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Abstract In the simplest Matérn point processes, one retains ogrtants of a Pois-
son point process in such a way that no pairs of points aresédrdie less than a
threshold. This condition can be reinterpreted as a thtdstomdition on an extremal
shot—noise field associated with the Poisson point prodéss.paper is focused on
the case where one retains points that satisfy a threshalditcan based on aad-
ditive shot—noise field of the Poisson point process. We providamalytical charac-
terization of the intensity of this class of point procesmed we compare the packing
obtained by the extremal and additive schemes and certaibioations thereof.

1 Introduction

Matérn type point processes were among the first point gesseexhibiting repulsion
and for which closed form expressions were obtained foffiestjand second moment
measures. These point processes are based on pairwiseiities between points.
They are defined as a non-independentthinning of a Poissohpgrocess, where the
thinning can be seen as based on a threshold condition onxtteral shot—noise
field associated with the Poisson point process.

The aim of the present paper is to define a new class of poitepses where
these pairwise interactions are replaced by more globaantions. More precisely,
the threshold condition on the extremal shot—noise is oegpldy a threshold condi-
tion on an additive shot—noise field.

Matérn type point processes are used in a variety of camtegtuding forestry,
information theory and communication sciences to name alfethe last domain,
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they were used to analyze exclusion mechanisms employedddium access con-
trol [1] in wireless networks. These exclusion mechanisimsa preventing nearby
nodes to transmit simultaneously and jam each other. Thetigahmotivations of
the present paper stem from the last application domairhikMihis context, these
additive Matérn type point processes allow one to analyzdusion rules based on
theinterference levelather than pairwise interactions.

The paper is structured as follows. We first define the motledsextremal shot—
noise one, the additive shot—noise one and mixtures theé'¢mthen evaluate their
first moment measures by considering first the case in gedianahsion and then a
special case in the Euclidean plane. We conclude by an &wlgbmparison of the
packings obtained by these point processes.

2 The models

Letd = {(X;,m;, F;)} be an independently marked (i.m.) Poisson point process
(p.p.) with intensity) in R¢ where:

— @ = {X;} denotes the locations of the points;

— {m;} areR*-valued, independently and identically distributeddi) marks with
distribution H and densitys;

- {F}: is_ an i.i.d. sequence of random vector with= (F);, where the compo-
nentsk}, j € N are i.i.d. with distributiorG.

We also define a deterministic functidn: R? x R? — R whereL(X;, X;) =
I(|X; — X;|), with » — I(r) a decreasing function. Moreover, givan, X; € &, we
definef : R? x R? — R* asf(Xi, X;) = L(Xi, X;)F/ 1, <mi}-

In this paper, we focus on three different thinning@o:lefined as follows:

Doyt = {Xl S 52 max f(Xl,XJ) < ]\/[0} , (1)
X; €85

Buga = Xi€ P Z J(Xi, X5) < Sop 2
X, €d,j#i

el = X;ed: max  f(X;, X;) < Mo, Y. f(Xi,X;)<Sop. (3)
X;€D,jFi —

X, €D, j#1

The default option is that the thresholdlg andS, are positive constants.

These processes are compatible though non-independemitifys of the original
Poisson p.p. where compatibility follows from the fact ttret decision of retaining a
point depends on the universal mark at (or equivalently thegeen from) this point.
This means that these processes are not Poisson in general.
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Remark 1Note that if the marlf; is deterministic, the.,, corresponds to a Matérn
hard core process [5]. In this case, a point is retained byhimming iff it has the
smallest mark in a ball of fixed radius. This implies that thexists a minimum
distance between any two points of the process. In the narrdatistic case, when
F; is a random variable with distributio®, &.,. is a Matérn-like p.p. (see [1]). In
this case, the retained points have the smallest mark indorasset defined fronk;
rather than in a ball of fixed (or random) radius.

3 Intensities

In this section we calculate the intensity of the three thiga previously defined. To
achieve this, we relate the condition to be retained withad shise associated to the
original process. This shot noise can be extremal or additiv

First of all, observe that the intensity of each one of thendefiprocesses will
be Apo, wherep, is the probability that a “typical point” (in the sense of tRalm
distribution of®) is retained.

