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Resumen

En este trabajo probamos la conmutatividad graduada trenzada de la cohomoloǵıa de
Hochschild de A con coeficientes triviales, donde A es un álgebra de Hopf trenzada en la
categoŕıa de módulos de Yetter-Drinfeld sobre el álgebra de un grupo abeliano, bajo ciertas
condiciones de finitud en una resolución proyectiva de A como A-bimódulo. Esto generaliza
un teorema de Mastnak, Pevtsova, Schauenburg y Witherspoon a un contexto que incluye
álgebras de Nichols tales como el plano y el superplano de Jordan. Para demostrar nuestro
resultado construimos una estructura de coduoide a menos de homotoṕıa en una categoŕıa
duoidal cuyos objetos son complejos de cadenas de A-bimódulos. También probamos que
en cualquier categoŕıa monoidal trenzada el complejo de Hochschild de una biálgebra
trenzada A es un comonoide coconmutativo a menos de homotoṕıa con el producto de
deconcatenación, el cual induce el producto cup en la cohomoloǵıa de Hochschild.

Palabras claves: cohomoloǵıa de Hochschild, categoŕıas monoidales trenzadas, categoŕıas
duoidales, álgebras de Nichols, álgebras de Hopf.



Abstract

In this work we prove the graded braided commutativity of the Hochschild cohomology of
A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-
Drinfeld modules over the group algebra of an abelian group, under some finiteness condi-
tions on a projective resolution of A as A-bimodule. This is a generalization of a theorem
by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols
algebras such as the Jordan and the super Jordan plane. We prove this result by con-
structing a coduoid-up-to-homotopy structure on the aforementioned projective resolution
in a duoidal category whose objects are chain complexes of A-bimodules. We also prove
that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal
category is a cocommutative comonoid up to homotopy with the deconcatenation product
which induces the cup product in Hochschild cohomology.

Keywords: Hochschild cohomology, braided monoidal categories, duoidal categories,
Nichols algebras, Hopf algebras.
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dificultades matemáticas y de las otras. Por bancarme las cosas que no me animaba a
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A Lydia, por el cuidado de ver que todo esté en orden, por la contención cuando no lo
estuvo, y por los cariñosos y firmes recordatorios de lo que me falta.

A Marcelito y Estanislao, por todo lo aprendido leyendo sus art́ıculos y en largas
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Chapter 1

Introduction

Given a field k and an associative algebra A, the Hochschild cohomology H•(A,A) has
a very rich structure, which has been widely studied. In particular it is a nonnegatively
graded algebra with the cup product which is also graded commutative; this fact allows
using methods of commutative algebra. The graded commutativity has been first proved
by Gerstenhaber [Ger64], this proof gave rise to the Gerstenhaber bracket. Another proof
of the graded commutativity was obtained via the Eckmann-Hilton argument [SA04]. In
fact the cup product is also defined for H•(A,R), where R is an A-bimodule with an
associative product R⊗AR→ R, but graded commutativity is in general no longer true in
this context. If A is an augmented algebra, one can set R = k, where k is an A-bimodule
via the augmentation. It has been proven that for a Hopf algebra A, H•(A,k) is also
graded commutative [FS04, SA04, Tai04]. The proof in [FS04] uses the fact that H•(A,k)
is a subalgebra of H•(A,A). The question of what happens when A is a Hopf algebra
in a different category has been raised in [MPSW10]. In that article, the authors work
with Hopf algebras in braided categories. They prove that in this situation, if certain
internal hom objects exist, then H•(A,k) is a graded braided commutative algebra. An
example of this situation is considering Nichols algebras; these are Hopf algebras in the
braided category of Yetter-Drinfeld modules over a Hopf algebra H. They have been
thoroughly studied in the case H = kG for an abelian or finite group G - see for example
[AS02, AAPW22, ŞV16, Her20]. The additional hypothesis about internal homs translates
here to the condition of either A or H being finite dimensional.

Looking at the computations of the graded algebra structure of H•(A,k) for A the Jor-
dan plane [LS21] or the super Jordan plane [RS18], we realized that even if the Hochschild
cohomology algebra is not graded commutative, it is still graded braided commutative,
even though the Jordan and the super Jordan plane are both infinite dimensional and the
Hopf algebra is kZ, which is also infinite dimensional. The computations are detailed in
the Appendix of this thesis.

Our main aim is to prove that graded braided commutativity still holds in a more
general context. For this, we show how to make use of arbitrary resolutions. The key step
is moving from braided monoidal categories to duoidal categories.

The contents of this work are the following:
In Chapter 2 we recall some preliminary definitions and results, together with some

examples that are relevant in the sequel: Hochschild cohomology in Section 2.1, monoidal
and braided monoidal categories in Sections 2.2 and 2.3 respectively, Nichols algebras in
Section 2.4.

The subject of Chapter 3 is graded braided commutativity. We review some results
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and definitions from [MPSW10] and finally prove a theorem - see Theorem 3.3.6 - which
slightly generalizes Theorem 3.12 and Corollary 3.13 of [MPSW10]. An intermediate step
for this result is a theorem of braided graded cocommutativity up to homotopy for the
complex analog to the bar resolution - see Theorem 3.2.10 - which makes no use of internal
homs.

Chapter 4 contains our main results about graded braided commutativity, Theorem
4.3.8 and Corollary 4.3.9. The cases of the Jordan and of the super Jordan plane are
particular instances of these last results.
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Chapter 2

Preliminaries

Throughout this work, we will denote by k an arbitrary field. It will be clear from the
context whether the symbol ⊗ represents the usual tensor product of k-vector spaces, or
stands for the product in an abstract monoidal category.

2.1 Hochschild cohomology

The aim of this section is to recall some well-known facts about Hochschild cohomology
that will be useful in what follows, see for example [Wit19].

Definition 2.1.1. Let A be a k-algebra and M be an A-bimodule. The Hochschild
cohomology of A with coefficients in M is defined as

H•(A,M) = Ext•AA(A,M),

where Ext•AA(A,−) denotes the left derived functors of HomA⊗Aop(A,−), that will be
denoted HomAA(A,−).

Definition 2.1.2. Consider A as a bimodule over itself with actions given by its multi-
plication µ. The bar resolution of A is the following free resolution of A as A-bimodule:

· · ·
b′3 // B3(A)

b′2 // B2(A)
b′1 // B1(A)

b′0 // B0(A) // 0,

where Bn(A) = A⊗A⊗n ⊗A for all n ∈ N0 and the differential b′n : Bn+1(A) → Bn(A) is
given by the formula

b′n(a0 ⊗ · · · ⊗ an+2) =

n+1∑
i=0

(−1)i a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2.

The quasi-isomorphism from this resolution to A is induced by the multiplication µ :
B0(A) = A⊗A→ A.

Thus, when computing Hochschild cohomology via this resolution one gets

H•(A,M) = H(HomAA(B•(A),M), (b′•)
∗).
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The naturality of the adjunction HomAA(A⊗ V ⊗A,M) ≃ Homk(V,M) implies that the
complexes (HomAA(B•(A),M), (b′•)

∗) and (C•(A), d•) are isomorphic, where Cn(A) =
Homk(A

⊗n,M) and dn : Cn(A) → Cn+1(A) is:

dnf(a1 ⊗ · · · ⊗ an+1) = a1 · f(a2 ⊗ · · · ⊗ an+1)
+

∑n
i=1(−1)i f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1.

Remark 2.1.3. Let R be a k-algebra, and ρ : A→ R an algebra homomorphism. There is
an A-bimodule structure on R defining a · r · b = ρ(a)rρ(b), ∀a, b ∈ A, r ∈ R. Moreover,
with this bimodule structure the multiplication µ : R⊗R→ R factors through R⊗A R.

Let P• → A be a projective resolution of A as A-bimodule. The canonical identification
A

≃→ A⊗A A lifts to a chain morphism ω : P• → (P ⊗A P )•, unique up to a unique chain
homotopy. This map allows the definition of a convolution product in HomAA(P•, R),
denoted by ∪, which passes to cohomology. This is the cup product of the Hochschild
cohomology of A with coefficients in R, denoted by ∪ : H•(A,R)⊗H•(A,R) → H•(A,R).

For the bar resolution, one can explicitly define a coproduct as follows:

ω(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1) =
∑

p+q=n

(1⊗ a1 ⊗ · · · ⊗ ap ⊗ 1)⊗A (1⊗ ap+1 ⊗ · · · ⊗ ap+q ⊗ 1) ,

which gives the following well-known expression for the cup product:

(φ ∪ ψ)(1⊗ a1 ⊗ · · · ⊗ ap+q ⊗ 1) = φ(1⊗ a1 ⊗ · · · ⊗ ap ⊗ 1)ψ(1⊗ ap+1 ⊗ · · · ⊗ ap+q ⊗ 1),

for all φ ∈ HomAA(Bp(A), R), ψ ∈ HomAA(Bq(A), R), a1, . . . , ap+q ∈ A.
Translating this to the complex (C•(A), d•) gives the following formula:

(α ∪ β)(a1 ⊗ · · · ⊗ ap+q) = α(a1 ⊗ · · · ⊗ ap)β(ap+1 ⊗ · · · ⊗ ap+q), ∀a1, . . . , ap+q ∈ A,

α ∈ Cp(A), β ∈ Cq(A), a1, . . . ap+q ∈ A.

Definition 2.1.4. An augmented k-algebra is a k-algebra A equipped with an algebra
homomorphism ε : A→ k. We will omit ε when it is clear from the context.

Notice that if A is an augmented k-algebra then k becomes an A-bimodule. We will
focus our attention in the algebra H•(A,k).

Every Hopf algebra A is an augmented algebra via its counit. Its cohomology with
trivial coefficients is isomorphic to Ext•A(k, k), which is the so called Hopf algebra coho-
mology [Wit19, Definition 9.3.5]. Note that the category of A-bimodules is monoidal with
the usual tensor product whenever A is a Hopf algebra. After reviewing some concepts on
braided monoidal categories, we will see a generalization of this fact in the last section.

2.2 Monoidal categories

In this section we will recall some facts about monoidal categories. For a more complete
study in this topic we refer to [ML98] and [AM10].

Definition 2.2.1. A monoidal category is a 6-tuple (C,⊗, I, a, ℓ, r), where

• C is a category,

6



• ⊗ : C× C → C is a bifunctor, called its product,

• I is an object in C, called its unit,

• a is a natural isomorphism, called associator, given by a family of morphisms aX,Y,Z :
(X⊗Y )⊗Z → X⊗(Y ⊗Z), for each X,Y, Z ∈ C, such that the following pentagonal
diagram commutes for all X,Y, Z, T ∈ C:

(X ⊗ Y )⊗ (Z ⊗ T )
aX,Y,Z⊗T

**
((X ⊗ Y )⊗ Z)⊗ T

aX⊗Y,Z,T

44

aX,Y,Z⊗idT

��

X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ (Y ⊗ Z))⊗ T aX,Y ⊗Z,T

// X ⊗ ((Y ⊗ Z)⊗ T ),

idX⊗aY,Z,T

OO

• ℓ and r are natural isomorphisms, called unitors, given by families of morphisms
ℓX : I ⊗ X → X and rX : X ⊗ I → X such that the following triangular diagram
commutes for all X,Y ∈ C:

(X ⊗ I)⊗ Y
aX,I,Y //

rX⊗idY ''

X ⊗ (I ⊗ Y )

idX⊗ℓYww
X ⊗ Y.

A monoidal category is called strict if a, ℓ, r are identities.
When the rest of the structure is clear from its context, we may refer to a monoidal

category just by the name of the underlying category C. We will also say that it is a
monoidal structure on C.

MacLane’s Coherence Theorem [ML98, Chapter VII, Section 2] states that these two
relations imply that every composition of these morphisms from one arbitrary product of
objects in C to another one yields the same morphism.

Remark 2.2.2. If (C,⊗, I, a, ℓ, r) is a monoidal category, then its opposite category Cop

admits a monoidal structure given by (Cop,⊗, I, a−1, ℓ−1, r−1).

