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Abstract—The objective of several techniques including fluid Let us describe another way to approximate complex
limits and mean field approximations is to analyze a stochast stochastic systems by deterministic ones. This approach is
complex system (e.g. Markovian) studying a simplified model ¢416q mean field approximations. This technique comes from
(deterministic, represented by ordinary differential equations . . .

(ODEs)). In this paper, we explore models proposed for the ph_yS|cs, where it is used to study systems with a Iarg_e number
analysis of BitTorrent P2P systems and we provide the argunmes ~ Of interacting particles. When the number of particleséases

to justify the passage from the stochastic process, under aduate each particle behaves as if it were under the action of a globa
scaling, to a fluid approximation driven by an ODE. We also male  force (the mean field). Applications to telecommunications

the link between the stationary regime of the stochastic meels  55eareq in the literature and were widely developed in the
and the fixed points of the associated ODEs. Finally, we anaty last decade. There are many works, considering differgsty

the asymptotic distribution of the scaled process. : . ' -

Index Terms—fluid limits, mean fields, BitTorrent of phenomena and different types of models (discrete or
continuous time, discrete or continuous state space, &r)
instance [4], [5], [6], [7] and the references therein coser
wide range of techniques and applications. More recentme

There are several examples of complex stochastic systefietd methods have been applied to game theory and optimal
for which analytical expressions cannot be derived, or thadntrol (see for example [8], [9] and references therein).
are even difficult to simulate. However, in many cases theyIn mean field approximations we can distinguish two steps:
can be studied much more easily by analyzing deterministiee first one is focused on the occupation measure limit (i.e.
systems, obtained as asymptotic approximations of thénalig the asymptotic proportion of individuals in each state) and
ones. The complexity of the system may be due to its siztbe second one is focused on the decoupling assumption
its dependence structure, etc. There are many such syste@asymptotically the state of each individual is indeperiden
as for instance TCP connections, wireless systems, or p&em the others). A very frequent approach to the first step
to peer networks. In the case of TCP connections sharingensists in proving the limit with the same techniques as in
bottleneck, wireless users sharing a channel, or in the tpeethe fluid limits case. The proof of the asymptotic indepemden
peer case, there is a common resource and many individuadgies in different tools.

The behavior of each one depends on the state of the whol®ne of the main results, both in the case of fluid limits
system, introducing dependence between all the indivedualor mean fields, when a stochastic system is approximated by

Starting from a stochastic model the objective is to findne modeled by an ODE, is that in some cases the stationary
a deterministic approximation for the original processisThregime of the former can be analyzed by studying the ODE’s
introduces the problem of finding the suitable scale for thfixed points. There are many issues on this topic discussed in
approximation. For example, classical results in queulirgg t [4], [5], [10].
ory consider a sequence of stochastic processes indexed b®ur object of study is the use of fluid limits for modeling
an integerN, where some key state variable appears dividgeter to peer systems. In the literature we can find works on
by N, and the time variable is multiplied (“accelerated”) byeer to peer systems using stochastic models [11], fluid feode
the same factor, obtaining a deterministic limit wh&nhgoes [12], [13] and fluid limits or mean field approximations [14],
to infinity. In addition, in other areas such as in biology15], [16]).
or in the analysis of epidemic phenomena, a typical scalingln this work we consider a fluid limit model for a BitTorrent
consists in dividing byN, and in considering transition ratesnetwork based on [12], [13]. In both papers the determmisti
increasing withV (jumps are of ordet /N and transition rates model is the starting point of the analysis. We, on the other
of order NV, that means that the product remains “constant” &and, start from a stochastic one and justify the passage fro
N increases). For a survey about this topic see [1], and fone to the other.

a more general reference about limits of stochastic presess The contributions of this work consist first in the mathe-
we suggest [2]. In this paper we follow mostly the approaahatical justification that the deterministic fluid modelq12]
of [2] and [3]. and [13] are fluid limits of stochastic models, that we présen

