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Abstract: Some complex models are frequently employed to describe physical and mechanical
phenomena. In this setting, we have an input X, which is a time series, and an output Y = f (X)

where f is a very complicated function, whose computational cost for every new input is very high.
We are given two sets of observations of X, S1 and S2 of different sizes such that only f (S1) is
available. We tackle the problem of selecting a subsample S3 ∈ S2 of a smaller size on which to run
the complex model f and such that distribution of f (S3) is close to that of f (S1). We adapt to this
new framework five algorithms introduced in a previous work "Subsampling under Distributional
Constraints" to solve this problem and show their efficiency using time series data.

Keywords: optimal sampling; Kolmogorov–Smirnov; time series; encoding; dynamic time warping

1. Introduction

The study of the damage caused over time and stress on a mechanical part allows
for prediction of the failure of this part [1,2]. For this, it is necessary, on the one hand,
to have reliable data and, on the other hand, to have a model that is faithful to reality.
Such models are used to generate some scenarios using the solution of partial derivative
equations (PDEs). Their input is often composed of different variables in the form of a
time series denoted by X, and their output f (X) may be multidimensional and depend on
space and time. The use of such models consists of solving complicated PDEs, and each
generated scenario corresponds in the machine learning paradigm to an inference for a new
input X, and, therefore, to the computation of f (X). The more complex that these models
are, and the closer they are to reality, the more expensive they are in terms of computing
time and power. In practice, these calculations can take days or weeks.

Consider a set S1 = {X1, . . . , Xn1} with a distribution similar to that of the time series
X lying in a separable metric space (E , ρ). To each observation, we apply a deterministic
smooth function. This function, f : E → R, is expensive and complex and may be seen as a
black box. Moreover, we have a large sample S2 of size n2 with the same distribution as
X. We do not know the values f (S2). The goal is to find a subsample S3 ⊂ S2 of a size n3
smaller than n2 in such a way that the distribution of f (S3) is close to that of f (S1).

At first sight, this is a classic sampling problem. We can use sampling techniques
identical to those used in surveys as well as unsupervised [3] or supervised techniques [4–6].
Some recent algorithms were proposed in [7] to solve this problem for the general case of
variable X that lies in any metric space. We are interested, in this paper, in adapting such
algorithms for the case in which X is a time series. We explore, in this paper, two possible
adaptations; the first consists of encoding the time series X by independent features, and
the second using appropriate distances between time series and adjusting the sampling
algorithms to use such distances.

Eng. Proc. 2022, 18, 32. https://doi.org/10.3390/engproc2022018032 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022018032
https://doi.org/10.3390/engproc2022018032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-1632-7708
https://orcid.org/0000-0002-0468-4767
https://orcid.org/0000-0002-6160-9341
https://doi.org/10.3390/engproc2022018032
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022018032?type=check_update&version=2


Eng. Proc. 2022, 18, 32 2 of 7

This manuscript is organized as follows. In Section 2, we fix some notations that
will be used throughout the manuscript, and we specify the framework of the problem to
be solved. In Section 3, we describe the algorithms used in [7] to solve the problem. In
Section 4, we suggest alternative adaptations for these algorithms for their application to
time series. Section 5 gives an industrial application of these approaches. In Section 6, some
concluding remarks are provided.

2. The Problem Setting

Let S1 = {X1, . . . , Xn1} as a set of n1 time series following the same distribution µ as
X, and S2 = {X′1, . . . , X′n2

} as a second set of time series of size n2 coming from the same
distribution µ. Let f : E → R as a deterministic function that is very complicated and
hard to compute. The unknown distribution of f (X) will be denoted by F. Moreover, we
dispose of

Y1 =: {Yi = f (Xi) for i = 1, . . . n1}

of the images of the first sample S1 denoted f (S1). The images of S2 by f are not available.
From this information, we want to determine a subsample S3 ⊂ S2 of size n3 << n2

in such a way that the empirical distribution of f (S3) := { f (Xj) : Xj ∈ S3} will be close to
the distribution of f (X1).

Several approaches are possible for this problem in a general setting in which X is a
random variable in a separable metric space.

If µ1 stands for the empirical distribution of S1 and µ3 for that of a subset S3 ⊂ S2,
and the function f is regular, we look for a subset S3 such that a :

d(µ1, µ3), (1)

is minimal among all possible subsets. Here, d is a distance metrizing weak convergence,
similar to the Prokhorov distance. In the next section, we will describe some algorithms
proposed in [7] to solve this problem and that we aim to adapt to the time series.

