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Abstract One of the most important problems when deploying interdomain
path selection with quality of service requirements is being able to rely the
computations on metrics that hold for a long period of time. Our proposal for
achieving such assurance is to compute bounds on the metrics, taking into
account the uncertainty on the traffic demands. In particular, we will explore
the computation of the maximum end-to-end delay of traversing a domain
considering that the traffic is unknown but bounded. Since this provides a
robust quality of service value for traversing the Autonomous System (AS),
without revealing confidential information, we claim that the bound can be
safely conceived as a metric to be announced by each AS to the entities per-
forming the path selection, in the process of interdomain path selection. We
show how the maximum delay value is obtained for an interdomain band-
width demand and we propose an exact method for solving the optimization
problem. Simulations with real data are also presented.

1 Introduction

New Internet market proposals are emerging, mainly due to the new techno-
logical offers and the positioning towards them of all the involved actors [?].
Value-added services with real time requirements, such as videoconferencing
and telepresence, are showing up as the new stars of the Internet for Service
Providers (SPs) and Customers. The Network Providers interests are moving
towards obtaining new revenues and business opportunities out of these new
services, that rely completely on their deployed network infrastructure. Net-
work Providers must be able to assure Quality of Service (QoS), so as to fulfil
the Customers expectations and to be able to trade among SPs, for instance
by means of Service Level Agreements (SLAs), which means, in turn, that
SPs can offer better services to their Customers.
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This arising scenario becomes more complex when the services provided
traverse several domains, or Autonomous Systems (ASs), in its way from
the SP to the Customer. In this case, QoS must be provided all throughout
the path, involving different ASs, which raises several technical, economical
and political issues. Concerning the technical aspect, achieving scalability,
preserving confidentiality and providing interoperability is of paramount im-
portance in any technical solution [?].

In the framework of an alliance of ASs, carriers work together in order to
achieve a common interest. In this scenario QoS values related to each domain
are exchanged, and Traffic Engineering decisions are taken according to them.
Different mechanisms have been proposed for the selection and establishment
of interdomain QoS constrained tunnels, that mainly rely on RSVP-TE [?]
and the PCE architecture [?] (e.g. [?, ?, ?]). These mechanisms are based
on metrics announced by each AS but they do not specify how to compute
such metrics. The complexity resides mainly in the fact that the announced
metrics have to hold for some period of time, ideally as long as the service is
provided. Hence, ASs must be able to provide QoS values that are guaranteed
to hold for a certain period of time.

We shall put our focus on point-to-point services with QoS requirements.
In this case the service may be abstracted to a QoS guaranteed tunnel (for
instance an MPLS tunnel [?]). The path traversed by the tunnel must fulfil
the QoS parameters required by the service.

In particular, our attention will be focused on those services for which
available bandwidth and end-to-end delay are critical parameters. The end-
to-end delay is compounded of the sum of the delays introduced by each
transit AS and the terminal ones, from source to destination. As illustrated
in Fig. ??, where we show a situation with two terminal ASs and one transit
AS, the delay in each of the ASs depends on the traffic already present in
the AS (t∗ flows in Fig. ??), the topology, the routing configuration, and the
traffic coming from the new tunnel (flow u in Fig. ??).
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Fig. 1 Scenario
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But, why do not simply advertise an instantaneous value of the metric?
The main fact that makes an instantaneous value of the metric a non ap-
propriate one is the existence of uncertainty, which implies that the value
can change in the immediate future. We could, however, follow a dynamic
approach, in which network state is continuously monitored and metric value
is updated. These reactive approaches make it possible to tightly follow the
variations of the traffic but they require a monitoring infrastructure to be
present and some sophisticated algorithms to process the measurement data.
Moreover, reactive approaches are able to detect variations in the traffic de-
mand such as abrupt changes but they are not able to forecast them [?]. On
the contrary, proactive mechanisms provide pessimistic values of QoS met-
rics but they are able to provide metrics values which are likely to hold for a
given period of time since in that case uncertainty is taken proactively into
account. In this work we will use the robust approach, in which a bound for
the metric is provided.

