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ABSTRACT

A novel way of performing pitch tracking by means of clustering local fundamental frequency (fO) can-
didates is described. The technique is based on an existing pitch salience representation for polyphonic
music called FOgram which relies on the Fan Chirp Transform [1]. The grouping is performed by ap-
plying a Spectral Clustering method, since it can handle filiform shapes such as pitch contours. The
approach seems appealing since many sound sources can be tracked simultaneously and the number of
contours and sources is derived from the data. Results of a melody detection evaluation indicate the
introduced method is promising, despite that various aspects of the technique deserve further work.

1 INTRODUCTION the analysis temporal integration of local pitch candi-
Multiple fundamental frequency (f0) estimation iSdates has to be performed, which is the problem tack-
ed herein. There is a vast amount of research on pitch

one of the most important problems in music Slgnair:f\cking in audio, often comprising an initial frame by

analysis and constitutes a fundamental step in sever, o . .
I . rame fO estimation followed by formation of pitch con-
applications such as melody extraction, sound source o : - .
ours exploiting estimates continuity over time. Tech-

identification and separation. In our previous work [11niques such as dynamic programming, linear predic-

the F_an Chi_rp Trans_form (FCh.T) was applied to pOIy_tion hidden Markov models, among many others (see

ing the audio signal into harmonically related chirps. Ir(ﬁ] forareview), were applied to the temporal tracking.

addition, a pitch salience representation for music anal- The herein proposed technique for pitch contours
ysis called FOgram was proposed that provides a set fafrmation does not involve a classical temporal track-
local fundamental frequency candidates together withiag algorithm. Instead the pitch tracking is performed
pitch change rate estimate for each of them. To continugy unsupervised clustering of FOgram peaks. The spec-
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tral clustering method [3] is selected for this task as ithange rate of the musical sound source. Among the
imposes no assumption of convex clusters, thus beirahirp based transforms, the FChT offers optimal reso-
suitable for filiform shapes such as pitch contours. Thiition simultaneously for all the partials of a harmonic
pitch change rate estimates provided by the FChT anathirp (harmonically related chirps). This is well suited
ysis play an important role in the definition of similarity for music analysis because many sounds have an har-
between pitch candidates. The clustering is carried outonic structure. The FChT can be formulated as [1],
within overlapped observation windows corresponding -
tq seve.rgl _S|gnal frames. Then contours are fo.rmed bew(f,a):/:r(t) w(ba(t)) ¢ (1) e=927F9a (0 gp (1)
simply joining clusters that share elements. This short- oo
term two-stage processing proved to be more robust B 1 . . .
than aiming a straightforward long-term clustering. v_vheregba(t) =+ §O‘t).t’ IS & Flme warping func-
o tion andw(t) stands for a time limited window, such as
There are very few applications of spectral cluster; . .
. . . . Hann. Notice that by the variable change= ¢,(¢),
ing for tracking a sound source. Blind one—m|crophon(%-h f lati b ded h :
separation of two speakers is tackled in [4] as a se ne formu atlon_can € regardeq as the Fo_uner Trans-
g1’(§>rm (FT) of a time warped version of the signalt),

mentation of the spectrogram. A method is PTOPOS€Lhich enables an efficient implementation based on the

to learn sw_mlanty matrices fr_om labeled d_atasets. Se\ﬁFT, Given the previous formulation, the FChT rep-
eral grouping cues are applied such as time-frequenc

continuity and harmonicity based. A simple multiplergsentatlon of a harmonic linear chirp is composed of

. 2 . : deltas convolved with the FT of the window, provided
pitch estimation algorithm is part of the feature extrac: . . . S .
. L . o the appropriate chirp rate is applied in the warping.
tion. The mixing conditions are very restrictive (equal c tina the EChT f tive short .
strength and no reverberation). Performance is assesse omputing the orconsecutive shorttime sig
through a few separation experiments nal frames a time-frequency representation in the form