|. INTRODUCTION



En each case we define a stochastic model and construetsabefore. In [11] the stationary distribution is computed
sequence of stochastic processes such that, under adequateerically.
scaling, converges to a deterministic model driven by an ODE Now we describe the fluid model proposed by Qiu and
The second contribution is that we prove the existence ofSaikant in [12]. A BitTorrent system is analyzed, using dif-
stationary regime for each process in the sequence and thgnt tools. One of the approaches is the fluid description
we prove that the sequence of processes in stationary regimaged on the stochastic model of [11]. The fluid model also
converges to the ODE'’s fixed point. We finally describe theonsiders two aspects that are not discussed in [11]: the firs
asymptotic distribution of the stochastic process. We @tbat one is that leechers may leave the system before finishing
the difference between the scaled process and the detstiminitheir download and the second one is that capacity resimicti
one can be approximated by a gaussian process. related to the time needed to finish a download, may be in
The remainder of the paper is structured as follows. the uploading capacity of peers (as in [11]) but also in the
Section |l first we present some well known models andownloading capacity. The fluid model is stated as follows:
then we describe our model. In Section Il we provide our
results about the approximation by a deterministic prqcess°
the existence and convergence of stationary regime and the
asymptotic distribution. In Section IV we conclude this wor *

x(t): number of leechers at timg
y(t): number of seeds at timg

A: arrival rate (Poisson) of peers,
« u: uploading rate for each peer,
Il. MODEL « c¢: downloading rate for each peer,

. . . . _ . « 0: leaving rate for leechers,
In this section we give a brief description of BitTorrent. ~: leaving rate for seeds,

Then we consider three BitTorrent models from the litemtur n € [0,1]: efficiency factor, that takes into account the
e o, et e i s (4 o
' A detailed analysis ofy),
models in subsection II-B. . ysis of) . . .
BitTorrent is a peer to peer protocol, for file sharing |N€ maximal total uploading rate i +y), the maximal

over a network. BitTorrent divides the target file into smalPt@! downloading rate isz, and the restriction may be in the
files (chunk. Each peer connects to others and downloadf@!0ad or in the download. The effective downloading rate
simultaneously different chunks. There are two types ofgee!S thusmin (cz, u(nz +y)). The evolution of the number of

leechersand seeds Leechers download parts of the file fron/e€chers and seeds is described by the following ODE:

other peers and upload parts of the file for other leechers. { 2 = A — min(cz, p(nz + 1)) — 0.

) 1
y' = min(czx, p(nz +y)) — . @)

Seeds have all the file and only remain in the system to help
leechers to get missing file parts (they akruist nodes).
We do not detail here the peer selection policy (see for

example [12]) and other features that help in understandi
ﬂ;g belhgawor, for example based on traffic measures (seg [ ividing the state space in two zones. The authors state that
[18], [19]). the average number of leechers and seeds in stationaryeaegim

A. Stochastic and fluid models for BitTorrent in the literatu are the values of the ODE's fixed poiit*, y*) and derive the
al;avq?rage downloading time from an approximation of Little’s

de Veciana in [11], that is the motivation for the fluid modeg;irqorent protocol and with real traces, specially whee th
in [12]. In [11] the BitTorrent network is described using ‘Zarrival rate) is high

branching process for the transient regime and a Markov imo ®Based on [12], Rivero and Rubino in [13] consider a fluid

fo;rgf]::::'soggycgengs'[g;gdqr the Markov model, the follogii model for a BitTorrent network with different classes of e
P ' There are two classes of leechers: high tolerance leechdrs a

o X(t): number of leechers at time low tolerance ones. The parameters are the following:
o Y(t): number of seeds at time

« A: arrival rate (Poisson) of peers,
o p: uploading rate for each peer,
« ~: leaving rate for seeds;

with the following transition rates:

There is a liney = (¢/u—n)x where the behavior of
system changes because of the term(cz, u(nz + 1)),

o x,(t): number of high tolerance leechers at time
« x(t): number of low tolerance leechers at timhe
« y(t): number of seeds at timg

o ). arrival rate of high tolerance leechers,

e ). arrival rate of low tolerance leechers,

o q((z,y),(z +1,y)) = A (arrival of a new peer), « u: uploading rate for each peer,
¢ q((z,y), (r—1,y+1)) = p(z+y) (aleecher successfully , ¢ downloading rate for each peer,
finishes downloading the file), « 0,: leaving rate for high tolerance leechers,

s q((z,y), (z,y — 1)) = vy (a seed leaves the network).  , ¢, |eaving rate for low tolerance leechers, with> 6.,
For (0,y) there is no possible transition in the direction « ~: leaving rate for seeds,
q((z,y), (x — 1,y + 1) and the remaining rates are the same « the efficiency factor is) = 1,



