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Abstract—  Reconfigurable  Field  Programmable  Gate  Arrays

(FPGAs) are growing the attention of developers of mission- and

safety-critical  applications  (e.g.,  aerospace  ones),  as  they  allow

unprecedented  levels  of  performance,  which  are  making  these

devices particularly attractive as ASICs replacement, and as they

offer the unique feature of in-the-field reconfiguration. However,

the  sensitivity  of  reconfigurable  FPGAs  to  ionizing  radiation

mandates  the  adoption  of  fault  tolerant  mitigation  techniques

that may impact heavily the FPGA resource usage. In this paper

we  consider  time  redundancy,  that  allows  avoiding  the  high

overhead  that  more  traditional  approaches  like  N-modular

redundancy  introduce,  at  an  affordable  cost  in  terms  of

application execution-time overhead. A single processor executes

two instances of the same software sequentially; the two instances

are segregated in their own memory space through a soft IP core

that monitors the processor/memory interface for any violations.

Moreover,  the  IP  core  checks  for  any  processor  functional

interruption  by  means  of  a  watchdog  timer.  Fault  injection

results are reported showing the characteristics of the proposed

approach.
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I. INTRODUCTION
 

Today reprogrammable  Field  Programmable  Gate  Arrays
(FPGAs) are increasingly attracting the attention of developers
of  safety-  and  mission-critical  applications  (e.g.,  in  the
aerospace domain) for a number of reasons. First of all, modern
FPGA devices offer an unprecedented level of resources (logic,
memory, interconnection, arithmetic, and processing resources)
that  make  them  highly  competitive  with  ASICs  in  markets
where low production volumes and short time to market  are
crucial. Secondly, reprogrammable FPGAs offer a competitive
advantage with respect to ASICs in being reconfigurable: when
deployed in the field (i.e., in a satellite already in orbit) their
configuration  can  be  changed  to  improve  the  functionalities
they provide (e.g., to change a baseband processing algorithm
in a software defined radio system), to correct bugs, to adapt to
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changing  environment  conditions,  or  to  implement
reconfigurable computing architectures.

Two  main  technologies  are  nowadays  available  for
implementing reconfigurable FPGAs: one based on an SRAM
configuration  memory,  where  the  information  defining  what
functions the FPGA implements is stored on-chip using SRAM
memory bits (e.g., Xilinx Virtex devices, and Altera Cyclone
devices),  and  one  based  on  a  Flash  configuration  memory,
where the  configuration is stored in floating gate  cells  (e.g.,
Actel  ProASIC  devices).  When  deploying  reprogrammable
devices in a radioactive environment (such as the space one),
particular  care must  be posed to the  phenomena  induced by
ionizing radiations, which may impair some functionalities of
the circuit the FPGA implements, or even the whole device. In
case of SRAM-based FPGAs,  ionizing radiation may induce
modifications  to  the  configuration  information,  provoking
Single Event Upsets (SEUs) that remain latched until a fresh
image  of  the  configuration  memory  is  restored.  Conversely,
Flash-based  FPGAs  are  immune  to  configuration  memory
SEUs. Both SRAM-based and Flash-based FPGAs suffer from
radiation-induced SEUs in the memory elements hosted by the
reconfigurable  fabric  (flip-flops,  and  memory  arrays).
Moreover,  in the case radiations hit the FPGA control logic,
effects known as Single Event Functional Interruptions (SEFIs)
may  be observed,  which  impair  the  correct  operation of the
FPGA until a reset, or a power cycle is performed [1][2].

To  cope  with  SEUs  and  SEFIs  designers  must  employ
radiation mitigation techniques,  which  consist  in  introducing
some sort of redundancy in the implemented design or system.
The most widely used approach is Triple Modular Redundancy
(TMR) [3][4] that mandates to replicate three times the design
(only its memory elements in case of Flash-based FPGAs, or
the  entire  design  in  case  of  SRAM-based ones,  or  even  the
entire  FPGA chip in case of system-level  mitigation)  and to
add majority voters. In case of processor cores implemented on
FPGAs, alternative approaches can be exploited to save FPGA
resources at the cost of increased computing time. In  [5], an
approach is presented where the processor core is duplicated,
and a custom IP core manages the concurrent execution of the
same application on the two cores that  work synchronously.
Although this  approach is  effective  in reducing the resource



overhead  with  respect  to  TMR,  it  still  requires  processor
duplication. 

