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ABSTRACT
A novel way of performing pitch tracking by means of clustering local fundamental frequency (f0) can-
didates is described. The technique is based on an existing pitch salience representation for polyphonic
music called F0gram which relies on the Fan Chirp Transform [1]. The grouping is performed by ap-
plying a Spectral Clustering method, since it can handle filiform shapes such as pitch contours. The
approach seems appealing since many sound sources can be tracked simultaneously and the number of
contours and sources is derived from the data. Results of a melody detection evaluation indicate the
introduced method is promising, despite that various aspects of the technique deserve further work.

1 INTRODUCTION

Multiple fundamental frequency (f0) estimation is
one of the most important problems in music signal
analysis and constitutes a fundamental step in several
applications such as melody extraction, sound source
identification and separation. In our previous work [1]
the Fan Chirp Transform (FChT) was applied to poly-
phonic music analysis, a technique based on decompos-
ing the audio signal into harmonically related chirps. In
addition, a pitch salience representation for music anal-
ysis called F0gram was proposed that provides a set of
local fundamental frequency candidates together with a
pitch change rate estimate for each of them. To continue

the analysis temporal integration of local pitch candi-
dates has to be performed, which is the problem tack-
led herein. There is a vast amount of research on pitch
tracking in audio, often comprising an initial frame by
frame f0 estimation followed by formation of pitch con-
tours exploiting estimates continuity over time. Tech-
niques such as dynamic programming, linear predic-
tion, hidden Markov models, among many others (see
[2] for a review), were applied to the temporal tracking.

The herein proposed technique for pitch contours
formation does not involve a classical temporal track-
ing algorithm. Instead the pitch tracking is performed
by unsupervised clustering of F0gram peaks. The spec-
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tral clustering method [3] is selected for this task as it
imposes no assumption of convex clusters, thus being
suitable for filiform shapes such as pitch contours. The
pitch change rate estimates provided by the FChT anal-
ysis play an important role in the definition of similarity
between pitch candidates. The clustering is carried out
within overlapped observation windows corresponding
to several signal frames. Then contours are formed by
simply joining clusters that share elements. This short-
term two-stage processing proved to be more robust
than aiming a straightforward long-term clustering.

There are very few applications of spectral cluster-
ing for tracking a sound source. Blind one-microphone
separation of two speakers is tackled in [4] as a seg-
mentation of the spectrogram. A method is proposed
to learn similarity matrices from labeled datasets. Sev-
eral grouping cues are applied such as time-frequency
continuity and harmonicity based. A simple multiple
pitch estimation algorithm is part of the feature extrac-
tion. The mixing conditions are very restrictive (equal
strength and no reverberation). Performance is assessed
through a few separation experiments.

Clustering of spectral peaks is applied in [5], for
partial tracking and source formation. Connecting
peaks over time to form partials and grouping them to
form sound sources is performed simultaneously. The
problem is modeled as a weighted undirected graph
where the nodes are the peaks of the magnitude spec-
trum. The edge weight between nodes is a function of
frequency and amplitude proximity (temporal tracking)
and a harmonicity measure (source formation). Clus-
tering of peaks across frequency and time is carried out
for windows of an integer number of frames (∼ 150 ms)
using a spectral clustering method. Clusters from dif-
ferent windows are not connected for temporal contin-
uation. The two more compact clusters of each window
are selected as the predominant sound source.

The rest of this document is organized as follows.
In the next section the application of the FChT to build
a pitch salience representation is briefly discussed. Sec-
tion 3 summarizes the fundamental aspects of the Spec-
tral Clustering methods. Section 4 describes the pro-
posed algorithm for pitch contours formation. Exper-
imental results are presented in section 5. The paper
ends with a critical discussion on the present work.

2 PITCH SALIENCE COMPUTATION
The Short Time Fourier Transform is the standard

method for time-frequency analysis. In this representa-
tion the signal is supposed to be stationary within the
analysis frame. However, music audio signals such as a
singing voice typically exhibit rapid pitch fluctuations
that are troublesome for the analysis.

