
S. Balandin et al. (Eds.): NEW2AN/ruSMART 2011, LNCS 6869, pp. 274–286, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Mobile Agents Model and Performance Analysis of a
Wireless Sensor Network Target Tracking Application

Edison Pignaton de Freitas1,2, Bernhard Bösch1, Rodrigo S. Allgayer3,
Leonardo Steinfeld4, Flávio Rech Wagner2, Luigi Carro2,

Carlos Eduardo Pereira2,3, and Tony Larsson1

1 School of Information Science,
Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden

2 Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
3 Electrical Engineering Department, Universidade Federal do Rio Grande do Sul, Brazil

4 Electrical Engineering Institute, Universidad de la República, Uruguay
{edison.pignaton,tony.larsson}@hh.se, berbos09@student.hh.se,

leo@fing.edu.uy, {flavio,carro}@inf.ufrgs.br,
{allgayer,cpereira}@ece.ufrgs.br

Abstract. Advances on wireless communication and sensor systems enabled
the growing usage of Wireless Sensor Networks. This kind of network is being
used to support a number of new emerging applications, thus the importance in
studying the efficiency of new approaches to program them. This paper
proposes a performance study of an application using high-level mobile agent
model for Wireless Sensor Networks. The analysis is based on a mobile object
tracking system, a classical WSN application. It is assumed that the sensor
nodes are static, while the developed software is implemented as mobile agents
by using the AFME framework. The presented project follows a Model-Driven
Development (MDD) methodology using UML (Unified Modeling Language)
models. Metrics related to dynamic features of the implemented solution are
extracted from the deployed application, allowing a design space exploration in
terms of metrics such as performance, memory and energy consumption.

Keywords: Wireless Sensor Networks, Multi-agents, Overhead, Energy
Consumption.

1 Introduction

Wireless sensor nodes are embedded systems used to implement a large number of
applications in different areas including those where wired solutions are not suitable.
Their potential usage is increased when they form a network of cooperating nodes, i.e.
a Wireless Sensor Network (WSN). A WSN is an ultimate technology for applications
resembling environmental and area monitoring to acquire different types of
measurements. WSNs are used for monitoring wildlife, water resources, security
perimeter or collect data for disaster relief and prevention systems [1].

In spite of its enormous potential uses, the real deployment of WSN-based systems
presents big challenges, particularly in relation to energy resource usage. Usually,

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 275

sensor nodes have their energy supply provided by batteries, which represent limited
resources. Even in the best cases in which the sensor nodes are able to harvest energy
from the surrounding environment, like piezoelectric sensor nodes, the available
energy is still a concern. Moreover, their processing capabilities are also limited,
which makes it hard to run very complex applications in a single node. Based on that
and on the inherent distributed nature of sensor network applications, distributed
programming is highly recommended and used for WSN [2].

Another important aspect of WSN applications is related to their operation
environment. Usually WSNs operate in harsh and very dynamic scenarios, in which
constant changes imply in disturbances of the previous network topology or sensing
conditions, by appearance of obstacles or occurrence of communication interferences,
for instance. Moreover, the events of interest that have to be monitored per se might
be highly dynamic, which requires flexible capabilities in terms of behaviors and
functionalities. This dynamicity demands additional features from the WSN, such as
reprogrammability, adaptability and autonomy in order to change the sensor nodes’
behavior according to the current needs [3]. However, besides the original complexity
came from the distributed nature of WSNs applications, these additional desirable
features increase even more the overall system programming complexity.

As a consequence of this growing complexity of WSN applications, the
deployment of such applications becomes even more challenging. Thus, the
development of new programming models is an essential step towards solutions that
address such complexity but at the same time present an acceptable level of energy
efficiency. In spite of the existence of models used for distributed systems for
ordinary computing platforms that could solve the problems related to the distributed
nature of WSN applications, they do not address the needs related to the constrained
energy and processing resources presented by WSN nodes. Recognizing such
situation, research is being developed towards adaptation of such models to the WSN
reality.

