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Abstract—The objective of several techniques including fluid
limits and mean field approximations is to analyze a stochastic
complex system (e.g. Markovian) studying a simplified model
(deterministic, represented by ordinary differential equations
(ODEs)). In this paper, we explore models proposed for the
analysis of BitTorrent P2P systems and we provide the arguments
to justify the passage from the stochastic process, under adequate
scaling, to a fluid approximation driven by an ODE. We also make
the link between the stationary regime of the stochastic models
and the fixed points of the associated ODEs. Finally, we analyze
the asymptotic distribution of the scaled process.

Index Terms—fluid limits, mean fields, BitTorrent

I. I NTRODUCTION

There are several examples of complex stochastic systems
for which analytical expressions cannot be derived, or that
are even difficult to simulate. However, in many cases they
can be studied much more easily by analyzing deterministic
systems, obtained as asymptotic approximations of the original
ones. The complexity of the system may be due to its size,
its dependence structure, etc. There are many such systems,
as for instance TCP connections, wireless systems, or peer
to peer networks. In the case of TCP connections sharing a
bottleneck, wireless users sharing a channel, or in the peerto
peer case, there is a common resource and many individuals.
The behavior of each one depends on the state of the whole
system, introducing dependence between all the individuals.

Starting from a stochastic model the objective is to find
a deterministic approximation for the original process. This
introduces the problem of finding the suitable scale for this
approximation. For example, classical results in queuing the-
ory consider a sequence of stochastic processes indexed by
an integerN , where some key state variable appears divided
by N , and the time variable is multiplied (“accelerated”) by
the same factor, obtaining a deterministic limit whenN goes
to infinity. In addition, in other areas such as in biology,
or in the analysis of epidemic phenomena, a typical scaling
consists in dividing byN , and in considering transition rates
increasing withN (jumps are of order1/N and transition rates
of orderN , that means that the product remains “constant” as
N increases). For a survey about this topic see [1], and for
a more general reference about limits of stochastic processes
we suggest [2]. In this paper we follow mostly the approach
of [2] and [3].

Let us describe another way to approximate complex
stochastic systems by deterministic ones. This approach is
called mean field approximations. This technique comes from
physics, where it is used to study systems with a large number
of interacting particles. When the number of particles increases
each particle behaves as if it were under the action of a global
force (the mean field). Applications to telecommunications
appeared in the literature and were widely developed in the
last decade. There are many works, considering different types
of phenomena and different types of models (discrete or
continuous time, discrete or continuous state space, etc.). For
instance [4], [5], [6], [7] and the references therein covera
wide range of techniques and applications. More recently mean
field methods have been applied to game theory and optimal
control (see for example [8], [9] and references therein).

In mean field approximations we can distinguish two steps:
the first one is focused on the occupation measure limit (i.e.
the asymptotic proportion of individuals in each state) and
the second one is focused on the decoupling assumption
(asymptotically the state of each individual is independent
from the others). A very frequent approach to the first step
consists in proving the limit with the same techniques as in
the fluid limits case. The proof of the asymptotic independence
relies in different tools.

One of the main results, both in the case of fluid limits
or mean fields, when a stochastic system is approximated by
one modeled by an ODE, is that in some cases the stationary
regime of the former can be analyzed by studying the ODE’s
fixed points. There are many issues on this topic discussed in
[4], [5], [10].

Our object of study is the use of fluid limits for modeling
peer to peer systems. In the literature we can find works on
peer to peer systems using stochastic models [11], fluid models
[12], [13] and fluid limits or mean field approximations [14],
[15], [16]).

In this work we consider a fluid limit model for a BitTorrent
network based on [12], [13]. In both papers the deterministic
model is the starting point of the analysis. We, on the other
hand, start from a stochastic one and justify the passage from
one to the other.

The contributions of this work consist first in the mathe-
matical justification that the deterministic fluid models in[12]
and [13] are fluid limits of stochastic models, that we present.