3. Sampling Algorithms

We describe briefly some existing algorithms designed to solve our problem in a
general context where X is a random variable that lies in any metric space. A more detailed
description of these approaches may be found in [7].

Let S1 = {X1, . . . Xn1} and S2 = {X′1, . . . X′n2
} be two independent samples with

n2 > n1 that come from the same distribution of X.
Among the following algorithms, some make use of Y1, and others do not.

3.1. Extended Nearest Neighbors Approach

This algorithm does not make use of Y1. The selected subset S3 is simply the set of
the nearest extended neighbors of S1 in S2. Consider the nearest neighbors of S1 in S2,
d1, . . . , dn1 , their ordered distances and j(1), . . . j(n1) their indices.

Suppose that two elements of S1, called Xi and Xj, have identical nearest neighbors,
X′l , with respective distances di and dj, and suppose that if di < dj, then X′l will be the
nearest neighbor of Xi, while for Xj we will have to take its second nearest neighbor, and
so on. This approach is based on the idea that if the elements of S2 are close to those of S1,
then the images of S3 by f should be close to those of S1.

3.2. A Partition-Based Algorithm

For this algorithm, a partition of the set Y1 into L clusters of size m is built s.t. n = mL
Denote the clusters by Ck, their complements by Cn−k = S1 \ Ck and Fk the empirical
cdf of Y in Ck. Denote by Ĉk the cluster which minimizes ‖Fk − Fn−k‖, and the subset
C̃k = {Xi1, . . . Xik} ⊂ S1 fulfilling f (C̃k) = Ĉk which is a subset of S1. S3 is defined as the
set of the nearest neighbors of C̃k from S2. The partition used in this algorithm may be any
random partition, or any partition obtained from a clustering algorithm similar to k-means.
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3.3. A Histogram-Based Approach

The idea in this algorithm is to use the empirical distribution of the sample Y1. First,
Y3 is obtained by a stratified sampling from Y1 where the stratas are obtained using the
bins of the histogram built on Y1. S3 is then taken to be the set of the nearest neighbors of
f−1(Y3) from S2. The empirical distribution of f (S3) is close to that of f (S1), S1, and the S3
distributions are expected to be close if f is smooth. Two alternatives to this algorithm have
been proposed in [7], replacing the stratified sampling to get Y3 with either the support
points approach [3] or the D-optimality [4].

4. Adaptation of Algorithms to Time Series

We suppose that the time series available in both samples S1 and S2 have different
lengths. In this section, we will show how the algorithms presented in Section 3 may
be adjusted to be used when X is a time series. For this purpose, two approaches are
considered, encoding and choosing appropriate distances for time series. For the first
approach, each time series in the data is embedded in a vectorial metric space through
feature extraction; features may be used arbitrarily or obtained from an autoregressive
linear model applied to each time series.

4.1. Encoding

We experiment with two types of encodings.

• Simple statistical feature extraction
The p statistical characteristics are computed for each time series. These include the
minimum, maximum, sum, number of times a threshold is crossed, length of zero
periods, and so on. These engineering features depend on the dataset at hand and its
characteristics.

• Using linear autoregressive (AR) models
A linear autoregressive model is adjusted to each time series with a maximum order
pmax. Once the optimal orders pj are obtained for all time series in any sample, we fix
the final desired order as p = maxj{pj}. Finally, each time series is represented by its
p estimated coefficients.

4.2. Using Appropriate Distance

Most of the algorithms described in Section 3 are based on neighborhood and, thus,
distances. Here, we suggest replacing the Euclidean distance used in the general framework
with dynamic time warping (DTW).

DTW allows for comparison of two time series by measuring their similarity, even if
they have different lengths [8,9].

Consider the two time series A = {A1, . . . , An} and B = {B1, . . . , Bm} with n 6= m,
which lie in the same dimensional space. The goal of DTW is to find the optimal temporal
alignment between A and B; each point from A is associated with at least one point from B
(and reciprocally), as shown in Figure 1. The optimal alignment, corresponding to the DTW
distance between A and B, is the one giving the minimum total length between the couples
of aligned points. This may be computed by resolving a linear programming problem.

Figure 1. Time points alignment between two time series [10].
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For a long time series, the DTW may be very complex to compute. The computation
may be simplified using fast versions of the underlying optimization algorithm or by
sampling the time series using arbitrary frequencies.