A different approach to perform the analysis is con-
sidering the projection over frequency modulated sinu-
soids (chirps), in order to obtain a non-Cartesian tiling
of the time-frequency plane. The modulation rate of the
chirp can be selected in order to closely match the pitch

change rate of the musical sound source. Among the
chirp based transforms, the FChT offers optimal reso-
lution simultaneously for all the partials of a harmonic
chirp (harmonically related chirps). This is well suited
for music analysis because many sounds have an har-
monic structure. The FChT can be formulated as [1],

Xw(f, α)=

∫

∞

−∞

x(t) w(φα(t)) φ′

α(t) e−j2πfφα(t)dt (1)

whereφα(t) = (1 + 1
2αt) t, is a time warping func-

tion andw(t) stands for a time limited window, such as
Hann. Notice that by the variable changeτ = φα(t),
the formulation can be regarded as the Fourier Trans-
form (FT) of a time warped version of the signalx(t),
which enables an efficient implementation based on the
FFT. Given the previous formulation, the FChT rep-
resentation of a harmonic linear chirp is composed of
deltas convolved with the FT of the window, provided
the appropriate chirp rateα is applied in the warping.

Computing the FChT for consecutive short time sig-
nal frames a time-frequency representation in the form
of a spectrogram can be built. For polyphonic music
analysis the approach followed in [1] is to compute
several FChT instances with differentα values. This
produces a multidimensional representation made up of
various time-frequency planes.

The time-frequency representation described above
can be applied to obtain a detailed description of the
melodic content of an audio signal, as proposed in [1].
Pitch salience is computed for each signal frame in a
certain range of fundamental frequency values. Given
Sα the power spectrum produced by the FChT for a
chirp rate valueα, salience of fundamental frequency
f0 is obtained by gathering the log-spectrum at the
positions of the corresponding harmonics,ρ(f0, α) =
1

nH

∑nH

i=1 log|Sα(if0)|, where nH is the number of
harmonics that are supposed to lie within the analysis
bandwidth. Some postprocessing steps are carried out
in order to attenuate spurious peaks at multiples and
submultiples of the true pitches, and to balance different
fundamental frequency regions [1]. Finally, for each f0
in the grid the highest salience value is selected among
the different availableα values. In this way an F0gram
is obtained, that shows the evolution of pitch for all
the harmonic sounds in the signal. An example of an
F0gram is depicted in Figure 1 for an audio fragment
that is used throughout the paper.

3 SPECTRAL CLUSTERING

The goal of clustering can be stated as dividing data
points into groups such that points in the same cluster
are similar and points in different clusters are dissim-
ilar. An useful way of representing the data is in the
form of a similarity graph, each vertex corresponding to
a data point. Two vertices of the graph are connected if
their similarity is above certain threshold, and the edge
between them is weighted by their similarity value. In
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F0gram: α with the highest salience for each fundamental frequency
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Figure 1: F0gram for a fragment of the audio file pop1 (used throughout the paper) from the MIREX melody test
set. It consist of three simultaneous singing voices followed by a single voice, with a rather soft accompaniment.

terms of the graph representation, the aim of cluster-
ing is to find a partition of the graph such that differ-
ent groups are connected by very low weights whereas
edges within a group have high weights.

The simplest way to construct a partition is to solve
the mincut problem. Given a number of clustersk, it
consist in finding a partitionA1, . . . , Ak that minimizes

cut(A1, . . . , Ak) =
1

2

k
∑

i=1

W (Ai, Āi), (2)

where W (A,B) =
∑

i∈A,j∈B wij is the sum of
weights of vertices connecting partitionsA andB, and
Ā stands for the complement ofA. This corresponds
to finding a partition such that points in different clus-
ters are dissimilar to each other. The problem with this
approach is that it often separates one individual vertex
from the rest of the graph. An effective way of avoiding
too small clusters is to minimize the Ncut function,

Ncut(A1, . . . , Ak) =

k
∑

i=1

cut(Ai, Āi)

vol(Ai)
, (3)

where vol(A) =
∑

i∈A di is the sum of the degree of
vertices inA. The degree of a vertex is defined asdi =
∑n

j=1 wij , so vol(A) measures the size ofA in terms of
the sum of weights of those edges attached to their ver-
tices. The Ncut criterion minimizes the between clus-
ter similarity (in the same way as mincut), but it also
implements a maximization of the within cluster simi-
larities. Notice that the within cluster similarity can be
expressed as,W (A,A) = vol(A) − cut(A, Ā) [6]. In
this way the Ncut criterion implements both objectives:
to minimize the between cluster similarity, if cut(A, Ā)
is small, and to maximize the within cluster similarity,
if vol(A) is large and cut(A, Ā) is small.