En each case we define a stochastic model and construct a
sequence of stochastic processes such that, under adequate
scaling, converges to a deterministic model driven by an ODE.
The second contribution is that we prove the existence of a
stationary regime for each process in the sequence and then
we prove that the sequence of processes in stationary regime
converges to the ODE’s fixed point. We finally describe the
asymptotic distribution of the stochastic process. We prove that
the difference between the scaled process and the deterministic
one can be approximated by a gaussian process.

The remainder of the paper is structured as follows. In
Section II first we present some well known models and
then we describe our model. In Section III we provide our
results about the approximation by a deterministic process,
the existence and convergence of stationary regime and the
asymptotic distribution. In Section IV we conclude this work.

II. M ODEL

In this section we give a brief description of BitTorrent.
Then we consider three BitTorrent models from the literature:
a stochastic model in [11], and two fluid models in [12] and
[13], in subsection II-A. At the end we state our stochastic
models in subsection II-B.

BitTorrent is a peer to peer protocol, for file sharing
over a network. BitTorrent divides the target file into small
files (chunks). Each peer connects to others and downloads
simultaneously different chunks. There are two types of peers:
leechersandseeds. Leechers download parts of the file from
other peers and upload parts of the file for other leechers.
Seeds have all the file and only remain in the system to help
leechers to get missing file parts (they arealtruist nodes).
We do not detail here the peer selection policy (see for
example [12]) and other features that help in understanding
the behavior, for example based on traffic measures (see [17],
[18], [19]).

A. Stochastic and fluid models for BitTorrent in the literature

We first describe the stochastic model proposed by Yang and
de Veciana in [11], that is the motivation for the fluid model
in [12]. In [11] the BitTorrent network is described using a
branching process for the transient regime and a Markov model
for the stationary regime. For the Markov model, the following
parameters are considered:

• X(t): number of leechers at timet,
• Y (t): number of seeds at timet,
• λ: arrival rate (Poisson) of peers,
• µ: uploading rate for each peer,
• γ: leaving rate for seeds;

with the following transition rates:

• q((x, y), (x + 1, y)) = λ (arrival of a new peer),
• q((x, y), (x−1, y+1)) = µ(x+y) (a leecher successfully

finishes downloading the file),
• q((x, y), (x, y − 1)) = γy (a seed leaves the network).

For (0, y) there is no possible transition in the direction
q((x, y), (x − 1, y + 1) and the remaining rates are the same

as before. In [11] the stationary distribution is computed
numerically.

Now we describe the fluid model proposed by Qiu and
Srikant in [12]. A BitTorrent system is analyzed, using dif-
ferent tools. One of the approaches is the fluid description
based on the stochastic model of [11]. The fluid model also
considers two aspects that are not discussed in [11]: the first
one is that leechers may leave the system before finishing
their download and the second one is that capacity restriction,
related to the time needed to finish a download, may be in
the uploading capacity of peers (as in [11]) but also in the
downloading capacity. The fluid model is stated as follows:

• x(t): number of leechers at timet,
• y(t): number of seeds at timet,
• λ: arrival rate (Poisson) of peers,
• µ: uploading rate for each peer,
• c: downloading rate for each peer,
• θ: leaving rate for leechers,
• γ: leaving rate for seeds,
• η ∈ [0, 1]: efficiency factor, that takes into account the

efficiency of the file sharing mechanism ([12] provides a
detailed analysis ofη),

The maximal total uploading rate isµ(ηx+y), the maximal
total downloading rate iscx, and the restriction may be in the
upload or in the download. The effective downloading rate
is thusmin (cx, µ(ηx + y)). The evolution of the number of
leechers and seeds is described by the following ODE:

{
x′ = λ−min(cx, µ(ηx + y))− θx,
y′ = min(cx, µ(ηx + y))− γy.

(1)

There is a liney = (c/µ− η)x where the behavior of
the system changes because of the termmin(cx, µ(ηx + y)),
dividing the state space in two zones. The authors state that
the average number of leechers and seeds in stationary regime
are the values of the ODE’s fixed point(x∗, y∗) and derive the
average downloading time from an approximation of Little’s
law. They also show a good fitting with simulations of the
BitTorrent protocol and with real traces, specially when the
arrival rateλ is high.