3.1 Extremal Matérn Point Processes (EMPP)

Let us concentrate first ob,.,,, which, as mentioned above, is a Matérn like p.p.. If
the mark of the poin¥; is m; = t, itis retained byb. ., iff

MY(X;) = max F/I(|X; — X;|) < Mo,
XjE‘Pt
whered! = {Xj ed:m; < t}. Sinced is a Poisson p.p. with intensity, &' is
also a Poisson p.p. with intensiky (¢).
Assume there exists an i.i.d. sequence of random figldsR? — F;(y) € RT
such thatF;(X;) = F; forall i # j. Then

M'(y) = max F;(y)l(ly — X;|)
XjG@t

is anextremal shot nois€ESN) associated with the Poisson pﬁb The distribution
of M*(y) is known (see for instance [1]) and this will be used to caltaithe intensity
of &.,;. The key point here is that, thanks to the Slivnyak-Mecketam, the random
variableM*(X;) has the same distribution a$*(0).

Analogously, a poinfX; with markm,; = ¢ is retained byb,, 4 iff

SHXi) = Y FIU(Xi - X)) < So.
XjEét

As above, one can associate with the i.i.d. random figlds.)} and the Poisson p.p.
&* anadditive shot nois¢ASN) field

S'y)= > FE@ly - X;)). @)

X €5t
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This additive shot noise has been extensively studied anilugse some of its main
properties below. We will also use the the Slivnyak-Meclentiem to show that the
random variables? (X;) has the same distribution &%(0).

Similar constructions will be used for the third modgl¢, which is a combina-
tion of the previous two cases.

Proposition 1 The probabilityp** that a typical point is retained b, is:

cot 1 — e~ N(Mo) _ B / ( B ( M, ))
pett = 7N(Mo) where N (Mp) = A y 1-G D) dz. (5)
Proof See [5,1].

Remark 2Below we will assume that the integral defining(M,) is finite so that
peet is positive. This is not guaranteed. For instance, if we take2, M, = 1 and
I(r) = r—# with 3 > 2, which is natural in the applications that motivate this kyor
the finiteness of this integral is equivalent to

/ (1- G(v))vgfldv < 00
R+

and we get for Lemma 1 p. 150 in [2] th&f(M)) is finite if and only if the distribu-
tion G has a finite moment of ordey/ g i.e. if

/ :C%G(d:c) < 00.
R+

Remark 3Note that the probability does not depend on the distriloufib of the
marksm.

Remark 4As we mentioned above&.,; is a Matérn like p.p. and under the Palm
probability of the underlying Poisson p.p., the point at ¢higin is retained if it has
the smallest mark in the random set:

N (M) = {Xj €d, X; #0:h(0,X;) > MO}

= {X; €8, X; #0: FUIX; )L <) = Mo}

The number of point of in /(M) has a Poisson distribution aid(1/,) can be
interpreted as the mean number of points in this set.

Remark 5The probabilityp™t is asymptotically equivalent to/ N (My) when A
tends to+oo.

Remark 6 Assuming thatl/, is exponentially distributed with parametgrthe prob-
ability p£** that a typical point is retained b, is given by:

)
P = [ e s ©
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This follows directly by conditioning on the value 8{:

Pt = / P(M'(0) < Mo)h(t)dt = / / P(M'(0) < s)ye™ "*dsh(t)dt
R RJO
© 1 — e N ©1—e N
— — e Y%dsh(t)dt = ————e s,
L] N e dsh) | Ne "

3.2 Additive Matérn Point Processes (AMPP)

Consider nowb, 44 and letey be the indicator function that the point at the origin is
retained by this process under the Palm distribution of tigedying p.p. i.e.

€ = 1 ’
{ > f(Xij)<50}
X;€d

with Xy = 0. Then, the Palm probability?? that this point is retained by, is:

+00 oo
e — B9 (eq) = PY(eq = 1|mg = t)h(t)dt = / P(S*(0) < So)h(t)dt,
0 0

whereSt(.) is the ASN defined in (4) and where we used the Slivnyak-Mebke t
orem to get the last expression. The distributior56f0) is then needed. However,
except for some particular cases that will be discussed thtre is no known explicit
formula for this distribution. However, the Laplace traorsh can be calculated:
Proposition 2 The Laplace transform of the additive shot na#¢0) is:
Lst0)(s) =exp{—H(t)K(s)} where K(s)= )\/d (1= Lg(sl(|z]))) d,
R

()
with L (.) the Laplace transform af.