A promise model to be used in WSN is based on mobile software agents [4]. By
the inherent distributed nature of the computation performed by mobile agents, they
fit to the distributed processing needs of WSN applications. An example of such
usage is presented in [5], in which firefighters use WSN with mobile agents to
monitor the progression of fire. However, a drawback of approaches as [5] is the ad
hoc nature of the solution and the low level programming paradigm used to
implement it, which makes it hard to evolve or adapt such systems. Thus, there is a
need for higher level programming languages and methodologies that allow the
adoption of flexible mobile agents’ solutions. This alternative is becoming possible
with the appearance of virtual machines for embedded systems with scarce resources,
such as Squawk [6], allowing the use of programming languages with higher levels of
abstraction such as Java. These advances combined with the usage of methods with
higher abstraction methods, like Model-Driven Development (MDD) [7], allows the
systems designers consider different alternatives for implementation and deployment
in early stages of the software lifecycle. Moreover, these methods allow the
traceability of changes across the design and implementation, which provides a
smoother transition between different software versions, when changes are required.
However, again the concern about resource usage has to be considered, as higher level
programming alternatives for agents may impose high overhead depending on the

276 E.P. de Freitas et al.

software design and how the implementation is carried on. Thus, a study about these
issues is required to indicate how the adoption of this type technology with high level
abstraction can be improved in WSN domain.

This paper aims to analyze the performance of a WSN system programmed with
mobile software agents using a MDD methodology. To carry out this analysis, the
classical mobile object tracking application for WSN was chosen [8]. The goal is to
evaluate the overhead imposed by an agent support platform in relation to the
application. Metrics are extracted from the implemented application to allow the
analysis of its performance and the influence of the supporting platform. The outcome
of these metrics provides valuable information for design space exploration, making
the system designers aware about their decisions and choices during system design
and implementation. The implementation was performed using AFME [9], which
provides the support for the agents. It is a framework to develop agent-based systems
using Java programming language. The implemented application was deployed on a
network of SunSPOT sensor nodes [10].

The rest of the paper is organized as follows: Section 2 describes the methodology
used to perform this study. In Section 3, the mobile object application is presented
and the agent system is detailed. Section 4 presents the application models.
Implementation details of the performed simulations along with acquired results are
presented in Section 5. Finally, Section 6 presents the conclusion and future work.

2 Study Methodology

The road map for the proposed study is composed by three major steps: 1)
Application modeling; 2) Application implementation; and 3) Metrics assessment and
evaluation.

In the first step, the mobile object tracking application was abstractly modeled
using UML use case diagrams to study the system requirements and to identify its
functionalities. Then, based on the information achieved by this first analysis, the
application was modeled according to the features provided by AFME framework [9].
The resulting model is composed by class and sequence diagrams.

AFME is a low scale agent framework, which was developed to enable the creation
of planned agents for mobile devices and resource constrained devices. It is designed
to handle the Constrained Limited Device Configuration (CLDC)/Mobile Information
Device Profile (MIDP) subset of the Java Micro Edition (J2ME) specification. AFME
is based on Agent Factory, a large framework for the deployment of multi-agent
systems. The framework is complaint with FIPA specification enabling its
interoperability with other FIPA-compliant environments. AFME uses a rule-based
concept similar to expert systems [11] to represent the agents’ behaviors and maintain
a reduced set of meta-information about itself and its surrounding environment as the
agents’ belief. Rules’ operations over the belief set determine the agents’
commitments, which finally provide the actions that the agents should perform.

Based on the developed model, the second step could take place and the
application was developed in Java programming language using AFME framework
for execution on SunSPOTs.

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 277

The third step was achieved by acquiring the dynamic metrics of developed
application, by instrumented code to retrieve performance measurements during the
system execution on the SunSPOT platform. Finally, the acquired data is reported and
discussed.

3 Mobile Object Tracking Application

The mobile object tracking application used in this study is based on the experiment
described in [8], which uses the paradigm of software agents for location and
tracking. However, unlike this referred study where agents were static, in the
approach here presented the agents migrate among the sensor nodes enabling location
and tracking with the cooperation among the nodes. This approach can reduce the
amount of data exchanged among nodes, thus lowering the energy consumption.

The network is composed by distributed nodes, which have ability to perform
sensing, processing and communication with their neighbor nodes. It is assumed that
the sensor nodes have sensor devices which are able to measure the distance to the
target. It is possible to use various types of sensors (sound, light and radiofrequency)
for this purpose, which may be active or passive to measure the distance to the target,
depending on the characteristics of the target object. This work considers that the
target object emits radiofrequency signals, called beacons, which are detected by
receivers located at each sensor node in the network. Depending of the signal strength
received by the nodes, the software calculates the distance between the sensor and the
target object based on an omnidirectional model of electromagnetic waves
propagation. This model provides that the signal power decays quadratically with the
distance between transmitter and receiver.