In this work we investigate the possibility to further reduce
the  area  overhead  by  exploiting  time  redundancy  [3].
According  to  time  redundancy,  the  same  application  is
executed twice (three times in case we want to achieve error
masking), and then an acceptance test is executed. If the two
results  match,  one  of  the  two  is  forwarded  to  the  user;
otherwise,  the  outputs  are  discarded,  and  the  computation
repeated.  An  example  of  application  of  this  concept  to
processor-based systems for space applications can be found in
[6], where the tasks executed by a processor are duplicated, and
executed in segregation: each task can access only to its own
memory.  A custom companion chip  takes  care  of managing
any memory access, and guarantees the task segregation.

In this paper we exploit the concept of time redundancy in
developing an architecture inspired to DMT  [6] using a soft
processor  core  aiming  at  being  implemented  in  an  SRAM-
based FPGA. In order to enforce task segregation, as well as
protection  against  possible  SEFIs  of  the  processor  core,  we
resorted to the processor Memory Protection Unit available as
soft  IP  for  the  selected  processor  core,  and  developed  two
additional IP cores implementing a watchdog timer and a DMA
controller.

The main contribution of this paper lies in the experimental
validation of the feasibility of achieving a safe system by using
a mix of already available and ad hoc developed (and highly
reusable) IP cores, thus minimizing the development time. In
our  work  we  exploited  the  Altera  NIOS-II  [7] as  processor
core,  and  the  Altera  Memory  Protection  Unit  IP  core  for
memory segregation. Being all the cores already available, and
validated, the design effort is limited to the integration with a
custom  watchdog  timer  and  DMA controller.  By  exploiting
already existing cores a robust system can be obtained, which
can be used with a number of different FPGAs supporting the
same  cores.  As  a  result,  a  general  architecture  is  obtained
which is highly portable and reusable.

To assess the effectiveness of the proposed approach, we
also performed a set of fault injection experiments, which show
how the  SEUs and SEFIs  that  may  affect  the  processor  are
effectively mitigated by our architecture.

The rest of the paper is organized as follows. Section  II.
presents  the  adopted  architecture.  Section  III. describes  the
experiments  we  performed  to  assess  the  soundness  of  the
architecture we developed. Section IV. draws some conclusions
and outlines future works.

II. ADOPTED ARCHITECTURE

This  section  describes  the  architecture  we  adopted,  and
details  its  implementation.  The  architecture  is  intended  for
hardening  computing  intensive  applications  executed  by  a
commercial-off-the-shelf  processor  implemented  on  SRAM-
based  FPGAs.  The  application  is  supposed  to  entail  a  data
acquisition phase during which an input buffer is filled with the
data that  has to be processed, followed by a data processing
phase during which an algorithm is applied over the input data
and  an  output  buffer  is  produced,  and  finally  a  data

presentation phase during which the output data is delivered to
the user. 

A. Overview

The  architecture  focuses  on  providing  protection  against
transient  errors  induced  by  ionizing  radiation,  the  so  called
Single Event Upsets (SEUs), which may affect the execution of
the application by altering the content of processor registers, or
by  altering  the  configuration  memory  of  the  FPGA.  Two
protection mechanisms are used.

As far as SEUs affecting the processor memory elements
(i.e., register file, special purpose registers, and cache memory)
are  concerned,  task-level  duplication  is  exploited  in
combination  with  hardware-assisted  consistency  check.  The
application is  executed  twice,  each time writing  to  different
memory  locations;  at  the  end,  the  two  output  buffers  are
compared. In case of mismatch, the processor undergoes a reset
operation,  and  the  whole  process  is  repeated.  In  case  of
successful match, the data presentation phase issues to the user
the two output buffers: the two buffers are sent to provide a
protection mechanism against possible data-transfer errors. In
order to guarantee that  the two executions of the application
instances are performed independently,  so that any SEU may
affect  one  and  only  one  of  the  two  executions,  a  special-
purpose hardware module, called smart watchdog, is used. The
smart  watchdog is implemented  in the same FPGA used for
implementing the processor, and it is placed on the process bus
between the processor and the memory hierarchy. It has indeed
to  snoop  for  any  memory  access  directed  either  toward  the
cache  or  the  main  memory.  Moreover,  the  smart  watchdog
must be able to access to the memory space of the processor to
perform the consistency check of the two output buffers.