Proof The result follows from the Laplace transform of a Poissqn:p.

Lsoy(s) = E (exp {—S > Fj(O)l(lle)})
X, edt

= exp {—)\H(t) /R (1 - /]R+ eS““'I')G(du)) d:c}

— exp {—AH(t) [, 0= zetsiqel dw} — exp {—H(H)K(s)}

Prop. 3 below is proved in [1]. It allows one to compwfg? from Lgt (o in the
case where the threshay is deterministic.
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Proposition 3 Under some simple conditions (see [1]), forglthe random variable
St(0) admits a density and its distribution can be obtained fra.éplace transform
by the following integral formula:

672177115 _ 872177175

P(a < S%(0) <b) = / Lt (0 (2ims) ds.
R

2ims

The last integral expression leads to closed forms in cepaiticular cases [3].
If the thresholdS, is an exponential random variable, we can calculate thainte
sity of @44 directly from the Laplace transform:

Proposition 4 Assume thaf is an exponentially distributed random variable with
parametery, independent of everything else. Then the probabijjt§” that a typical
pointis retained byb, 4 is:

oqd 11— e KM B
Pt = i where K() =2 [ (1= Lo(i(el)dr. @

Proof

+oo
podd — / PO(SH(0) < So)h(t)dt
0

—+o0 —+oo
_ / / Pls < So)Psi o) (ds)h(t)dt
0 0
“+oo +oo
_ / / ¢ Py () (ds)h(t)dt
0 0
+oo
:/ Est(o)(’}/)h(t)dt
0

“+o0
_ / exp {—H(1)K(7)} h(t)dt
1— e—’C(’Y)
——

Remark 7Note that, as for the extremal case, the probability doeslepénd on the
distribution H of the marksn.

1
- / exp {~uk(7)} du =

Remark 8As in the extremal case, it is not always the casefifdt > 0 (or equiva-
lently that/C(y) < o). Consider again the cage= 2 andi(r) = »—#. The property
K(v) < oo reads

2

/ (1= La(yr™?)) rdr = i (1-Lgw)) v R do < .
R+ B Jr+

If G has exponential moments, i.e 4§ (s) < oo for somes < 0, thenLg(s) is
analytic ats = 0, so that when — 0,

(1-LgW))=E(F)v+o(v),
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with E(F) < oo. Itis then easy to show that this implies that the last irakigrfinite.
If G is such that

1

1- G(UC) ~r—oo m

x"L(x), (9)
with L slowly varying at infinity* anda < 1, then it follows from Tauberian theorems
(see e.qg. [2] p. 447) that

1= Lg (W) ~yo v®L (1) . (10)

(%

Hence, under (9), a sufficient condition #6X+) < oo is thata > %.

Corollary 1 In this random case, the probabilify?? is asymptotically equivalent
to 1/K () when tends to+oo.

Remark 9Note also thaps andpg ¢ have similar formulae. The teri (M) is
replaced byC(), where the difference is that the Laplace transform of tls&ritiu-
tion G appears instead of the distribution itself.

3.3 Extremal—Additive Matérn Point Process (EAMPP)

Proposition 5 Assume that the threshoffj is exponentially distributed with param-
eter+, independent of everything else and thid} is a positive constant. Then the

probability p5™**?* that a typical point is retained b4 is:

1— e_c(')’ajw())

ext,add
et - - 11
pO C('Y,MO) I ( )
where
C(vy, Mo) = A/ (1 - F (6_””('1”1{Fz<|m|>§Mo})) dz, (12)
Rd

with F' a random variable with distributiodr.

The proof of the proposition (given below) is based on thifaing result proved in
[4].

Proposition 6 For an extremal shot noisé/ = M (0) and an additive shot noise
S = S(0) associated to the same realization of a Poisson procesgeasfsity)\, let

L£5(t) = E(e 1 pr<uy).
Then:

Egu) (t) = exp {—/\ 1-F (e_tFl(III)l{Fl(‘wDSu}) d:c} . (13)

Rd

L(tz)

T 1 whent — oo.