Clustering of spectral peaks is applied in [5], forof a spectrogram can be built. For polyphonic music

partial tracking and source formation. Connectin analysis the approach followed in [1] is to compute

. . . Several FChT instances with differeatvalues. This
peaks over time to form partials and grouping them tQ . . :
roduces a multidimensional representation made up of

form sound sources is performed simultaneously. THE'® .
arious time-frequency planes.

problem is modeled as a weighted undirected grapY1 he time-f ion d ibed ab
where the nodes are the peaks of the magnitude spec- 1 "€ ime-frequency representation described above

trum. The edge weight between nodes is a function & b? applied to obtain a dgtailed description of the
frequency and amplitude proximity (temporal tracking)m_eIOdIC c_:onten_t of an audio signal, as _propose&in_[l].
and a harmonicity measure (source formation). Clu@tch_sahence is computed for each signal frame ina
tering of peaks across frequency and time is carried oﬁ?rt?]'n range of fundamenta(lj freqdu%ncyhvalueﬁ. (f3|ven
for windows of an integer number of frames {50 ms) Sﬁ,t € powelr spectrll_Jm profl;ced yt ellic Tfora
using a spectral clustering method. Clusters from dif"I"P ra;e va léeoé sa |er:10§ 0 r‘}"n Iamenta requencr)]/
ferent windows are not connected for temporal c:ontinf0 IS 0 tal?eh y gat erlr(;g t ﬁ og-spectrum at the
uation. The two more compact clusters of each windoWositions of the corresponding armonipgfo, o) =

1 nH . H
are selected as the predominant sound source. na D ZO?AS?(UO)L wheredntH I'IS thteh_nutrr:}ber olf :
The rest of this document is organized as follows armonics hat are supposed fo lie within the analysis

In the next section the application of the FChT to builabandw'dth' Some postprocessing steps are carried out

a pitch salience representation is briefly discussed. Sel@_order. to attenuate spurious peaks at multlplgs and
tion 3 summarizes the fundamental aspects of the Sp sCu_bmuIt|pIes ofthe frue pltc_hes, and t(.) balance different
tral Clustering methods. Section 4 describes the pr gndamgntal fre_quency re_glo@ [1]. Fl_nally, for each f0
posed algorithm for pitch contours formation. Exper-'n the grid the highest salience value is selected among

imental results are presented in section 5. The papg}e cgltfft_eregt ?Ka'tlat::e“ Va|tL;]eS. In Itht'.s wa;; af‘t FhO?ram”
ends with a critical discussion on the present work. IS obtained, that shows the evolution ot prtch for a
the harmonic sounds in the signal. An example of an

2 PITCH SALIENCE COMPUTATION FOgram is depicted in Figurg 1 for an audio fragment

The Short Time Fourier Transform is the standarc.lihat is used throughout the paper.

method for time-frequency analysis. In this representas
tion the signal is supposed to be stationary within th SPECTRAL CLUSTERING
analysis frame. However, music audio signals such as a The goal of clustering can be stated as dividing data
singing voice typically exhibit rapid pitch fluctuations points into groups such that points in the same cluster
that are troublesome for the analysis. are similar and points in different clusters are dissim-
A different approach to perform the analysis is conilar. An useful way of representing the data is in the
sidering the projection over frequency modulated sinuform of a similarity graph, each vertex corresponding to
soids (chirps), in order to obtain a non-Cartesian tiling data point. Two vertices of the graph are connected if
of the time-frequency plane. The modulation rate of théheir similarity is above certain threshold, and the edge
chirp can be selected in order to closely match the pitchetween them is weighted by their similarity value. In
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FOgram: a with the highest salience for each fundamental frequency
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Figure 1: FOgram for a fragment of the audio file popl (usedubhout the paper) from the MIREX melody test
set. It consist of three simultaneous singing voices fadldwy a single voice, with a rather soft accompaniment.