Let us call I1 and I2 the two instances of the application
that  are  executed  sequentially.  The  processor  memory  is
partitioned  in  two  regions,  R1  associated  to  I1,  and  R2
associated to I2. Each instance Ix is allowed to read/write only
within the boundary of Rx; any access outside Rx indicates the
occurrence  of an  error.  The smart  watchdog is  in  charge  of
monitoring any access the processor performs, and in case Ix is
accessing  to  an  address  in  Ry  with  x≠y  a  non-maskable
interrupt resulting in the processor reset is activated. 

The  sequence  of  operations  performed  by  the  processor
during the execution of an application is the following:

1) The processor programs the smart watchdog to define

R1  and  R2,  and  resets  the  watchdog  timer  of  the  smart

watchdog.

2) The processor selects R1 and initiates the execution of

I1.

3) Upon  completion  of  I1,  the  processor  resets  the

watchdog timer.

4) The processor selects R2 and initiates the execution of

I2.

5) Upon  completion  of  I2,  the  processor  resets  the

watchdog timer 

6) The smart watchdog performs the consistency check.



7) The processor resets  the watchdog timer and repeats

from (2).

Any operation resulting in a wrong memory access outside
the region associated to an instance of the application triggers a
non-maskable interrupt  leading to processor  reset.  Moreover,
any operation leading to a processor hang (i.e., a SEFI) leads to
the watchdog expiration, which triggers the processor reset as
well.  The  smart  watchdog  is  in  charge  of  the  consistency
check: it performs a word-by-word comparison of the output
buffers computed by the two application instances. In case of
mismatch the processor is reset, otherwise the whole process is
repeated. The comparison is implemented through DMA burst
transfers that read and compare the two output memory buffers.

As  far  as  SEUs in  the  FPGA configuration memory are
concerned,  on-line  checking  is  performed:  the  configuration
memory  is  constantly  read,  a  checksum  is  computed  and
compared with a known-good value. In case of mismatch, the
FPGA  device  is  reset,  a  fresh  image  of  the  configuration
memory written to the device, and the whole application started
from scratch. 

B. Implementation

We developed  a  proof-of-concept  implementation  of  the
described architecture  on an Altera  Cyclone-II  device,  using
the  NIOS-II  processor  core.  For  the  sake  of  this  paper  we
focused  only  on SEUs affecting  the  processor.  The  features
provided by Altera devices can be straightforwardly exploited
to  implement  the protection mechanism against  SEUs in the
device configuration memory. 

The NIOS-II is a 32 bit, 6-stage pipeline RISC processor.
Options include separated instruction and data cache, and a full
Memory  Management  Unit  (MMU)  or  a  simpler  Memory
Protection Unit (MPU). The MPU has separated instruction and
data  regions.  Execution  permission  can  be  granted  on
instruction regions and read or read/write permissions on data
regions,  both  for  user  and  supervisor  execution  mode.  An
exception is raised in case of permission violation. Additional
exception conditions relevant from a safety point of view are
misaligned  memory  accesses  and  illegal  instruction  opcode.
The MPU, which is available as IP core, is the building block
of our smart watchdog, as described in II.A..

We  developed  a  system  encompassing  one  NIOS-II
(version  f)  core  with  a  4  Kbytes  instruction  cache  and  a
2KBytes  data  cache.  A  smart  watchdog  is  attached  to  the
processor  encompassing  the  MPU  configured  with  6  data
regions  and  4  instruction  regions,  an  interval  timer  used  as
watchdog timer, and a simple DMA controller for output buffer
comparison.  512KBytes of main memory are attached to the
processor, implemented outside the FPGA device using SRAM
chips.  Being  based on a  combination  of  already existing  IP
cores, and some custom-made modules, the implementation of
the system is  highly  portable,  and it  can be mapped on any
FPGA device supporting the NIOS-II processor and its MPU.
In  our  implementation  we  considered  Cyclone-II  devices,
obtaining the resource occupation figures of TABLE 1.