Definition 2.2.3. Let (C,⊗, I, a, ℓ, r) be a monoidal category. Its transpose is the monoidal
category (C, ⊗̃ , I, a−1, r, ℓ), where X ⊗̃ Y = Y ⊗X for all X,Y ∈ C.

Without loss of generality, from now on we will consider strict monoidal categories,
since every monoidal category is equivalent to a strict one via functors that preserve the
monoidal structure [ML98, Chapter XI, Section 3], in a sense that will be precisely stated
later. This is also the way monoidal categories are usually dealt with.

In this work, all monoidal categories will be k-linear, being the product bilinear with
respect to morphisms and distributive over direct sums. In order to have (co)chain com-
plexes and their (co)homology inside these categories, we will need an abelian structure
as well.
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Definition 2.2.4. Let (C,⊗, I) be a monoidal category. Amonoid in C is a triple (A,µ, η),
where

• A is an object in C,

• µ : A ⊗ A → A is a morphism in C, called multiplication or product, such that the
following diagram commutes:

A⊗A⊗A
µ⊗idA //

idA⊗µ
��

A⊗A

µ

��
A⊗A µ

// A,

This property is called associativity of the product.

• η : I → A is a morphism in C, called unit, such that the following diagram commutes:

A⊗ I
idA⊗η//

idA %%

A⊗A

µ

��

I ⊗A
η⊗idAoo

idAyy
A.

This property is called unitality of the product.

In several texts in the literature, for instance in [MPSW10], monoids are called algebras.

Definition 2.2.5. A comonoid in C is a monoid in Cop.

Remark 2.2.6. Amonoid in a monoidal category is a monoid in its transpose, and viceversa.
The same happens for comonoids.

Definition 2.2.7. Let (C,⊗, I) be a monoidal category, and let (A,µ, η) and (A′, µ′, η′)
be monoids in C. A morphism of monoids from A to A′ is a morphism f : A → A′ in C,
such that f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′.

Remark 2.2.8. It can be proved directly that identities and composition of morphisms of
monoids are morphisms of monoids. Thus, they form a category, often named Mon(C).

Next we will give examples of monoidal categories which give rise to (co)monoids that
are usually found in the literature.

Example 2.2.9. For the monoidal category of k-vector spaces (Vect,⊗k,k), (co)monoids
are ordinary k-(co)algebras.

Example 2.2.10. Let R be a k-algebra. There is a monoidal structure in the category of
R-bimodules (RModR,⊗R, R), where R acts on itself by multiplication. Its monoids are
called R-algebras.

Example 2.2.11. The category of Z-graded k-vector spaces has a monoidal structure
(VectZ,⊗, k0), where the product of two Z-graded vector spaces V =

⊕
n∈Z Vn and W =⊕

n∈ZWn is given by

(V ⊗W )n =
⊕

p+q=n

Vp ⊗k Wq,

and the unit k0 is the graded vector space k concentrated in degree 0. (Co)monoids in
this monoidal category are known as graded (co)algebras.
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Example 2.2.12. Let (C•, d•C) and (D•, d•D) be two nonnegatively graded cochain com-
plexes of vector spaces. One can define a complex (C ⊗ D)• with underlying N0-graded
space C ⊗D of the previous example, and differential δ• defined by

δp+q|Cp⊗Dq = dpC ⊗ idDq + (−1)p idCp ⊗ dqD.

This happens to be the total complex of the product of both complexes. A unit element
for this product is again the graded vector space k0 with zero differential, giving rise
to the monoidal category (Coch(Vect),⊗,k0). (Co)monoids in this category are called
differential graded (co)algebras.

One can define a monoidal structure in the category of chain complexes in an analogous
way.

Remark 2.2.13. The previous constructions can be made for CZ,Ch(C),Coch(C) whenever
C is a monoidal category with a compatible k-linear structure and arbitrary direct sums.

Example 2.2.14. Let C be a category. A simplicial object in C is a triple ({Xn}n, {∂i}i, {σj}j),
where for every n ∈ N0

• Xn is an object in C,

• {∂ni }i=0,...,n+1 are morphisms in C from Xn+1 to Xn, called faces, where we omit n
in the notation, and

• {σnj }j=0,...,n are morphisms in C from Xn+1 to Xn, called degeneracies, where we
also omit n in the notation,

such that the following identities hold:

• ∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j,

• ∂i ◦ σj = σj−1 ◦ ∂i if i < j,

• ∂i ◦ σj = id if i = j or i = j + 1,

• ∂i ◦ σj = σj ◦ ∂i−1 if i > j + 1, and

• σi ◦ σj = σj+1 ◦ σi if i ≤ j.

A morphism of simplicial objects from ({Xn}n, {∂i}i, {σj}j) to ({Y n}n, {∂′i}i, {σ′j}j) is a
collection of morphisms {fn}n∈N0 , where fn : Xn → Yn for every n preserves faces and
degeneracies.

These objects and morphisms define a category, denoted by sC.
Now, if (C,⊗, I) is a monoidal category, one can define the monoidal category (sC,×, E),

where for every n, i, j

• (X × Y )n = Xn ⊗ Yn,

• (∂ × ∂′)i = ∂i ⊗ ∂′i, and

• (σ × σ′)j = σj ⊗ σ′j ,

• En = I and all faces and degeneracies of E are identities.
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Example 2.2.15. Let (H,µ, η,∆, ε) be a k-bialgebra. The category HMod of left H-
modules is a monoidal category with the usual tensor product of vector spaces. One can
define an action on the tensor product of two H-modules V and W by

h · (v ⊗ w) = h(1) · v ⊗ h(2) · w, ∀h ∈ H, v ∈ V,w ∈W,

where ∆(h) = h(1) ⊗ h(2) ∈ H ⊗H is the usual Sweedler notation for the coproduct. The
unit of the product k can be given an H-module structure via

h · 1 = ε(h), ∀h ∈ H.

(Co)-monoids in this monoidal category are called H-module (co)algebras.

Example 2.2.16. Let (H,µ, η,∆, ε) be a k-bialgebra. The category HMod of left H-
comodules is a monoidal category with the usual tensor product of vector spaces. One can
define a coaction on the tensor product of two H-comodules V and W by

(v ⊗ w)[−1] ⊗ (v ⊗ w)[0] = v[−1]w[−1] ⊗ v[0] ⊗ w[0], ∀v ∈ V,w ∈W,

where v[−1]⊗ v[0] ∈ H ⊗V is the usual Sweedler notation for the coaction. The unit of the
product k can be given an H-comodule structure defining

1[−1] ⊗ 1[0] = 1⊗ 1.

(Co)-monoids in this monoidal category are called H-comodule (co)algebras.
If H = kG is a group algebra, the equality

Vg = {v ∈ V : v[−1] ⊗ v[0] = g ⊗ v}

gives a 1− 1 correspondence between left H-comodules and G-graded vector spaces, that
is, vector spaces with a decomposition V =

⊕
g∈G Vg. The formula above for the tensor

product of two H-comodules V and W yields a grading in the tensor product V ⊗W =⊕
g∈G(V ⊗W )g, where (V ⊗W )g =

⊕
st=g Vs⊗Wt. The grading on the unit k induced by

its kG-coaction is concentrated in degree 1G. In this case, anH-comodule algebra is known
as a G-graded algebra, that is, a k-algebra A =

⊕
g∈GAg such that AsAt ⊆ Ast, ∀s, t ∈ G,

and 1A ∈ A1G . If G = Z, the monoidal category obtained this way is exactly the category
VectZ of Example 2.2.11. Since this case includes the examples we are focused on, in order
to avoid confusion with homological degree, we will say that an element v of a G-graded
vector space V has internal degree g if v ∈ Vg.

Example 2.2.17. Let (H,µ, η,∆, ε, s) be a k-Hopf algebra. A left-left Yetter-Drinfeld
module over H is a vector space V endowed with a left H-action and a left H-coaction
such that

(h · v)[−1] ⊗ (h · v)[0] = h(1)v[−1]s(h(3))⊗ h(2) · v[0], ∀h ∈ H, v ∈ V.

A morphism of left-left Yetter-Drinfeld modules over H is a linear map that is simultane-
ously a morphism of left H-modules and a morphism of left H-comodules. The category
consisting of the class of left-left Yetter Drinfeld modules over H and their morphisms
is denoted by H

HYD. It can be given a monoidal structure with the usual tensor product
of vector spaces, defining an action and a coaction on the tensor product of two Yetter-
Drinfeld modules in the same way as in the previous examples. It is straightforward to
check that the new action and coaction are compatible.
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If H = kG is a group algebra, the compatibiliy condition translates as g · Vh ⊆ Vghg−1 .
If, in addition, G is abelian, this condition results in g · Vh ⊆ Vh, so a Yetter-Drinfeld
module over kG is a G-module V =

⊕
h∈G Vh, where Vh is a G-submodule of V for every

h ∈ G.

Example 2.2.18. The Jordan plane is the algebra A = k⟨x,y⟩
⟨yx−xy+ 1

2
x2⟩ . Let us define an

action of the Hopf algebra kZ = k[t, t−1] on A by t ·x = x, t ·y = x+y, and a Z-grading on
A setting x, y ∈ A1. Both structures can be extended multiplicatively to k⟨x, y⟩, and are
well defined after taking the quotient because the relation is homogeneous and preserved
by the action. Since the action preserves the grading, A is a Yetter-Drinfeld module
over kZ. By definition, the algebra structure of A is compatible with the action and the
coaction of kZ, so A is a monoid in the monoidal category kZ

kZYD.

Example 2.2.19. This is an example of the same type, with a different action of Z. The
super Jordan plane is the algebra A = k⟨x,y⟩

⟨x2,y2x−xy2−xyx⟩ with kZ-action on A given by

t ·x = −x, t ·y = x−y, and Z-grading on A setting x, y ∈ A1. As in the previous example,
they induce on A the structure of Yetter-Drinfeld module over kZ which is compatible
with its product and unit, so A is a monoid in kZ

kZYD.

Example 2.2.20. Let ρ : A → R be a k-algebra homomorphism, and let P•
f−→ A

be a projective resolution of A as A-bimodule. The triple (P•, ω, f) is a comonoid in the
monoidal category

(
Ch (AModA) ,⊗A, A0

)
, where the bar indicates that morphisms in this

category are those of Ch (AModA) modulo homotopy (this is necessary for the associativity
and unitality conditions).

The convolution product makes
(
HomAA(P•, R),∪, (1 7→ ρ ◦ f)

)
a monoid in the

monoidal category (Coch(Vect),⊗, k0), and taking cohomology makes H•(A,R) a monoid
in the monoidal category (VectZ,⊗, k0).

Definition 2.2.21. Let (C,⊗, I) and (D,×, J) be monoidal categories. A lax monoidal
functor from C to D is a triple (F,φ, φ0), where

• F : C → D is a functor,

• φ is a natural transformation given by a family of morphisms {φX,Y }X,Y ∈C, where
φX,Y : F (X) × F (Y ) → F (X ⊗ Y ), such that for every X,Y, Z ∈ C the following
diagram commutes:

F (X)× F (Y )× F (Z)
φX,Y ×idZ //

idX×φY,Z

��

F (X ⊗ Y )× F (Z)

φX⊗Y,Z

��
F (X)× F (Y ⊗ Z) φX,Y ⊗Z

// F (X ⊗ Y ⊗ Z),

• φ0 : J → F (I) is a morphism in D such that the following diagrams commute:

F (X)
= //

=

��

J × F (X)

φ0×idF (X)

��
F (I ⊗X) F (I)× F (X),φI,X

oo

F (X)
= //

=

��

F (X)× J

idF (X)×φ0

��
F (X ⊗ I) F (X)× F (I).φX,I

oo
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We will denote a lax monoidal functor by (F,φ, φ0) : (C,⊗, I) → (D,×, J), and
eventually call it a lax monoidal structure on F.

Definition 2.2.22. A strong monoidal functor is a lax monoidal functor (F,φ, φ0) such
that φ is a natural isomorphism and φ0 is an isomorphism.