Based on [12], Rivero and Rubino in [13] consider a fluid
model for a BitTorrent network with different classes of peers.
There are two classes of leechers: high tolerance leechers and
low tolerance ones. The parameters are the following:

• xa(t): number of high tolerance leechers at timet,
• xb(t): number of low tolerance leechers at timet,
• y(t): number of seeds at timet,
• λa: arrival rate of high tolerance leechers,
• λb: arrival rate of low tolerance leechers,
• µ: uploading rate for each peer,
• c: downloading rate for each peer,
• θa: leaving rate for high tolerance leechers,
• θb: leaving rate for low tolerance leechers, withθb > θa,
• γ: leaving rate for seeds,
• the efficiency factor isη = 1,



The fluid model for this system is:




x′
a = λa − θaxa − ua,

x′
b = λb − θbxb − ub,

y′ = ua + ub − γy,
(2)

where

ua = min
(
cxa, µ(xa + xb + y)

xa

x

)
,

ub = min
(
cxb, µ(xa + xb + y)

xb

x

)
.

From this equation there are also two different zones, divided
by a plane, again due to the restriction in uploading and
downloading capacity. A strategy to improve performance by
giving priority to peers that will probably stay more time in
the system as seeds, specially in bad resource conditions, is
studied. In order to define the policy, the space is divided
by planes in three zones, according to the capacity. For
each zone a server policy is defined (giving priority for high
tolerance leechers when capacity is not enough). A fluid model
considering the different policies in each zone is stated. The
study of fixed points allows to analyze the priority policy,
compared with the non priority one.

In this paper we consider stochastic and fluid models that
allow to analyze the number of peers in the system. Another
approach to study BitTorrent systems is to consider the number
and type of chunks that each peer possesses [14], [15], [16].
In particular they study the asymptotic behavior of a Markov
process that converges to the solution of an ODE. In the three
works the authors consider different asymptotic regimes, both
in the number of peers and in the number of chunks. For
instance, the authors of [16] study what they callcoupon
replication system, that models a file sharing BitTorrent-
like mechanism. Their model consider many users, each one
aiming to complete a collection of coupons. At each time two
users meet and obtain one missing coupon from the other
by replication (if they do not have the same coupons). The
model is motivated by the BitTorrent mechanism, where each
chunk is a coupon. Results from [2] are used to prove the
approximation by an asymptotic deterministic model for the
number of coupons hold by each user, when the number of
coupons goes to infinity. However, a closed form formula is
obtained only for some particular cases.

B. Stochastic models

In this subsection we introduce our stochastic models that
describe the number of leechers and seeds for the systems
studied in [12], [13]. From these microscopic descriptionsof
the models in [12], [13] we construct a sequence of processes
that converges to deterministic limits. We consider a two-
dimensional continuous time Markov chain for the number
of leechers and seeds, so we describe the whole system.
However, our model is motivated by a detailed description
for the behavior of each peer. In Section III we prove that
these limits verify equations (1) and (2) respectively, which
are the starting points in [12], [13].
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Figure 1. Evolution with time of the scaled number of leechers and seeds.
(Model description in II-B and parameters in Table I). The line divides the
plane in two zones with different behavior, considering capacity constraint in
uploading or in downloading .

N λ µ c γ θ η

100 1 3 5 2 0.01 0.5

Table I
PARAMETER SET.

Let X̃N(t) be the number of leechers andỸ N (t) the number
of seeds at timet. We also assume that there is an additional
fixed seed (thetotal number of seeds is thus̃Y N (t) + 1), so
that the system never dies (results are the same for a finite
fixed number of seeds). We specify the transitions at timet as
follows:

• X̃N(t): number of leechers at timet,
• Ỹ N (t) + 1: number of seeds at timet,
• λN : arrival rate (Poisson) for peers (leechers),
• µ: uploading rate for each peer,
• c: downloading rate for each peer,
• η ∈ [0, 1]: efficiency factor,
• in the whole system a leecher becomes a seed with rate

min
(
cX̃N(t), ηµX̃N(t) + µ

(
Ỹ N (t) + 1

))
,

• the time in the system for a leecher before aborting is
exponentially distributed with parameterθ,

• the time in the system for a seed before leaving is
exponentially distributed with parameterγ.

