
Implementing a safe embedded computing system in
SRAM-based FPGAs using IP cores:

a case study based on the Altera NIOS-II soft processor

Julio Perez Acle

Facultad de Ingeniería
Universidad de la República

Montevideo, Uruguay
julio@fing.edu.uy

Matteo Sonza Reorda, Massimo Violante

Dip. Automatica e Informatica
Politecnico di Torino

Torino, Italy
{matteo.sonzareorda, massimo.violante}@polito.it

Abstract— Reconfigurable Field Programmable Gate Arrays

(FPGAs) are growing the attention of developers of mission- and

safety-critical applications (e.g., aerospace ones), as they allow

unprecedented levels of performance, which are making these

devices particularly attractive as ASICs replacement, and as they

offer the unique feature of in-the-field reconfiguration. However,

the sensitivity of reconfigurable FPGAs to ionizing radiation

mandates the adoption of fault tolerant mitigation techniques

that may impact heavily the FPGA resource usage. In this paper

we consider time redundancy, that allows avoiding the high

overhead that more traditional approaches like N-modular

redundancy introduce, at an affordable cost in terms of

application execution-time overhead. A single processor executes

two instances of the same software sequentially; the two instances

are segregated in their own memory space through a soft IP core

that monitors the processor/memory interface for any violations.

Moreover, the IP core checks for any processor functional

interruption by means of a watchdog timer. Fault injection

results are reported showing the characteristics of the proposed

approach.

Keywords- Embedded systems; Fault Tolerance; FPGA; IP

cores; Fault Injection

I. INTRODUCTION

Today reprogrammable Field Programmable Gate Arrays
(FPGAs) are increasingly attracting the attention of developers
of safety- and mission-critical applications (e.g., in the
aerospace domain) for a number of reasons. First of all, modern
FPGA devices offer an unprecedented level of resources (logic,
memory, interconnection, arithmetic, and processing resources)
that make them highly competitive with ASICs in markets
where low production volumes and short time to market are
crucial. Secondly, reprogrammable FPGAs offer a competitive
advantage with respect to ASICs in being reconfigurable: when
deployed in the field (i.e., in a satellite already in orbit) their
configuration can be changed to improve the functionalities
they provide (e.g., to change a baseband processing algorithm
in a software defined radio system), to correct bugs, to adapt to

 This work was partially supported by a grant from the
National Agency of Research and Innovation (ANII) from

Uruguay.

changing environment conditions, or to implement
reconfigurable computing architectures.

Two main technologies are nowadays available for
implementing reconfigurable FPGAs: one based on an SRAM
configuration memory, where the information defining what
functions the FPGA implements is stored on-chip using SRAM
memory bits (e.g., Xilinx Virtex devices, and Altera Cyclone
devices), and one based on a Flash configuration memory,
where the configuration is stored in floating gate cells (e.g.,
Actel ProASIC devices). When deploying reprogrammable
devices in a radioactive environment (such as the space one),
particular care must be posed to the phenomena induced by
ionizing radiations, which may impair some functionalities of
the circuit the FPGA implements, or even the whole device. In
case of SRAM-based FPGAs, ionizing radiation may induce
modifications to the configuration information, provoking
Single Event Upsets (SEUs) that remain latched until a fresh
image of the configuration memory is restored. Conversely,
Flash-based FPGAs are immune to configuration memory
SEUs. Both SRAM-based and Flash-based FPGAs suffer from
radiation-induced SEUs in the memory elements hosted by the
reconfigurable fabric (flip-flops, and memory arrays).
Moreover, in the case radiations hit the FPGA control logic,
effects known as Single Event Functional Interruptions (SEFIs)
may be observed, which impair the correct operation of the
FPGA until a reset, or a power cycle is performed [1][2].

To cope with SEUs and SEFIs designers must employ
radiation mitigation techniques, which consist in introducing
some sort of redundancy in the implemented design or system.
The most widely used approach is Triple Modular Redundancy
(TMR) [3][4] that mandates to replicate three times the design
(only its memory elements in case of Flash-based FPGAs, or
the entire design in case of SRAM-based ones, or even the
entire FPGA chip in case of system-level mitigation) and to
add majority voters. In case of processor cores implemented on
FPGAs, alternative approaches can be exploited to save FPGA
resources at the cost of increased computing time. In [5], an
approach is presented where the processor core is duplicated,
and a custom IP core manages the concurrent execution of the
same application on the two cores that work synchronously.
Although this approach is effective in reducing the resource

overhead with respect to TMR, it still requires processor
duplication.