1 L is said to be slowly varying at infinity if for all fixed,
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Proof (of Proposition 5)Given that the mark of a typical pointigy = t, the indi-
cator that it is retained bg2¢¢ is given by:

exrt

€0 = 1yst(0)<So, Mt (0)<Mo}-

+oo
pgmt,add _ / P(e() — 1|m0 = t)h(t)dt
0
T ()
_ / LG (1)h(t)dt

+oo
= / exp {—)\H(t)/ 1-FE (eﬂFl(lID1{Fl(|m|)§M0}) d:c} h(t)dt
0 R

1— efC('y.,IL{g)

:/O exp{—UC(%MO)}du:W

Remark 10As before, the probability does not depend on the distrilouli of the
marksm. Moreover, it is asymptotically equivalent 19 C (v, M) when\ tends to
Q0.

Remark 11The constantC(v, M) is closely related toV(My) and K (7). If M,
tends tooco, which means that the condition over the maximum is not ctarsid, we
obtain the result already proved féy, 44 Since:

I\r{QHOO

Cly, My) — )\/Rd 1—E(e P20y gy = /\/Rd 1— Lo(yFl(|z]))dz = K(7).

Analogously, ify tends to zero, which means that the condition over the suratis n
considered, we obtain again the resultdqr,;:

Cly, Mp) — )\/Rdl—E(l{meDSMo})d:c: /\/d1—G(M0/1(|:v|))d:c:N(MO).

v—0 R

Remark 12Here are some sufficient conditions 10(~, M) to be finite. It follows
from association that for ait,

B (e DL pugupycay ) = B (7 F0D) P(FI(|a]) < Mo).

Hence, a sufficient condition fa@r'(~y, M) to be finite is that
/ (1 _E (w”(lw) P(Fl(jz]) < MO)) dz < oo.
Rd

In the particular case considered above, witk 2 andi(r) = r—# with 3 > 2, the
last integral is finite when

/ (1= La(yr?)G(Mor?) rdr = / (1= La(yv)G(Mo/v)) v R dv < .
R+ R+
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If G has exponential moments, then whens 0,
1—Lg(w)~EF)w and 1—G(1/v) <e ™7,

for somex > 0. This implies that the last integral is finite.
If we assume that is of the form (9), then, we deduce from (10) that a sufficient
condition for the last integral to be finite is again that 3/2.

4 A Particular Case

In this section we concentrate on a particular case for tnedsion, the distribution
of the marks and the functioh. This particular choice has two purposes. On the
one hand, it allows us to find closed form formulae for thensty of .45 when
the thresholdS, is not a random variable. On the other hand, we can quantfy th
differences between the intensities of the introducedtgmiocesses. We will show
in particular that, asymptotically, the difference onlypéads on the functioi{(r).

Assume now thai = 2, the distributionG of the marksti is exponential with
parametey andl(r) = (Ar)~? with A > 0 and > 2. We have already seen that
the results do not depend on the distributidrof the marksn.

4.1 Extremal Matérn Point Processes

We proved above that when the threshdlg is deterministic or exponentially dis-
tributed ((5) and (6)):

1— efN(Mg)

ext __

pO - N(Mo) )
0 1 _ = N(s)
pert — — e 7%ds.
Po /0 ./\/(S) Y

In both cases, the result only depends on the fungtign, that we calculate now for
the particular case of this section:

Proposition 7 For this particular case, we obtain that:

(s = 2TAL2/B)

)= GGy )

wherel'(a) = [, e~'t"~*dt is the Gamma function.

Proof The result follows from a direct calculation:

S 2T\ . B _ 2\ 1 (2/[‘3)
92 us(Ar)? d nsA tt2/6 Lt )
N(s) = ﬂ'/\/o e rdr = — ; e =5 (A7
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Corollary 2 In this case, we obtain the following asymptotic resultsti@r intensi-
ties of®.,, with deterministic and random threshold respectively:

A? 1
li ot = (uMo) P 15
A Apg ™ = (M) = 3 ) (15)
N A2 9 <
1 ext _ /,8/ vs 2/,8d
L R O L
ﬂAQ 28 <1>2/I5
-7 - I'(1+2
Yl 5 ( /B)
2/B 42
_<ﬁ> 4 (16)
Yy i

The last equality follows from the property of the Gamma fionc I'(1 + z) =
2I(z).

Remark 13We compare now the intensity @..., for the random and deterministic
threshold wher\ goes to infinity. The ratio depends only on the decay exponet
the functioni(r):

~ext

lim 220 = (1 +2/B). 17)

ext
0

See Sec.4.3 for more details in this relation.