For each N there is a line y = (c/µ− η)x − µ,
where the behavior of the system changes because of the
term min

(
cX̃N(t), ηµX̃N (t) + µ

(
Ỹ N (t) + 1

))
, dividing

the state space in two zones. In Figure 1 we show the evolution
of the scaled number of leechers and seeds(XN(t), Y N (t)) =
1
N
(X̃N(t), Ỹ N (t)), for the parameter set in Table I, with

(X̃N(0), Ỹ N (0)) = (0, 1).
Let us compare our model with the BitTorrent Markov

model previously proposed [11]. Differently to ours, they do
not take into account the restriction in upload or download and
the fact that peers may abandon the system before finishing
their download. From a mathematical point of view, transition
rates are continuous in our model, whereas in [11] there are
discontinuities whenx = 0. Due to this difference the same
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Figure 2. Evolution with time of the scaled number of leechers and seeds
for the model in [11] (parameters in Table I).

techniques cannot be used to analyze them. To get some
intuition on both models we compare them in Figure 1 and 2,
where we show the evolution for the model in [11], when the
arrival rate isλN , the scaled number of leechers and seeds.
Note that there is a refracting barrier inx = 0 in Figure 2.

Now describe a stochastic microscopic model associated to
the fluid model in [13]. Consider two classes of leechers. Let
X̃N

a (t) be the number of leechers of typea, X̃N
b (t) the number

of leechers of typeb, andỸ N (t) the number of seeds at time
t. The total number of seeds is̃Y N (t) + 1, so that the system
never dies. We specify the transitions at timet as follows:

• λaN , λbN : arrival rate (Poisson) for peers (leechers) of
type a andb respectively,

• a leecher of typea becomes a seed with rate

min

(
cX̃N

a (t), µX̃N
a (t) + µ(Ỹ N (t) + 1)

X̃N
a (t)

X̃N(t)

)
,

and the same holds for a leecher of typeb with rate

min

(
cX̃N

b (t), µX̃N
b (t) + µ(Ỹ N (t) + 1)

X̃N
b (t)

X̃N(t)

)
,

• the time in the system for a leecher before aborting its
download is exponentially distributed with parameterθa
for leechers of typea and with parameterθb for leechers
of type b, with θb > θa,

• the time in the system for a seed before leaving is
exponentially distributed with parameterγ.

Regarding our model we have considered a Poisson arrival
process and exponentially distributed times. There are refer-
ences in the literature where this assumption is discussed and
contrasted with real measurements [17], [19]. This point will
be addressed in future work.

III. R ESULTS

In this section we present results about deterministic ap-
proximations for the model in II-B. Convergence to an ODE,
existence of stationary regime and convergence of the station-
ary regime are studied in III-A. A Central Limit Theorem is
discussed in III-B.

A. Deterministic approximation

We justify the fluid approximation of our model stated in
II-B, obtaining equation (1) as the limit when the arrival rate
for peers goes to infinity. We also prove the existence of a
stationary regime and the convergence in this regime to the
ODE’s fixed point. These issues are discussed in [12], [13],
[16] without proofs and the whole system is directly analyzed
from the study of ODE’s fixed points.

Proposition 1. Consider

(
XN (t), Y N (t)

)
=

1

N

(
X̃N(t), Ỹ N (t)

)

and (x, y) the solution to equation(1) with initial condition
(x(0), y(0)). If

lim
N→∞

(XN (0), Y N (0)) = (x(0), y(0))

then, for allT > 0,

lim
N→∞

sup
t∈[0,T ]

∥∥(XN (t), Y N (t)
)
− (x(t), y(t))

∥∥ = 0 a.s.,

where a.s. means almost sure convergence.