Example 2.2.23. We may consider the functor V 7→ V ∗ = Homk(V,k) as a monoidal
functor ((−)∗, φ, φ0) : (Vect

op,⊗,k) → (Vect,⊗, k). The natural transformation φ given
by φV,W : V ∗ ⊗W ∗ → (V ⊗W )∗ is defined by φV,W (f ⊗ g) = f ⊗ g, considering the first
f ⊗ g as the tensor product of two elements and the last one as the tensor product of two
morphisms. The morphism φ0 : k → k∗ is defined by φ0(1) = idk. This monoidal functor
is not strong, but its restriction to the opposite category of finite dimensional vector spaces
is so.

Remark 2.2.24. Defining monoidal structures like in Examples 2.2.11 to 2.2.17, adding
extra structure to the usual tensor product of k-vector spaces, automatically gives their
respective forgetful functors strong monoidal structures via identities.

Example 2.2.25. In the case considered in Example 2.2.17 where H = kZ, the corre-
spondence between left-left Yetter Drinfeld modules over kZ and Z-graded Z-modules can
be stated by saying that the identity induces a strong monoidal functor from kZ

kZYD to

(kZMod)Z, where the monoidal structure of the latter is the one given in Remark 2.2.13.

Example 2.2.26. Let R be a k-algebra. The forgetful functor U : RModR → Vect
admits a lax monoidal structure (U, π, η) : (RModR,⊗R, R) → (Vect,⊗, k), where πM,N :
M ⊗N →M ⊗R N is the canonical projection and η : k → R is the unit morphism of R.
This lax monoidal functor is not strong in general.

Example 2.2.27. The Künneth Theorem for chain complexes of vector spaces states that
the homology functor H• : Ch(Vect) → VectZ is strong monoidal.

2.3 Braided monoidal categories

In this section we will pay attention to an additional structure in some monoidal categories:
braidings.

Definition 2.3.1. A braided monoidal category is a 7-tuple (C,⊗, I, a, ℓ, r, c), where

• (C,⊗, I, a, ℓ, r) is a monoidal category, and

• c is a natural isomorphism, called braiding, given by a family of morphisms cX,Y :
X ⊗ Y → Y ⊗X for each X,Y ∈ C, such that the following diagrams commute for
every X,Y, Z ∈ C:

X ⊗ (Y ⊗ Z)
cX,Y ⊗Z //

a−1
X,Y,Z

��

(Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z

cX,Y ⊗idZ
��

Y ⊗ (Z ⊗X)

a−1
Y,Z,X

OO

(Y ⊗X)⊗ Z aY,X,Z

// Y ⊗ (X ⊗ Z),

idY ⊗cX,Z

OO
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(X ⊗ Y )⊗ Z
cX⊗Y,Z //

aX,Y,Z

��

Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z)

idX⊗cY,Z

��

(Z ⊗X)⊗ Y

aZ,X,Y

OO

X ⊗ (Z ⊗ Y )
a−1
X,Z,Y

// (X ⊗ Z)⊗ Y.

cX,Z⊗idY

OO

Remark 2.3.2. It is proven in Proposition 1.1 of [JS93] that commutativity of the previous
diagrams implies commutativity of the following diagram for every X ∈ C:

X ⊗ I
cX,I //

rX ##

I ⊗X

ℓX{{
X

.

Remark 2.3.3. Let (C,⊗, I, a, ℓ, r, c) be a braided monoidal category, and consider the
monoidal structures on its opposite and transpose categories as in Remark 2.2.2 and
Definition 2.2.3, respectively. They both admit the braiding c̃, where c̃X,Y = cY,X for all
X,Y ∈ C.

Remark 2.3.4. For a braided monoidal category (C,⊗, I, a, ℓ, r, c), inverting the braiding
gives another braided monoidal category (C,⊗, I, a, ℓ, r, cinv), where cinvX,Y = (cY,X)−1 for
all X,Y ∈ C.

Remark 2.3.5. If a braided monoidal category is strict as a monoidal category, the hexago-
nal diagrams above turn into triangles, yielding the following equalities for every X,Y, Z ∈
C:

cX,Y⊗Z = (idY ⊗ cX,Z) ◦ (cX,Y ⊗ idZ) ,

cX⊗Y,Z = (cX,Z ⊗ idY ) ◦ (idX ⊗ cY,Z) .

From these equalities one can deduce the braid equation:

(cY,Z ⊗ idX) ◦ (idY ⊗ cX,Z) ◦ (cX,Y ⊗ idZ) = (idZ ⊗ cX,Y ) ◦ (cX,Z ⊗ idY ) ◦ (idX ⊗ cY,Z) .

All braided monoidal categories considered in this work will be strict as monoidal cate-
gories.

Definition 2.3.6. Let (C,⊗, I, c) be a braided monoidal category.

• A monoid (A,µ, η) in C is commutative if µ ◦ cA,A = µ.

• A comonoid (A,∆, ε) in C is cocommutative if cA,A ◦∆ = ∆.

Next we will discuss some relevant examples.

Example 2.3.7. The formula τV,W (v ⊗ w) = w ⊗ v, ∀v ∈ V,w ∈ W , defines a braiding
τ in the categories Vect, HMod for a commutative k-bialgebra H, and HMod for a co-
commutative k-bialgebra H. In these cases, (co)commutative (co)monoids are monoids in
their respective monoidal categories whose underlying k-(co)algebra is (co)commutative
in the usual sense.

13



Remark 2.3.8. When working in braided monoidal categories whose objects are k-vector
spaces with additional structure, commutativity may be called braided commutativity, and
analogously with cocommutativity. This is useful to emphasize that the braiding involved
is not τ , and so the notion of commutativity involved differs from the usual one.

Example 2.3.9. In the categories Ch(Vect),Coch(Vect) and VectZ, one can define a braid-
ing τgr by the formula τgr(v ⊗ w) = (−1)pq w ⊗ v, ∀v ∈ Vp, w ∈ Wq. (Co)commutativity
for this braiding is called graded (co)commutativity. In the categories Ch(Vect) and
Coch(Vect), it is called graded (co)commutativity up to homotopy.

Example 2.3.10. The previous construction can be generalized to an arbitrary braided
monoidal category (C,⊗, I, c) with a k-linear structure: in this case, one can define a braid-
ing cgr in the categories Ch(C),Coch(C) and CZ by the formula cgrV,W |Vp⊗Wq = (−1)pqcVp,W,q.
As in Remark 2.3.8, (co)commutativity in these categories may be called graded braided
(co)commutativity, or braided graded (co)commutativity, and also its versions up to homo-
topy in Ch(C) and Coch(C).

Example 2.3.11. LetH be a k-Hopf algebra. The category (HHYD,⊗,k) admits a braiding
c given by

cV,W (v ⊗ w) = v[0] · w ⊗ v[1], ∀v ∈ V,w ∈W.

In the case H = kG for a group G, the braiding has the following expression:

cV,W (v ⊗ w) = g · w ⊗ v, ∀g ∈ G, v ∈ Vg, w ∈W.

Más adelante en este trabajo we will define certain (co)monoids in the monoidal cat-

egories Ch
(
H
HYD

)
,Coch

(
H
HYD

)
and

(
H
HYD

)Z
, and prove that they are (co)commutative.

To introduce them, we will need the following concept, which generalizes the definition of
bialgebra to arbitrary braided monoidal categories.

Definition 2.3.12. Let (C,⊗, I, c) be a braided monoidal category. A bimonoid in C is a
5-tuple (A,µ, η,∆, ε), where

• (A,µ, η) is a monoid,

• (A,∆, ε) is a comonoid,

• the following diagrams commute:

A⊗A
µ //

∆⊗∆
��

A
∆ // A⊗A

A⊗A⊗A⊗A
idA⊗cA,A⊗idA

// A⊗A⊗A⊗A,

µ⊗µ

OO

I
≃ //

η

��

I ⊗ I

η⊗η

��
A

∆
// A⊗A,

A⊗A
µ //

ε

��

A

ε⊗ε
��

I ⊗ I ≃
// I,

I
idI //

η ��

I

A.

ε

??
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Remark 2.3.13. In a braided monoidal category (C,⊗, I, c) for any two monoids (A,µ, η)
and (A′, µ′, η′), the triple (A⊗A′, (µ⊗ µ′) ◦ (idA ⊗ cA′,A ⊗ idA′), η ⊗ η′) is also a monoid.

Analogously, if (A,∆, ε) and (A′,∆′, ε′) are two comonoids, their product admits the
comonoid structure (A⊗A′, (id⊗ cA,A′ ⊗ idA′) ◦ (∆⊗∆′), ε⊗ ε′).

As for ordinary bialgebras, the axioms of a bimonoid (A,µ, η,∆, ε) are equivalent to
∆ and ε being morphisms of monoids, and they are also equivalent to µ and η being
morphisms of comonoids.

Definition 2.3.14. A Hopf monoid is a 6-tuple (A,µ, η,∆, ε, s), where (A,µ, η,∆, ε) is a
bimonoid, and s : A→ A is a morphism in C, called antipode, such that

µ ◦ (idA ⊗ s) ◦∆ = η ◦ ε = µ ◦ (s⊗ idA) ◦∆.

Remark 2.3.15. Bimonoids and Hopf monoids in a braided monoidal category C are often
named braided bialgebras and braided Hopf algebras, respectively.

Remark 2.3.16. Unlike previous examples, the so called graded Hopf algebras in the lit-
erature do not correspond to Hopf monoids in the category VectZ, because the braiding
used in their definition is just the braiding of vector spaces.

2.4 Nichols algebras

In this section we will recall the construction of the Nichols algebra of a Yetter-Drinfeld
module V over a Hopf algebra H. Nichols algebras are examples of braided Hopf algebras
in the category H

HYD for some Hopf algebra H.
Let T (V ) =

⊕
n∈N0

V ⊗n denote the tensor algebra of V with the concatenation prod-
uct and the inclusion of k = V ⊗0 as unit. As seen in Example 2.2.17, T (V ) can be
regarded as a Yetter-Drinfeld module over H, and it is immediate to check that the afore-
mentioned product and unit preserve the Yetter-Drinfeld module structure. Therefore,
one can consider T (V ) as a monoid in H

HYD.
Now, the braiding of this category induces a monoid structure on T (V )⊗T (V ), which

by Remark 2.2.24 can be seen as an ordinary algebra structure.
Since T (V ) is the free algebra generated by V , defining ∆(v) = 1⊗v+v⊗1 extends to a

unique algebra morphism ∆ : T (V ) → T (V )⊗T (V ). As a consequence of the definition of
the H-action and H-coaction on tensor products, the map ∆ turns out to be a morphism
of Yetter-Drinfeld modules. The map ε : T (V ) → k defined as the projection onto V ⊗0 is a
counit for ∆, and trivially preserves the algebra structure and the Yetter-Drinfeld module
structure. Therefore, T (V ) with this structure is a bimonoid in H

HYD, which happens to
be a Hopf monoid.

There exists a maximal Hopf ideal and Yetter-Drinfeld submodule J of T (V ) among
those contained in

⊕
n≥2 V

⊗n, see [AS02, Proposition 2.2]. The Nichols algebra of V is

the quotient B(V ) = T (V )
J .

It is proven in [AAH21, Propositions 3.4, 3.5] that the Jordan plane of Example 2.2.18
and the super Jordan plane of Example 2.2.19 are the Nichols algebras corresponding to
the Yetter Drinfeld modules over kZ = k[t, t−1] called V(1, 2) and V(−1, 2) respectively,
where

• V(1, 2) = k{x, y}, t · x = x, t · y = x+ y, and x, y have degree 1.
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• V(1, 2) = k{x, y}, t · x = −x, t · y = x− y and x, y have degree 1.

The Nichols algebra B(V ) also inherits a natural Z-grading from T (V ), which is pre-
served by its product and coproduct. In the Jordan and super Jordan plane it coincides
with the Z-grading given by their kZ-comodule structure.
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Chapter 3

Graded braided (co)commutativity

The aim of this chapter is to provide a setting where, for a Hopf algebra H and a Nichols
algebra A in the category H

HYD, the Hochschild cohomology of A with coefficients in k
could be given a Z-graded Yetter-Drinfeld module structure over H. In this context, the

Z-graded vector space H•(A, k) can be seen as a monoid in the category
(
H
HYD

)Z
, which

happens to be graded braided commutative. We will use the notation in Section 3 of
[MPSW10], whose main result is recovered in Corollary 3.1.22.