terms of the graph representation, the aim of clusterlgorithm. It can be shown [6] that finding a partition
ing is to find a partition of the graph such that differ-of a graph withn vertices intok clusters by minimiz-
ent groups are connected by very low weights whereasg Ncut, is equivalent to finding: indicator vectors
edges within a group have high weights. hj = (haj,...,hyj) with j = 1,...,k of the form,
The simplest way to construct a partition is to solveh;; = 1/vol(A4;) if vertex v; € A; and zero other-
the mincut problem. Given a number of clustérsit ~ wise. In this way, the elements of the indicator vectors
consist in finding a partitiont, . . ., A;, that minimizes point out to which cluster belongs each graph vertex.
This problem is still NP hard, but can be relaxed by

1 I allowing the elements of the indicator vectors to take,
CUt(Ay, -, Ag) = 2 ; W(Ai, 4i), @ instead of two discrete values, any arbitrary valuiin
- i The solution to this relaxed problem corresponds to the
where W(A,B) = 3 icajepwij 1S the sum of fgi 1 generalized eigenvectors @ — W) u = A D u,
weights of vertices connecting partitiodsand B, and - \yhereD is ann by n diagonal matrix with the degrees
A stands for the complement of. This corresponds ¢ the graph vertices,, ..., d,, on the diagonal, and

to finding a partition such that points in different clus-y;, _ (wi;)ii—1..» is the matrix of graph weights.
ters are dissimilar to each other. The problem with this' 1 vocto e of the solution are real-valued due to

?ppr(:?ch IS tth?':rllt often; eKara];[res tc') ne |nd|V|]EjuaI _\(/je_rte&ge relaxation and should be transformed to discrete in-

trom e”re;s (?[ e_gtrap - Ane Etf |vNe W?¥0 ?_VO' "NYgicator vectors to obtain a partition of the graph. To do

00 small clusters 1S to minimize the Neut unction, ;5 each eigenvalue can be used in turn to bipartition
k cut(4,, A;) the graph recursively by finding the splitting point such

NCut(Ay, ..., Ax) = Z “Vol(4,) (3)  that Ncut is minimized [3]. However, this heuristic may

i=1 ! be too simple in some cases and most spectral cluster-

where vo[A) = 3., d; is the sum of the degree of ing algorithms consider the coordinates of the eigen-

vertices inA. The degree of a vertex is definedds=  vectors as points ilR* and cluster them using an al-

2?:1 w;j, SO VOl A) measures the size dfin terms of go_rlthm such as k_-mearE [6]. T_he change O_f represen-

the sum of weights of those edges attached to their vef@tion from the original data points to the eigenvector

tices. The Ncut criterion minimizes the between cluscoordinates enhances the cluster structure of the data,

ter similarity (in the same way as mincut), but it alsos0 this last clustering step should be very simple if the

implements a maximization of the within cluster simi-original data contains well defined clusters. In the ideal

larities. Notice that the within cluster similarity can becase of completely separated clusters the eigenvectors

expressed ag)/ (A4, A) = vol(A) — cut(4, A) [6]. In  are piecewise constant so all the points belonging to the

this way the Ncut criterion implements both objectivessame cluster are mapped to exactly the same point.

to minimize the between cluster similarity, if ¢ut, 4) ~ Finally, the algorithm can be summarized as [6],

is small, and to maximize the within cluster similarity,! "PUt: sinilarity matrix seRnen,

. . N . nunber of clusters k

if vol (A) is large and cyt4, A) is small. st eps:

The mincut problem can be solved efficiently. HOw- 1. build a sinilarity graph using matrix S

ever with the normalization term introduced by Ncut ; compute the unnormalized Lapl acian of the

it becomes NP hard. Spectral clustering is a way t0  graph L= (D - W)

solye relaxed versions of this type of problems. Re- 3 conpute the first k generalized

laxing Ncut leads to the normalized spectral clustering  ei genvectors of (D —W)u=ADu

vol(
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4. consider the eigenvectors wui,...,u, as - l 10 candidates and graph connections
colums of a matrix U e Rk .
5. consider the vectors y; € RF i = 1,....n

corresponding to the rows of U

6. cluster the points (y;) in RF with k-neans
into clusters Cy,...,Cy

output: clusters Ai,..., A,/ Ai={j|y; € Ci}. o401

4 PITCH CONTOURS FORMATION

In order to apply the spectral clustering algorithm'9uré 2: Graph connections considering only one
to the formation of pitch contours several aspects mu&gighbor frame on each side for an observation window

be defined. In particular, the construction of the grapR 10 frames. The resulting graph is fully connected.

involves deciding which vertices are connected. Then,
a similarity function has to be designed such that it in-
duces meaningful local neighbours. Besides, an effed-2 Similarity measure

tive strategy has to be adopted to estimate the number Tg define a similarity measure between FOgram
of clusters. In what follows, each of these issues argeaks it is reasonable to base it on the assumption of
discussed and the proposed algorithm is described.  sjow variation of pitch contours in terms of fundamen-
4.1 Graph construction tal frequency and salience (a§ defined in section 2).
Fundamental frequency distance between two graph

Constructing the similarity graph is not a trivial task__ . ) .
. . . verticesy; andv; may be better expressed in a logarith-
and constitutes a key factor in spectral clustering per-. J . . .
ic scale, that is as a fraction of semitones. To do this,

formance. Different alternatives exist for the type otm . .
. : pitch value of a vertex is expressed as the corresponding
graph, such ag-nearest neighbok-neighborhood or

. . index in the logarithmically spaced grid used for pitch
fully connected graphs, which behave rather dn‘ferentlys.‘a"ence comp%tati &n The):] ?his cag be convertel?j to

Unfortunately, barely any theoretical results are known .~ ." . . .

. ) : similarity values so(v;, v;) € (0, 1] using a Gaussian
to guide this choice and to select graph parameters [6]. . ' - :

L . dial basis function,

A general criteria is that the resulting graph should be [
fully connected or at least should contain significantly _dffo(';i’”j)
fewer connected components than the clusters we want spo(vi,vj) =e 770 (4)
to detect. Otherwise, the algorithm will trivially return
connected components as clusters.

Frequency (Hz)

L L L L L 1 1 i 1
0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46
Time (s)

wheredo(v;,v;) = |f0; — f0,| stands for pitch dis-
: . . . tance andrs, is a parameter that must be set which
T.O mclud_e |nformat|or_1 on te_mporal proximity alo- jefines the width of local neighborhoods. In a simi-
3‘;' fixed nelghbor.hoc.)d 'Sf defined, such thatdfo ‘ianl'ar way, a similarity function can be defined that ac-
dates at a certain time frame are connected only 10, s for salience proximity. To combine both simi-

ca_ndidates in their vicinity c_)f a few frgmes (e.0. twolﬁlrity functions they can be multiplied, as in [5].
neighbor frames on each side). In this way the grap Although this approach was implemented and

is in principle full nnect n n in Figur : P
s In principie ully connec ed, as can be see 9USroved to work in several cases, the similarity measure
[2, and resulting connected components are determin

bv similarity between vertices. Two candidates distan s some shortcomings. Pitch based similarity is not
Dy similarity betw vertices. 1w ' ! éble to discriminate contours that intersect. In this case,
in time may nevertheless belong to the same cluster

LY . ) - b§élience may be useful but it also has some drawbacks.
their similarity to !ntermed|ate peaks. the Fhat n F'.g'For instance, points that are not so near in frequency
ure'2 only one nelghborfram_e on each side is tgken_m'gnd should be grouped apart, may be brought together
account to link peaks. In this case, if a peak is m|555y their salience similarity. This suggest the need for a

ing the given contgur may be disconnected. For thi ore appropriate way of combining similarity values.
reason, a local neighbourhood of two or three frames L .
A significant performance improvement was ob-

on each S'de. Is preferred. Similarity of not anneCte9ained by combining the pitch value of the candidates
components is set to zero, so a sparse similarity matrg\<nd the chirp rates provided by the FChT. The chirp
is obtained. '