5. Real Dataset Application

We apply now the proposed approach to a time series dataset concerning real cus-
tomers provided by RENAULT ( the French car industry). All experiments were run using
the R software [11] together with packages [12,13].

5.1. Driving Behavior Dataset

The variable X in our dataset is the time series of driver’s speed. A large number of
time series are available sampled at 5 Hz with a recording duration varying from a few
days to a few weeks. Sampling at 5 Hz represents 86,400 points per day. This means that
the time series studied are very large and different. An example of such time series is
provided in Figure 2. We have used a selected sample of 691 customers.

Figure 2. Complete driver’s speed (left) and zoomed part (right) .

As these time series are speed traces of real customers, they vary from 0 to 150 km/h in
our sample. Long and short stays at zero may be observed in these time series, correspond-
ing to either night periods or shorter periods that correspond to car pauses, such as those
for red lights. The lengths of the time series in our sample vary from 25,000 points to several
million. Figure 3 shows the distribution of the time series lengths and the distribution of
the zero values among the time series.

Figure 3. Histograms of time series length (right) and number of zeroes in each time series (left) .
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In addition, for the 691 customers, a complex numerical model f was run in order to
estimate the maximum soot released from each customer’s vehicle. This model requires
as input x the speed data time series together with many other characteristics of the
vehicle. The maximum soot is the output of interest. As this model requires very long
time computations (several hours for each customer depending on its parametrization), the
objective is to select from among a dataset not used with the model, such as a sample of
customers, for which the model would issue a similar distribution for the maximum soot
to that already modeled for the customers.

5.2. Results

In this section, we provide the results of the algorithms proposed in Section 3: the
extended nearest neighbors, the partition-based algorithm, the histogram-based approach
and both variants using the support point and D-optimality.

To test these algorithms, the sample was randomly split into two parts with S1 having
100 customers, and S2 having the other 591. Each algorithm was run 100 times, and, from
each run, the obtained optimal subsample S3 was compared to S1 using the Kolmogorov–
Smirnov (KS) two samples test between f (S1) and f (S3), as the output of the model is
known for all the samples in our dataset. Table 1 gives the average values of the KS statistics
and the p-values over the 100 runs. We can observe that, depending on the encoding used,
the algorithms do not react in the same way. We can see that the histogram-based algorithm
provides the same results for the AR coefficients and feature extraction, though it is less
efficient with the DTW. For the partition-based algorithms, the DTW performs much better
than the two encoding approaches. While for the nearest neighbors and the support point,
we get very close results for both encodings. Finally, for the D-optimality, we can see that
the DTW and AR features provide the same results, which are better than those for feature
extraction.

Table 1. Average results for each encoding and for each algorithm over 100 runs. NN = nearest
neighbors.

Encoding Autoregressive Feature Extraction Dynamic Time Warping
Algorithm N3 Stat p-Value N3 Stat p-Value N3 Stat p-Value

Extended NN 88 0.12 0.53 91 0.11 0.60 100 0.11 0.59
Partition-based 10 0.27 0.57 10 0.27 0.55 69 0.13 0.53

Histogram-based 48 0.44 0.0001 48 0.44 0.0001 48 0.46 0.0001
D-optimality 100 0.12 0.54 16 0.21 0.61 100 0.11 0.59
Support point 50 0.15 0.50 50 0.14 0.59 50 0.14 0.57

Figure 4 shows the distribution of the p-values and the KS statistics over the 100 runs
for all algorithms, the two encodings and DTW.

We can see that the deviation of the computed statistics are different for the three
approaches: the AR, feature extraction and DTW. We can see that, for all algorithms, the
AR encoding results are more unstable than those of the two other approaches.
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Figure 4. Results of all algorithms by encoding from left to right: AR features, feature extraction and
DTW. Algo 1 = Extended nearest neighbors; Algo 2 = Histogram-based; Algo 3 = Partition-based;
Algo 4 = D-optimality; Algo 5 = Support point.

6. Discussion and Conclusions

In this work, we have tackled the problem of selecting a subsample of time series
to satisfy some distributional constraints. We have adapted several algorithms proposed
recently in a more general framework to our context. All of the proposed approaches
were tested over a real dataset of a car’s speed time series. The results obtained show
that our algorithms work as expected, except for one approach: the histogram-based one.
To adapt the existing algorithms we have suggested various numerical representations
for the time series and shown that different choices for encoding may affect the results
significantly. More complex models than the autoregressive approach, or more refined
statistical representations for the time series, might be more efficient. One idea under
investigation is to use supervised embedding through recurrent neural networks.
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