In this context, uncertainty can be classified into two types: network state
uncertainty and traffic uncertainty. Uncertainty in network state refers to
the situation where the topology changes or is partially known. This may
be due to information arriving out of date or not synchronized to the entity
performing the computation, or simply to link failures. In the literature some
approaches have been proposed for performing QoS routing under this kind
of uncertainty [?, ?, ?]. However, in the present paper we will assume that the
topology does not change, and considering this uncertainty is left for future
work.

On the other hand, we will consider uncertainty in the traffic. This refers
to the fact that the flows traversing the domain are not perfectly known. This
can be due to the fact that changes occur rather frequently. The reason of
these changes may be several, for instance, external routing modification, the
presence of unexpected events such as network equipment failures outside the
domain, large-volume network attacks or flash crowd occurrences [?].

In summary, we shall focus on the computation of a bound for the end-
to-end delay of traversing an AS, from a given Origin to a Destination node,
as a function of the AS parameters we mentioned before: the routing config-
uration, the traffic demands and the traffic injected through the new tunnel.
We will consider the situation where traffic variation is the principal cause
of delay variation and we will assume that the topology and the routing con-
figuration are fixed. However, we will consider that traffic is non-static, and
that it is contained in a so-called uncertainty set [?]. The question of how to
choose this set is discussed later in the paper.
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2 Problem Statement

In this section we formally present the problem of finding the maximum end-
to-end delay experienced by a bounded amount of traffic traversing an AS
through a particular path. As mentioned before, we will consider that traffic
varies within an uncertainty set. First, let us introduce the notations that are
going to be used throughout the paper and state some assumptions.

2.1 Assumptions and Notations

The network is compounded of n nodes and of a set L of links, L = {l1 . . . l|L|},
where the notation |·| refers to the cardinality of the set. Traffic demands
will be represented by the so-called traffic matrix TM = {tmi,j}, where
tmi,j is the amount of traffic from node i to node j. We shall use as well
the term Origin Destination (OD) flows to refer to them. We reorder every
traffic demand and rewrite the OD flows (tmi,j) in vector form as t, t = {tk},
k = 1 . . . n(n−1). The amount of traffic coming from the interdomain injected
into the new tunnel will be u.

The link load Y is a vector containing in the i-th entry the load on link i
without considering u. With these definitions we can see that Y = R.t where
R, a |L|×m matrix (m = n(n− 1)), is the routing matrix, which means that
{Ri,j} = 1 if flow j traverses link i, and 0 otherwise.

The flow that carries u will traverse the AS from an origin to a destination
node following a certain path. We will call this path P . We will equally refer
to the set of links that belong to that path as P , in this case P is a subset of
L.

The mean link delay is approximated by the M/M/1 model, that is to say
Dl = K

cl−yl

, where cl is the capacity of the link l and K the mean packet size.
We then approximate the mean delay of a path by the sum of the delays of
the links it traverses:

DelayP =
∑

l∈P

K

cl − yl

. (1)

The propagation delay may be ignored in our formulation since it does
not change with the load and may be added as a constant later on. More-
over, the M/M/1 model is used for illustrative purposes only. In fact, any
convex function may be used instead. See [?] on how to obtain a good ap-
proximation of the delay function based on measurements. We will as well
ignore the constant K in the following formulations, for the sake of notations
simplification.
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2.2 Modelling Traffic Uncertainty

As mentioned above, we will not make any assumptions on the traffic matrix
except that it always belongs to a certain uncertainty set. In particular we
will follow the approach presented in [?] and define the uncertainty set as
a polytope formed by the result of the intersection of several half-spaces.
Consequently, all constraints can be written as A × t ≤ b, where A is a
certain matrix which can be defined after different models, and b is a given
bound. We now present four examples of polytope definition.

The Hose Model

This particular case of the general polytope definition was presented in [?] in
the context of VPN services specification. It establishes that the input and
output total traffic on each node is bounded. That is to say:

∑

i tmi,j ≤ b+

j

and
∑

i tmj,i ≤ b−j ∀ i ∈ N , j ∈ {N \ i}, where b−j , b+

j are given bounds on
the total ingress and egress traffic and N is the set of network nodes.