In addition. a contour should not contain more tharate can be regarded as a local estimation of the pitch
on, u u nn .r&hange rate. Thus, the pitch value of the next point in
one fO candidate per frame. To favour this, candi- , — A .
1e contour can be predicted A3 = fOF (1+ak At),

dates in the same frame are not connected. Speci here 0 anda® are the pitch and chirb rate value

ing cannot-link constrains of this type is a common ap- g}l;ef i ﬁm i (;i_(rje € p(lef an _cdlrp rafe varues, |

proach for semi-supervised clustering [7]. However2" ar_et € cand ate and frame indexes re_speqtlve Y
nd At is the time interval between consecutive signal

this not strictly prohibits two simultaneous peaks to b Figure 3 depi ; 0 did
grouped in the same cluster if their similarity to neigh-rames'. gure 3 depicts most prominent 10 candidates
d their predictions for a short region of the example.

bor candidates is high. For this reason, clusters shou%f't that th . ks in the vici
be further processed to detect this situation and sele ple that Inere are some spurious peaks in the vicin-
the most appropriate candidate in case of collisions. LIn which a 16th semitone division is used (192 points per @tav
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Foward for each 0 based on their a value FOgram and 0 candidates Similarity matrix
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Figure 3: Forward predictions of the three most promi- ~ ** Xx
nent fO candidates for a short interval of the example ~ *| =
Although the clusters seem to emerge quite definec % 10 20 30

spurious peaks may mislead the grouping. This can be

improved if a backward prediction is also considered. Figure 4: Local clustering for a short time interval of
the audio example. Similarity matrix, eigenvalues and
eigenvectors as coordinates are depicted. Three well-
defined clusters can be identified in the data, as well as

ity of abtrue 1E)Ittf?h conttour Who?se eT,n”;atte lie ?'056 Qe corresponding bands in the similarity matrix. The
amem eer € COB OLt" _an_l c_?n ead to an 'ngorre?ﬁultiplicity of eigenvalue zero coincides with the num-
grouping. A more robust similarity measure can be Obt')er of connected components. All members of a cluster

tained by combining mutual predictions between pitc re mapped to the same point in the transformed space
candidates. This is done by computing for each cand% PP P pace.
—

date also a backward predictigid in the same way as

before. Then, distance among two candidatesand . . o .

111 oained by averagingdisances between nff” AT soied accorin o e feteted e

actual pitch values and their mutual predictions, ' P g a spars o 9 . ’
clusters can be visually identified as continuous bands.

1 — —

ko k+1y\_ k k+1 k k+1

dfO (Ui yU; )75 ‘foz 7f0] |+ ‘fol 7f0_] |:| (5) o Fogram and |fi<;a:dldales Similarity matrix

329.63 B : 5

Using this mutual distance measure the similarity func £ 5 ; i &

tion is defined as in Equation (4). Additionally, the & 2% v _ °
. o 20

same reasoning can be extended to compute forwa * ¢ _ogsfvﬁﬁ"""—

33.08

and backward predictions for two or three consecutivi 2z e —— %

frames. This similarity values are used as graph weight Y e vor®

for candidates in their temporal proximity. Eigenvalues Eigenvectors as coordinates
Still remains to set the valueyy, which plays the o8 x

role of determining the actual value assigned to point

in the vicinity and to outlying points. Self tunning s

sigma for each pair of data points was tested based ¢ |, .
the distance to thé-th nearest neighbor of each point, .
as proposed in [8]. This approach can handle cluste. b * *