In this work we investigate the possibility to further reduce
the area overhead by exploiting time redundancy [3].
According to time redundancy, the same application is
executed twice (three times in case we want to achieve error
masking), and then an acceptance test is executed. If the two
results match, one of the two is forwarded to the user;
otherwise, the outputs are discarded, and the computation
repeated. An example of application of this concept to
processor-based systems for space applications can be found in
[6], where the tasks executed by a processor are duplicated, and
executed in segregation: each task can access only to its own
memory. A custom companion chip takes care of managing
any memory access, and guarantees the task segregation.

In this paper we exploit the concept of time redundancy in
developing an architecture inspired to DMT [6] using a soft
processor core aiming at being implemented in an SRAM-
based FPGA. In order to enforce task segregation, as well as
protection against possible SEFIs of the processor core, we
resorted to the processor Memory Protection Unit available as
soft IP for the selected processor core, and developed two
additional IP cores implementing a watchdog timer and a DMA
controller.

The main contribution of this paper lies in the experimental
validation of the feasibility of achieving a safe system by using
a mix of already available and ad hoc developed (and highly
reusable) IP cores, thus minimizing the development time. In
our work we exploited the Altera NIOS-II [7] as processor
core, and the Altera Memory Protection Unit IP core for
memory segregation. Being all the cores already available, and
validated, the design effort is limited to the integration with a
custom watchdog timer and DMA controller. By exploiting
already existing cores a robust system can be obtained, which
can be used with a number of different FPGAs supporting the
same cores. As a result, a general architecture is obtained
which is highly portable and reusable.

To assess the effectiveness of the proposed approach, we
also performed a set of fault injection experiments, which show
how the SEUs and SEFIs that may affect the processor are
effectively mitigated by our architecture.

The rest of the paper is organized as follows. Section II.
presents the adopted architecture. Section III. describes the
experiments we performed to assess the soundness of the
architecture we developed. Section IV. draws some conclusions
and outlines future works.

II. ADOPTED ARCHITECTURE

This section describes the architecture we adopted, and
details its implementation. The architecture is intended for
hardening computing intensive applications executed by a
commercial-off-the-shelf processor implemented on SRAM-
based FPGAs. The application is supposed to entail a data
acquisition phase during which an input buffer is filled with the
data that has to be processed, followed by a data processing
phase during which an algorithm is applied over the input data
and an output buffer is produced, and finally a data

presentation phase during which the output data is delivered to
the user.

A. Overview

The architecture focuses on providing protection against
transient errors induced by ionizing radiation, the so called
Single Event Upsets (SEUs), which may affect the execution of
the application by altering the content of processor registers, or
by altering the configuration memory of the FPGA. Two
protection mechanisms are used.

As far as SEUs affecting the processor memory elements
(i.e., register file, special purpose registers, and cache memory)
are concerned, task-level duplication is exploited in
combination with hardware-assisted consistency check. The
application is executed twice, each time writing to different
memory locations; at the end, the two output buffers are
compared. In case of mismatch, the processor undergoes a reset
operation, and the whole process is repeated. In case of
successful match, the data presentation phase issues to the user
the two output buffers: the two buffers are sent to provide a
protection mechanism against possible data-transfer errors. In
order to guarantee that the two executions of the application
instances are performed independently, so that any SEU may
affect one and only one of the two executions, a special-
purpose hardware module, called smart watchdog, is used. The
smart watchdog is implemented in the same FPGA used for
implementing the processor, and it is placed on the process bus
between the processor and the memory hierarchy. It has indeed
to snoop for any memory access directed either toward the
cache or the main memory. Moreover, the smart watchdog
must be able to access to the memory space of the processor to
perform the consistency check of the two output buffers.