The fluid model for this system is:
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From this equation there are also two different zones, divid

by a plane, again due to the restriction in uploading arRbure 1. Evolution with time of the scaled number of leeshand seeds.

downloading capacity. A strategy to improve performance %YOdel description in 1I-B and parameters in Table I). Theelidivides the
. o . . . plane in two zones with different behavior, consideringazdy constraint in

giving priority to peers that will probably stay more time in;15ading or in downloading .

the system as seeds, specially in bad resource condit®ns, i

studied. In order to define the policy, the space is divided N [ Aplcly] 0 n
by planes in three zones, according to the capacity. For 100 1]3[5]2]001]05
each zone a server policy is defined (giving priority for high Table |

tolerance leechers when capacity is not enough). A fluid mode PARAMETER SET.

considering the different policies in each zone is statdte T
study of fixed points allows to analyze the priority policy,

compared with the non priority one. . Let XV (t) be the number of leechers akid" () the number

In this paper we consider stochastic and fluid models thgf seeds at time. We also assume that there is an additional
allow to analyze the number of peers in the system. Anothgfaq seed (theotal number of seeds is thuEN(t) +1), so
approach to study BitTorrent systems is to consider the @umby, 4t the system never dies (results are the same for a finite

and type of chunks that each peer possesses [14], [15], [i§led number of seeds). We specify the transitions at tirae
In particular they study the asymptotic behavior of a Markoy|iows:

process that converges_to the_ solution of an QDE. I_n the three. )N(N(t): number of leechers at time
works the authors consider different asymptotic regimesh b . ?N(t) +1: number of seeds at time

in the number of peers and in the number of chunks. For. AN arriveﬂ rate (Poisson) for peers (leechers)

instance, the authors of [16] study what they oadlupon . L.lploading rate for each peer '
replication system, that models a file sharing BitTorrent- . C_' downloading rate for each péer

like mechanism. Their model consider many users, each one .e [0, 1]: efficiency factor '

aiming to complete a collection of coupons. At each time two . in the7wr.10|e system a Ieécher becomes a seed with rate
users meet and obtain one missing coupon from the other

by replication (if they do not have the same coupons). The min (cX’N(t), XN () + (?N(t) I 1)) :

model is motivated by the BitTorrent mechanism, where each

chunk is a coupon. Results from [2] are used to prove thee the time in the SyStem for a leecher before abOI’ting is
approximation by an asymptotic deterministic model for the ~€xponentially distributed with parameter

number of coupons hold by each user, when the number o the time in the system for a seed before leaving is
coupons goes to infinity. However, a closed form formula is €xponentially distributed with parameter

obtained only for some particular cases. For each N there is a liney = (¢/u—n)ax — pu,
where the behavior of the system changes because of the
B. Stochastic models term min (cXN(t), auXN () + (YN(t) n 1)) dividing

In this subsection we introduce our stochastic models tH&e state space in two zones. In Figure 1 we show the evolution
describe the number of leechers and seeds for the systérhthe scaled number of leechers and se@dd (¢), YV (t)) =
studied in [12], [13]. From these microscopic descriptiofis 7 (X" (t), Y™ (t)), for the parameter set in Table I, with
the models in [12], [13] we construct a sequence of procesges™ (0), YV (0)) = (0, 1).
that converges to deterministic limits. We consider a two- Let us compare our model with the BitTorrent Markov
dimensional continuous time Markov chain for the numbenodel previously proposed [11]. Differently to ours, they d
of leechers and seeds, so we describe the whole systaottake into account the restriction in upload or download a
However, our model is motivated by a detailed descriptiche fact that peers may abandon the system before finishing
for the behavior of each peer. In Section Il we prove thdheir download. From a mathematical point of view, traositi
these limits verify equations (1) and (2) respectively, abhi rates are continuous in our model, whereas in [11] there are
are the starting points in [12], [13]. discontinuities when: = 0. Due to this difference the same



—Leechers
ds

07, A. Deterministic approximation

We justify the fluid approximation of our model stated in
[I-B, obtaining equation (1) as the limit when the arrivalera
for peers goes to infinity. We also prove the existence of a
stationary regime and the convergence in this regime to the
ODE'’s fixed point. These issues are discussed in [12], [13],
[16] without proofs and the whole system is directly anatize
from the study of ODE’s fixed points.