with different scales, but applied to this particular prob-_. . . .
lem it frequently grouped noisy peaks far apart fron{:|gure 5: Local clustering example with two true pitch

each other. It turned out that, given the filiform shc'zlpé:()r]t()u,rs and seyeral spurious peaks_. The two corre-
of clusters that are to be detected, a fixed valuerfer sponding bands in the similarity matrix can be appre-

was more effective. Since pitch predictions become Iescéated' Multiplicity of eigenvalue zero not only indi-

reliable as the time interval grows, a more restrictivéf:ates th_e relevant connected components bu_t alsp_ IS0
value foro s is used for measuring similarity to points ated points. The true contours are correctly identified

at the second and third consecutive frame (reported rBy the algorithm and spurious peaks tend to be isolated.
sults correspond o}, = 0.8, o7, = 0.4).

Figures 4 andl 5 show two different examples of the o
local clustering, which correspond to three well-defined-3 Number of clusters determination
clusters and two clusters with spurious peaks. An ob- Automatically determining the number of clusters
servation window of 10 signal frames is used and this a difficult problem and several methods have been
three most prominent FOgram peaks are considered. gkoposed for this task [7]. A method devised for spec-
neighborhood of two frames on each side is used. Sintral clustering is the eigengap heuristic [6]. The goal
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is to choose the numbér such that all eigenvalues burden grows exponentially with the number of graph
A1, ..., A, are very small, bub, ., is relatively large. vertices. Thus, an observation window of 10 signal
Among the various justifications for this procedure, ifframes was used in the reported simulatioR60 ms).
can be noticed that in the ideal casekotompletely Neighboring clusters in time can be identified based
disconnected components, the graph Laplacian has @s the similarity among their members. A straightfor-
many eigenvalues zero as there are connected compgard way to to this is by performing local clustering
nents, and then there is a gap to the next eigenvalue. on overlapped observation windows and then grouping
This heuristic was implemented, but it sometimelusters that share elements. Figlure 6 shows the clus-
failed to detect the correct number of cluster (e.g. whetering obtained using half overlapped observation win-
clusters are not so clear there is no well-defined gapjlows for the two previously introduced examples.
The following iterative strategy gave better results. It

consist in firstly estimating the number of connectec *"* a49.23 Jo%
components using the multiplicity of eigenvalue zerc ™[ comess® | e ;

by means of a restrictive threshold. Then, the com_ ., e

pactness of the obtained clusters is evaluated. TO €% 00 puooooossssomsss o

this, different measures were tested and a threshold (U 20765 w e

the sum of distances to the centroid in the transforme ™ s " oo M
space was selected. As mentioned before, in case = 23308 ulY

completely separeted connected components all mer %[ 2200 GRODTBB B
bers of the same cluster are mapped to a single point 035 04 e 05 12 s

the transformed space. For this reason, the detection of

poor quality clusters showed not to be too sensitive t@igure 6: Examples of clustering using half overlapped
the actual value used for thresholding. Each of the n@bservation windows. The pitch contours are correctly

compact clusters is further divided until all the obtaine¢ontinued since several of their members are shared.
clusters conform to the threshold. This is done repeat-

edly by running k-means only to points in the cluster,
starting withk = 2 for a bipartition and incrementing

the number of desired clusters until the stop conditior':-? RESULTS AND DISCUSSION

is met. This strategy tends to isolate each spurious peak The contours obtained by applying the proposed
as a single cluster (see Figure 5), what in turn favouralgorithm to the example audio excerpt are depicted

to ignore them in the formation of pitch contours. in Figure[7. The three most prominent peaks of the
o . FOgram are considered for pitch tracking. Several is-
4.4 Filtering simultaneous members sues can be noted from these results. Firstly, the main