Let us call I1 and I2 the two instances of the application
that are executed sequentially. The processor memory is
partitioned in two regions, R1 associated to I1, and R2
associated to I2. Each instance Ix is allowed to read/write only
within the boundary of Rx; any access outside Rx indicates the
occurrence of an error. The smart watchdog is in charge of
monitoring any access the processor performs, and in case Ix is
accessing to an address in Ry with x≠y a non-maskable
interrupt resulting in the processor reset is activated.

The sequence of operations performed by the processor
during the execution of an application is the following:

1) The processor programs the smart watchdog to define

R1 and R2, and resets the watchdog timer of the smart

watchdog.

2) The processor selects R1 and initiates the execution of

I1.

3) Upon completion of I1, the processor resets the

watchdog timer.

4) The processor selects R2 and initiates the execution of

I2.

5) Upon completion of I2, the processor resets the

watchdog timer

6) The smart watchdog performs the consistency check.

7) The processor resets the watchdog timer and repeats

from (2).

Any operation resulting in a wrong memory access outside
the region associated to an instance of the application triggers a
non-maskable interrupt leading to processor reset. Moreover,
any operation leading to a processor hang (i.e., a SEFI) leads to
the watchdog expiration, which triggers the processor reset as
well. The smart watchdog is in charge of the consistency
check: it performs a word-by-word comparison of the output
buffers computed by the two application instances. In case of
mismatch the processor is reset, otherwise the whole process is
repeated. The comparison is implemented through DMA burst
transfers that read and compare the two output memory buffers.

As far as SEUs in the FPGA configuration memory are
concerned, on-line checking is performed: the configuration
memory is constantly read, a checksum is computed and
compared with a known-good value. In case of mismatch, the
FPGA device is reset, a fresh image of the configuration
memory written to the device, and the whole application started
from scratch.

B. Implementation

We developed a proof-of-concept implementation of the
described architecture on an Altera Cyclone-II device, using
the NIOS-II processor core. For the sake of this paper we
focused only on SEUs affecting the processor. The features
provided by Altera devices can be straightforwardly exploited
to implement the protection mechanism against SEUs in the
device configuration memory.

The NIOS-II is a 32 bit, 6-stage pipeline RISC processor.
Options include separated instruction and data cache, and a full
Memory Management Unit (MMU) or a simpler Memory
Protection Unit (MPU). The MPU has separated instruction and
data regions. Execution permission can be granted on
instruction regions and read or read/write permissions on data
regions, both for user and supervisor execution mode. An
exception is raised in case of permission violation. Additional
exception conditions relevant from a safety point of view are
misaligned memory accesses and illegal instruction opcode.
The MPU, which is available as IP core, is the building block
of our smart watchdog, as described in II.A..

We developed a system encompassing one NIOS-II
(version f) core with a 4 Kbytes instruction cache and a
2KBytes data cache. A smart watchdog is attached to the
processor encompassing the MPU configured with 6 data
regions and 4 instruction regions, an interval timer used as
watchdog timer, and a simple DMA controller for output buffer
comparison. 512KBytes of main memory are attached to the
processor, implemented outside the FPGA device using SRAM
chips. Being based on a combination of already existing IP
cores, and some custom-made modules, the implementation of
the system is highly portable, and it can be mapped on any
FPGA device supporting the NIOS-II processor and its MPU.
In our implementation we considered Cyclone-II devices,
obtaining the resource occupation figures of TABLE 1.

TABLE I. RESOURCE OCCUPATION

Module Logic

resources

[#]

Flip-

flops

[#]

Memory bits

[#]