Links Capacity Model

This model results of the application of bounds on the total traffic traversing
the different links of the network, yi ≤ bi. These constraints can also be
written as Rh × t ≤ b, where b = {bi} are historical maximums taken for
instance form measurements, and Rh is the routing matrix at the moment
when the measurements were taken. This approach is used for example in [?]
where a polyhedral definition of the traffic matrix is preferred to its estimation
because of non stationarity artifacts and estimation errors.

Known Statistical Values

If mean, variance and covariance values of link loads are known, we can
compute the variance ellipsoid as {w = ̺ + α | αT Ωα ≤ 1} where ̺ is the
expected value of the link loads, and Ω its covariance matrix. Therefore, the
variables w describe an ellipsoid. Several half-planes tangent to the ellipsoid
can be defined in order to obtain linear constraints. Figure ?? illustrates this
example. The polytope can then be written as A × R × t ≤ b, were R is
the routing matrix and A and b define the polytope in which the ellipsoid is
inscribed.
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Fig. 2 Example for defining a polytope after known statistical values.

Prediction Based Model

This model consists of defining bounds on the value of traffic demands which
are based on traffic prediction. The prediction of future demands is based on
past observations. For example artificial intelligence methods such as neural
networks or time series analysis can be used in order to forecast the future
values of the traffic demand; see for example [?] for prediction based on a
seasonal ARIMA model.

2.3 Mathematical Formulation

The problem consists on, given a path, computing the maximum end-to-end
delay of that path, allowing the traffic matrix t to vary within a polytope.
That is to say that we will work with a maximization problem with linear
constraints. Let us introduce the m-dimensional column vector wl, l ∈ P , as
wl = {wl,i} = Rl,i/cl.

The optimization problem is described by Problem ??, where A and b
define the polytope.

Problem 1.

max
t

∑

l∈P

1/cl

1

1 − wT
l t − u/cl

s.t. A × t − b ≤ 0.

Please note that if some additional linear constraints must be taken into
account they can be integrated in the definition of the polytope A × t ≤ b.
Example of such constraints can be wT

l t + u/cl < 1, for l ∈ P , which simply
states that there should be enough link capacity in order to accommodate all
the traffic, including the new tunnel.



Maximum Delay Computation under Traffic Matrix Uncertainty 7

The objective function in the maximization problem defined by Problem
?? is not a concave function, consequently, the problem is not a convex one.
On the contrary, the problem is the maximization of a convex function over a
polytope. This is a very difficult problem, all the more so since the objective
function is not strictly convex.

Intuitively we can see that the function is not strictly convex due to the
difference between the number of links and the number of OD flows. Indeed,
while the number of links grows linearly with the number of nodes in the
network, the number of OD flows squares with the number of nodes in the
network. This means that for different values of the vector t the objective
function of Problem ?? can have the same value, while its gradient remains
always non-negative.

More formally, we state the following proposition.

Proposition 1. The function f(t), objective function of Problem ??, is a

convex function over the set S = {t ∈ Rm|A × t ≤ b}, but not a strictly

convex one.

Proof. We explore if the following inequality holds [?]

f(t1) ≥ f(t2) + ∇f(t2)
T (t1 − t2), t1, t2 ∈ S. (2)

Applying the definition of f to Eq. (??) we obtain the following inequality
for t1, t2 ∈ S :

∑

l∈P

1/cl

1 − wT
l t1 − u/cl

≥
∑

l∈P

1/cl

1 − wT
l t2 − u/cl

+
∑

l∈P

1/cl × wT
l (t1 − t2)

(1 − wT
l t2 − u/cl)2

. (3)

Let us now define gl(t), an auxiliary function in order to simplify the
notations, as

gl(t) = 1 − wT
l t − u/cl, t ∈ S. (4)

Substituting the latter definition in Eq. (??) and performing some regular
math operations we obtain the following inequality

∑

l∈P

(gl(t2) − gl(t1))
2

gl(t1)gl(t2)2
≥ 0, t1, t2 ∈ S. (5)

Each term on Inequality (??) is either zero or greater than zero for all
t1, t2 ∈ S. Therefore, the function f is convex over S. It remains to show
if the function is strictly convex or not. Which is equivalent to showing if
there exist t1 and t2 ∈ S such that < wl, t2 − t1 > is equal to zero for all
l ∈ P , that is to say, having all vectors wl, l ∈ P orthogonal to the vector
(t2 − t1), or not. Since the vectors wl do not form a basis of Rm it is possible
to find t1 and t2 ∈ S such that their difference is orthogonal to all vectors
wl, l ∈ P . ⊓⊔
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Proposition ?? showed that f is a convex function, but not a strictly convex
one. However, in the following section we reformulate the problem and show
a way to find its solution.