Despite of the introduction of cannot-link con- contours present are correctly identified, without the
strains some clusters can occasionally contain mormppearance of spurious detections when no harmonic
than one member at the same time instant. The besund is present (e.g. aroutié= 1.0 s). The example
fO candidate can be selected based on pitch distancesioows that many sound sources can be tracked simul-
their neighbors. This approach was explored but diffitaneously with this approach. No assumption is made
culties were encountered for some particular cases. Fon the number of simultaneous sources, which is only
instance, when a contour gradually vanishes FOgratimited by the number of pitch candidates considered.
peaks are less prominent, their pitch change rate esfihe total number of contours and concurrent voices at
mate is less reliable and spurious peaks appear in tkach time interval is derived from the data.
nearby region. Therefore, under the assumption of slow It can also be seen that the third voice of the second
variation of contour parameters, salience similarity wasote (approximately @t= 1.0 — 2.0 s) is only partially
introduced as another source of information. To do thisdentified by two discontinued portions. Because of the
the most prominent peak of the cluster is identified antbw prominence of this contour some of the pitch candi-
the cluster is traversed in time from this point in bothdates appear as secondary peaks of the more prominent
directions, selecting those candidates whose saliencesisurces. This situation can be improved by increasing
closest to the already validated neighbors. the number of prominent peaks considered.

i i Apart from that, there are the three short length con-
4.5 Formation of pitch contours tours detected at interval= 2.1 — 2.5 s that seem to be

The above described local clustering of fO candispurious. However, when carefully inspecting the au-
dates has to be extended to form pitch contours. Irdio file it turned out that they correspond to harmonic
creasing the length of the observation window showesgounds from the accompaniment. Although this con-
not to be the most appropriate option. The complexityours have a very low salience they are validated be-
of the clustering is increased for longer windows, sinceause of their structure. It depends on the particular
a higher number of clusters inevitably arise mainly beproblem where this algorithm finds application if these
cause of spurious peaks. Additionally, computationatontours may be better filtered out based on salience.
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Figure 7: Pitch contours for the audio example obtained mgickering the three most prominent FOgram peaks.

A melody detection evaluation was conductedest performing solution is returned (i.e. lowest cen-
following a procedure similar to the one ap-troid distances). It can be noticed that the k-means rep-
plied in [1]. The vocal files of the 2004-2005 etition consistently gives a slight performance increase.
MIREX melody extraction test set were considered, In addition, precision and recall values are reported.
which is a publicly labeled database available fronPrecision is computed as the mean score value of the es-
http://wwww. musi c-ir.org/nirex/. It comprises timations within the 3% threshold. Remaining frames
21 music excerpts for a total duration of 8 minutes.  are considered not recalled items, as well as melody la-

The three most prominent FOgram peaks were séeled frames for which there is no pitch contour.
lected as pitch candidates to form contours using the When visually inspecting the results for individual
herein described algorithm. All the identified pitch coniles it turned out that most melody labeled regions for
tours were considered as main melody candidates amghich there were no estimated contours correspond to
the ones that better match the labels were used to as$es salience portions of the FOgram (for instance, when
performance. Only those frames for which the melody note vanishes). It seems that labels are produced from
was present according to the labels were taken into amonophonic files containing only the vocal melody and
count to compute the evaluation measure according tayhen mixed into a polyphonic track some regions are

_ masked by the accompaniment. Figure 8 shows a de-
scord fo) =min{1, max{0, (1ol — Afo)/(toli —tolm)}} 1351 of the current example where this situation can be
whereA fo = 100| fo— f2*|/ " is the relative error be- appreciated. In order to take this into account the evalu-
tween the pitch contour value and the ground truth, an@tion was repeated but ignoring low prominent melody
the tolerances tgl and to}, correspond to 3% and 1% frames. To do this a salience estimation was obtained
respectively. This represents a strict soft thresholding for each labeled frame by interpolating the FOgram val-