The mincut problem can be solved efficiently. How-
ever with the normalization term introduced by Ncut
it becomes NP hard. Spectral clustering is a way to
solve relaxed versions of this type of problems. Re-
laxing Ncut leads to the normalized spectral clustering

algorithm. It can be shown [6] that finding a partition
of a graph withn vertices intok clusters by minimiz-
ing Ncut, is equivalent to findingk indicator vectors
hj = (h1j , . . . , hnj)

′ with j = 1, . . . , k of the form,
hij = 1/vol(Aj) if vertex vi ∈ Aj and zero other-
wise. In this way, the elements of the indicator vectors
point out to which cluster belongs each graph vertex.
This problem is still NP hard, but can be relaxed by
allowing the elements of the indicator vectors to take,
instead of two discrete values, any arbitrary value inR.
The solution to this relaxed problem corresponds to the
first k generalized eigenvectors of(D−W )u = λD u,
whereD is ann by n diagonal matrix with the degrees
of the graph verticesd1, . . . , dn on the diagonal, and
W = (wij)i,j=1...n is the matrix of graph weights.

The vectorsu of the solution are real-valued due to
the relaxation and should be transformed to discrete in-
dicator vectors to obtain a partition of the graph. To do
this, each eigenvalue can be used in turn to bipartition
the graph recursively by finding the splitting point such
that Ncut is minimized [3]. However, this heuristic may
be too simple in some cases and most spectral cluster-
ing algorithms consider the coordinates of the eigen-
vectors as points inRk and cluster them using an al-
gorithm such as k-means [6]. The change of represen-
tation from the original data points to the eigenvector
coordinates enhances the cluster structure of the data,
so this last clustering step should be very simple if the
original data contains well defined clusters. In the ideal
case of completely separated clusters the eigenvectors
are piecewise constant so all the points belonging to the
same cluster are mapped to exactly the same point.

Finally, the algorithm can be summarized as [6],
input: similarity matrix S ∈ R

nxn,
number of clusters k

steps:

1. build a similarity graph using matrix S

2. compute the unnormalized Laplacian of the
graph L = (D − W )

3. compute the first k generalized
eigenvectors of (D − W ) u = λ D u
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4. consider the eigenvectors u1, . . . , uk as
columns of a matrix U ∈ R

nxk

5. consider the vectors yi ∈ R
k i = 1, . . . , n

corresponding to the rows of U

6. cluster the points (yi) in R
k with k-means

into clusters C1, . . . , Ck

output: clusters A1, . . . , Ak / Ai = {j | yj ∈ Ci}.

4 PITCH CONTOURS FORMATION
In order to apply the spectral clustering algorithm

to the formation of pitch contours several aspects must
be defined. In particular, the construction of the graph
involves deciding which vertices are connected. Then,
a similarity function has to be designed such that it in-
duces meaningful local neighbours. Besides, an effec-
tive strategy has to be adopted to estimate the number
of clusters. In what follows, each of these issues are
discussed and the proposed algorithm is described.

4.1 Graph construction
Constructing the similarity graph is not a trivial task

and constitutes a key factor in spectral clustering per-
formance. Different alternatives exist for the type of
graph, such ask-nearest neighbor,ǫ-neighborhood or
fully connected graphs, which behave rather differently.
Unfortunately, barely any theoretical results are known
to guide this choice and to select graph parameters [6].
A general criteria is that the resulting graph should be
fully connected or at least should contain significantly
fewer connected components than the clusters we want
to detect. Otherwise, the algorithm will trivially return
connected components as clusters.

To include information on temporal proximity a lo-
cal fixed neighborhood is defined, such that f0 can-
didates at a certain time frame are connected only to
candidates in their vicinity of a few frames (e.g. two
neighbor frames on each side). In this way the graph
is in principle fully connected, as can be seen in Figure
2, and resulting connected components are determined
by similarity between vertices. Two candidates distant
in time may nevertheless belong to the same cluster by
their similarity to intermediate peaks. Note that in Fig-
ure 2 only one neighbor frame on each side is taken into
account to link peaks. In this case, if a peak is miss-
ing the given contour may be disconnected. For this
reason, a local neighbourhood of two or three frames
on each side is preferred. Similarity of not connected
components is set to zero, so a sparse similarity matrix
is obtained.