Proposition 1. Consider
(XN, YY) = 5 (K0, 7V )

and (x,y) the solution to equatioifl) with initial condition
(2(0),y(0)). If

techniques cannot be used to analyze them. To get some ngnoo(XN(O)’YN(O)) = (@(0),(0))
intuition on both models we compare them in Figure 1 and l:ﬁen, for allT > 0,

where we show the evolution for the model in [11], when the

arrival rate isAN, the scaled number of leechers and seeds. lim sup (XN (@), YN (1) = (2(t), y(®)]| = 0 as.,
Note that there is a refracting barrier in= 0 in Figure 2. oo telo.T]

Now describe a stochastic microscopic model associatedvwtbere a.s. means almost sure convergence.
tb?vflwd model in [13]. Consider two cla§sj,$s of leechers. Let Proof: The possible transitions in thay-th model, from
X, (t) be the number of leechers of typeX," (t) the number SN N .
~N . state(X " (¢t),Y"(t)) are the following:
of leechers of typé, andY ™ (¢) the number of seeds at time leech ) T
t. The total number of seeds 1§V (t) + 1, so that the system * & €€CNEr amives with raia A,

Peers (10_2)
Seeds (107?)
o
=

0 0.05 0.1 0.15
Leechers (10’2)

Time (s)

Figure 2. Evolution with time of the scaled number of leeshand seeds
for the model in [11] (parameters in Table I).

never dies. We specify the transitions at timas follows: » & leecher becomes seed with rate
e AN, \,N: arrival rate (Poisson) for peers (leechers) of Nmin (XN (#), u (nXN(t) + YN (1) + 1)),
g?:e%;:rdgfrtesii%ggyn;e a seed with rate « aleecher aborts before downloading with ratéx ™ (t),
* yp sas W . a seed leaves the system with rafe Y™ (¢).
< - - XNt (XN (t),YN(t)) is a jump Markov process with transition
: N N N a
min (CXa (), p X' (8) + pu(Y 7 (t) + 1))~(T(t)>  rates of the form
1
and the same holds for a leecher of typwith rate NB (XN (@), YN(t) +0 (N)}
% - > XN @) for | € 72 (I represents a possible transition). Ass bounded
XN (), u XN (¢t YN@) + 1)~ P p :
H (C b (81X () + p(7 () + )XN(t) ’ and Lipschitz on compact subsets, result follows direatyrf
Kurtz's Theorem (Theorem 2.1, p. 456) in [2]. ]

« the time in the system for a leecher before aborting its the previous proposition is illustrated in Figure 3. In the
download is exponentially distributed with paramefer ot we show the simulation of one trajectory of the scaled
for leechers of type and with parametefl, for leechers \ 5rkoy chain (number of leechers and seeds) for lavgand

of type b, with 6, > 6, _ the trajectory of the ODE. In the right we show for the same
« the time in the system for a seed before leaving i§myation the evolution on the plane of the Markov chain
exponentially distributed with parameter and the ODE. We can see from that picture that, for large
Regarding our model we have considered a Poisson arriygle values, the number of leechers is around the ODE'’s fixed
process and exponentially distributed times. There arer+efpoint. We analyze this in Theorem 1.
ences in the literature where this assumption is discusséd a The proof of Kurtz's Theorem relies on a characterization
contrasted with real measurements [17], [19]. This poirlt wion the procesgX”,Y") as a sum of independent Poisson

be addressed in future work. processes (one for each direction of possible transitions)

evaluated in a random time change. Under this charactenizat
1. RESULTS

the theorem follows from Gronwall’s inequality and the law
In this section we present results about deterministic apf large numbers for the Poisson process.

proximations for the model in II-B. Convergence to an ODE, The result of Proposition 1 is also valid for the stochastic
existence of stationary regime and convergence of theoatatimodel associated with the system in [13], as it verifies the
ary regime are studied in 1lI-A. A Central Limit Theorem issame hypotheses and it is also valid for the priority scheme

discussed in 111-B. proposed in the same paper [13]. The Markov chain that



model that is compared with the fluid one by simulations,
using queuing arguments that allow to reduce the analysis of
the existence of a stationary regime to the study of a Jackson
network. However, the proof presented here is simpler and
more detailed.

—Leechers
——Seeds
06/ —opE

Peers (10_2)

Proposition 2. The process XV (¢), YN (t)) is ergodic for
eachN.