3.1 Braiding Hochschild cohomology spaces

In this section we follow the steps in [MPSW10] to define a graded object in an arbitrary
monoidal category C, which under suitable hypotheses coincides with the Hochschild coho-
mology with trivial coefficients of an augmented k-algebra A, via a forgetful functor from
C to Vect. We will also recall the main results of graded braided commutativity obtained
by the authors in the case C is braided and A has a bimonoid structure in C.

Definition 3.1.1. Let (C,⊗, I) be a monoidal category. Let V, Y be objects in C. An
internal hom is an object in C, denoted hom(V, Y ), equipped with a natural isomorphism

ΘV,Y : HomC(−⊗ V, Y ) −→ HomC(−,hom(V, Y )).

For X ∈ C, we will write ΘX,V,Y := (ΘV,Y )X .

Remark 3.1.2. Whenever hom(V, Y ) exists, it is unique up to isomorphism and it is func-
torial in both variables, due to Yoneda’s Lemma. See, for example, [ML98, Chapter III,
Section 2]. As a consequence, if V ∈ C is such that hom(V, Y ) exists for all Y ∈ C, then
hom(V,−) is a functor which is right adjoint to −⊗ V .

Definition 3.1.3. If the adjunction ΘV,− of the previous definition exists for all V ∈ C,
the monoidal category (C,⊗, I) is called a right closed monoidal category.

Example 3.1.4. The monoidal category (VectZ,⊗, k0) is right closed monoidal; its in-
ternal hom functor is called graded hom. For a graded k-vector space Y and n ∈ Z, let
Y [n] denote the graded vector space such that Y [n]i = Yi+n. The graded hom object
hom(V, Y ) =

⊕
n∈Z hom(V, Y )n, is defined as follows:

hom(V, Y )n = HomVectZ(V, Y [n]) =
∏
i∈Z

Homk(Vi, Yi+n), ∀ V, Y ∈ VectZ.
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Remark 3.1.5. The canonical inclusion hom(V, Y ) ⊆ Homk(V, Y ) is an equality if and only
if V is finite dimensional. This is equivalent to the condition that Vn is finite dimensional
for all n, and nonzero only for finitely many values of n.

The internal hom objects in the following examples can be defined more generally for
a Hopf algebra H with bijective antipode. We will focus in the case H = kG.

Example 3.1.6. The category (kGMod,⊗, k) is right closed monoidal, with its internal
hom defined by hom(V, Y ) = Homk(V, Y ) and G-action given by

(g · f)(x) = g · f(g−1 · x), ∀g ∈ G, ∀x ∈ V, ∀f ∈ Homk(V, Y )

Example 3.1.7. Let G be a group. The construction for Z-graded vector spaces in Exam-
ple 3.1.4 can be generalized to the monoidal category (kGMod,⊗,k), which is isomorphic
to the category VectG of G-graded vector spaces – see Example 2.2.16. It has an internal
hom functor defined by hom(V, Y ) =

⊕
h∈G hom(V, Y )h, where

hom(V, Y )h =
∏
s∈G

Homk(Vs, Yhs).

As in Remark 3.1.5, there is a canonical inclusion hom(V, Y ) ⊆ Homk(V, Y ), which is an
equality either when V is finite dimensional or when G is finite.

Example 3.1.8. The category (kGkGYD,⊗,k) of Yetter-Drinfeld modules over a group al-
gebra has an internal hom which combines the kG-module and kG-comodule structures of
its objects. For V, Y ∈ kG

kGYD, the G-graded space hom(V, Y ) is defined as in the previous
example, and the action of g ∈ G on f = (fs)s∈G ∈ hom(V, Y )h is given by

(g · f)s(v) = g · (fg−1sg(g
−1 · v)), ∀s ∈ G, ∀v ∈ Vs.

It is straightforward to check that g · f ∈ hom(V, Y )ghg−1 ∀g, h ∈ G, f ∈ hom(V, Y )h, so
hom(V, Y ) is indeed an object in kG

kGYD. It also holds that hom(V, Y ) ≃ Homk(V, Y ) when
V is finite dimensional or G is finite.

The following remark shows how the cochain complex in Vect used to define H•(A, k)
can be seen as the result of applying the contravariant functor Homk(−,k) to a chain
complex, whose definition can be expressed entirely in terms of the monoidal structure in
the category of k-vector spaces. This is used in [MPSW10, Definition 3.3] to generalize this
construction to an arbitrary monoidal category. Their aim is, when possible, to replace
the functor Homk(−, k) by an internal hom functor, obtaining the desired construction in
the cases in which they coincide.

Remark 3.1.9. Let (A, ε) be an augmented k-algebra, and consider the cochain complex
(C•(A), d•). Taking into account the action of A on k, the coboundary dn : Cn(A) →
Cn+1(A) is as follows:

dnf(a1 ⊗ · · · ⊗ an+1) = ε(a1)f(a2 ⊗ · · · ⊗ an+1)
+

∑n
i=1(−1)i f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1) + (−1)n+1 f(a1 ⊗ · · · ⊗ an)ε(an+1)

= f
(
ε(a1)a2 ⊗ · · · ⊗ an+1 +

∑n
i=1(−1)i a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

+ (−1)n+1 a1 ⊗ · · · ⊗ anε(an+1)
)
.
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This can also be read as dnf = f ◦ δn, where δn : A⊗n+1 → A⊗n is

δn(a1 ⊗ · · · ⊗ an+1) = ε(a1)a2 ⊗ · · · ⊗ an+1

+
∑n

i=1(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 + (−1)n+1a1 ⊗ · · · ⊗ anε(an+1).

Setting Sn(A) = A⊗n makes (S•(A), δ•) a chain complex of k-vector spaces satisfying the
equality (C•(A), d•) = (Homk(S•(A), k), (δ•)∗).

Next we follow the general construction given in [MPSW10, Section 3].

Definition 3.1.10. Let (C,⊗, I) be a monoidal category, and consider the monoid struc-
ture on I with product given by the canonical isomorphism I ⊗ I ≃ I and unit idI . An
augmented monoid in C is a 4-tuple (A,µ, η, ε), where (A,µ, η) is a monoid in C and
ε : A → I is a morphism of monoids. As usual, we omit part of the structure when it is
clear from the context.

Remark 3.1.11. If (C,⊗, I, c) is a braided monoidal category and (A,µ, η,∆, ε) is a bi-
monoid in C, then (A,µ, η, ε) is an augmented monoid in C.

Definition 3.1.12. Let (A,µ, η, ε) be an augmented monoid in a monoidal category
(C,⊗, I). The triple (S(A), {∂i}i, {σj}j) defined as follows is a simplicial object in C:

• Objects: Sn(A) = A⊗n.

• Faces: ∂i : Sn+1(A) → Sn(A)

∂i =


ε⊗ id⊗n

A if i = 0

id⊗i−1
A ⊗ µ⊗ idn−i

A if i = 1, . . . , n
id⊗n

A ⊗ ε if i = n+ 1.

• Degeneracies: σj : Sn(A) → Sn+1(A)

σj = id⊗j
A ⊗ η ⊗ id⊗n−j

A , ∀j = 0, . . . , n.

We will denote its associated chain complex in C by (S•(A), δ•), where the differential
δn : Sn+1(A) → Sn(A) is defined as δn =

∑n+1
i=o (−1)i∂i.

Remark 3.1.13. This construction is functorial, therefore it gives functors S and S• from
the category of augmented monoids in C to the categories of simplicial objects in C and of
chain complexes in C, respectively.

Definition 3.1.14. [MPSW10, Definition 3.4] Let A be an augmented monoid in a
monoidal category (C,⊗, I) such that the objects hom(A⊗n, I) exist for all n ∈ N0. The
Hochschild cohomology of A with trivial coefficients is the cohomology of the complex
(hom(S•(A), I),hom(δ•, I)). It is denoted by H•(A).

The following are the final steps to obtain a monoid structure in CZ analogous to the
Hochschild cohomology with trivial coefficients on a bialgebra, with the cup product.

Definition 3.1.15. Let (C,⊗, I) be a monoidal category, and let V, Y ∈ C be such that
hom(V, Y ) exists. Let Θ be the natural isomorphism of Definition 3.1.1. The inverse of
the isomorphism

Θhom(V,Y ),V,Y : HomC(hom(V, Y )⊗ V, Y ) → HomC(hom(V, Y ),hom(V, Y )).
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gives a morphism

evV,Y = Θ−1
hom(V,Y ),V,Y

(
idhom(V,Y )

)
: hom(V, Y )⊗ V → Y,

called evaluation morphism.

Definition 3.1.16. [MPSW10, Remark 3.6] Let (C,⊗, I) be a monoidal category, and let
V,W ∈ C be such that hom(V, I),hom(W, I) and hom(W ⊗ V, I) exist. The map

ξV,W : hom(V, I)⊗ hom(W, I) → hom(W ⊗ V, I)

is defined as follows:

ξV,W = Θhom(V,I)⊗hom(W,I),W⊗V,I

(
evV,I ◦ (idhom(V,I) ⊗ evW,I ⊗ idV )

)
.

Remark 3.1.17. If we restrict to those pairs V,W for which hom(V, I) ⊗ hom(W, I) and
hom(W ⊗ V, I) exist, we can say that the collection of maps ξV,W define a natural trans-
formation ξ.

Remark 3.1.18. As remarked before, in the monoidal categories of Examples 3.1.4 to 3.1.8
the object hom(V, Y ) is naturally included in Homk(V, Y ) for all objects V and Y . In
these cases, the evaluation morphism turns out to coincide with the usual evaluation of
functions. Now, let us consider two elements f ∈ hom(V,k) ⊆ Homk(V,k) and g ∈
hom(W, k) ⊆ Homk(W, k). The equality

ξV,W (f ⊗ g)(w ⊗ v) = g(w)f(v), ∀v ∈ V,w ∈W,

shows that ξV,W is in fact the canonical inclusion V ∗ ⊗W ∗ ↪→ (W ⊗ V )∗.

Definition 3.1.19. [MPSW10, Definition 3.7] Let A be an augmented monoid in a
monoidal category (C,⊗, I), and let (S•(A), δ•) be the chain complex of Definition 3.1.12.
The cup product ⌣: H•(A)⊗H•(A) → H•(A) is the collection of morphisms

⌣p,q: H
p(A)⊗Hq(A) → Hq+p(A)

induced by

ξSp(A),Sq(A) : hom(Sp(A), I)⊗ hom(Sq(A), I) → hom(Sq(A)⊗ Sp(A), I).

Remark 3.1.20. Let (C,⊗, k) be a monoidal category like in Remark 3.1.18, and let A be an
augmented monoid in C, which implies that A is also an augmented k-algebra. If for every
n ∈ N0 the objects hom(A⊗n, k) exist and their canonical inclusions in Homk(A

⊗n,k) are
isomorphisms of k-vector spaces, then the cochain complexes (hom(S•(A),k), hom(δ•, k))
and (Homk(S•(A),k), (δ•)∗) are isomorphic. Taking homology, one gets that H•(A) and
the usual Hochschild cohomology with trivial coefficients H•(A,k) are isomorphic as Z-
graded k-vector spaces. In addition, according to the expression of ξ, the cup product
defined in H•(A) is the opposite of the usual cup product in H•(A,k). To avoid confusion,
we will use the symbol ⌣ to refer to the cup product of definition 3.1.19, instead of the
symbol ∪ used to define the usual cup product in Hochschild cohomology in Chapter 2.1.

Next we will recall one of the main results of [MPSW10], together with a corollary.
We will prove a generalization of the latter in the end of this chapter.
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Theorem 3.1.21. [MPSW10, Theorem 3.12] Let A be a bimonoid in a braided monoidal
category (C,⊗, I, c), such that hom(A⊗n, I) exists for all n ∈ N0. Then (H•(A),⌣) is a
graded braided commutative algebra in CZ.