There are three types of nodes in the network: sensor node, coordinator node and
target object. Each node has a distinct function in the application. The target object is
characterized by the emission of beacons on the network. The sensor node is
responsible for performing the sensing of signals sent by the target object. These
nodes are in a greater number in the network. The coordination node is responsible to
manage the entry and exit of agents in the network and stores a database with the
trajectory of the target object. Figure 1 illustrates this scenario.

The algorithms for location and tracking of the target object in the network are
performed by software agents which can be of two types: Resident Agent (RA) and
Collaborative Agent (CA). The RA agents can be found fixed in a sensor node and
can be a RA_Coordinator (RAC) when the node is a coordinator node or
RA_SensorNode (RAS) when it is in a sensor node. They communicate with CA
agents when these agents are on the same node. The CA agents have the ability to
move among the nodes of the network, being responsible for performing tracking and
calculating the position of target objects. They can be a CA_Master (CAM) or a
CA_Slave (CAS). As CAM they have the task of coordinating a cluster formed by the
sensor nodes that are closer to the target to calculate the location of the target object.
This is done by requesting data from others agents and checking when an agent
should migrate to another node. As CAS they have the function of cooperating with
the agent CAM by sending data.

278 E.P. de Freitas et al.

The injection of agents in the network is accomplished by the coordinator node.
When a sensor node detects a beacon from a target object for the first time, it informs
the coordinator node (Figure 1 (a)). The coordinator node waits to receive notification
of at least three nodes to inject the CAM in network. The sensor node which receives
the CAM will be chosen by the shortest distance between the sensor node and the
target object (Figure 1 (b)). When the CAM is initialized in the sensor node, it notifies
the resident agent about its presence in the sensor node and that it is able to cooperate.
Then the resident agent begins to send the distance information to the collaborative
agent. This node makes two clones of the agent generating the CASs, and sends these
clones to neighboring nodes (Figure 1 (c)). The CASs are initialized in the sensor
nodes that received them and inform the respective resident agent, which initiate to
send the measured distances. Then CASs send the distance to the CAM.

Fig. 1. Agents movement in the sensor network for locations and tracking of target object

Aiming to limit the complexity of application, some characteristics were identified
and restrictions applied for the implementation:

- Only one target object is presented within the network at a time;
- The sensor nodes and the target object are on a flat surface (2D). Thus, it is

possible to determine the position of the target based on the distance measured by at
least three sensor nodes. For the case of a 3D surface, not addressed in this work, it
would be required the distance values from at least four sensor nodes;

- The relation of the distances between nodes and the communication range assures
direct communication between at least three nodes, i.e. an error free communication is
assumed;

- The routing protocol allows sending messages to the coordinator, and its current
position is known by the network nodes.

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 279

3.1 Calculation of the Target Object Position

The calculation of the target object position is accomplished by triangulation among
three neighboring sensor nodes in the network. The network has a regular shape
where the nodes are arranged in a triangular fashion equidistant from one another.
The formula for determining the position of the target object (x0, y0) is represented by
(1) where it is necessary to know the position of three sensor nodes (xi, yi) and the
distances of these nodes to the target object (ri) for i = 1, 2, 3.

The CAM agent is responsible for execute the triangulation algorithm. It has the
knowledge of the position of two neighboring nodes and obtains the distance
measured by the CAS agents in relation to the target object.

 bA
y

x
p ⋅−== ⎥

⎦

⎤
⎢
⎣

⎡ 1

0

0
0 (1)

where:

 ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

⋅=
2323

13132
yyxx

yyxx
A (2)

and

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+−

−+−
−

−

−
=

)
2

3
2

2()
2

3
2

2(

)
2

3
2

1()
2

3
2

1(

)
2

3
2

2(

)
2

3
2

1(

yyxx

yyxx

rr

rr
b (3)

The position calculation can degrade the performance of sensor nodes which have a

limited processing power and energy sources like traditional sensor network nodes.
Thus, optimizations can be performed in the algorithm for calculating the relative
position of the target object given by (1)-(3). The matrix A, given by (2), will remain
constant until one of the collaborating agents have to perform a migration. Then, the
result of the inverse operation of matrix A can be stored until a migration occurs,
which will reduce the number of operations performed by the algorithm. The same
can be applied to a part of the vector b, represented by (3).