The performance obtained in this way is compared€s- Then a global threshold was applied to discard
to an equivalent evaluation that considers FOgram peakose frames whose salience was below 30% of the
as main melody estimates without performing any typ&09ram maximum value (26% of the total frames).
of grouping into contours (as reported in [1]). Group-

ing the FOgram peaks into contours involves the deraple 1: Results for the melody detection evaluation.
termination of where does a contour starts and whefine pitch contours are obtained from the three most
does it ends, necessarily leaving some time intervajgominent fo candidates. An evaluation using FOgram

without melody estimation. T_his is avoidec_j when iso'peaks (1st to 3rd) without tracking is also reported.
lated FOgram peaks are considered as main melody es-

timates, since for every melody labeled frame there mgram no salience threshold 30% salience threshold
; ; ; ; eaks score  precision recall score  precision  recall
always a pitch estlma_t|on. Therefore, this performanc@ 1 I 95938503 9757 990 9519
measure can be considered as a best possible referenae 88.24 | 97.59 | 9042 || 99.20 | 9959 | 99.61
. . 1-3 90.33 97.91 92.26 99.61 99.74 99.87
Results of the evaluation are presented in table 1.
Two different values are reported for the pitch contourspitch no salience threshold 30% salience threshold

: : . ¢ isi I i I
formation corresponding to a single run of the k-meay means 81,99 [ 6037 | 8277 [ 9669 | 9827 | 9763 ]

algorithm and 10 repetitions. When the clusters in thek-means|[ 8321 [ 90.38 | 8553 || 97.20 | 98.40 | 98.15 |
transformed space are not well defined the k-means gl;,c¢ 100% 74%

gorithm can get stuck in a local minima. This can be

improved if several executions are performed but with

different set of initial cluster centroid positions and the  The performance of the pitch contours formation
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ROCAMORA AND CANCELA PITCH TRACKING BY CLUSTERING LOCAL FO ESTIMATES

_Detaioftabeled inervals wih low saience ‘ fO tracking techniques in which each source is tracked
in turn. In addition, the algorithm is unsupervised and
relies on a few set of parameters. The influence of each
parameter has not been fully assessed and the determi-
nation of optimal values will be tackled in future work.
[ 3% band centered at 0 lae Preliminary results indicate that performance is not too
2 el ¢ ot s sensitive to a particular configuration of some of them
(e.g. number of candidates, k-means repetitions), but
Figure 8: Some melody labeled regions of the exampl@s it would be expected the values fof, have to be
exhibit a very low salience (2.5-2.6 and 3.0-3.1 s). set with more care. It is important to notice that the
algorithm has low computational cost given that effi-
cient algorithms exists for solving generalized eigen-
vector problems as well as for the k-means step.

by itsglf IS quite encouraging. However, it.decreases Results of a melody detection evaluation indicate
considerably compared to the values obtained befome introduced technique is promising for pitch track-

grouping FOg“”?m peaks. The gap |s'reduced by restrl Hg and can effectively distinguish most singing voice
ing the evaluation to the most prominent peaks, whic itch contours. There is some room for improvement

seemsf tott;,]onfllrm Tﬁt IOQ’/V salllien_ce reglt(_)nst;lre tr<t)_ubl ind the main shortcomings will be tackled in our future
some lor the algorithm. Visually Inspecting the estimag, ., -, particular, other sources of information should

tions for individual files gives the idea that most pltchbe included in the similarity measure in order to take

contours are correctly identified. However, the evalug advantage of the local pitch candidates. The esti-

ation results |nd|cate_the algc_)rlthm seems not to talﬁ%ation of the pitch change rate is less reliable for low
full advan_tage of the mformqtlon given by the FOgra alience peaks. This could be taken into account when
{)hee}ks. Blindly rg_lylng Ol.n estlmat&d\éalglestﬂo matt(ter_ computing similarity, for example by adjusting theg,

€Il corresponding salience 1S probably the Most MG, 6 iy accordance with the salience of the candidate.
portant shortcoming of the proposed algorithm.
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