Proof: The possible transitions in theN -th model, from
state(X̃N (t), Ỹ N (t)) are the following:

• a leecher arrives with rateNλ,
• a leecher becomes seed with rate

N min
(
cXN(t), µ

(
ηXN(t) + Y N (t) + 1

))
,

• a leecher aborts before downloading with rateNθXN (t),
• a seed leaves the system with rateNγY N (t).

(X̃N(t), Ỹ N (t)) is a jump Markov process with transition
rates of the form

Nβl

[(
XN(t), Y N (t)

)
+O

(
1

N

)]

for l ∈ Z
2 (l represents a possible transition). Asβl is bounded

and Lipschitz on compact subsets, result follows directly from
Kurtz’s Theorem (Theorem 2.1, p. 456) in [2].

The previous proposition is illustrated in Figure 3. In the
left we show the simulation of one trajectory of the scaled
Markov chain (number of leechers and seeds) for largeN and
the trajectory of the ODE. In the right we show for the same
simulation the evolution on the plane of the Markov chain
and the ODE. We can see from that picture that, for large
time values, the number of leechers is around the ODE’s fixed
point. We analyze this in Theorem 1.

The proof of Kurtz’s Theorem relies on a characterization
on the process(XN , Y N ) as a sum of independent Poisson
processes (one for each direction of possible transitions)
evaluated in a random time change. Under this characterization
the theorem follows from Gronwall’s inequality and the law
of large numbers for the Poisson process.

The result of Proposition 1 is also valid for the stochastic
model associated with the system in [13], as it verifies the
same hypotheses and it is also valid for the priority scheme
proposed in the same paper [13]. The Markov chain that
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Figure 3. Theorem 1. (Model description in II-B and parameters in Table I.)

represents the priority scheme is of the same type as the
previous ones, so the fluid approximation also holds.

We briefly analyze the model in [11], as it is intrinsi-
cally different. As before, let(X̃N (t), Ỹ N (t)) be the number
of leechers and seeds at timet and (XN(t), Y N (t)) =
1
N
(X̃N(t), Ỹ N (t)). Consider the following transitions:

• a leecher arrives with rateNλ,
• a leecher becomes seed with rateNµ

(
XN(t) + Y N (t)

)
,

• a seed leaves the system with rateNγY N (t).

The convergence stated in Proposition 1 relies on the fact
that transition rates from state(X̃N (t), Ỹ N (t)) are of the
form Nβl

[(
XN(t), Y N (t)

)
+O(1/N)

]
, with β a Lipschitz

function. This assumption does not hold for the model in [11],
as transition rates are discontinuous in the boundaryx = 0.
This corresponds to a class of jump Markov processes studied
in [3], called flat boundary processes. From [3] (Chap. 8), in
this case there is an analogous of Kurtz’s Theorem, and the
ODE that approximates the scaled process(XN(t), Y N (t)) is
the following.

If x > 0 or λ− µ(ηx + y) ≥ 0,
{

x′ = λ− µ(x+ y),
y′ = µ(x+ y)− γy,

and if x = 0 andλ− µ(x+ y) < 0,
{

x′ = π0λ+ (1 − π0)(λ − µ(x+ y)),
y′ = −π0γy + (1− π0)(µ(x + y)− γy),

with

π0 =





µ(x + y)− λ

µ(x + y)
if λ− µ(x+ y) < 0,

0 if λ− µ(x+ y) ≥ 0.

The above equations show that it is possible to obtain fluid
limits for this kind of models, despite discontinuities in
transition rates.

Now we turn our attention to the ergodicity of
(X̃N (t), Ỹ N (t)). It seems not simple to find the stationary
distribution explicitly. Classical sufficient conditionsas re-
versibility are not verified, so we cannot assume local balance
equations. We prove ergodicity by using a Lyapunov function.
The ergodicity result is also stated in [13], as there is a Markov

model that is compared with the fluid one by simulations,
using queuing arguments that allow to reduce the analysis of
the existence of a stationary regime to the study of a Jackson
network. However, the proof presented here is simpler and
more detailed.

Proposition 2. The process(X̃N (t), Ỹ N (t)) is ergodic for
eachN .