3.2 Calculation of Agent Movement (Migration)

The collaborating agents have the characteristic of mobility between the sensor nodes
to follow up the target object, minimizing the amount of messages exchanged
between network nodes which is one of the goals of distributed processing and
collaborative information processing performed by the multi-agents. This feature
requires that agents have knowledge about the network topology and to which node
they have to migrate in order to be closer to the target object. In Figure 1 (d) depicts
the migration of agents between network nodes.

The CAM determines if a CAS agent, or itself, needs to migrate by comparing the
distance between the current node that hosts the agent and the target object to a
predetermined threshold value. Then, due to the equilateral triangular nodes
distribution in the network, the CAM agent can calculates the position of the node

280 E.P. de Freitas et al.

which the agent has to migrate, by using (4). In this case the agent located at (x2, y2)
has to migrate to the node located at (x4, y4).

 2314 xxxx −+=

 2314 yyyy −+=
 (4)

4 Application Model and Implementation

The software was developed based on models created for the application. This
software development approach based on the creation and specification of models for
the describing application is called Model Driven Development (MDD) [7]. This
approach uses specifications (called models) developed in high-level domain
languages for software specification, in which UML [12] is a widely used standard
and the one chosen for this work.

Some issues needed special attention. First, the application considered in this work,
as any collaborative one, involves different parts that run independently in each node
of the network, so each of them need to be modeled. Another important issue is the
interaction between the network nodes through communication messages may be
modeled in two different ways: modeling the communication through a "network"
object, where all network messages are sent to and by this object; or modeling the
communication channel as an association between the objects that need to interchange
messages, so they directly call the appropriate method of each other. This second
option translates better the distributed nature of WSN applications, such as the
tracking application studied in this work, besides it is simpler to be implemented than
the first one, due to the fact of avoiding an intermediary element in the system. For
these reasons the second alternative was the selected one.

The Class Diagram is one of the main structural diagram in the UML, in which the
classes, interfaces and their relationships are represented. The developed model was
divided in three main class diagrams, one for each type of node, namely sensor node,
coordinator node and target object. Additionally other class diagrams were created for
the CAs. The model includes the classes from the application itself plus the essential
ones from the AFME framework. Notice that the framework has many other classes,
which are not presented in this paper because they were not used in this project or
they are not essential for the overall understanding of the software structure. Parts of
the developed class diagrams are presented in the following, which were selected in
order to show the relationship between the most important classes from the
framework and those from the application. Figure 2 shows the class diagrams for the
classes that provided the support to run the agents in the three different kind of nodes,
i.e. target object (Figure 2a), sensor node and coordinator node (Figure 2b).

The class diagram of Figure 2a show the class RATargetAgentPlatform
which implements the interface Platform from the AFME API, which provides the
basic functionalities to the agents that are hosted in a node. This class contains an
instance of the BasicRunnable class, which provides the basic functionalities to
execute an agent, updating its beliefs and proceeding the agent’s control process. The
instance of this class that represents an agent is the RATarget in the case of target

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 281

node. Figure 2b presents a similar diagram for the sensor and coordinator nodes. In
the case of these two nodes, besides the implementation of the Platform interface,
the interface MigrationPlatform is also implemented by the class
RASensorAgentPlatform, which will instantiate an object RASensorNode for
the sensor nodes and an object RACoordinator for the coordinator node from the
class BasicRunnable. The interface MigrationPlatform provides the
functionalities that are need for both types of nodes, sensor and coordinator, to send
and receive the mobile agents in the application, i.e. the CA_Master and CA_Slave.

 (a) (b)

Fig. 2. Class diagram for the basic classes supporting the agents in each node: (a) Target
Object; (b) Sensor and Coordinator Nodes

The classes shown so far do only provide the support to run the agents in the
nodes. In AFME, the real semantics of the agents are expressed classes representing
the agents’ perceptions, the Perceptors, and the classes that implement their actions,
the Actuators. Figure 3a presents the classes that model the actuator for the
RA_Target, while Figure 3b presents the actuator and perceptor of the RA_Sensor.

