

= Γ (1 + 2/β). (23)

If this conjecture is valid, the intensity ofΦadd whenλ goes to infinity, assuming that
S0 = 1/γ, can be deduced from the random case:

lim
λ→∞

λp add
0 =

1

Γ (1 + 2/β)
lim
λ→∞

λp̂ add
0

=
1

Γ (1 + 2/β)

(
µS0

P

)2/β
A2

π

1

Γ (1 + 2/β)Γ (1− 2/β)
. (24)

Note that forβ = 4 we find again the result obtained in (21). This conjecture, sug-
gested by the result proved for the EMPP, is validated by simulations (see Fig.1),
where the results forβ 6= 4 are calculated following (24).
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Fig. 1 Validation by simulations of the asymptotic intensity ofΦext andΦadd with deterministic thresh-
old. In particular, validation of the conjecture made in remark 14.

4.3 Comparison of EMPP and AMPP

This section is devoted to the comparison of the asymptotic intensities ofΦext and
Φadd with random and deterministic threshold. In Fig.?? and Fig.?? we plot the in-
tensity ofΦext andΦadd with random and deterministic threshold respectively, for
different values ofλ andβ.

Proposition 11 If S0 is an exponentially distributed random variable with parameter
γ andM0 = 1/γ, there exists a simple relation, that depends only on the decay
exponent of the functionl(r), between the intensities of the processesΦext andΦadd

for large values ofλ:

lim
λ→∞

λp̂ add
0

λp ext
0

=
1

Γ (1− 2/β)
< 1.

Proof The result follows directly from the equality:K(γ) = N (1/γ)Γ (1− 2/β).

Some comments are in order. First of all, we should note that the ratio is al-
ways smaller than one (β > 2). This is not surprising, since for similar thresholds
(M0 = 1/γ), the condition over the sum is more restrictive than that over the maxi-
mum. The previous results give a quantification of how much smaller it is when the
intensity of the original process is large enough. Second, sinceΓ (1 − 2/β) is a de-
creasing function ofβ, we find that the intensities are similar ifβ is large enough.
Once again, this is reasonable since for large values ofβ, the impact of distant points
is almost negligible and the conditions over the sum and overthe maximum are al-
most equivalent.
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However, this compares the result obtained forΦext with a deterministic threshold
M0, with that obtained forΦadd with an exponentially distributed threshold. Let us
now consider the other cases.

Proposition 12 Assume thatM0 andS0 are exponentially distributed random vari-
ables with parametersγ′ andγ respectively. The relation between the intensities of
Φext andΦadd whenλ tends to infinity is:

lim
λ→∞

λp̂ add
0

λp̂ ext
0

=
1

Γ (1 + 2/β)Γ (1− 2/β)

(
γ′

γ

)2/β

. (25)

Proof It follows directly from (19) and (16).

Corollary 5
1. From the previous result is possible to find the relation between the parameters

γ′ andγ that provides the same asymptotic intensities forΦext andΦadd:

γ′ = γ (Γ (1 + 2/β)Γ (1− 2/β))
β/2

.

Clearly, the threshold for the extremal case should be smaller than for the additive
case.

2. If both parameter coincides, i.e.γ′ = γ, the relation between both intensities is
simply a constant that depends only on the decay exponentβ:

lim
λ→∞

λp̂ add
0

λp̂ ext
0

=
1

Γ (1 + 2/β)Γ (1− 2/β)
.

Note that whenβ tends to∞, the right hand side function tends to 1, which
means that the difference between the asymptotic intensities of both processes
disappears.

Proposition 13 When the thresholds are deterministic result only for andβ = 4, we
have

lim
λ→∞

λp add
0

λp ext
0

=
2

π

(
S0

M0

)1/2

=
1

Γ (1 + 2/β)Γ (1− 2/β)

(
S0

M0

)2/β

.

Proof The result follows directly from (15) and (24) withβ = 4.

Remark 15As before we may conjecture that the relation is valid for allvalues of
β which is validated by the simulations shown in Fig.1 and reinforced by the result
proved forΦext.

Corollary 6 The same relation is also valid for the thresholdsS0 andM0 in order
to obtain the same asymptotic intensity ofΦadd andΦext:

S0 = M0 (Γ (1 + 2/β)Γ (1− 2/β))β/2 .

and for the same threshold, i.e.M0 = S0 we find again the same relation as forΦext

depending only onβ:

lim
λ→∞

λp add
0

λp ext
0

=
1

Γ (1 + 2/β)Γ (1− 2/β)
.
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Fig. 2 Functions defining the relations given in equations (26)-(28)

4.4 Summary of the results

We have proved the following relations for the asymptotic intensities ofΦext and
Φadd in the particular case of the previous section:

lim
λ→∞

λp̂ add
0

λp add
0

= lim
λ→∞

λp̂ ext
0

λp ext
0

= Γ (1 + 2/β), (26)

lim
λ→∞

λp̂ add
0

λp ext
0

=
1

Γ (1− 2/β)
, (27)

lim
λ→∞

λp̂ add
0

λp̂ ext
0

= lim
λ→∞

λp add
0

λp ext
0

=
1

Γ (1− 2/β)Γ (1 + 2/β)
. (28)

In Fig. 2, we plot the functions defined on the right hand side of these equations.
First, as one can see on the left most figure, which gives the relation between the
random and the deterministic case for both processes, the minimum is attained at
β = 4, where the difference is of 12%. This means that the difference between a
random and a deterministic threshold is only marginal in most cases.