In addition, a contour should not contain more than
one f0 candidate per frame. To favour this, candi-
dates in the same frame are not connected. Specify-
ing cannot-link constrains of this type is a common ap-
proach for semi-supervised clustering [7]. However,
this not strictly prohibits two simultaneous peaks to be
grouped in the same cluster if their similarity to neigh-
bor candidates is high. For this reason, clusters should
be further processed to detect this situation and select
the most appropriate candidate in case of collisions.

f0 candidates and graph connections
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Figure 2: Graph connections considering only one
neighbor frame on each side for an observation window
of 10 frames. The resulting graph is fully connected.

4.2 Similarity measure
To define a similarity measure between F0gram

peaks it is reasonable to base it on the assumption of
slow variation of pitch contours in terms of fundamen-
tal frequency and salience (as defined in section 2).

Fundamental frequency distance between two graph
verticesvi andvj may be better expressed in a logarith-
mic scale, that is as a fraction of semitones. To do this,
pitch value of a vertex is expressed as the corresponding
index in the logarithmically spaced grid used for pitch
salience computation1. Then, this can be converted to
a similarity valuesf0(vi, vj) ∈ (0, 1] using a Gaussian
radial basis function,

sf0(vi, vj) = e
−

d2
f0(vi,vj)

σ2
f0 (4)

wheredf0(vi, vj) = |f0i − f0j | stands for pitch dis-
tance andσf0 is a parameter that must be set which
defines the width of local neighborhoods. In a simi-
lar way, a similarity function can be defined that ac-
counts for salience proximity. To combine both simi-
larity functions they can be multiplied, as in [5].

Although this approach was implemented and
proved to work in several cases, the similarity measure
has some shortcomings. Pitch based similarity is not
able to discriminate contours that intersect. In this case,
salience may be useful but it also has some drawbacks.
For instance, points that are not so near in frequency
and should be grouped apart, may be brought together
by their salience similarity. This suggest the need for a
more appropriate way of combining similarity values.

A significant performance improvement was ob-
tained by combining the pitch value of the candidates
and the chirp rates provided by the FChT. The chirp
rate can be regarded as a local estimation of the pitch
change rate. Thus, the pitch value of the next point in
the contour can be predicted as

−→
f0k

i = f0k
i (1+αk

i ∆t),
wheref0k

i andαk
i are the pitch and chirp rate values,i

andk are the candidate and frame indexes respectively,
and∆t is the time interval between consecutive signal
frames. Figure 3 depicts most prominent f0 candidates
and their predictions for a short region of the example.
Note that there are some spurious peaks in the vicin-

1In which a 16th semitone division is used (192 points per octave).
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Foward predictions for each f0 candidate based on their estimated α value
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Figure 3: Forward predictions of the three most promi-
nent f0 candidates for a short interval of the example.
Although the clusters seem to emerge quite defined,
spurious peaks may mislead the grouping. This can be
improved if a backward prediction is also considered.

ity of a true pitch contour whose estimate lie close to
a member of the contour and can lead to an incorrect
grouping. A more robust similarity measure can be ob-
tained by combining mutual predictions between pitch
candidates. This is done by computing for each candi-
date also a backward prediction

←−
f0 in the same way as

before. Then, distance among two candidatesvk
i and

vk+1
j is obtained by averaging distances between their

actual pitch values and their mutual predictions,

df0(v
k
i , vk+1

j )=
1

2

[

|f0k
i−
←−
f0k+1

j |+|
−→
f0k

i−f0k+1
j |

]

(5)

Using this mutual distance measure the similarity func-
tion is defined as in Equation (4). Additionally, the
same reasoning can be extended to compute forward
and backward predictions for two or three consecutive
frames. This similarity values are used as graph weights
for candidates in their temporal proximity.

Still remains to set the valueσf0, which plays the
role of determining the actual value assigned to points
in the vicinity and to outlying points. Self tunning
sigma for each pair of data points was tested based on
the distance to thek-th nearest neighbor of each point,
as proposed in [8]. This approach can handle cluster
with different scales, but applied to this particular prob-
lem it frequently grouped noisy peaks far apart from
each other. It turned out that, given the filiform shape
of clusters that are to be detected, a fixed value forσf0

was more effective. Since pitch predictions become less
reliable as the time interval grows, a more restrictive
value forσf0 is used for measuring similarity to points
at the second and third consecutive frame (reported re-
sults correspond toσ1

f0 = 0.8, σ2
f0 = 0.4).