TABLE I. RESOURCE OCCUPATION

Module Logic

resources

[#]

Flip-

flops

[#]

Memory bits

[#]

NIOS-II 2.063 1.549 63.104

MPU 963 729 256

Interval timer and
DMA controller

350 256 128

TOTAL 3.376 2.534 63.488

With  respect  to  a  system  including  only  the  NIOS-II
processor,  the  implementation  of  the  proposed  architecture
leads to  the following  overheads  (due to  the addition of the
MPU and smart  watchdog):  63% of logic  resources,  64% of
flip-flops, and 0.6% of memory bits. As far as the application
execution  time  is  concerned,  the  proposed  architecture
introduces  an  overhead  of  100%,  as  two  instances  of  the
application have to be executed sequentially. In case the NIOS-
II system is implemented using TMR [3], limiting our analysis
to  the  logic  resources  and  flip-flops,  we  can  expect  logic
resource  and  flip-flop  overheads  of  at  least  200%  (not
including the resources needed for implementing the majority
voters),  and at  least  a  15% in performance  overhead due to
majority  voters added  on the processor  critical  paths.  These
figures  are  expected  to  be  even  higher  in  case  mitigation
techniques  for  the  cache  system  are  considered  where  the
implementation of a protection scheme like EDAC is expected
to impact heavily on the memory bit occupation, logic/flip-flop
resources  and  performance.  In  the  case  of  the  approach
presented in [5], we can estimate a logic resource and flip-flop
overhead  of  at  least  100%,  and  a  performance  overhead  of
about 30%. Therefore, we can state that the adopted approach,
when compared to alternative ones, is effective in reducing the
FPGA resource  overhead,  at  a  cost  of  a  higher  application
execution time. 

III. EXPERIMENTAL RESULTS

To assess the robustness of the proposed architecture, we
developed a fault injection system, and we performed a set of
fault  injection  experiments.  For  the  sake  of  this  paper,  we
focused  only  on  SEUs  affecting  the  processor  memory
elements.

We used a software-based fault  injection mechanism:  we
added  a  SEU  injection  routine  to  the  code  running  on  the
processor,  and  we  used  an  interrupt  request  to  trigger  the
injection routine. The mechanism allows injections of SEUs in
any  software-accessible  location  within  the  processor,
including  general-purpose  registers,  control  registers  and
program counter. SEUs are randomly injected both in time and
space: the injection routine is activated in a randomly-selected
clock cycle during application execution, and a SEU is injected
in one randomly selected bit of a randomly selected register.
The  fault  injection  process  encompasses  the  following
operations:

1) The  FPGA  is  configured,  a  fresh  image  of  the

processor memory is downloaded, and the processor is reset.

Except  for  the  FPGA  configuration,  this  initialization



operation  is  performed  for  each  fault  so  to  guarantee  that

experiments are independent from each other.

2) Through  the  debug  interface  the  memory  location

storing the injection time, and the injection location (register

and bitmask to use) are modified according to the fault to be

injected.

3) A timer initially set to the injection time is started, and

the  application  execution  is  started  according  to  the

mechanism described in II.B..

4) Upon  expiration  of  the  injection-time  timer,  the

application  is  stopped,  and  the  SEU  injection  routine  is

activated;  as a result,  the desired fault  is  inoculated in the

system.

5) The  execution of  the  application  is  resumed  until  its

completion.

At  the  end  of  the  application  execution,  the  two  output
buffers are analyzed, and SEUs are classified as follows:

● No effect:  The execution completed successfully,  the
two output buffers contain the same values and match
the  results  produced  by  a  fault-free  execution.
Moreover, the MPU did not trigger the non-maskable
interrupt, and the watchdog timer did not expire.

● Data detection: The execution completed successfully,
but the output buffers produced by the two application
instances  have  different  values,  while  the  smart
watchdog signaled the mismatch.

● Exception:  The  smart  watchdog  triggered  the  non-
maskable interrupt, signaling that an attempt to access
a forbidden memory partition is detected.

● Timeout: The smart watchdog timer exhausted before
the end of application execution.

● Trap: The injected fault triggered one of the processor
traps, indicating that an erroneous situation is detected
(e.g., the processor is executing a misaligned memory
access).

● Wrong answer: The execution completed successfully,
the two output buffers are equal but they do not match
those  produced  by a  fault-free  execution.  Moreover,
the MPU did not  trigger  the non-maskable  interrupt,
and the watchdog timer did not expire. This condition
corresponds to the case, in which the fault produced a
misbehavior,  but  escaped  all  the  error  detection
mechanisms our architecture offers.