Proof: The proof is based on [20] (Proposition 8.14,
p. 225). Functionf(x, y) = x + y is a Lyapunov function
for (X̃N (t), Ỹ N (t)). We must verify that there existsK and
h such that the following conditions hold:

1) for f(x, y) > K, Q(f)(x, y) ≤ −h, with Q(f)(x, y) =∑
l∈Z2,l 6=0 q ((x, y), (x, y) + l) [f((x, y) + l)− f(x, y)]

(q ((x, y), (x, y) + l) is the transition rate from(x, y)
to (x, y) + l);

2) the random variables

sup{f(X̃N(s), Ỹ N (s)) : s ≤ 1},
∫ 1

0

|Q(f)(X̃N(s), Ỹ N (s))| ds

are integrable;
3) F = {(x, y) : f(x, y) ≤ K} is finite.

These assumptions imply that the process is ergodic. Let us
verify each one of them:

1) Q(f)(x, y) = λN − θx − γy ≤ −h for x + y > K; it
suffices then to takeK ≥ (λN + h)/min(θ, γ).

2) The Poisson processZ(s) with rate Nλ is an up-
per bound off(X̃N (s), Ỹ N (s)) = X̃N(s) + Ỹ N (s),
and it is integrable on each bounded interval. Anal-
ogously λN + max(θ, γ)Z(s) is an upper bound of
|Q(f)(X̃N(s), Ỹ N (s))|; the integral of the former is
thus bounded byλN + max(θ, γ)

∫ 1

0
Z(s) ds and it is

then integrable.
3) Immediate.

From the previous assumptions(X̃N (t), Ỹ N (t)) is ergodic for
eachN .

The same result holds for the stochastic model consid-
ering two classes of leechers described above. In that case
a Lyapunov function isf(xa, xb, y) = xa + xb + y. The
assumptions are verified as above. It follows from noticing
again that the only possible transition away from a region
{(xa, xb, y) : xa + xb + y ≤ K} is when a new peer arrives.
As arrivals follow Poisson processes, the hypotheses about
finite expectation hold.

In what follows we prove the convergence of the sta-
tionary regime to the ODE’s fixed point. As the process
(XN(t), Y N (t)) converges in bounded intervals and has a
stationary distribution, one can expect that the stationary
distribution converges to the ODE’s fixed point. This resultis
used for the analysis in [12], and in different contexts in other
works (see for example [16]), sometimes without a detailed
proof. In [12] it is proven that the ODE has an unique fixed
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Figure 4. Vector field for equation (1) (parameter set in Table I.).

point

(x∗, y∗) =


 λ

β
(
1 + θ

β

) , λ

γ
(
1 + θ

β

)


 ,

with
1

β
= max

{
1

c
,
1

µ
− 1

γ

}
.

and that the system is locally stable. The work from Qiu and
Sang [21] is devoted to the analysis of equation (1), and they
prove that the unique fixed point is a global attractor. We show
in Figure 4 the vector field associated with equation (1).

Theorem 1. Let
(
XN(∞), Y N (∞)

)
be the scaled number of

leechers and seeds in stationary regime. Let(x∗, y∗) be the
fixed point in(1). Then

lim
N→∞

(
XN(∞), Y N (∞)

)
= (x∗, y∗)

in probability.

Proof: Let µN (t) be the distribution of
(
XN(t), Y N (t)

)

and letπN (∞) be the stationary distribution of the process (we
know from Proposition 2 that there exists a unique stationary
distribution for eachN ). We will use for our proof Theorem
6.89, p. 165 in [3]. This theorem assures that under a set of
hypotheses that will be verified, if(x∗, y∗) is a global attractor
then limN→∞

∫
Bε(q)

dπN (∞) = 1, with (x∗, y∗) = q and
Bε(q) =

{
y ∈ R

2 : ‖y − q‖ < ε
}

, which implies that

lim
N→∞

(
XN(∞), Y N (∞)

)
= (x∗, y∗)

in probability. To apply the result we must verify that:

1) the jumps of the Markov process take integer values in
each direction,

2) the ratesβl are uniformly Lipschitz continuous in a
neighborhood of(x∗, y∗),

3) the process is positive recurrent,
4) if τε(N) = inf

{
t :
∥∥(XN (t), Y N (t)

)
− (x∗, y∗)

∥∥ < ε
}

,
then for eachK, ε and for allN , there exists a constant
Cε,M (that depends onε andM ) such that

sup
‖p−q‖≤M

Ep [τε(N)] ≤ Cε,M < ∞,

with p = (x(0), y(0)) andEp the expected value starting
from p.