NIOS-II 2.063 1.549 63.104

MPU 963 729 256

Interval timer and
DMA controller

350 256 128

TOTAL 3.376 2.534 63.488

With respect to a system including only the NIOS-II
processor, the implementation of the proposed architecture
leads to the following overheads (due to the addition of the
MPU and smart watchdog): 63% of logic resources, 64% of
flip-flops, and 0.6% of memory bits. As far as the application
execution time is concerned, the proposed architecture
introduces an overhead of 100%, as two instances of the
application have to be executed sequentially. In case the NIOS-
II system is implemented using TMR [3], limiting our analysis
to the logic resources and flip-flops, we can expect logic
resource and flip-flop overheads of at least 200% (not
including the resources needed for implementing the majority
voters), and at least a 15% in performance overhead due to
majority voters added on the processor critical paths. These
figures are expected to be even higher in case mitigation
techniques for the cache system are considered where the
implementation of a protection scheme like EDAC is expected
to impact heavily on the memory bit occupation, logic/flip-flop
resources and performance. In the case of the approach
presented in [5], we can estimate a logic resource and flip-flop
overhead of at least 100%, and a performance overhead of
about 30%. Therefore, we can state that the adopted approach,
when compared to alternative ones, is effective in reducing the
FPGA resource overhead, at a cost of a higher application
execution time.

III. EXPERIMENTAL RESULTS

To assess the robustness of the proposed architecture, we
developed a fault injection system, and we performed a set of
fault injection experiments. For the sake of this paper, we
focused only on SEUs affecting the processor memory
elements.

We used a software-based fault injection mechanism: we
added a SEU injection routine to the code running on the
processor, and we used an interrupt request to trigger the
injection routine. The mechanism allows injections of SEUs in
any software-accessible location within the processor,
including general-purpose registers, control registers and
program counter. SEUs are randomly injected both in time and
space: the injection routine is activated in a randomly-selected
clock cycle during application execution, and a SEU is injected
in one randomly selected bit of a randomly selected register.
The fault injection process encompasses the following
operations:

1) The FPGA is configured, a fresh image of the

processor memory is downloaded, and the processor is reset.

Except for the FPGA configuration, this initialization

operation is performed for each fault so to guarantee that

experiments are independent from each other.

2) Through the debug interface the memory location

storing the injection time, and the injection location (register

and bitmask to use) are modified according to the fault to be

injected.

3) A timer initially set to the injection time is started, and

the application execution is started according to the

mechanism described in II.B..

4) Upon expiration of the injection-time timer, the

application is stopped, and the SEU injection routine is

activated; as a result, the desired fault is inoculated in the

system.

5) The execution of the application is resumed until its

completion.

At the end of the application execution, the two output
buffers are analyzed, and SEUs are classified as follows:

● No effect: The execution completed successfully, the
two output buffers contain the same values and match
the results produced by a fault-free execution.
Moreover, the MPU did not trigger the non-maskable
interrupt, and the watchdog timer did not expire.

● Data detection: The execution completed successfully,
but the output buffers produced by the two application
instances have different values, while the smart
watchdog signaled the mismatch.

● Exception: The smart watchdog triggered the non-
maskable interrupt, signaling that an attempt to access
a forbidden memory partition is detected.

● Timeout: The smart watchdog timer exhausted before
the end of application execution.

● Trap: The injected fault triggered one of the processor
traps, indicating that an erroneous situation is detected
(e.g., the processor is executing a misaligned memory
access).

● Wrong answer: The execution completed successfully,
the two output buffers are equal but they do not match
those produced by a fault-free execution. Moreover,
the MPU did not trigger the non-maskable interrupt,
and the watchdog timer did not expire. This condition
corresponds to the case, in which the fault produced a
misbehavior, but escaped all the error detection
mechanisms our architecture offers.

In our experiments we considered a data-processing
benchmark composed of a 16-tap finite impulse response filter
processing 512 samples of a 500Hz tone sampled at 8KHz. The
filter is implemented in the direct form, and its coefficients are
chosen to obtain a 1KHz low pass filter. Then, a further
processing based on computing the square root of the obtained
values is executed. Benchmark execution, according to the
sequence of operations described in Section II.B. lasts for about
8 million clock cycles.

During preliminary injection experiments to tune the
system, some faults were identified that put the processor in a

halt state, leading to a SEFI condition detected as timeout. By
analyzing these faults, we found that the halt condition is the
result of a fault leading to a jump into an unused code area
where the custom instruction opcode is found (resulting from
random initialization of the memory). The NIOS-II processor
has a reserved “custom instruction” opcode to enable
instruction-set extensions through the addition of custom
hardware. The opcode for the custom instruction is predefined
and it is not detected as illegal, even if the processor is not
equipped with the custom hardware to execute this instruction.
To avoid this situation we initialized the whole unused memory
with an illegal opcode. In this way, any fault causing a jump to
a word in the unused memory triggers an exception, and can be
detected.