In  our  experiments  we  considered  a  data-processing
benchmark composed of a 16-tap finite impulse response filter
processing 512 samples of a 500Hz tone sampled at 8KHz. The
filter is implemented in the direct form, and its coefficients are
chosen  to  obtain  a  1KHz  low  pass  filter.  Then,  a  further
processing based on computing the square root of the obtained
values  is  executed.  Benchmark  execution,  according  to  the
sequence of operations described in Section II.B. lasts for about
8 million clock cycles. 

During  preliminary  injection  experiments  to  tune  the
system, some faults were identified that put the processor in a

halt state, leading to a SEFI condition detected as timeout. By
analyzing these faults, we found that the halt condition is the
result  of a fault  leading to a jump into an unused code area
where the custom instruction opcode is found (resulting from
random initialization of the memory).  The NIOS-II processor
has  a  reserved  “custom  instruction”  opcode  to  enable
instruction-set  extensions  through  the  addition  of  custom
hardware. The opcode for the custom instruction is predefined
and it  is  not  detected as illegal,  even if  the processor is  not
equipped with the custom hardware to execute this instruction.
To avoid this situation we initialized the whole unused memory
with an illegal opcode. In this way, any fault causing a jump to
a word in the unused memory triggers an exception, and can be
detected.

Once  the  system  has  been  set  up  and  tuned,  we  run  a
preliminary set of injection results, during which we injected
100,000 SEUs in the processor program counter, only. These
experiments were useful for getting an initial indication of the
soundness of the approach by considering very critical faults,
which  may  dramatically  harm the  health  of  the  system.  We
observed the following classification of fault effects:

No effect 6178

Data detection 8498

Exception 63110

Timeout 0

Trap 22161

Wrong answer 53

Total 100000

From these results we can see that 53 of the injected faults
(0.053 %) escaped the detection mechanisms the architecture
embeds. Moreover, by looking in more details to the results, we
observed that the following traps are executed: 

● 9.029 illegal opcode traps, indicating the effectiveness
of properly initializing the unused memory,  which is
likely to allow avoiding the timeout condition; 

● 4.448 misaligned data address trap; 

● 8.683 misaligned destination address trap;

● 1 supervisor only instruction trap.

The results suggest that the processor already embed very
powerful  mechanisms  for detecting misbehaviors  induced by
SEUs.

We also observed that SEU effects are strongly related to
the position of the fault in the Program Counter. All the faults
affecting  bits  0  or  1  on  the  Program  Counter  (the  least
significant  bits)  were detected by misaligned memory access
traps. On the other side, all the faults affecting the highest order
bits  of  the  program  counter  provoked  accesses  out  of  the
memory  regions  configured  on  the  MPU,  and  consequently
were  detected  as  region  violation  exceptions.  For  the
intermediate  range  of bits,  the fault  effects  gradually  change
from a majority of no effect and data detection to a majority of



illegal  instruction  and  region  violation  exceptions  as  the
affected bit varies from lower to higher order bits.

IV. CONCLUSIONS AND FUTURE WORKS

As reprogrammable FPGAs become the devices of choice
for  developers  of  safety-  or  mission-critical  applications
operating  in  radioactive  environments  suitable  mitigation
techniques  are  needed  against  soft  errors  originated  in  the
FPGA devices. In this paper, we describe an architecture that
exploits  task-level  redundancy  in  combination  with  already
available IP cores for implementing a robust processor-based
system with respect to SEUs. Preliminary results focusing on
the processor program counter outline the effectiveness of the
architecture, and the overhead analysis shows that the proposed
architecture  is  effective  in  reducing  the  resource  occupation
with respect to N-modular redundancy, at an affordable cost in
terms of application execution time. The reported results allow
a  deeper  understanding  of  the  fault  behavior  and  of  the
effectiveness of the different fault detection mechanisms.

As  future  activities  we  intend  to  further  validate  the
robustness  of the  architecture  by performing  more  extensive
sets  of  injection  experiments.  Moreover,  we  intend  to

implement  mitigation  techniques  against  SEUs  affecting  the
FPGA configuration memory, and to assess the robustness of
the obtained system by means of accelerated radiation testing.
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