The first three assumptions are immediately verified (the third
one arises from Proposition 2). So, we focus on fourth as-
sumption. Also from [3] (Lemma 6.32 p. 143) the distribution
of τε(N) has geometric tails for largeN , that is, there is a
T (ε) < ∞ and a constantC0(ε) such that

Pp(τε(N) > kT ) ≤ e−NC0(ε)k.

This implies the bound forEp [τε(N)] and thus completes the
proof.

The convergence for the stationary distribution to the ODE’s
fixed points is a widely discussed topic. The authors of [4]
prove this convergence in the case of the occupation measure
of a system withN individuals and a finite state space. Our
problem differs from that situation because of the compactness
of the state space. However, our proof and the proof in [4]
rely in large deviations results. The proof in [4] is based
on [22], where a very general result (considering the case
with multiple invariant distributions and a much more complex
asymptotic behavior for the ODE) is proven using large devia-
tions arguments together with dynamical systems ones. In [4]
it is also discussed why the existence of a unique fixed point
does not guarantee the convergence of a sequence of invariant
distributions. It shows examples where there is only one fixed
point but the support of accumulation points of invariant
distributions lies on set that is a limit cycle for the ODE. In
order to avoid the problem of proving asymptotic stability,[10]
presents a very general result of convergence for the stationary
distribution when there is a unique fixed point in case of
reversible processes, a strong assumption that is not validin
our model. The convergence for the stationary distributionof
the occupation measure is also discussed in [23], in a more
general framework (denumerable state spaces). The proof there
is strongly related with the mean field decoupling assumption
(the asymptotic independence and the convergence of the
stationary distributions are proved together).

For the model in [13] we do not have a proof of global
stability of ODE’s fixed point, so we cannot yet extend
the previous theorem for that case. It is only observed in
simulations in [13] that the stationary regime converges to
the fixed point of the associated ODEs, both in the priority
and non priority schemes.

B. Gaussian approximation

Here we derive a Gaussian approximation for the distribu-
tion of the difference between the stochastic and the determin-
istic processes. This approximation describes in a preciseway
the system behavior for large values ofN simultaneously for
all t providing confidence intervals for the number of leechers
and seeds.

Theorem 2. Consider
(
XN(t), Y N (t)

)
and let (x, y) be the

solution to equation(1) with initial condition (x(0), y(0)). If

lim
N→∞

√
N
[
(XN (0), Y N (0))− (x(0), y(0))

]
= V (0)
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Figure 5. Histograms of 100 independent samples of
√

N
(

XN (1) − x(1)
)

and
√

N
(

Y N (1) − y(1)
)

for different values ofN .

in probability, withV (0) deterministic, then,
√
N
[(
XN(t), Y N (t)

)
− (x(t), y(t))

]
⇒N V (t),

where⇒ means convergence in distribution.V (t) is a Gaus-
sian process with covariance matrix

Cov (V (t), V (r))

= eM(t)t+M(r)T r

∫ t∧r

0

e−(M(t)+M(r)T)sG(s) ds,

G(s) = λ+ θx(s) + γy(s) + 2min
(
cx(s), µ(ηx(s) + y(s))

)
,

M(t) =

(
−(c+ θ) 0

c −γ

)
if cx(t) < µ(ηx(t) + y(t)),

M(t) =

(
−(µη + θ) −µ

µη µ− γ

)
if cx(t) > µ(ηx(t)+y(t)),

M(t)T denote the transposed ofM(t).