3 Finding the Solution

We now state the problem in a different way which will allow us to find its
solution. We aim at formulating the problem in such a way that the objective
function is strictly convex and the dimension of the problem is reduced. For
doing so we shall decompose the vector t over a particular basis of Rm.

The procedure consists in decomposing the vector t over the vectors wl, l
∈ P , and their orthogonal complement. We define the matrix W1 as an m by
|P | matrix, whose columns are the vectors wl, with l ∈ P , and W2, an m by
m − |P | matrix such that it verifies

WT
1 × W2 = 0. (6)

Provided that the columns of W1 are linearly independent, it can be proven
that the columns of the matrix W defined after W1 and W2 as

W = [W1W2] = [w1, . . . , wl, . . . , w|P |, . . . wm] (7)

represent a basis of Rm.
We shall decompose the vector t over the defined basis using the auxiliary

variables x ∈ R|P | and h ∈ Rm−|P | as

t = W1x + W2h. (8)

By multiplying both sides of Eq. (??) by wT
l , and using Eq. (??) we obtain

wT
l t = wT

l W1x = vT
l x, (9)

where we have set vT
l = wT

l W1, for all l ∈ P . Note that both vl and x are
column vectors of dimension |P |.

Equation (??) will directly lead us to rewriting the objective function
of Problem ?? as a function of x. We shall now redefine the polytope by
writing it in the basis W which leads to defining a new matrix denoted D
and computed as A×W . The polytope over the new basis can be compactly
written as D[xT hT ]T ≤ b.

All in all, Problem ?? can be rewritten in the form of Problem ??. Please
note that the objective function depends only on the variable x.

Problem 2.
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max
x

∑

l∈P

1/cl

1

1 − vT
l x − u/cl

s.t. D

(

x
h

)

≤ b

Let us call the objective function of Problem ?? as J(x) and the new polytope
as V (i.e. V =

{

[xT hT ]T ∈ Rm : D[xT hT ]T ≤ b
}

). Let us as well define the
polytope Vx as

Vx =
{

x ∈ R|P | | ∃ h ∈ Rm−|P | : D[xT hT ]T ≤ b
}

. (10)

Let W1 = span{w1 . . . w|P |}, where span refers to the set of all linear combi-
nations of vectors w1 . . . w|P |. Clearly Vx is the projection of V onto W1.

Since V is a convex polytope by definition, it is easy to check that Vx is
also a convex polytope. More precisely, Vx is the convex hull of the projection
of the extreme points of V onto W1 [?].

Then, since J(x) does not depend on h, Problem ?? can be represented in
the space W1 as follows:

Problem 3.

max
x

J(x)

s.t. x ∈ Vx.

The following statement summarizes our development of the problem.

Proposition 2. The optimization problem defined by Problem ?? is equiva-

lent to the one defined by Problem ??.

We now show that J(x) is a strictly convex function over Vx, which will in
turn allow us to prove that the solution of Problem ?? is attained at an
extreme point of the polytope Vx.

Proposition 3. The function J(x), objective function of Problem ??, is a

strictly convex function over the set Vx defined as in (??).

Proof. We define λl(x) as

λl(x) = (1 − vT
l x − u/cl)

−2, ∀l ∈ P (11)

and the matrix Λ as
Λ(x) = diag(λ1, . . . , λ|P |). (12)

For all x ∈ Vx and l ∈ {1 . . . |P |}, λl(x) > 0. Thus, Λ(x) is a positive-
definite matrix1.