Corollary 3.1.22. [MPSW10, Corollary 3.13] Let H be a Hopf algebra with bijective
antipode, and let A be a bimonoid in H

HYD. If either H or A is finite dimensional, then
H•(A, k) is a Z-graded object in H

HYD, and the opposite of its cup product is graded braided
commutative.

The main purpose of the next section is to recover the previous result from a property
which can be expressed without applying the functor hom(−, I), which is contravariant.
We will then construct a comonoid in a suitable monoidal category and prove that it is
cocommutative.

3.2 From commutativity to cocommutativity

The final theorem and corollary of the previous section are used in [MPSW10] to prove
finite generation of the cohomology algebra of most finite dimensional pointed Hopf alge-
bras having abelian group of grouplike elements. The Nichols algebras associated to them
always verify the hypothesis of Corollary 3.1.22.

On the other hand, the Jordan and super Jordan plane are infinite dimensional and
they are bimonoids in the category of Yetter-Drinfeld modules over kZ, which is an in-
finite dimensional Hopf algebra. The internal hom objects needed in the construction in
[MPSW10] do not exist, so a priori H•(A, k) cannot be regarded as a Z-graded Yetter-
Drinfeld module over kZ, and therefore there is no graded braided commutativity condition
to check. However, there is a condition that can be checked, which coincides with graded
braided commutativity of the cup product when it can be defined. The next propositions
will lead to that condition.

Lemma 3.2.1. Let (C,⊗, I, c) be a braided monoidal category, and let V,W ∈ C. The
following diagram commutes:

hom(V, I)⊗ hom(W, I)⊗W ⊗ V

(
c
hom(W,I),hom(V,I)

)
−1⊗ c

W,V //

id
hom(V,I)

⊗ ev
W,I

⊗id
V

��

hom(W, I)⊗ hom(V, I)⊗ V ⊗W

id
hom(W,I)

⊗ ev
V,I

⊗id
W

��
hom(V, I)⊗ V ev

V,I

// I hom(W, I)⊗W.ev
W,I

oo

Proof: Given an object U in C, we will denote U∗ = hom(U, I). In fact, we will prove
that the following diagram is commutative, where the arrows that appear in the opposite
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direction are isomorphisms.

V ∗ ⊗ W∗ ⊗ W ⊗ V

id
V ∗⊗W∗ ⊗ c

W,V //

id
V ∗ ⊗ ev

W,I
⊗ id

V

��

id
V ∗ ⊗ c

W∗⊗W,V

))

V ∗ ⊗ W∗ ⊗ V ⊗ W

id
V ∗ ⊗ c

W∗,V
⊗ id

W

��

W∗ ⊗ V ∗ ⊗ V ⊗ W

c
W∗,V ∗ ⊗ id

V ⊗Woo

c
W∗,V ∗⊗V

⊗ id
W

uu

id
W∗ ⊗ ev

V,I
⊗ id

W

��
V ∗ ⊗ I ⊗ V

≃

��

idV ∗⊗ c
I,V

((

V ∗ ⊗ V ⊗ W∗ ⊗ W
id

V ∗⊗V
⊗ ev

W,I

vv
ev

V,I
⊗ id

W∗⊗W ((

W∗ ⊗ I ⊗ W

≃

��

c
W∗⊗I

⊗ id
W

vv
V ∗ ⊗ V ⊗ I

≃
vv

ev
V,I

⊗ id
I

// I ⊗ I

≃

��

I ⊗ W∗ ⊗ W

≃

((

id
I

⊗ ev
W,I

oo

V ∗ ⊗ V ev
V,I

// I W∗ ⊗ W.ev
W,I

oo

Both triangles on top of the diagram commute by using the axioms in the definition
of the braiding c, the quadrilaterals on both sides commute by naturality of c, and the
remaining subdiagrams commute by the axioms of a monoidal category.

Proposition 3.2.2. Let (C,⊗, I, c) be a braided monoidal category, and let V and W be
objects in C such that hom(U, I) exists for U = V,W, V ⊗W,W⊗V . The following diagram
commutes:

hom(W, I)⊗ hom(V, I)
ξW,V //

chom(W,I),hom(V,I)

��

hom(V ⊗W, I)

hom
(
c
W,V

,id
I

)
��

hom(V, I)⊗ hom(W, I)
ξV,W

// hom(W ⊗ V, I).

Proof: Let us consider the following diagram in Vect, which commutes by naturality of
the adjunction isomorphism Θ of Definition 3.1.1.

HomC (hom(W, I)⊗ hom(V, I)⊗ V ⊗W, I)

HomC

((
c
hom(W,I),hom(V,I)

)
−1⊗c

W,V
,id

I

)

��

Θhom(W,I)⊗hom(V,I),V ⊗W,I

,,
HomC (hom(W, I)⊗ hom(V, I), hom(V ⊗W, I))

HomC

((
c
hom(W,I),hom(V,I)

)
−1,hom

(
c
W,V

,id
I

))

��

HomC (hom(V, I)⊗ hom(W, I)⊗W ⊗ V, I)

Θhom(V,I)⊗hom(W,I),W⊗V,I ,,
HomC (hom(V, I)⊗ hom(W, I), hom(W ⊗ V, I)) .

Using the previous lemma and chasing the element evW,I ◦
(
id

hom(W,I)
⊗ evV,I ⊗ idW

)
in
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this diagram gives

evW,I ◦
(
id

hom(W,I)
⊗ evV,I ⊗ idW

)
_

��

�

++
ξW,V_

��

evV,I ◦
(
id

hom(V,I)
⊗ evW,I ⊗ idV

)
�

++
ξV,W ,

that is

ξV,W = HomC

((
c
hom(W,I),hom(V,I)

)
−1, hom

(
cW,V , idI

)) (
ξW,V

)
= hom

(
cW,V , idI

)
◦ ξW,V ◦

(
c
hom(W,I),hom(V,I)

)
−1,

from which precomposing with c
hom(W,I),hom(V,I)

gives

ξV,W ◦ c
hom(W,I),hom(V,I)

= hom
(
cW,V , idI

)
◦ ξW,V ,

which is what we wanted to prove.

Remark 3.2.3. Let us consider a bialgebra A in the braided monoidal category kG
kGYD

of Yetter-Drinfeld modules over a group algebra kG. Suppose that either A is finite
dimensional or G is finite, so that hom(A⊗n, k) = Homk(A

⊗n,k) - see Example 3.1.8. It
follows from Theorem 3.1.21 that the diagram induced in cohomology by the following one
commutes:

Homk(A
⊗p,k)⊗Homk(A

⊗q,k)
c
Homk(A⊗p,k),Homk(A⊗q,k)

��

(−1)pq⌣p,q

**
Homk(A

⊗q,k)⊗Homk(A
⊗p,k)

⌣q,p

// Homk(A
⊗p+q, k),

which, due to the previous proposition, is equivalent to the commutativity of the following
diagram after taking cohomology:

Homk(A
⊗p, k)⊗Homk(A

⊗q, k)
⌣p,q //

(−1)pq⌣p,q **

Homk(A
⊗p+q,k)

Homk(cA⊗p,A⊗q ,k)
��

Homk(A
⊗p+q,k).

In order to check the commutativity of the first diagram, it is necessary to evaluate
the braiding c in the objects Homk(A

⊗p,k) and Homk(A
⊗q, k), which can be done because

they coincide with their respective inner hom objects, so they can be regarded as objects
in kG

kGYD.
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On the other hand, checking the commutativity of the second diagram only requires
evaluating the braiding in the objects A⊗p and A⊗q. No inner hom objects are needed, so
this condition can be checked even when the objects hom(A⊗p,k) and hom(A⊗q, k) do not
exist, or when they exist but differ from Homk(A

⊗p, k) and Homk(A
⊗p, k), respectively.

This is the case of the Jordan and the super Jordan plane. For these algebras, we have
checked that the second diagram commutes at the level of cohomology, following the steps
we give in detail in the Appendix.

In what follows, we will prove that the condition checked above holds up to homotopy
for any bialgebra A in a braided monoidal category (C,⊗, I, c), and give a categorical
interpretation of the result.

For this purpose, we will perform some calculations using graphical calculus. Tensor
products between objects are represented as their horizontal juxtaposition, and morphisms
as sets of strings going from top to bottom. Here is a table with the notations we will use:

Morphism Symbol Morphism Symbol

cX,Y : X ⊗ Y → Y ⊗X
X Y

Y X

∆ : A→ A⊗A
A��
A A

(cY,X)−1 : X ⊗ Y → Y ⊗X
X Y

Y X

ε : A→ I
A

r
µ : A⊗A→ A

A A
	
A

χℓ : A⊗M →M

AM

PP

M

η : I → A

r
A

χr :M ⊗A→M

M A

��

M

These are examples of properties that we will use in the calculations:

• Naturality of the braiding, as well as the axiom involving it and the unit constraints,
can be expressed graphically when tensoring any morphism with a morphism from
the unit object to another object of C or vice versa:

Yr
Y X

=

Y r
Y X

,

X r
Y X

=

Xr
Y X

,

X Y

r
X

=

X Y

r
X

,

X Y

r
Y

=

X Y

r
Y

.
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• One can also visualize naturality of the braiding in the following examples:

A A X


	
X A

=

A A X
	
X A

,

C X��
X C C

=

C X��
X C C

,

AMX

PP

X M

=

AMX
PP

X M

.

• The following equalities represent the axioms of associativity and unit of a monoid:

A A A� 
� 

A

=

A A A� 
� 

A

,

Ar
	
A

=

A

A

=

A r
	
A

,

and the corresponding ones for a comonoid are the ones above turned upside down.

Example 3.2.4. The simplicial object (S(A), {∂i}i, {σj}j) introduced in Definition 3.1.12
can be written using graphical notation as follows:

• Its objects are Sn(A) = A
n· · ·A,

• its faces ∂i : Sn+1(A) → Sn(A) are given by

∂0 =

n

A A· · ·A

r · · ·
A· · ·A

, ∂i =

i−1 n−i

A· · ·A A· · ·A

· · · 
	· · ·
A· · · ·A · · · ·A

, ∂n+1

n

A· · ·A A

· · · r
A· · ·A

,

• its degeneracies σj : Sn(A) → Sn+1(A) are given by

σj =

j−1 n+1−j

A· · ·A A· · ·Ar
· · · · · ·

A· · ·A A A· · ·A

.

Definition 3.2.5. For an augmented monoid A in a monoidal category C, let S•(A) be
the chain complex in C of Definition 3.1.12, and let (S(A) ⊗ S(A))• denote the product
of S(A) with itself in Ch(C), defined analogously to Example 2.2.12. The deconcatenation
coproduct is the map dec• : S•(A) −→ (S(A)⊗ S(A))• given componentwise by

decn =
∑

p+q=n

decp,q,

where
decp,q = idA⊗p+q : Sp+q(A) −→ Sp(A)⊗ Sq(A).

Next we will give a theorem which makes use of the deconcatenation coproduct to state
a generalization of the previous computations. Together with additional structure on the
functor hom(−, I), this theorem will allow us to recover the main result in Section 3 of
[MPSW10]. In order to prove it, we will introduce in our context the Alexander-Whitney
map - defined more generally in [Wei94, Section 8.5] - and recall Lemma 3.9 of [MPSW10].
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Definition 3.2.6. For A as above, let S(A)× S(A) denote the product of the simplicial
object S(A) in C with itself as in Definition 2.2.14.

• The Alexander-Whitney map AW• : (S(A)× S(A))• −→ (S(A)⊗ S(A))• is defined
componentwise by the maps AWp,q : S(A)p+q ⊗ S(A)p+q −→ S(A)p ⊗ S(A)q,

AWp,q =

p q p q

A· · ·A A· · ·A A· · ·A A· · ·A

· · · r · · · r r · · · r · · ·
A· · ·A A· · ·A

.

• The twisted Alexander-Whitney map AW• : (S(A) × S(A))• −→ (S(A) ⊗ S(A))• is
defined componentwise by the maps AWp,q : S(A)p+q⊗S(A)p+q −→ S(A)p⊗S(A)q,

AWp,q = (−1)pq

q p q p

A· · ·A A· · ·A A· · ·A A· · ·A

r · · · r · · · · · · r · · · r
A· · ·A A· · ·A

.