Once the system has been set up and tuned, we run a
preliminary set of injection results, during which we injected
100,000 SEUs in the processor program counter, only. These
experiments were useful for getting an initial indication of the
soundness of the approach by considering very critical faults,
which may dramatically harm the health of the system. We
observed the following classification of fault effects:

No effect 6178

Data detection 8498

Exception 63110

Timeout 0

Trap 22161

Wrong answer 53

Total 100000

From these results we can see that 53 of the injected faults
(0.053 %) escaped the detection mechanisms the architecture
embeds. Moreover, by looking in more details to the results, we
observed that the following traps are executed:

● 9.029 illegal opcode traps, indicating the effectiveness
of properly initializing the unused memory, which is
likely to allow avoiding the timeout condition;

● 4.448 misaligned data address trap;

● 8.683 misaligned destination address trap;

● 1 supervisor only instruction trap.

The results suggest that the processor already embed very
powerful mechanisms for detecting misbehaviors induced by
SEUs.

We also observed that SEU effects are strongly related to
the position of the fault in the Program Counter. All the faults
affecting bits 0 or 1 on the Program Counter (the least
significant bits) were detected by misaligned memory access
traps. On the other side, all the faults affecting the highest order
bits of the program counter provoked accesses out of the
memory regions configured on the MPU, and consequently
were detected as region violation exceptions. For the
intermediate range of bits, the fault effects gradually change
from a majority of no effect and data detection to a majority of

illegal instruction and region violation exceptions as the
affected bit varies from lower to higher order bits.

IV. CONCLUSIONS AND FUTURE WORKS

As reprogrammable FPGAs become the devices of choice
for developers of safety- or mission-critical applications
operating in radioactive environments suitable mitigation
techniques are needed against soft errors originated in the
FPGA devices. In this paper, we describe an architecture that
exploits task-level redundancy in combination with already
available IP cores for implementing a robust processor-based
system with respect to SEUs. Preliminary results focusing on
the processor program counter outline the effectiveness of the
architecture, and the overhead analysis shows that the proposed
architecture is effective in reducing the resource occupation
with respect to N-modular redundancy, at an affordable cost in
terms of application execution time. The reported results allow
a deeper understanding of the fault behavior and of the
effectiveness of the different fault detection mechanisms.

As future activities we intend to further validate the
robustness of the architecture by performing more extensive
sets of injection experiments. Moreover, we intend to

implement mitigation techniques against SEUs affecting the
FPGA configuration memory, and to assess the robustness of
the obtained system by means of accelerated radiation testing.

REFERENCES

[1] Ceschia, M.; Violante, M.; Reorda, M.S.; Paccagnella, A.; Bernardi, P.;
Rebaudengo, M.; Bortolato, D.; Bellato, M.; Zambolin, P.; Candelori, A.;
“Identification and classification of single-event upsets in the configuration
memory of SRAM-based FPGAs,” Nuclear Science, IEEE Transactions on ,
vol.50, no.6, pp. 2088- 2094, Dec. 2003

[2] Heiner, J., Sellers, B., Wirthlin, M., Kalb, J.; “FPGA partial
reconfiguration via configuration scrubbing”; FPL 09: 19th International
Conference on Field Programmable Logic and Applications, pp. 99-104, 2009.

[3] D. K. Pradhan, Fault-Tolerant Computer System Design, Prentice Hall

[4] Xilinx TMR tool, http://www.xilinx.com/milaero

[5] M. Sonza Reorda, M. Violante, C. Meinhardt, R. Reis, “A low-cost SEE
mitigation solution for soft-processors embedded in Systems on
Programmable Chips”, IEEE Design Automation and Test in Europe, 2009,
pp. 352-357

[6] M. Pignol, “DMT and DT2: two fault-tolerant architectures developed
by CNES for COTS-based spacecraft supercomputers”, IEEE Int. On-Line
Testing Symposium, 2006

[7] NIOS-II Processor Reference Manual, Altera Corporation, San José, CA,
USA, 2009