As we mentioned earlier it can be observed that:

lim
β→∞

1

Γ (1− 2/β)
= lim

β→∞
1

Γ (1− 2/β)Γ (1 + 2/β)
= 1. (29)

On the one hand, this means that for both random and deterministic cases, the intensi-
ties ofΦext andΦadd tend to be equal asβ increases (see (28)). On the other hand, the
same conclusion is valid when the intensity ofΦadd for the random case is compared
with the one ofΦext for the deterministic case (27). However, as we can observe in
the right part of Fig. 2, the limit is approached for very large values ofβ. Moreover
the values obtained forβ close to 2 are very small which implies that the correspond-
ing differences on the intensities are very large. For instance, if we concentrate on
the right most figure we have that forβ = 2.1 andβ = 4 the obtained values are
0.05 and 0.64 respectively. This means that the asymptotic intensity obtained for the
AMPP will be 5% and 64% of that of the EMPP respectively. In thecontext of our
practical motivations,β is meaningful for values less than 4. Similar conclusions can
be obtained for the relation defined in (27).
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5 Some Extensions

A possible way to extend the previous results is to consider the conditional probabil-
ity pr, underE0, that the point at the origin is retained byΦext or Φadd given that
there is another point ofΦ at distancer. The result forΦext that we present below is
established in [1]. We sketch the proof for the making the extension to the additive
case that follows more transparent.

Proposition 14 The conditional probabilityp ext
r for Φext is:

pextr = p ext
0 + (G(M0/l(r))− 1)

(
1− e−N (M0)

N (M0)2
− e−N (M0)

N (M0)

)
.

Proof Let us defineEr = {∃Xi ∈ Φ s.t. ||Xi|| = r}, then:

pextr = P 0(0 ∈ Φext|Er) =

∫ ∞

0

P 0
t (0 ∈ Φext|Er)h(t)dt where Pt(·) = P (·|m0 = t)

P 0
t (0 ∈ Φext|Er) = P 0

t (0 ∈ Φext|Er,mi < t)F (t) + P 0
t (0 ∈ Φext)(1 − F (t))

= P 0
t (0 ∈ Φext|Er,mi < t)F (t) + e−F (t)N (M0)(1 − F (t))

If f(Xi, 0) > M0, the probability of being retained is zero, then:

P 0
t (0 ∈ Φext|Er,mi < t) = P

(
max
Xj∈Φ̃t

f(Xj , 0) < M0|f(Xi, 0) < M0

)
P (f(Xi, 0) < M0)

= P

(
max

Xj∈Φ̃t\{Xi}
f(Xj, 0) < M0

)
P (Fl(r) < M0)

= exp
{
−F (t)N (M0)

}
G(M0/l(r))

In the last equation we used the second order statistics of the Poisson process. Using
the previous results we obtain thatpextr is:

pextr =

∫ +∞

0

[e−F (t)N (M0)G(M0/l(r))F (t) + e−F (t)N(M0)(1− F (t))]h(t)dt

=

∫ 1

0

e−sN (M0)G(M0/l(r))s+ e−sN (M0)(1− s)ds

=

∫ 1

0

e−sN (M0)ds+ (G(M0/l(r))− 1)

∫ 1

0

e−sN (M0)sds

=
1− e−N (M0)

N (M0)
+ (G(M0/l(r))− 1)

(
1− e−N(M0)

N (M0)2
− e−N(M0)

N (M0)

)

= pext0 + (G(M0/l(r))− 1)

(
1− e−N(M0)

N (M0)2
− e−N (M0)

N (M0)

)
,

which concludes the proof.
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ForΦadd, we have:

Proposition 15 Assume thatS0 is exponentially distributed with parameterγ. Then,
the conditional probabilityp add

r calculated forΦadd is:

p̂ add
r = p̂ add

0 + (LG(γl(r)) − 1)

(
1− e−K(γ)

K(γ)2
− e−K(γ)

K(γ)

)
.

Note that, in this case also, the distribution of the marksG is replaced by its Laplace
transform.

Proof The proof is equivalent to the previous one using the following particular re-
sults forΦadd:

P (f(Xi, 0) < S0) = LG(γl(r)) and

P




∑

Xj∈Φ̃t\{Xi}

f(Xj, 0) < S0


 = P t(0 ∈ Φext) = e−H(t)K(γ).

Corollary 7 If G is exponentially distributed with parameterµ and l(r) = (Ar)−β

with β > 2, then

pextr =
1− e−N(M0)

N (M0)
− e−µM0/l(r)

(
1− e−N(M0)

N (M0)2
− e−N (M0)

N (M0)

)
,

p̂ add
r =

1− e−K(γ)

K(γ)
− γl(r)

µ+ γl(r)

(
1− e−K(γ)

K(γ)2
− e−K(γ)

K(γ)

)
,

whereN (M0) y K(γ) are given in(14)and (18).

In a similar way we can calculatep add
r whenS0 is deterministic for the specific

case analyzed above.

Proposition 16 In the particular case of Sec.4, whenS0 is deterministic, the condi-
tional probabilityp add

r for Φadd is

p add
r = p add

0 + (G(S0/l(r)))

∫ 1

0

(1− erf(as))sds

= p add
0 + e−µS0/(Ar)−β

∫ 1

0

(1− erf(as))sds

wherea = λπ2

4A2

√
1

S0µ
.
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