As stated in [Wei94], the maps AW• and AW• are homotopic, since there is a unique
natural chain map from (S(A) × S(A))• to (S(A) ⊗ S(A))• up to natural homotopy.
Therefore, precomposing either of them with any chain map f• : S•(A) → (S(A)×S(A))•
will give the same map up to homotopy. In the case A is a bialgebra, we will use the map
f• as the composition of the functor S• applied to the coproduct of A, and the map gA,A

•
obtained from the simplicial map defined in the following lemma.

Lemma 3.2.7. [MPSW10, Lemma 3.9] Let A and B be two augmented algebras in a
braided monoidal category (C,⊗, I, c). For each n ∈ N0, let us define recursively a map
gA,B
n : (A⊗B)⊗n −→ A⊗n ⊗B⊗n as follows:

• gA,B

0 = idI ,

• gA,B

n+1 =
(
idA ⊗ c

B,A⊗n ⊗ idB⊗n

)
◦
(
idA⊗B ⊗ gA,B

n

)
The collection of maps gA,B =

(
gA,B
n

)
n∈N0

is an isomorphism of simplicial objects in C

from S(A⊗B) to S(A)× S(B).

Lemma 3.2.8. Let (A,µ, η,∆, ε) be a bimonoid in a braided monoidal category (C,⊗, I, c).
Then

AWp,q ◦ gA,A

p+q ◦ Sp+q(∆) = idA⊗p+q .

Proof. We will proceed by induction on (p, q):

• For (0, 0) both terms are equal to idI .
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• Assume that the equality holds for (0, q). Commutativity of the following diagram
shows that it also holds for (0, q + 1):

A⊗A⊗q

∆⊗∆⊗q

��

∆⊗idA⊗q

))

idA⊗A⊗q
// A⊗A⊗q

idA⊗∆⊗q

��
A⊗A⊗ (A⊗A)⊗q

idA⊗A⊗gA,A
q
��

A⊗A⊗A⊗q

ε⊗idA⊗idA⊗q

66

A⊗ (A⊗A)⊗q

idA⊗gA,A
q

��
A⊗A⊗A⊗q ⊗A⊗q

idA⊗cA,A⊗q⊗idA⊗q

��

ε⊗idA⊗ε⊗q⊗id⊗q
A

,,

A⊗A⊗q ⊗A⊗q

idA⊗ε⊗q⊗id⊗q
A

��
A⊗A⊗q ⊗A⊗A⊗q

ε⊗ε⊗q⊗idA⊗id⊗q
A

// A⊗A⊗q.

The composition of the left and bottom sides of the diagram coincides with AW0,q+1◦
gA,A

q+1 ◦ Sq+1(∆), where gA,A

q+1 is defined recursively. The composition of the top and
right sides coincides with idA⊗idA⊗q by the inductive hypothesis. The triangle at the
top commutes by counitality, the triangle at the bottom commutes by naturality and
the axioms involving c and I, and the remaining region commutes by functoriality
of ⊗.

• Assume that the equality holds for (p, q). Commutativity of the following diagram
shows that it also holds for (p+ 1, q):

A⊗A⊗p+q

∆⊗∆⊗p+q

��

∆⊗id
A⊗p+q

))

id
A⊗A⊗p+q // A⊗A⊗p+q

idA⊗∆⊗p+q

��
A⊗A⊗ (A⊗A)⊗p+q

idA⊗A⊗g
A,A
p+q

��

A⊗A⊗A⊗p+q

idA⊗ε⊗id
A⊗p+q

55

A⊗ (A⊗A)⊗p+q

idA⊗g
A,A
p+q

��
A⊗A⊗A⊗p+q ⊗A⊗p+q

idA⊗c
A,A⊗p+q⊗id

A⊗p+q

��

idA⊗ε⊗id
A⊗p⊗ε⊗q⊗ε⊗p⊗id

A⊗q

,,

A⊗A⊗p+q ⊗A⊗p+q

idA⊗id
⊗p
A

⊗ε⊗q⊗ε⊗p⊗id
⊗q
A

��
A⊗A⊗p+q ⊗A⊗A⊗p+q

idA⊗id
⊗p
A

⊗ε⊗q⊗ε⊗ε⊗p⊗id
⊗q
A

// A⊗A⊗p ⊗A⊗q .

The left and bottom sides of the diagram coincide with AWp+1,q◦gA,A

p+q+1◦Sp+q+1(∆),

where gA,A

p+q+1 is defined recursively. The top and right sides of the diagram coincide
with idA ⊗ idA⊗p+q by the inductive hypothesis. The triangle at the top commutes
by counitality, the triangle at the bottom commutes by naturality and the axioms
involving c and I, and the remaining region commutes by functoriality of ⊗.

Lemma 3.2.9. Let (A,µ, η,∆, ε) be a bimonoid in a braided monoidal category (C,⊗, I, c).
Then

(−1)pq AWp,q ◦ gA,A

q+p ◦ Sq+p(∆) = cA⊗q ,A⊗p .

Proof. As in the previous lemma, we will proceed by induction on (p, q):
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• For (0, 0) both terms are equal to idI .

• Substituting q by p in the second item of the previous lemma proves the inductive
step from the condition on (p, 0) to the one on (p+ 1, 0), since AWp,0 = AW0,p and
cI,A⊗p = idA⊗p .

• Assume that the equality holds for (p, q). Commutativity of the following diagram
shows that it also holds for (p, q + 1):

A ⊗ A⊗q+p

∆⊗∆⊗q+p

��

∆⊗id
A⊗q+p

))

id
A⊗A⊗q+p // A ⊗ A⊗q+p

idA⊗∆⊗q+p

��
A ⊗ A ⊗ (A ⊗ A)⊗q+p

idA⊗A⊗g
A,A
q+p

��

A ⊗ A ⊗ A⊗q+p

ε⊗idA⊗id
A⊗q+p

55

A ⊗ (A ⊗ A)⊗q+p

idA⊗g
A,A
q+p

��
A ⊗ A ⊗ A⊗q+p ⊗ A⊗q+p

idA⊗c
A,A⊗q+p⊗id

A⊗q+p

��

ε⊗idA⊗ε⊗q⊗id
A⊗p⊗id

A⊗q⊗ε⊗p

,,

A ⊗ A⊗q+p ⊗ A⊗q+p

idA⊗ε⊗q⊗id
A⊗p⊗id

A⊗q⊗ε⊗p

��
A ⊗ A⊗q+p ⊗ A ⊗ A⊗q+p

ε⊗ε⊗q⊗id
⊗p
A

⊗idA⊗id
⊗q
A

⊗ε⊗p
,,

A ⊗ A⊗p ⊗ A⊗q

c
A,A⊗p⊗id

A⊗q

��
A⊗p ⊗ A ⊗ A⊗q

The left and bottom sides of the diagram coincide with (−1)p(q+1)AWp,q ◦ gA,A

q+p+1 ◦
Sp+q(∆) = cA⊗q ,A⊗p , where gA,A

q+p+1 is defined recursively. By the inductive hypoth-
esis, the top and right sides of the diagram coincide with (cA,A⊗p ⊗ idA⊗q) ◦ (idA ⊗
cA⊗p,A⊗p) = cA⊗q+1,A⊗p . The quadrangle at the top commutes by counitality, the
triangle at the bottom commutes by naturality of c, and the remaining region com-
mutes by functoriality of ⊗.

The following theorem gives a comonoid which is graded braided cocommutative up to
homotopy. This holds for any bimonoid in an arbitrary braided monoidal category with a
compatible k-linear structure and arbitrary direct sums.

Theorem 3.2.10. Let A be a bimonoid in a braided monoidal category (C,⊗, I, c). The
triple (S(A)•, dec•, (idI)0) is a comonoid in Ch(C), which is cocommutative up to homo-
topy.

Proof. Coassociativity and counitality of (S(A)•,dec•, (idI)0) are immediate consequences
of the definition, and checking that the maps involved are chain morphisms is straightfor-
ward.
Proving cocommutativity up to homotopy is checking that the following diagram commutes
up to homotopy:

S•(A)

dec•

ww

dec•

''
(S(A)⊗ S(A))•

cgr
S•(A),S•(A)

// (S(A)⊗ S(A))•,
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which in the component Sp(A)⊗ Sq(A) reads as follows:

Sp+q(A)
decq,p

ww

decp,q

''
Sq(A)⊗ Sp(A)

(−1)pq c
Sq(A),Sp(A)

// Sp(A)⊗ Sq(A).

By the previous lemmas, we have

idA⊗p+q = AWp,q ◦ gA,A

p+q ◦ Sp+q(∆) ∼ AWp,q ◦ gA,A

p+q ◦ Sp+q(∆) = (−1)pqcA⊗q ,A⊗p ,

To illustrate these equalities, we show an example for p = 2, q = 1. In the second and
third diagrams, the level at the top corresponds to the morphism S3(∆), the middle ones
all together correspond to the morphism gA,A

3 , and the one at the bottom corresponds to
the morphisms AW2,1 and AW2,1, respectively.

A A A

A A A

=

A A A������
r r r

A A A

∼ (−1)2·1

A A A������
r r r
A A A

= (−1)2·1

A A A

A A A

In the next section we will recover the result of Corollary 3.1.22 from this theorem by
keeping track of cocommutativity when applying an internal hom functor.

3.3 Back to commutativity in cohomology

To conclude this chapter, we will interpret Proposition 3.2.2 in a categorical way, using
the definition of a braided monoidal functor. This will allow us to translate the cocommu-
tativity result in Theorem 3.2.10 to commutativity results such as the ones in [MPSW10],
in the case the needed internal homs exist.

Definition 3.3.1. Let (C,⊗, I, cC) and (D,×, J, cD) be two braided monoidal categories.
A lax monoidal functor (F,φ, φ0) : (C,⊗, I) → (D,×, J) is a braided lax monoidal functor
if for every X,Y ∈ C the following diagram commutes:

F (X)× F (Y )
cD
F (X),F (Y ) //

φX,Y

��

F (Y )× F (X)

φY,X

��
F (X ⊗ Y )

F(cCX,Y )
// F (Y ⊗X).

Example 3.3.2. The braiding defined in Example 2.3.7 on the categories HMod for a
commutative k-bialgebra H and HMod for a cocommutative k-bialgebra H coincides with
the one of their underlying vector spaces, which automatically implies that their respective
forgetful functors to the category of k-vector spaces are braided.
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Example 3.3.3. Unlike the previous examples, the forgetful functors corresponding to the
categories VectZ,Ch(Vect),Coch(Vect), and H

HYD for a Hopf algebra H are not braided.

Example 3.3.4. This example provides a tool to recover Corollary 3.1.22 from Theorem
3.2.10.

Let (C,⊗, I) be a monoidal category, and let Adj(C) be the full subcategory of C whose
objects are the V ∈ C such that the functor −⊗ V has right adjoint hom(V,−).

If V and W are objects in Adj(C), the composition of natural isomorphisms

HomC(−⊗ V ⊗W,−) ≃ HomC(−⊗ V,hom(W,−)) ≃ HomC(−,hom(V,hom(W,−)))

implies that V ⊗W is an object of Adj(C), and hom(V ⊗W,Y ) = hom(V,hom(W,Y )) for
every object Y of C. In addition, the natural isomorphism

HomC(−⊗ I,−) ≃ HomC(−,−)

implies that I ∈ Adj(C) and hom(I, Y ) = Y for every object Y ∈ C. Hence, one can
consider the monoidal category (Adj(C),⊗, I) and the restriction of the functor hom(−, I) :
Adj(C)op → C, which has a monoidal structure

(hom(−, I), ξ, ξ0) : (Adj(C)op, ⊗̃ , I) → (C,⊗, I),

Here ξ is the natural transformation of Definition 3.1.16, and ξ0 = idI . Proposition 3.2.2
is the condition for this lax monoidal functor to be braided.

The last step is applying this proposition to the lax monoidal functor defined above.