Seeds (107%)

Proof: The proof is based on [20] (Proposition 8.14,
p. 225). Functionf(z,y) = x + y is a Lyapunov function

° Tme@ O ¢ Moy Mt for (XN (#),YN(t)). We must verify that there exist&” and

h such that the following conditions hold:

Figure 3. Theorem 1. (Model description in 1I-B and paramrsete Table 1.) 1) for f(ﬂf, y) > K, Q(f)(ﬂﬁ, y) < —h, with Q(f)(:c, y) _

Drezz 209 (zy), (zy) + 1) [f((2,y) +1) — f(z,y)]

(¢ ((x,y), (z,y) +1) is the transition rate fromx,y)

to (x,y) +1);

2) the random variables

represents the priority scheme is of the same type as the
previous ones, so the fluid approximation also holds.

We briefly analyze the model in [11], as it is intrinsi-
cally different. As before, letX™ (¢), Y™ (¢)) be the number TV TN(s)) ks < 1
of leechers and seeds at timeand (XN (¢), YN () = sup{f (X7 (s), Y7 (s)) s < 1},

L(XN(t),YN(t)). Consider the following transitions: 1 B B
« aleecher arrives with rata’), / QU)X (5), YN (s))] ds
« aleecher becomes seed with rate (X (t) + YN (1)), 0
. a seed leaves the system with rafe Y™ (¢). are integrable;

The convergence stated in Proposition 1 relies on the fac®) F'={(z,y): f(z,y) < K} is finite.

that transition rates from stateX ™ (¢),Y ™ (¢)) are of the These assumptions imply that the process is ergodic. Let us
form Ng, [(XN(2), YN (¢)) + O(1/N)], with 8 a Lipschitz verify each one of them:

function. This assumption does not hold for the model in [11] 1) Q(f)(z,y) = AN —0x —yy < —h for z +y > K; it

as transition rates are discontinuous in the boundary 0. suffices then to také’ > (AN + &)/ min(6, 7).
This corresponds to a class of jump Markov processes studiedy The Poisson procesZ_(s) with rate N\ is an up-
in [3], calledflat boundary processe&rom [3] (Chap. 8), in per bound off()Z’N(s),ffN(s)) _ )Z*N(S> + }N/N(S)’

this case there is an analogous of Kurtz's Theorem, and the 5n4 it is integrable on each bounded interval. Anal-
ODE that approximates the scaled proceke’ (¢), YV (t)) is ogously AN + max(f,v)Z(s) is an upper bound of

the following. 1Q(f)(XN(s),YN(s)); the integral of the former is
If 2> 00rA—pu(na+y) =20, thus bounded bAN + max(6,7) [, Z(s)ds and it is
o =\—pulr+y), then integrable.
y/ = M(x + y) — Y, 3) Immediate. N N
and if 2 = 0 and A — p(x + 1) < 0, From the previous assumption® V¥ (), YV (¢)) is ergodic for
eachN. [ ]
{ a' = moA + (1 —mo) (A — p(z +y)), The same result holds for the stochastic model consid-
y' = —moyy + (1 — mo)(u(x +y) —vy), ering two classes of leechers described above. In that case
with a Lyapunov function isf(zq,xs,y) = za + 2 + y. The
(z+1y)— A assumptions are verified as above. It follows from noticing
H :c( _zi/r : if A — pu(z+y) <0, again that the only possible transition away from a region
T = ulr +y . < . .
0 it A — u(z+y) > 0. {(za,xp,y) : zo + 2 +y < K} is when a new peer arrives.

As arrivals follow Poisson processes, the hypotheses about
The above equations show that it is possible to obtain fluithite expectation hold.
limits for this kind of models, despite discontinuities in In what follows we prove the convergence of the sta-
transition rates. tionary regime to the ODE's fixed point. As the process
Now we turn our attention to the ergodicity of(X™(t),Y"(¢)) converges in bounded intervals and has a
(XN(t),YN(t)). It seems not simple to find the stationargtationary distribution, one can expect that the statpnar
distribution explicitly. Classical sufficient conditiorss re- distribution converges to the ODE’s fixed point. This ressilt
versibility are not verified, so we cannot assume local ladanused for the analysis in [12], and in different contexts inest
equations. We prove ergodicity by using a Lyapunov functiomorks (see for example [16]), sometimes without a detailed
The ergodicity result is also stated in [13], as there is akdar proof. In [12] it is proven that the ODE has an unique fixed



: - : : : with p = (2(0), y(0)) andE,, the expected value starting
from p.