1 A n×n real symmetric matrix M is positive-definite if zT Mz > 0 for all non-zero vectors
z, z ∈ Rn.
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In addition, we can check that [v1 . . . v|P |] = WT
1 W1 is also a positive-

definite matrix. Thus, the Hessian of J(x), which is

∇2J(x) = (WT
1 W1)Λ(x)(WT

1 W1) (13)

is as well a positive-definite matrix. ⊓⊔

We are now able to show that the solution to Problem ?? is attained at an
extreme point of Vx.

Theorem 1. The solution of Problem ?? is attained at an extreme point of

the polytope Vx, defined by the set (??).

Proof. We prove by contradiction that the maximum of J(x) over Vx must
be reached at an extreme point of Vx. Since, by Proposition ??, J is a strictly
convex function, inequality (??) holds [?].

J(Φ) > J(θ) + ∇J(θ)T (Φ − θ), ∀ θ, Φ ∈ Vx. (14)

Now, let θ̄ ∈ Vx be an optimal point of Problem ??. Therefore, θ̄ is a strict
maximum, since J is strictly convex, and, for all Φ ∈ Vx \ {θ̄}, we must have:

J(Φ) − J(θ̄) < 0. (15)

Together with inequality (??), we get

∇J(θ̄)T (Φ − θ̄) < 0, ∀Φ ∈ Vx \ {θ̄}. (16)

By contradiction we suppose that θ̄ is not an extreme point of Vx. Then
there exists µ ∈ R|P | such that ||µ|| > 0 and θ̄ + µ, θ̄ − µ ∈ Vx. By letting
Φ = θ̄ − µ and Φ = θ̄ − µ at a time, we would get:

∇J(θ̄)T µ < 0 and −∇J(θ̄)T µ < 0, (17)

which is not possible. ⊓⊔

Problem ?? allows us to work with a strictly convex function, and to reduce
the dimension of the feasible region, in some cases, considerably. According
to Preposition ?? along with Theorem ??, finding the extreme points of the
polytope Vx renders the solution of Problem ??. Therefore, we need to be able
to perform the projection of a polytope, and afterwards enumerate its extreme
points. Methods for doing so are available (see for instance [?]), although these
can be computationally expensive tasks. In the following section we explore
this solution by performing simulations in real topologies.
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4 Simulations

To evaluate the proposed method we present some simulation studies. The
simulations are carried out using two different research networks. Namely,
the Abilene network, whose topology, historical traffic demands and routing
matrix are available from [?], and the GÉANT network [?]. All results are
computed on a regular computer (Intel Pentium Dual-core 1.86GHz, 2GB of
RAM). For computing the polytope projection and enumerating its extreme
points we use the MPT library [?] and the ET library [?], distributed along
with the former.

4.1 The Abilene Network

The Abilene network consists of 30 internal links and 12 routers, all exchang-
ing traffic among them. Figure ?? shows a traffic trace of Abilene’s network.
In this example we can see how the traffic matrix is prone to sudden traffic
variations. Figure ?? shows the traffic for some OD flows corresponding to
2016 consecutive measurements, while Fig. ?? shows the link load.
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(a) Traffic volume per OD flow.
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(b) Link load.

Fig. 3 Example of traffic variation in the Abilene network, one week of traffic.

For illustrative purposes we compute results for three different types of
services. Namely, a VoIP service with 1 Mbps of bandwidth, a broadcast
quality HDTV service with 19.4 Mbps and a VPN service with a demand of
270 Mbps. We compute the maximum delay suffered by a flow traversing the
AS through a particular path and carrying each one of these services at a
time. The path is chosen arbitrarily, from one origin to one destination node.
Please note that this choice and its impact on the delay are out of the scope
of the present paper.
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In the first place, we define the polytope using the Links Load model. That
is to say, the polytope is defined by imposing bounds on each link load, which
are based on the maximum values obtained historically.

The values obtained for the defined path and the three services are shown
in Fig.?? (dotted line) along with the current delay value. The current delay
value corresponds to a value obtained instantaneously. For this particular case
the maximum delay value is approximately 3 times more than the current
one which illustrates the weakness of the current value as a metric on which
rely. We will come back to this kind of comparisons later on this section.
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(a) Instantaneous delay value and Maxi-
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Fig. 4 Simulations in the Abilene network.