Proposition 3.3.5. [AM10, Proposition 3.37] Given two braided monoidal categories
(C,⊗, I) and (D,×, J), let (F,φ, φ0) be a braided lax monoidal functor from C to D, and
let (A,µ, η) be a commutative monoid in C. The triple (F (A), F (µ) ◦ φA,A, F (η) ◦ φ0) is
a commutative monoid in D.

We finish this chapter with a result of graded braided commutativity up to homotopy
in Coch

(
H
HYD

)
. It slightly generalizes Corollary 3.13 of [MPSW10], which can be obtained

from this theorem by taking cohomology.

Theorem 3.3.6. Let H be a Hopf algebra, and let A be a bimonoid in the braided monoidal
category

(
H
HYD,⊗, k, c

)
. Suppose that either H or A is finite dimensional. Then the

differential graded algebra Homk(S(A)•, k) with the opposite of the cup product is graded
braided commutative up to homotopy.

Proof: Let us consider the chain complex S•(A) with the deconcatenation coproduct dec
and its counit. By Theorem 3.2.10, it is a graded braided cocommutative comonoid in
Ch

(
H
HYD

)
.

On the other hand, the finite dimension of either H or A guarantees that the objects
Sn(A) lie in the subcategory Adj

(
H
HYD

)
defined in Example 3.3.4. Let us denote this

subcategory by B. One can think of S•(A) as a chain complex in B. Applying functor
hom(−, I) to the objects and the differentials of a chain complex, one can define a functor
at the cochain level, denoted by hom(−, I)Coch : (Ch(B))op ≃ Coch(Bop) −→ Coch(C).

This allows us to define componentwise a lax monoidal functor(
hom(−, I)Coch, ξCoch, ξCoch

0

)
:
(
Coch(Bop), ⊗̃, I0

)
−→ (Coch(C),⊗, I0) ,
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where the monoidal structures in the categories of cochain complexes are those of Remark
2.2.13, making ξCoch

V•,W•
a morphism of cochain complexes. Associativity and unitality are

checked componentwise, as well as the fact that this lax monoidal functor is braided with
the graded braiding on both categories.

The same construction can be made modulo homotopy. Since (S•(A),dec, idk) is a
commutative monoid in the braided monoidal category (Coch(Bop), ⊗̃,k0, c̃gr), Proposition
3.3.5 gives a commutative monoid in (Coch(C),⊗, k0, cgr), which coincides as a cochain
complex with hom(S•(A), k). It is straightforward to check that the product of Proposition
3.3.5 coincides with the cup product ⌣.

Finiteness of the dimension of either H or A also guarantees that the vector spaces
hom(Sn(A), k) and Homk(Sn(A), k)) are isomorphic, and that the product ⌣ is the oppo-
site of the usual cup product ∪.

Therefore, Homk(S•(A), k) with the opposite of the usual cup product is a graded
braided commutative algebra up to homotopy, and so it is after taking cohomology.
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Chapter 4

An approach using duoidal
categories

In the previous chapter we proved a cocommutativity theorem which holds in several
braided monoidal categories, and which is also independent of the existence of cochain
complexes and cohomology inside the category. However, it is still desirable to have
commutativity at the level of cohomology. For this reason, our aim in this chapter is to
show a result of this kind for a more general class of algebras than in [MPSW10].

One problem of the previous approach is that it depends on the bar resolution, which
is in general difficult to handle. Although some computations can be made, it would be
better to be able to work with smaller projective resolutions. There is a technical issue
when defining the comultiplication of a projective resolution: it is well-defined only on
the tensor product over the algebra A, which in general admits no braidings. Instead, it
is possible to deal with it using a generalization of braided monoidal categories: duoidal
categories. We will follow the notation in [AM10] for general definitions and theorems.

4.1 Duoidal categories and bimodules

In this section, we will recall the definition of a duoidal category, also called 2-monoidal
category. We will also exhibit the example we are interested in, the duoidal category ACA

of bimodules over a bialgebra A in a braided monoidal category C.

Definition 4.1.1. [AM10, Definition 6.1: 2-monoidal category ] A duoidal category is a
15-tuple (C, ⋄, I, a, ℓ, r, ⋆, J, α, λ, ρ, ζ,∆I , µJ , ζ0), where

• (C, ⋄, I, a, ℓ, r) and (C, ⋆, J, α, λ, ρ) are monoidal categories.

• (I,∆I , ζ0) is a comonoid in (C, ⋆, J, α, λ, ρ).

• (J, µJ , ζ0) is a monoid in (C, ⋄, I, a, ℓ, r)

• ζ is a natural transformation, called interchange law, given by a family of morphisms
ζX,Y,Z,T : (X ⋆ Y ) ⋄ (Z ⋆ T ) → (X ⋄ Z) ⋆ (Y ⋄ T ) for each X,Y, Z, T ∈ C, such that
the following diagrams commute for every X,Y, Z, T, U, V ∈ C:
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((X ⋆ T ) ⋄ (Y ⋆ U)) ⋄ (Z ⋆ V )
a
X⋆T,Y ⋆U,Z⋆V //

ζ
X,T,Y,U

⋄ id
Z⋆V

��

(X ⋆ T ) ⋄ ((Y ⋆ U) ⋄ (Z ⋆ V ))

id
X⋆T

⋄ ζ
Y,U,Z,V

��
((X ⋄ Y ) ⋆ (T ⋄ U)) ⋄ (Z ⋆ V )

ζ
X⋄Y,T⋄U,Z,V

��

(X ⋆ T ) ⋄ ((Y ⋄ Z) ⋆ (U ⋄ V ))

ζ
X,T,Y ⋄Z,U⋄V
��

((X ⋄ Y ) ⋄ Z) ⋆ ((T ⋄ U) ⋄ V ) a
X,Y,Z

⋄ a
T,U,V

// (X ⋄ (Y ⋄ Z)) ⋆ (T ⋄ (U ⋄ V )),

((X ⋆ Y ) ⋆ Z) ⋄ ((T ⋆ U) ⋆ V )
α
X,Y,Z

⋄α
T,U,V //

ζ
X⋆Y,Z,T⋆U,V

��

(X ⋆ (Y ⋆ Z)) ⋄ (T ⋆ (U ⋆ V ))

ζ
X,Y ⋆Z,T,U⋆V

��
((X ⋆ Y ) ⋄ (T ⋆ U)) ⋆ (Z ⋄ V )

ζ
X,T,Y,U

⋆ id
Z⋄V
��

(X ⋄ T ) ⋆ ((Y ⋆ Z) ⋄ (U ⋆ V ))

id
X⋄T ⋆ ζ

Y,Z,U,V

��
((X ⋄ T ) ⋆ (Y ⋄ U)) ⋆ (Z ⋄ V ) α

X⋄T,Y ⋄U,Z⋄W
// (X ⋄ T ) ⋆ ((Y ⋄ U) ⋆ (Z ⋄ V )),

I ⋄ (X ⋆ Y )
ℓ
X⋆Y //

∆
I
⋄ id

X⋆Y

��

X ⋆ Y

(I ⋆ I) ⋄ (X ⋆ Y )
ζ
I,I,X,Y

// (I ⋄X) ⋆ (I ⋄ Y ),

ℓ
X
⋆ ℓ

Y

OO (X ⋆ Y ) ⋄ I
r
X⋆Y //

id
X⋆Y

⋄∆
I

��

X ⋆ Y

(X ⋆ Y ) ⋄ (I ⋆ I)
ζ
X,Y,I,I

// (X ⋄ I) ⋆ (Y ⋄ I),

r
X
⋆ r

Y

OO

(J ⋆ X) ⋄ (J ⋆ Y )
ζ
J,X,J,Y//

λ
X
⋄λ

Y

��

(J ⋄ J) ⋆ (X ⋄ Y )

µ
J
⋆ id

X⋄Y
��

X ⋄ Y J ⋆ (X ⋄ Y ),
λ
X⋄Y

oo

(X ⋆ J) ⋄ (Y ⋆ J)
ζ
X,J,X,J//

ρ
X
⋄ ρY
��

(X ⋄ Y ) ⋆ (J ⋄ J)

id
X⋄Y ⋆ µ

J

��
X ⋄ Y (X ⋄ Y ) ⋆ J,ρX⋄Y

oo

We will omit in general associators, unitors and structures on the units, denoting the
duoidal category by (C, ⋄, I, ⋆, J, ζ, ζ0).

Example 4.1.2. Any braided monoidal category (C,⊗, I, a, ℓ, r, c) gives rise to the duoidal
category

(
C,⊗, I, a, ℓ, r,⊗, I, a, ℓ, r, ζc, ℓI−1 = rI

−1, ℓI = rI , idI
)
, where the interchange law

is ζcX,Y,Z,T = idX ⊗ cY,Z ⊗ idT .

Remark 4.1.3. Note that all morphisms involved in the previous example are isomor-
phisms. There is a categorical Eckmann-Hilton argument which states that essentially ev-
ery duoidal category whose structure morphisms are isomorphisms comes from a braided
monoidal category. See, for example, [AM10, Proposition 6.11].

Remark 4.1.4. If (C, ⋄, I, a, ℓ, r, ⋆, J, α, λ, ρ, ζ,∆I , µJ , ζ0) is a duoidal category, then so is
its opposite category

(
Cop, ⋆, J, α−1, λ−1, ρ−1, ⋄, I, a−1, ℓ−1, r−1, ζop, µJ ,∆I , ζ0

)
, where the

interchange law is ζopX,Y,Z,T = ζX,Z,Y,T .

Remark 4.1.5. Transposing one or both of the monoidal structures of a monoidal category
If (C, ⋄, I, a, ℓ, r, ⋆, J, α, λ, ρ, ζ,∆I , µJ , ζ0) gives three different duoidal categories:

•
(
C, ⋄̃ , I, a−1, r, ℓ, ⋆, J, α, λ, ρ, ζ ⋄̃ ,∆I , µJ , ζ0

)
, where ζ ⋄̃

X,Y,Z,T = ζZ,T,X,Y ,
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•
(
C, ⋄, I, a, ℓ, r, ⋆̃ , J, α−1, ρ, λ, ζ ⋆̃ ,∆I , µJ , ζ0

)
, where ζ ⋆̃

X,Y,Z,T = ζY,X,T,Z ,

•
(
C, ⋄̃ , I, a−1, r, ℓ, ⋆̃ , J, α−1, ρ, λ, ζ ⋄̃ , ⋆̃ ,∆I , µJ , ζ0

)
, where ζ ⋄̃ , ⋆̃

X,Y,Z,T = ζT,Z,Y,X .

Definition 4.1.6. A duoidal category is strict if both underlying monoidal structures are
strict.

All duoidal categories considered in this work will be strict.

Remark 4.1.7. For a duoidal category C, both monoidal structures can be lifted to Ch(C),
Coch(C) and CZ, with the structures on the units concentrated in degree 0 and the inter-
change law ζgr defined by ζgrX,Y,Z,T |(Xm⋆Yn)⋄(Zk⋆Tℓ) = (−1)nk ζXm,Yn,Zk,Tℓ

.

Next we will exhibit the duoidal category we are interested in.

Definition 4.1.8. 1. Let (C,⊗, I) be a monoidal category, and let (A,µ, η) be a monoid
in C. An A-bimodule is a triple (M,χℓ, χr), where

• M is an object in C,

• χℓ : A⊗M →M and χr :M ⊗A→M are morphisms in C, respectively called
left and right action, such that the following diagrams commute:

A⊗A⊗M
µ⊗idM //

idA⊗χℓ

��

A⊗M

χℓ

��
A⊗M χℓ

//M,

M ⊗A⊗A
χr⊗idA //

idM⊗µ
��

M ⊗A

χr

��
M ⊗A χr

//M,

A⊗M ⊗A
χℓ⊗idA //

idA⊗χr

��

M ⊗A

χr

��
A⊗M χℓ

//M,

I ⊗M
η⊗idM//

idM %%

A⊗M

χℓ

��
M.

M ⊗A

χr

��

M ⊗ I
idM⊗ηoo

idMyy
M.

2. Let (C,⊗, I) be a monoidal category, and let (A,µ, η) be a monoid in C. The category

ACA of A-bimodules in C is defined as follows:

• Objects are A-bimodules (M,χℓ, χr).