Notice that the RA_Target has no perceptor and just an actuator, the BeaconAct
in Figure 3a, which is responsible for the action related to sending beacons which will
be perceived by the RASensorNode, by means of the functionality implemented in the
class Check4BeaconPer presented in Figure 3b. This perception will be stored in
the agent’s belief and informed to other agents resident in the node by means of the
functionality in the implemented in the InformActuator class (Figure 3b).

Figure 4 present the class diagram with the perceptors and actuator for the
RA_Coordinator.

282 E.P. de Freitas et al.

 (a) (b)

Fig. 3. Class diagram: (a) RA_Target Actuator; (b) RA_Sensor Perceptor and Actuator

 (a) (b) (c)

Fig. 4. Class diagram for RA_Coordinator: (a) Module; (b) Perceptors; (c) Actuators

The CoordinatorModule presented in Figure 4a extends the class Module
from the AFME API, and it is mainly responsible for deploying the CA agents in the
network. The result of this deployment is perceived by the
CoordinationModPerceptor (Figure 4b), which keeps track of the CA agents
after the deployment, updating the RACoordinator beliefs. This deployment of the CA
agents is done after the RASensorNodes have sent the information about the first
beacon to the RACoordinator, which handles this information by the actuator
DataReceiveAct (Figure 4c).

Figure 5 presents perceptors and actuators of the CA_Master agent. The
ReadBeaconInfoPer class is responsible for the update of the belief state upon a

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 283

received beacon from the target node, while the PositionModPer updates the
target position information (Figure 5a). The MigrateActuator is responsible for
the agent migration when the target leaves the range of sensing of the current node in
which the agent is hosted, while the InformActuator is responsible to send
messages to the CA_Slave in the neighbor sensor nodes.

 (a) (b)

Fig. 5. Class diagram for CA_Master: (a) Perceptors; (b) Actuators

The class diagram for the CA_Slave has similar classes as presented for the
CA_Master, but with differences in the semantic implemented in its actuators and
perceptors, such as sending of information about the target position to the CA_Master
and the migration upon receiving a message from the CA_Master.

5 Results: Metrics Analysis

The developed software was evaluated by means of extraction of dynamic metrics.
These metrics represent information about the application execution, which were
achieved during the system runtime by instrumented code. The measurements provide
information about the cost in running the application in terms percentage of CPU time
utilization, average energy consumption and memory usage.

The testbed was deployed in a network of six SunSPOT nodes: one represent the
target object to be detected by other four sensor nodes and the last one was used as a
reference node. The reference node was without any agent running on it during the
whole time of the experiment, namely Configuration 1. The node representing the
target object ran the RA_Target agent, Configuration 2. The other sensor nodes were
initially running the RA_SensorNode agent to perform the target detection which was
out of the sensors' range, Configuration 3. Then, the nodes were classified during the
experiment according to its workload (processing and communication) and depending
on the agents they were hosting. When the target entered to the network, three of them
performed the detection, Configuration 4. Finally, they performed the target tracking,

284 E.P. de Freitas et al.

two nodes running a CA_Slave agent, Configuration 5, and one a CA_Master,
Configuration 6. The RA_Coordinator was running in a PC that represented a base
station.

Table 1 presents the results for CPU utilization and current consumption, directly
related to the energy drain. Configuration 2 does not consume much processing
resources, but energy, which is explainable because the target node periodically sends
beacons to the network and wireless communication module demands significant
energy to send data. Configuration 3 has a very small CPU utilization if compared
with the reference Configuration 1, which is explainable by the fact that it is just
waiting for receiving beacons. Its energy consumption is not much high either.
However, by the appearance of the target in the network, the sensor nodes in the
target range will be in Configuration 4, which presents higher energy consumption,
which is explainable by the first beacon message that they send to the coordinator
node. The CPU utilization is increased, but not much significantly. With the injection
of the mobile CA agents and consequently move to Configurations 5 and 6, it is
noticed a significant increase in the CPU utilization, as well as in the energy
consumption, which are explained by the execution of the calculations presented in
Section 3, as well as the communication among the CA agents.

Table 1. Results for the CPU Utilization and Current Consumption

Sensor Node
Configuration

CPU Utilization
(%)

Current
Consumption (mA)

1 - No agent - Reference node 1,52 59,7
2 - Target Sunspot 17,26 74,4
3 - No CA / No Target present 3,44 65,8
4 - No CA/ Target detection 15,73 71,7
5 - CA_Slave 28,32 73,9
6 - CA_Master 60,85 85,1

Table 2 presents the amount of memory used in each node according to its

configuration, and the remaining available memory space. In terms of memory, the
burden of the agent oriented approach is not as strong as it is for the energy and CPU
usage. As expected, the sensor node running the CA_Master requires more memory,
but the difference in relation to the other configurations is not too significant.