4.2 Additive Matérn Point Processes

When the threshold) is an exponentially distributed random variable, the isign
of @,44 is given by (8):

padd _ 1 —e KO
0 K(y)
Proposition 8 For the particular case of this section, we obtain that:
2mAL(2/B) (1 —2/8) ()"
= L ) 18
K() e r (18)
Proof The result follows from a direct calculation:
K(v) = 27T/\/ 1= L(yl(r))rdr = 27T/\/ %rdr
0 0 L+ ~U(r)

2N [ w?/BT 2w\ [~ 2B poo y2/B-1
= —/ Ve du: B — d'U
7 v, T i) T

27\ 2/8 27\ 7
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Corollary 3 In this case, we obtain the following asymptotic for the msigy of
Padd:

2/B 42

lim \padd = (ﬁ) A ! .

A—roo v m T(14+2/8)(1—2/p)

(19)

We have already analyzd@d, ;4 with deterministic threshold, but we did not find
an explicit formula for the distribution of*(0). However for the particular case of
this section and consideriny= 4, there is a closed form formula for the distribution
of St(0):

Proposition 9 If d = 2, the distributionG of the markst is exponential with pa-
rametery andl(r) = (Ar)~# with 3 = 4, then the distribution of*(0) is:

2
Fgi(0)(s) = 1 —erf (%\/g) , (20)

whereerf is the error functionerf(z) = % foz e~ ds.

Proof From (7) and (18) we have, fgr = 4:

Lo o)(s) = exp {— H(DK(s)} = exp {~vEest/2)

CAH()R® (1\?
where \/Q_—W (;) .

Then,S*(0) follows a Lévy distribution with parameter and the cdf isFs: () (s) =
1 —erf (y/%). This gives (20).

From the previous result we can calculate the intensit$ Qf; with a deterministic
threshold in this particular case:

Proposition 10 Under the conditions of the previous proposition, we have:

2
—a
add l—e

pgr** = erfe(a) + W, (21)

wherea = %, / ﬁ anderfc(a) = 1 — erf(a).
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Proof By conditioning on the mark of the typical point and by (20), it results that:
pedd = / P(S'(0) < So)h(t)dt
0
=1 —/ erf(aF(t))h(t)dt
0
1
=1 —/ erf(as)ds
0

1 a
=1 —/ i/ e~ sduds
o V7T Jo

2 (i1 eV

P el
ﬁ 0 2U2 Y
2 2
1 -1 ¢ 1—e™¢
=1- NG <% + ﬁerfa) = erfc(a) + ﬁ

Corollary 4 The intensity o®, 44 in this case is asymptotically equivalem‘—’;rél!gi £/ SLF“

Interestingly, we find the same relation between the intgrdi®, ; under the
random or deterministic threshold assumption asqy; (17):

Remark 14Using (21) withSy; = 1/~ and (18) for8 = 4 we obtain that:

AP VT
fim S =g =T+1/2). (22)

Note thatl"(1 + 1/2) = I'(1 + 2/3). We may then conjecture that for @l> 2:

~add

. Apg _
)\ILHSOW = F(l + 2/5) (23)

If this conjecture is valid, the intensity df,;; when goes to infinity, assuming that
So = 1/~, can be deduced from the random case:

. add __ 1 . ~add
A A = F g ) A Ao
- <N_SO>2/B T 1 (24)
S r(1+2/8)\ P T I(1+2/8)(1—2/8)

Note that for3 = 4 we find again the result obtained in (21). This conjecturg; su
gested by the result proved for the EMPP, is validated by ksitimns (see Fig.1),
where the results fgp # 4 are calculated following (24).
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Deterministic threshold

+<Dadd theory (only for 3=4)
0.6r| - d)add simulations
o5k — . theory
x® _ simulations
ext /
o 0.4r A 4
< /
£
] 03,
0.2r
0.1r
5 3 3.5 4

B

Fig. 1 Validation by simulations of the asymptotic intensity®$,: and®,, ;4 with deterministic thresh-
old. In particular, validation of the conjecture made in egknl14.

4.3 Comparison of EMPP and AMPP

This section is devoted to the comparison of the asymptotensities of®..,; and
@44 With random and deterministic threshold. In Figand Fig?? we plot the in-
tensity of@.., and®,44 with random and deterministic threshold respectively, for
different values of\ ands.