Figures 4 and 5 show two different examples of the
local clustering, which correspond to three well-defined
clusters and two clusters with spurious peaks. An ob-
servation window of 10 signal frames is used and the
three most prominent F0gram peaks are considered. A
neighborhood of two frames on each side is used. Sim-

F0gram and f0 candidates
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Figure 4: Local clustering for a short time interval of
the audio example. Similarity matrix, eigenvalues and
eigenvectors as coordinates are depicted. Three well-
defined clusters can be identified in the data, as well as
the corresponding bands in the similarity matrix. The
multiplicity of eigenvalue zero coincides with the num-
ber of connected components. All members of a cluster
are mapped to the same point in the transformed space.

ilarity matrix is sorted according to the detected clus-
ters, producing a sparse band diagonal matrix, where
clusters can be visually identified as continuous bands.

F0gram and f0 candidates
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Figure 5: Local clustering example with two true pitch
contours and several spurious peaks. The two corre-
sponding bands in the similarity matrix can be appre-
ciated. Multiplicity of eigenvalue zero not only indi-
cates the relevant connected components but also iso-
lated points. The true contours are correctly identified
by the algorithm and spurious peaks tend to be isolated.

4.3 Number of clusters determination
Automatically determining the number of clusters

is a difficult problem and several methods have been
proposed for this task [7]. A method devised for spec-
tral clustering is the eigengap heuristic [6]. The goal
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is to choose the numberk such that all eigenvalues
λ1, . . . , λk are very small, butλk+1 is relatively large.
Among the various justifications for this procedure, it
can be noticed that in the ideal case ofk completely
disconnected components, the graph Laplacian has as
many eigenvalues zero as there are connected compo-
nents, and then there is a gap to the next eigenvalue.

This heuristic was implemented, but it sometimes
failed to detect the correct number of cluster (e.g. when
clusters are not so clear there is no well-defined gap).
The following iterative strategy gave better results. It
consist in firstly estimating the number of connected
components using the multiplicity of eigenvalue zero
by means of a restrictive threshold. Then, the com-
pactness of the obtained clusters is evaluated. To do
this, different measures were tested and a threshold on
the sum of distances to the centroid in the transformed
space was selected. As mentioned before, in case of
completely separeted connected components all mem-
bers of the same cluster are mapped to a single point in
the transformed space. For this reason, the detection of
poor quality clusters showed not to be too sensitive to
the actual value used for thresholding. Each of the not
compact clusters is further divided until all the obtained
clusters conform to the threshold. This is done repeat-
edly by running k-means only to points in the cluster,
starting withk = 2 for a bipartition and incrementing
the number of desired clusters until the stop condition
is met. This strategy tends to isolate each spurious peak
as a single cluster (see Figure 5), what in turn favours
to ignore them in the formation of pitch contours.

4.4 Filtering simultaneous members
Despite of the introduction of cannot-link con-

strains some clusters can occasionally contain more
than one member at the same time instant. The best
f0 candidate can be selected based on pitch distance to
their neighbors. This approach was explored but diffi-
culties were encountered for some particular cases. For
instance, when a contour gradually vanishes F0gram
peaks are less prominent, their pitch change rate esti-
mate is less reliable and spurious peaks appear in the
nearby region. Therefore, under the assumption of slow
variation of contour parameters, salience similarity was
introduced as another source of information. To do this,
the most prominent peak of the cluster is identified and
the cluster is traversed in time from this point in both
directions, selecting those candidates whose salience is
closest to the already validated neighbors.

4.5 Formation of pitch contours
The above described local clustering of f0 candi-

dates has to be extended to form pitch contours. In-
creasing the length of the observation window showed
not to be the most appropriate option. The complexity
of the clustering is increased for longer windows, since
a higher number of clusters inevitably arise mainly be-
cause of spurious peaks. Additionally, computational

burden grows exponentially with the number of graph
vertices. Thus, an observation window of 10 signal
frames was used in the reported simulations (∼ 60 ms).