The first three assumptions are immediately verified (thelthi

one arises from Proposition 2). So, we focus on fourth as-

sumption. Also from [3] (Lemma 6.32 p. 143) the distribution

of 7.(N) has geometric tails for largé’, that is, there is a

T(e) < oo and a constanf’y(¢) such that
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o 03 03 o5 : ; This implies the bound foF, [7.(NN)] and thus completes the
Leechers (1072) proof_ | |
The convergence for the stationary distribution to the GDE’
fixed points is a widely discussed topic. The authors of [4]
prove this convergence in the case of the occupation measure
point of a system with/V individuals and a finite state space. Our
problem differs from that situation because of the compesgn

==
o
o
=]
o

Figure 4. Vector field for equation (1) (parameter set in &db).

N of the state space. However, our proof and the proof in
(", ") A A f th H f and th fin [4
’ 3 <1+ %) "y (1+ %) ’ rely in large deviations results. The proof in [4] is based
. on [22], where a very general result (considering the case
with ) L1 1 with multiple invariant distributions and a much more coexl
B — max{_, - - _} . asymptotic behavior for the ODE) is proven using large devia
cpoy

tions arguments together with dynamical systems ones.]In [4
and that the system is locally stable. The work from Qiu aritlis also discussed why the existence of a unique fixed point
Sang [21] is devoted to the analysis of equation (1), and th@pes not guarantee the convergence of a sequence of irtvarian
prove that the unique fixed point is a global attractor. Weashddistributions. It shows examples where there is only onedfixe
in Figure 4 the vector field associated with equation (1). point but the support of accumulation points of invariant

h N N be th led b fdistributions lies on set that is a limit cycle for the ODE. In
Theorem 1. Let <X (.OO)’Y. (OO)) e_t € scaled number O 5 ey to avoid the problem of proving asymptotic stabilityd]
leechers and seeds in stationary regime. Let,y*) be the

) L presents a very general result of convergence for the statio
fixed point in(1). Then distribution when there is a unique fixed point in case of

lim (XN(oo),YN(oo)) = (z*,y") reversible processes, a strong assumption that is not walid
N—o00 our model. The convergence for the stationary distributbn
in probability. the occupation measure is also discussed in [23], in a more

general framework (denumerable state spaces). The preaf th
and letr™ (c0) be the stationary distribution of the process (Wis strongly related with the mean field decoupling assunptio

I~ : . ; he asymptotic independence and the convergence of the
know from Proposition 2 that there exists a unique statipnay, __. e
S . Stationary distributions are proved together).
distribution for each). We will use for our proof Theorem or the model in [13] we do not have a proof of global
6.89, p. 165 in [3]. This theorem assures that under a set F P 9

hypotheses that will be verified, {f*, y*) is a global attractor s?abmty .Of ODE's fixed point, so we pannot yet extenq
. N . R the previous theorem for that case. It is only observed in
then limy s o fBE(q) dnN(0) = 1, with (z*,y*) = ¢ and

> L simulations in [13] that the stationary regime converges to
B:(q) = {y € R? : [ly — q|| <}, which implies that the fixed point of the associated ODEs, both in the priority

Proof: Let 1™V (¢) be the distribution of X (¢), YV (¢))

: N N — (* o and non priority schemes.
Jim (X7 (00), YN (o) = (. y")
in probability. To apply the result we must verify that: B. Gaussian approximation
1) the jumps of the Markov process take integer values inHere we derive a Gaussian approximation for the distribu-
each direction, tion of the difference between the stochastic and the déterm
2) the rates3, are uniformly Lipschitz continuous in aiStic processes. This approximation describes in a prewige
neighborhood of z*, y*), the system behavior for large values 8fsimultaneously for
3) the process is positive recurrent, all ¢ providing confidence intervals for the number of leechers

4) if ro(N) =inf {t : ||(XN (), YN (1)) — (a*,y")| <&} and seeds.
then for eachk’, € and for all N, there exists a constanttheorem 2. Consider(XN(t) YN(t)) and let (z, y) be the
Ce.m (that depends om and M) such that solution to equatior(1) with initial condition (z(0), 4(0)). If

a7 e < Cents < 00 T V(XY (0).YV(0)) ~ (2(0), 50))] = V()
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Figure 5. Histograms of 100 independent samples/df (X~ (1) — z(1))
and VN (YN (1) — y(1)) for different values ofN.