Proposition 11 If Sy is an exponentially distributed random variable with paeter

~v and My = 1/, there exists a simple relation, that depends only on thaylec
exponent of the functidlir), between the intensities of the processegs and @44
for large values of\:

. Aﬁoadd 1
1 - 1.
A dpe™ - T —2/8) *

Proof The result follows directly from the equalitg{y) = N'(1/+)I'(1 — 2/3).

Some comments are in order. First of all, we should note tmatratio is al-
ways smaller than one3(> 2). This is not surprising, since for similar thresholds
(Mo = 1/7), the condition over the sum is more restrictive than tha&tr dkie maxi-
mum. The previous results give a quantification of how muchlmit is when the
intensity of the original process is large enough. Secoinded (1 — 2/0) is a de-
creasing function off, we find that the intensities are similar/fis large enough.
Once again, this is reasonable since for large valugs thfe impact of distant points
is almost negligible and the conditions over the sum and theemaximum are al-
most equivalent.
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However, this compares the result obtainedfgy; with a deterministic threshold
My, with that obtained forp, 44 with an exponentially distributed threshold. Let us
now consider the other cases.

Proposition 12 Assume thal/y and S, are exponentially distributed random vari-
ables with parameters’ and~ respectively. The relation between the intensities of
Do andd, 45 When) tends to infinity is:

~add N\ 2/8

lim 220 _ ! ). (25)
Amoo DTt T(1+2/8)I(1—2/8) \ v

Proof It follows directly from (19) and (16).

Corollary 5
1. From the previous result is possible to find the relatiobeen the parameters
~" and+ that provides the same asymptotic intensitiesfigy, and®,,4:

N =y (D1 +2/8)I(1-2/8))".

Clearly, the threshold for the extremal case should be sm#iban for the additive
case.
2. If both parameter coincides, i.e = ~, the relation between both intensities is
simply a constant that depends only on the decay expghent
) /\I’?\Oadd 1

lim —— = .

Asoo APt T(L+2/B) (1 —2/B)
Note that wherg tends tooo, the right hand side function tends to 1, which
means that the difference between the asymptotic intessifi both processes
disappears.

Proposition 13 When the thresholds are deterministic result only for @nd 4, we
have

- /\poadd B z S_ 1/2 B 1 S_ 2/p
A—oo Apg®t T \ My S r(1+2/8)r1—2/8) \ My '
Proof The result follows directly from (15) and (24) with= 4.

Remark 15As before we may conjecture that the relation is valid forvalues of
8 which is validated by the simulations shown in Fig.1 andfaiced by the result
proved for®,.;.

Corollary 6 The same relation is also valid for the thresholsisand M in order
to obtain the same asymptotic intensitylgf,; and .,

So = Mo (I'(1+2/8)I'(1 —2/8))"*.

and for the same threshold, i.&f, = Sy we find again the same relation as ¢,
depending only oi3:
add
lim APg = !

oo Apgtt (1 +2/8)[(1—2/8)
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r(+2/p) Ur(1-2/p) UM (L+2IB)r (1-2/B)
1 1 1
0.98 0.8 08
0.96
06 06
0.94
0.4 04
0.92
09 02 02
0.88 0 0
> 4 6 8 10 > 4 6 8 10 2 4 6 8 10
B B B

Fig. 2 Functions defining the relations given in equations (2@)-(2

4.4 Summary of the results

We have proved the following relations for the asymptotieinsities ofd.,; and
®,44 in the particular case of the previous section:

) )\Z’)\Oadd ) /\Z’)\Oezt
lim 220 = | =I(1+2 26
m S = 5, e = T +2/6), (26)
) )\]/Q\Oadd 1
L = 27
Ao Ape™  T(1—2/B) @7)
) )\Z’)\Oadd ) /\poadd 1
1 =1 = . 28
Ao AP ADe dp®t T T(1—2/B) (1 +2/B) (28)

In Fig. 2, we plot the functions defined on the right hand sitlnese equations.
First, as one can see on the left most figure, which gives tladiar between the
random and the deterministic case for both processes, thienonin is attained at
8 = 4, where the difference is of 12%. This means that the diffeedvetween a
random and a deterministic threshold is only marginal intuases.