Proof: Result follows as a consequence of Kurtz’s The-
orem (see Theorem 2.3, p.458, in [2]). We use the explicit
form of the covariance matrix provided there. The proof of
that theorem relies on a representation ofV N (t) and V (t)
by an integral involving the differentialdF (x(t), y(t)), so the
original theorem assumes that the transition ratesβl(x, y) are
C1 functions. This assumption is not valid in our case, but
there is only onet whereβl(x(t), y(t)) is not differentiable
(that is whencx(t) = µ(ηx(t) + y(t))). As this happens
at only one point, it does not affect the integral represen-
tation. The justification that there is only onet for which
cx(t) = µ(ηx(t) + y(t)) follows from the fact that the fixed
point is a global attractor, so the trajectories(x(t), y(t)) hit
{(x, y) : cx = µ(ηx+ y)} only a finite number of times (this
is sufficient for the validity of the integral representation of
V N (t) as in Theorem 2.3, p. 458, [2]). In Figure 4 it can be
seen that there is at most one hitting point in our case.

In Figure 5 we show, for different values ofN , histograms
of 100 independent samples of

√
N
(
XN(t)− x(t)

)
and√

N
(
Y N (t)− y(t)

)
for a fixedt and in Figure 6 we show the

95% confidence interval for the scaled number of leechers.
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Figure 6. ODE trajectory, confidence interval for eacht and one trajectory
for the scaled number of leechersXN (t). The variance is computed from
100 independent replications of the experiment (parameters in Table I).

Paper [12] describes without a detailed proof that the
variability around the fluid limit (the solution to equation
(1)). For a large arrival rateλ, the number of leechers and
seeds are approximatelyx(t) +

√
λx̂(t) and y(t) +

√
λŷ(t),

with x̂(t) and ŷ(t) gaussian processes (Ornstein-Uhlenbeck).
In our framework we have that the arrival rate isNλ and the
number of leechers and seeds are characterized byX̃N(t) ≈
Nx(t) +

√
NV1(t) and Ỹ N (t) ≈ Ny(t) +

√
NV2(t), with

V = (V1, V2) the gaussian process described in Theorem 2.
We observe that the limit processV (t) verifies a stochastic
differential equation (see equation (2.18), p. 458 in [2]).The
gaussian process stated in [12] can be obtained from this
stochastic differential equation replacingx(t) andy(t) by its
respective limitsx∗ andy∗.

In [2] we can find two approaches in order to characterize
the variability of the stochastic process(XN , Y N ) around the
deterministic process(x, y). The first one is the approximation
using the Central Limit Theorem that we use here, and the sec-
ond one is thediffusion approximation. These approximations
are equivalent in bounded time intervals for largeN [2]. In
both cases certain regularity of the transition rates is assumed.
In Theorem 2 we have weakened this regularity assumption in
the context of the Central Limit Theorem (see Theorem 2.3,
p. 458, in [2]). Concerning the diffusion approximation for
non-regular transition rates we refer to [24].

IV. CONCLUSIONS AND FUTURE WORK

In this paper we provide new elements to the understanding
of the well known fluid models of BitTorrent systems in
the spirit of [12] and extensions such as [13]. We consider
sequences of stochastic models (Markov chains) representing
the population of different types of peers in the network.
Leechers arrive following a Poisson process, with its rate
increasing with an integer parameterN . We scale the number
of leechers and seeds by that same factorN . We then provide
rigorous justifications for the passage from the sequences of
stochastic models to deterministic limits whenN goes to infin-
ity. This convergence basically follows from Kurtz’s Theorem.
We prove the existence of a stationary regime for the processes
in the sequence by constructing a Lyapunov function for each



one of them and the convergence of the stationary distribution
to the ODE’s fixed point. This result involves some arguments
from large deviations’ theory. We also prove, as a consequence
of Kurtz’s Theorem, that asymptotically the scaled number
of leechers and seeds follows a gaussian process. These are
topics to be further analyzed in future work, together with
some stability issues. We will also analyze the assumptions
about Poisson arrivals and exponentially distributed times, in
order to consider more general models.
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