Table 2. Results for the memory usage

Sensor Node
Configuration

Memory

Conf 2
Target

Confs 3, 4

Sensor

Conf 5
 Slave

Conf 6
Master

Free (Bytes) 337164 334852 320300 301164
Used (Bytes) 106359 108668 123221 142358

Mobile Agents Model and Performance Analysis of a WSN Target Tracking Application 285

By analyzing the achieved results, it is possible to evaluate the imposed overhead
due to the use of the adopted agent-oriented approach to implement the WSN
application. This information can be used by the system developer to consider
alternatives to reduce this overhead, for example, observing the high cost in the node
running the CA_Master, the designer can consider redistribute some of the
computation to the other nodes that run the CA_Slave. Another possible consideration
is in relation to messages exchanged among the nodes, which will impact the design
of the application.

6 Conclusion and Future Work

This paper presented the application of mobile agents to implement WSN
applications. The classical target tracking application was chosen as case study, which
was implemented, deployed in real sensor nodes, the SunSPOTs, and evaluated. The
achieved results indicated a significant consumption of processing resources and
moderate energy consumption. The memory utilization was not a specific concern, for
this particular application in the SunSPOT platform, as a significant amount of
memory was not used. These results can be used as basis for new designs in which
high level decisions can have their impact considered in the system performance.

There are a number of tasks in the pipeline to proceed with this work. One of them
is to perform the implementation of the same design using different agent
frameworks, so that the specific burden due to the supporting framework can be
evaluated and compared. Moreover, other metrics can be acquired, such as static ones
to compare different implementations. Another future work is to breakdown the
energy consumption for different workload cases, to better understand the impact of
an agent-base framework in the communication channel utilization, usually pointed as
the major energy consumer.

References

1. Arampatzis, T., Lygeros, J., Manesis, S.: A Survey of Applications of Wireless Sensors and
Wireless Sensor Networks. In: Proceedings of the 13th Mediterranean Conference on
Control and Automation, Limassol, Cyprus, pp. 719–724 (2005)

2. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach.
Elsevier, Amsterdam (2004)

3. Allgayer, R.S., Götz, M., Pereira, C.E.: FemtoNode: reconfigurable and customizable
architecture for wireless sensor networks. In: Rettberg, A., Zanella, M.C., Amann, M.,
Keckeisen, M., Rammig, F.J. (eds.) IESS 2009. IFIP Advances in Information and
Communication Technology, vol. 310, pp. 302–309. Springer, Heidelberg (2009)

4. Lange, D.B., Oshima, M.: Seven Good Reasons for Mobile Agents. Communications of the
ACM 42(3), 88–89 (1999)

5. Fok, C.-L., Roman, G.-C., Lu, C.: Rapid Development and Flexible Deployment of
Adaptive Wireless Sensor Network Applications. In: Proc. of the 24th ICDCS, pp. 653–662
(2006)

286 E.P. de Freitas et al.

6. Simon, D., Cifuentes, C.: The squawk virtual machine: Java on the bare metal. In:
Proceedings of Conference on Object-oriented Programming, Systems, Languages, and
Applications, pp. 150–151. ACM Press, New York (2005)

7. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research
Roadmap. In: Proceedings of Future of Software Engineering 2007, pp. 37–54. IEEE
Computer Society, Washington, DC (2007)

8. Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location tracking in a wireless sensor
network by mobile agents and its data fusion strategies. In: Information Processing in
Sensor Networks Book, p. 554. Springer, Berlin (2003)

9. Muldoon, C., O’Hare, G.M.P., Collier, R., O’Grady, M.J.: Agent Factory Micro Edition: A
Framework for Ambient Apps. Comp. Science, pp. 727–734. Springer, Berlin (2006)

10. SunSPOTWorld, http://www.sunspotworld.com (accessed April 2011)
11. Giarratano, J.C., Riley, G.: Expert Systems: Principles and Programming. Brooks/Cole

Publishing Co., Pacific Grove (1989)
12. Object Management Group, Unified Modeling Language, UML (2011),

http://www.uml.org (acessed March 11, 2011)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