As we mentioned earlier it can be observed that:

. . 1

A A28 AT =2/ 1 2/5)
On the one hand, this means that for both random and detatinicases, the intensi-
ties of®.,, and®, 44 tend to be equal asincreases (see (28)). On the other hand, the
same conclusion is valid when the intensityfgf;,; for the random case is compared
with the one of®.,; for the deterministic case (27). However, as we can observe i
the right part of Fig. 2, the limit is approached for very kanalues of5. Moreover
the values obtained fgt close to 2 are very small which implies that the correspond-
ing differences on the intensities are very large. For imsaif we concentrate on
the right most figure we have that fér= 2.1 and3 = 4 the obtained values are
0.05 and 0.64 respectively. This means that the asymptd#asity obtained for the
AMPP will be 5% and 64% of that of the EMPP respectively. In toatext of our
practical motivationsj is meaningful for values less than 4. Similar conclusions ca
be obtained for the relation defined in (27).

=1. (29)
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5 Some Extensions

A possible way to extend the previous results is to conslteconditional probabil-
ity p,-, underE°, that the point at the origin is retained By, or $,44 given that
there is another point @ at distance-. The result fod.,, that we present below is
established in [1]. We sketch the proof for the making theesion to the additive
case that follows more transparent.

Proposition 14 The conditional probability,*** for &, is:

1 — e—N(Mo) e-ﬁ(%))

pit = pg™t + (G(Mo/1(r)) — 1) ( N(Mo)? - N (My)

Proof Let us definef, = {3X; € & s.t.||X;|| = r}, then:

pet = PO(0 € Bogy| E,) = / PY(0 € Beye| B,)R(t)dt where Py(-) = P(-|mo = t)
0

PtO(O S @emt|Er) = Pto(o c gpezt|Er,mi < t)F(t) 4 PtO(O c Qsemt)(l _ F(t))
= Pto(o € ¢€wt|Er, m; < t)F(t) + eiF(t)N(A'{U)(l _ F(t))

If f(X;,0) > Moy, the probability of being retained is zero, then:

PY0 € ®eyi|Erymy < t) = P ( max f(X;,0) < Mo|f(X;,0) < Mo) P(f(X;,0) < M)
XjE@t

=P ( max f(Xj,O) < M()) P(FZ(T‘) < Mo)
X;edt\{X;}
= exp {—F(t)N(Mo) } G(Mo/1(r))

In the last equation we used the second order statisticed?diisson process. Using
the previous results we obtain th#t? is:

pet = [ e ORI GG AW + e FOR M (1 F)h
0
_ ‘/01 e—SN(MO)G(MQ/l(T‘))S + e—sN(Mo)(l _ S)ds

1 _
:/ efs/\/(Mo)dS_F( (Mo/l( ) 1)/ —sN( M“)Sds
0

1_8*N(1\'{0) 1— *N Mp) e*N(Mo)
= Twon) A N (M, JT/(MO)>
» N(Mo)  o—N(Mo)
— B+ (GO i) )( - J\/(Mo)>

which concludes the proof.
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For ®,44, We have:

Proposition 15 Assume tha$, is exponentially distributed with parameter Then,
the conditional probability,24¢ calculated for®,, 4 is:

1—e KM e—'C(v))
K(v)? K()

Note that, in this case also, the distribution of the ma¥kis replaced by its Laplace
transform.

5 = ol 4 (La(i(r)) — 1) (

Proof The proof is equivalent to the previous one using the follayparticular re-
sults for®,44:

P(f(X;,0) < So) = La(vi(r)) and

P > (X,0) < Sp | =PH0 € Pegy) = e HOFD,
X;€P\{X;}

Corollary 7 If G is exponentially distributed with parametgrandi(r) = (Ar)~#
with 8 > 2, then

b T TN )

ert — Lm _ e*,U«Mo/l('r‘) 1 - eiﬁ(Mo) e;ﬁ(l\'{()) ’
NOL? | N(Mo)

Godd _ 1 —e KM B AI(r) (1 — e KM B e/C(v))
" K() pAAr) \ K(y)? K() )’

whereN'(My) y K(v) are given in(14) and (18).

In a similar way we can calculaje®?® whenS, is deterministic for the specific
case analyzed above.

Proposition 16 In the particular case of Sec.4, whép is deterministic, the condi-
tional probability p,*?? for @44 is

1
pradd _ poadd + (G(SO/Z(T)))/ (1 —erf(as))sds
0
1
_ poadd + 87#50/(1%)73/ (1 —erf(as))sds

0
whereq = 20> /1
T 4A2 Sop”
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