in probability, with V(0) deterministic, then,
VN [(XN@0,YN (1) — (2(t). ()] =x V),

where=- means convergence in distributio¥i(¢) is a Gaus-
sian process with covariance matrix

Cov (V(t),V(r))

_ MOt M(r) Ty /
0

G(s) = A+ 0x(s) +yy(s) + 2min(cx(s), p(nz(s) +y(s))),

tAT

ef(IVI(t)JrM(r)T)sG(S) ds

)

mee = (TS0 0 i) <t + w00,
we = (TUEO T i calt) > utnett) (o),

M(t)" denote the transposed of (¢).

0.6

0.5f N

Leechers (10‘2)

Figure 6. ODE trajectory, confidence interval for edcand one trajectory
for the scaled number of leeche?$®™ (). The variance is computed from
100 independent replications of the experiment (parametefable I).

Paper [12] describes without a detailed proof that the
variability around the fluid limit (the solution to equation
(1)). For a large arrival rate,, the number of leechers and
seeds are approximately(t) + v Az(t) andy(t) + VAY(t),
with Z(¢) andy(t) gaussian processes (Ornstein-Uhlenbeck).
In our framework we have that the arrival rateNs\ and the
number of leechers and seeds are characterized Byt) ~
Nz(t) + VNVi(t) and YN () ~ Ny(t) + VNVa(t), with
V = (W4, V2) the gaussian process described in Theorem 2.
We observe that the limit proceds(¢) verifies a stochastic
differential equation (see equation (2.18), p. 458 in [ZPhe
gaussian process stated in [12] can be obtained from this
stochastic differential equation replacingt) andy(t) by its
respective limitse* andy*.

In [2] we can find two approaches in order to characterize
the variability of the stochastic proce&¥ ™, YV) around the
deterministic procesgr, y). The first one is the approximation
using the Central Limit Theorem that we use here, and the sec-

_ , ond one is thaliffusion approximationThese approximations
Proof: Result follows as a consequence of Kurtz's Thege equivalent in bounded time intervals for lariye[2]. In

orem (see Theorem 2.3, p.458, in [2]). We use the expligihh cases certain regularity of the transition rates iarassl.
form of the covariance matrix provided there. The proof Qf, Thegrem 2 we have weakened this regularity assumption in

that theorem relies on a represent.ationwff’(t) and V(#)  the context of the Central Limit Theorem (see Theorem 2.3,
by an integral involving the differential F'(x(t), y(1)), so the ', " 458 "in [2]). Concerning the diffusion approximation for

original theorem assumes that the transition ratés, y) are non-regular transition rates we refer to [24].
C* functions. This assumption is not valid in our case, but

there is only one where §;(z(t), y(t)) is not differentiable IV. CONCLUSIONS AND FUTURE WORK
(that is whencxz(t) = p(nz(t) + y(t))). As this happens In this paper we provide new elements to the understanding
at only one point, it does not affect the integral represenf the well known fluid models of BitTorrent systems in
tation. The justification that there is only ortefor which the spirit of [12] and extensions such as [13]. We consider
cx(t) = p(nx(t) + y(t)) follows from the fact that the fixed sequences of stochastic models (Markov chains) repregenti
point is a global attractor, so the trajectoriggt),y(t)) hit the population of different types of peers in the network.
{(z,y) : cx = p(nz +y)} only a finite number of times (this Leechers arrive following a Poisson process, with its rate
is sufficient for the validity of the integral representatiof increasing with an integer paramet&r We scale the number
VN (t) as in Theorem 2.3, p. 458, [2]). In Figure 4 it can bef leechers and seeds by that same fadfoiVe then provide
seen that there is at most one hitting point in our case® rigorous justifications for the passage from the sequentes o
In Figure 5 we show, for different values of, histograms stochastic models to deterministic limits whahgoes to infin-
of 100 independent samples of N (X~ (t) —z(t)) and ity. This convergence basically follows from Kurtz’s Thear.
VN (YN (t) — y(t)) for a fixedt and in Figure 6 we show the We prove the existence of a stationary regime for the presess
95% confidence interval for the scaled number of leechersin the sequence by constructing a Lyapunov function for each
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