In the second simulation, we define the polytope based on the Known
Statistical Values model, introduced in Sect. ??. We compute the variance
ellipsoid using a historical traffic trace (the same trace used for the first
simulation) and we approximate the ellipsoid by a polytope, by intersecting
several half spaces tangent to it. The maximum delay of traversing the AS is
computed for the same path used in the previous simulation.

The results are shown on Fig. ?? (dashed line) for a flow traversing the
same path as in the previous simulation and carrying the three defined ser-
vices, one at a time. We can see that in this case the bound obtained is smaller
than the one obtained in the first place and closer to the instantaneous value.

We now compare the two bounds with the real delay suffered by the path
during the two weeks after the computation of the polytopes, in all the cases
assuming an interdomain bandwidth demand of 1 Mbps. The results are
shown in Fig. ?? which illustrates the behaviour of the bounds with respect
to the real values. We can see that there is a trade-off between assuring a delay
value for most of the time, by using a big polytope, or having a tighter bound
most of the time, but having delays that outstrip the bound. Nevertheless,
the polytope could be reduced in a safe way if we had additional information,
for example by using as well the hose model which imposes bounds to the
traffic coming from other clients, which may be limited by a contract and
traffic shaping.
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The time consumed to perform the computations varied between 48 min-
utes and 36 hours, which for a moderately sized network is rather high. In
fact, even if in several topologies we were able to find the exact solution
through these means, it is still an open question whether there exists an
algorithm for enumerating all extreme points of a polytope of an arbitrary
dimension in running polynomial time [?]. We will, on the next subsection,
empirically explore the time consumed by the method in a larger network.

4.2 The GÉANT Network

In order to test the proposed solution on a larger topology, we use the GÉANT
network. This network is compounded of 23 nodes and 74 links. Thus, we
can define up to 506 independent OD flows. As we have already mentioned
the computation complexity of the proposed solution is likely to grow with
the dimension of the network (i.e. the number of links in the path and the
number of OD flows in the network). The simulations with this network aid
as to assessing the performance of the method when the number of OD flows
grows. We perform the simulations considering several subsets of OD flows,
containing each of them 170, 200, 230 and 260 OD flows. The polytope is
defined using the Links Load model and historical data.

Figure ?? shows the time consumed by each phase of the procedure, that
is to say obtaining the polytope in the new basis, projecting the polytope and
finding its extreme points. We can see that in all the cases, when we increase
the number of OD flows considered, the task that consumes most of the time
is the projection of the polytope.
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Fig. 5 Computation time as a function of the number of OD flows considered on the
GÉANT Network.

The procedure has shown rather high computational times, though it was
still feasible in all the tests. It is because of this that we think of this method as
of great aid when developing approximated, but less time consuming, meth-



14 I. Amigo, S. Vaton et al.

ods, since it provides the ground truth, thus a validation tool for such meth-
ods.

5 Conclusion and Future Work

In this work we have addressed the problem of the existence of uncertainties
on the traffic demands in the context of interdomain QoS provisioning. The
uncertainty was modeled as a polytope and different examples for building
it were mentioned. We have focused our attention on the computation of a
robust value of the end-to-end delay of traversing an AS under traffic un-
certainty, which means obtaining a value that does not change when traffic
demands do so, assuming the demands remain inside the uncertainty set.
This bound was conceived as a metric to be used in the interdomain path
selection process, since it provides a value that the AS can guarantee for a
certain period of time, while it can be advertised without reveling confiden-
tial information. The problem was mathematically formulated and an exact
solution, based on the projection of the polytope onto a subspace of smaller
dimension, was proposed. Simulations with real data were performed and
shown.

The theoretical study suggested that the computational times could be
rather high, simulations with large network confirmed this. In order to find
a remedy to this situation, we are currently studying alternative solutions
based on heuristics and numerical approximation methods. The exact method
proposed in this paper will be extremely useful as a tool of validation of the
approximated solutions. In addition, as future work, we shall address the case
of having uncertainty on the AS topology in addition to traffic uncertainty.
For instance, taking into account the case of link or node failures, and being
able to provide even in those cases a tight end-to-end delay bound.
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