Neighboring clusters in time can be identified based
on the similarity among their members. A straightfor-
ward way to to this is by performing local clustering
on overlapped observation windows and then grouping
clusters that share elements. Figure 6 shows the clus-
tering obtained using half overlapped observation win-
dows for the two previously introduced examples.
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Figure 6: Examples of clustering using half overlapped
observation windows. The pitch contours are correctly
continued since several of their members are shared.

5 RESULTS AND DISCUSSION

The contours obtained by applying the proposed
algorithm to the example audio excerpt are depicted
in Figure 7. The three most prominent peaks of the
F0gram are considered for pitch tracking. Several is-
sues can be noted from these results. Firstly, the main
contours present are correctly identified, without the
appearance of spurious detections when no harmonic
sound is present (e.g. aroundt = 1.0 s). The example
shows that many sound sources can be tracked simul-
taneously with this approach. No assumption is made
on the number of simultaneous sources, which is only
limited by the number of pitch candidates considered.
The total number of contours and concurrent voices at
each time interval is derived from the data.

It can also be seen that the third voice of the second
note (approximately att = 1.0− 2.0 s) is only partially
identified by two discontinued portions. Because of the
low prominence of this contour some of the pitch candi-
dates appear as secondary peaks of the more prominent
sources. This situation can be improved by increasing
the number of prominent peaks considered.

Apart from that, there are the three short length con-
tours detected at intervalt = 2.1−2.5 s that seem to be
spurious. However, when carefully inspecting the au-
dio file it turned out that they correspond to harmonic
sounds from the accompaniment. Although this con-
tours have a very low salience they are validated be-
cause of their structure. It depends on the particular
problem where this algorithm finds application if these
contours may be better filtered out based on salience.
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Pitch contours
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Figure 7: Pitch contours for the audio example obtained by considering the three most prominent F0gram peaks.

A melody detection evaluation was conducted
following a procedure similar to the one ap-
plied in [1]. The vocal files of the 2004-2005
MIREX melody extraction test set were considered,
which is a publicly labeled database available from
http://www.music-ir.org/mirex/. It comprises
21 music excerpts for a total duration of 8 minutes.

The three most prominent F0gram peaks were se-
lected as pitch candidates to form contours using the
herein described algorithm. All the identified pitch con-
tours were considered as main melody candidates and
the ones that better match the labels were used to asses
performance. Only those frames for which the melody
was present according to the labels were taken into ac-
count to compute the evaluation measure according to,

score(f0)=min{1, max{0, (tolM−∆f0)/(tolM− tolm)}}

where∆f0 = 100|f0−fgt
0 |/fgt

0 is the relative error be-
tween the pitch contour value and the ground truth, and
the tolerances tolM and tolm correspond to 3% and 1%
respectively. This represents a strict soft thresholding.

The performance obtained in this way is compared
to an equivalent evaluation that considers F0gram peaks
as main melody estimates without performing any type
of grouping into contours (as reported in [1]). Group-
ing the F0gram peaks into contours involves the de-
termination of where does a contour starts and when
does it ends, necessarily leaving some time intervals
without melody estimation. This is avoided when iso-
lated F0gram peaks are considered as main melody es-
timates, since for every melody labeled frame there is
always a pitch estimation. Therefore, this performance
measure can be considered as a best possible reference.

Results of the evaluation are presented in table 1.
Two different values are reported for the pitch contours
formation corresponding to a single run of the k-means
algorithm and 10 repetitions. When the clusters in the
transformed space are not well defined the k-means al-
gorithm can get stuck in a local minima. This can be
improved if several executions are performed but with
different set of initial cluster centroid positions and the

best performing solution is returned (i.e. lowest cen-
troid distances). It can be noticed that the k-means rep-
etition consistently gives a slight performance increase.

In addition, precision and recall values are reported.
Precision is computed as the mean score value of the es-
timations within the 3% threshold. Remaining frames
are considered not recalled items, as well as melody la-
beled frames for which there is no pitch contour.

When visually inspecting the results for individual
files it turned out that most melody labeled regions for
which there were no estimated contours correspond to
low salience portions of the F0gram (for instance, when
a note vanishes). It seems that labels are produced from
monophonic files containing only the vocal melody and
when mixed into a polyphonic track some regions are
masked by the accompaniment. Figure 8 shows a de-
tail of the current example where this situation can be
appreciated. In order to take this into account the evalu-
ation was repeated but ignoring low prominent melody
frames. To do this a salience estimation was obtained
for each labeled frame by interpolating the F0gram val-
ues. Then a global threshold was applied to discard
those frames whose salience was below 30% of the
F0gram maximum value (26% of the total frames).

Table 1: Results for the melody detection evaluation.
The pitch contours are obtained from the three most
prominent f0 candidates. An evaluation using F0gram
peaks (1st to 3rd) without tracking is also reported.

F0gram no salience threshold 30% salience threshold
peaks score precision recall score precision recall

1 83.38 96.93 86.03 97.22 99.01 98.19
1-2 88.24 97.59 90.42 99.20 99.59 99.61
1-3 90.33 97.91 92.26 99.61 99.74 99.87

Pitch no salience threshold 30% salience threshold
contours score precision recall score precision recall

1 k-means 81.99 90.37 84.77 96.69 98.27 97.63
10 k-means 83.21 90.38 85.53 97.20 98.40 98.15

frames 100% 74%

The performance of the pitch contours formation
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Figure 8: Some melody labeled regions of the example
exhibit a very low salience (2.5-2.6 and 3.0-3.1 s).

by itself is quite encouraging. However, it decreases
considerably compared to the values obtained before
grouping F0gram peaks. The gap is reduced by restrict-
ing the evaluation to the most prominent peaks, which
seems to confirm that low salience regions are trouble-
some for the algorithm. Visually inspecting the estima-
tions for individual files gives the idea that most pitch
contours are correctly identified. However, the evalu-
ation results indicate the algorithm seems not to take
full advantage of the information given by the F0gram
peaks. Blindly relying on estimatedα values no matter
their corresponding salience is probably the most im-
portant shortcoming of the proposed algorithm.

6 CONCLUSIONS AND FUTURE WORK

In this work a novel way of performing pitch track-
ing by means of clustering local f0 candidates is de-
scribed. The technique is based on an existing pitch
salience representation called F0gram suited for poly-
phonic music [1]. This makes use of the Fan Chirp
Transform which can produce precise representation of
non stationary sound sources like singing voice.

The grouping is performed by applying a Spectral
Clustering method since it can handle filiform shapes
such as pitch contours. The similarity measure pro-
posed takes advantage of the pitch change rate estimate
provided by the FChT based F0gram. The determina-
tion of the number of clusters is tackled by an iterative
approach, where the number of connected components
is taken as an initial estimate and not compact enough
clusters are further divided into an increasing number
of groups. This strategy tends to isolate each spurious
peak in a single cluster, what in turn favours to ignore
them in the formation of pitch contours. Clustering is
carried out for overlapped observation windows of a
few hundred milliseconds and clusters from different
time windows are linked if they share elements. In this
way, groups that exhibit a coherent geometric structure
emerge as pitch contours while the others are discarded.

The clustering approach to the tracking problem
seems appealing because the solution involves the joint
optimization of all the pitch contours present in a given
time interval. Therefore, many sound sources can be
tracked simultaneously and the number of contours
and simultaneous sources can be automatically derived
from the data. This differs from most classical multiple

f0 tracking techniques in which each source is tracked
in turn. In addition, the algorithm is unsupervised and
relies on a few set of parameters. The influence of each
parameter has not been fully assessed and the determi-
nation of optimal values will be tackled in future work.
Preliminary results indicate that performance is not too
sensitive to a particular configuration of some of them
(e.g. number of candidates, k-means repetitions), but
as it would be expected the values forσf0 have to be
set with more care. It is important to notice that the
algorithm has low computational cost given that effi-
cient algorithms exists for solving generalized eigen-
vector problems as well as for the k-means step.

Results of a melody detection evaluation indicate
the introduced technique is promising for pitch track-
ing and can effectively distinguish most singing voice
pitch contours. There is some room for improvement
and the main shortcomings will be tackled in our future
work. In particular, other sources of information should
be included in the similarity measure in order to take
full advantage of the local pitch candidates. The esti-
mation of the pitch change rate is less reliable for low
salience peaks. This could be taken into account when
computing similarity, for example by adjusting theσf0

value in accordance with the salience of the candidate.
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