• For each pair of A-bimodules (M,χℓ, χr) and (M ′, χ′
ℓ, χ

′
r), the set of morphisms

Hom
ACA

(M,M ′) consists of the maps f :M →M ′ in C such that the following
diagrams commute:

A⊗M
χℓ //

idA⊗f
��

M

f
��

A⊗M ′
χ′
ℓ

//M ′,

M ⊗A
χr //

f⊗idA
��

M

f
��

M ′ ⊗A
χ′
r

//M ′.

Although mentioning C is redundant in this definition, it will be necessary when dealing
at the same time with different categories with the same underlying monoidal structures
(e.g. vector spaces, graded vector spaces, Yetter Drinfeld modules).
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Definition 4.1.9. Under the conditions of Definition 4.1.8, let (M,χℓ, χr) and (M ′, χ′
ℓ, χ

′
r)

be two A-bimodules in C. The product over A of M and M ′ is the coequalizer πM,M ′ :
M ⊗M ′ → M ⊗A M

′ of the maps χr ⊗ idM ′ and idM ⊗ χ′
ℓ : M ⊗ A ⊗M ′ −→ M ⊗M ′.

The left and right actions of A on M ⊗A M
′ are respectively induced by χℓ and χ

′
r.

Remark 4.1.10. It is easy to see that the product ⊗A is associative with unit A and
functorial, therefore (ACA,⊗A, A) is a monoidal category.

Definition 4.1.11. Let (C,⊗, I, c) be a braided monoidal category, let (A,µ, η,∆, ε) be a
bimonoid in C, and let (M,χℓ, χr) and (M ′, χ′

ℓ, χ
′
r) be A-bimodules in C. The A-bimodule

M ⊙M ′ is
(
M ⊗M ′, χ⊙

ℓ , χ
⊙
r

)
, with actions are given by

χ⊙
ℓ = (χℓ ⊗ χ′

ℓ) ◦ (idA ⊗ cA,M ⊗ idM ′) ◦ (∆⊗ idM ⊗ idM ′) ,
χ⊙
r = (χr ⊗ χ′

r) ◦
(
idM ⊗ cM ′,A ⊗ idA

)
◦ (idM ⊗ idM ′ ⊗∆) .

Remark 4.1.12. It is clear that the product of two A-bimodule morphisms is also an A-
bimodule morphism with respect to the actions defined above, so ⊙ is indeed a bifunctor
landing in ACA. Coassociativity and counitality of A and the axioms of the braiding imply
that ⊙ is associative with unit (I, ε, ε). Therefore, (ACA,⊙, I) is a monoidal category.

We now obtain a duoidal category that will be used in what follows.

Proposition 4.1.13. Let (C,⊗, I, c) be a braided monoidal category, let (A,µ, η,∆, ε) be
a bimonoid in C. The 9-tuple

(
ACA,⊗A, A,⊙, I, ζA,∆, idI , ε

)
is a duoidal category, where

ζAM,N,K,L : (M ⊙N)⊗A (K ⊙ L) −→ (M ⊗A K)⊙ (N ⊗A L)

is the canonical projection of the map ζcM,N,K,L = idM ⊗ cN,K ⊗ idL of Example 4.1.2.

Proof: Compatibility of ζA with associativity and units of both products is a consequence
of the axioms of the braiding c. We only need to prove that ζA is well-defined, that is,
the map (πM,K ⊗ πN,L) ◦ ζcM,N,K,L factors through (M ⊙ N) ⊗A (K ⊙ L). This is shown
in the following graphical calculation. On one side, precomposing ζcM,N,K,L with the right
action of A on M ⊙N yields:

MN A K L��
�� ��

M K N L

=

MN A K L��
�� ��

M K LN ,

where the equality holds due to naturality of the braiding with respect to the right action
of A on N and the identity of K .

On the other side, a similar argument shows that precomposing ζcM,N,K,L with the left
action of A on P ⊙ L yields:

MN A K L��
PP PP

MK N L

=

MN A K L��
PP PP

M K LN ,

which equals the previous calculation when postcomposed with πM,K ⊗ πN,L.

This result holds in general for a duoidal category C not necessarily arising from a
braided monoidal category - see [GLF16, Section 7.1].
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4.2 (Co)duoids and projective resolutions

The concept of (co)duoid generalizes the one of (co)commutative monoid in a braided
monoidal category to the context of duoidal categories. We will see how some projective
resolutions of bimodules can be given a coduoid structure, in an analogous way to the
deconcatenation comonoid defined in the previous chapter.

Definition 4.2.1. Let (C, ⋄, I, ⋆, J, ζ,∆I , µJ , ζ0) be a duoidal category. A duoid in C is a
5-tuple (A,µ, η, ν, ι), where

• (A,µ, η) is a monoid in (C, ⋄, I)

• (A, ν, ι) is a monoid in (C, ⋆, I)

• the following diagrams commute:

(A ⋆ A) ⋄ (A ⋆ A)
ζA,A,A,A //

ν⋄ν
��

(A ⋄A) ⋆ (A ⋄A)
µ⋆µ

��
A ⋄A µ

// A A ⋆ A,ν
oo

I
∆I //

η

��

I ⋆ I

η⋆η

��
A A ⋆ A,ν
oo

J ⋄ J µJ //

ι⋄ι
��

J

ι
��

A ⋄A µ
// A,

I
ζ0 //

η ��

J

ι~~
A.

Also, for a duoidal category (C, ⋄, I, ⋆, J, ζ), a coduoid in C is a duoid in its opposite
category Cop.

Example 4.2.2. Any commutative monoid (A,µ, η) in a braided monoidal category
(C,⊗, I, c) gives a duoid (A,µ, η, µ, η) in the duoidal category (C,⊗, I,⊗, I, ζc), and anal-
ogously a cocommutative comonoid induces a coduoid. The converse is also true, due to
the Eckmann-Hilton argument - see [AM10, Proposition 6.29].

In the sequel, we will focus on giving a coduoid structure to certain projective resolu-
tions of k as A-bimodule, when A is a bimonoid in the category kG

kGYD of Yetter-Drinfeld
modules over an abelian group G. One of the coproducts will be the one of Example
2.2.20, which is related to the definition of the usual cup product - see Remark 2.1.3. First
we will define the duoidal category whose coduoids we are interested in.

Definition 4.2.3. Let A be a bimonoid in the category kG
kGYD. We define the duoidal

category
(
Ch

(
A

(kG
kGYD

)
A

)
,⊗A, A0,⊙,k0,

(
ζA

)gr)
as follows:

• Objects are chain complexes of A-bimodules in kG
kGYD.

• Morphisms are k-linear homotopy classes of chain morphisms in AModA.

• The products ⊗A and ⊙ are defined componentwise as in Remark 2.2.13 with their
units concentrated in degree 0.

• The graded interchange law
(
ζA

)gr
is defined as in Remark 4.1.7.
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Theorem 4.2.4. Let A be a bimonoid in the braided monoidal category kG
kGYD for a group

G, and let P•
f−→ A be a chain complex in A

(kG
kGYD

)
A which is also a projective resolution

of A in AModA. The map ω : P• → (P ⊗A P )• lifting the isomorphism A ≃ A⊗A A as in
Example 2.2.20 and the map δ : P• → (P ⊙ P )• defined as a lifting of the map ∆ : A →
A⊙A provide a coduoid (P•, ω, f0, δ, ε ◦ f0) in

(
Ch

(
A

(kG
kGYD

)
A

)
,⊗A, A0,⊙,k0,

(
ζA

)gr)
.

Proof: Consider the following commutative diagram in A

(kG
kGYD

)
A:

A⊗A A

∆⊗A∆
��

A
≃oo ∆ // A⊙A

≃
��

(A⊙A)⊗A (A⊙A)
ζAA,A,A,A

// (A⊗A A)⊙ (A⊗A A).

Since the forgetful functor kG
kGYD → Vect is strong monoidal, the diagram is also commu-

tative in AModA. Lifting these morphisms along the exact complexes in AModA involving
products of P• gives the following diagram in AModA:

(P ⊗A P )•

δ⊗Aδ
��

P•
ωoo δ // (P ⊙ P )•

ω⊙ω

��
((P ⊙ P )⊗A (P ⊙ P ))•

(ζA)
gr

P•,P•,P•,P•

// ((P ⊗A P )⊙ (P ⊗A P ))•,

which consequently commutes up to a k-linear homotopy.

In the next examples we show how the Jordan and super Jordan plane fit into the
hypotheses of the previous theorem.

Example 4.2.5. For the Jordan plane, the following resolution of A as A-bimodule has
been computed in [LS21]:

0 // A⊗R⊗A
d1 // A⊗ V ⊗A

d0 // A⊗A // 0,

where V = k{x, y} and R = kr. The differentials are
d0(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v, ∀v ∈ V,
d1(1⊗ r ⊗ 1) = y ⊗ x⊗ 1 + 1⊗ y ⊗ x− x⊗ y ⊗ 1− 1⊗ x⊗ y

+ 1
2 x⊗ x⊗ 1 + 1

2 1⊗ x⊗ x,

and the quasi-isomorphism is the one induced by µ : A⊗A→ A.
We only need to define an action of kZ = k[t, t−1] and a compatible internal Z-grading

on the A-bimodules A ⊗ R ⊗ A and A ⊗ V ⊗ A. We will define the action of t on the
elements of the form 1 ⊗ v ⊗ 1 and extend it by t · (a · m · b) = (t · a) · (t · m) · (t · b).
Analogously, we will define the grading on these elements and extend it additively over
the tensor product.

• t · (1⊗x⊗1) = 1⊗x⊗1, t · (1⊗ y⊗1) = 1⊗x⊗1+1⊗ y⊗1 and 1⊗x⊗1, 1⊗ y⊗1
have internal degree 1,

• t · (1⊗ r ⊗ 1) = 1⊗ r ⊗ 1 and 1⊗ r ⊗ 1 has internal degree 2.

It is straightworward to check that the differentials preserve the action and the internal
grading.
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Example 4.2.6. For the super Jordan plane, we will use the following resolution of A as
A-bimodule, computed in [RS18]:

· · · d3 // A⊗ V3 ⊗A
d2 // A⊗ V2 ⊗A

d1 // A⊗ V1 ⊗A
d0 // A⊗A // 0,

where V1 = k{x, y} and Vn = k{xn, y2xn−1}, ∀n ≥ 2. It has differentials
d0(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v, ∀v ∈ V,
d1(1⊗ x2 ⊗ 1) = 1⊗ x⊗ x+ x⊗ x⊗ 1,
d1(1⊗ y2x⊗ 1) = y2 ⊗ x⊗ 1 + y ⊗ y ⊗ x+ 1⊗ y ⊗ yx− xy ⊗ y ⊗ 1− x⊗ y ⊗ y

− 1⊗ x⊗ y2 − xy ⊗ x⊗ 1− x⊗ y ⊗ x− 1⊗ x⊗ yx,
dn(1⊗ xn+1 ⊗ 1) = x⊗ xn ⊗ 1 + (−1)n+1 1⊗ xn ⊗ x,
dn(1⊗ y2xn ⊗ 1) = y2 ⊗ xn ⊗ 1 + (−1)n+1 1⊗ y2xn−1 ⊗ x− x⊗ y2xn−1 ⊗ 1

− xy ⊗ xn ⊗ 1− 1⊗ xn ⊗ y2 − 1⊗ xn ⊗ yx, ∀n ≥ 2,
and quasi-isomorphism induced by µ : A⊗A→ A as in the previous example.
Now, we define a compatible kZ-action and internal Z-grading on the elements 1⊗v⊗1

of the A-bimodules A⊗ Vn ⊗A:

• t · (1⊗x⊗1) = −1⊗x⊗1, t · (1⊗y⊗1) = 1⊗x⊗1−1⊗y⊗1 and 1⊗x⊗1, 1⊗y⊗1
have internal degree 1,

• t · (1⊗ xn ⊗ 1) = (−1)n1⊗ xn ⊗ 1, and 1⊗ xn ⊗ 1 has internal degree n, ∀n ≥ 2.

• t · (1⊗ y2xn−1 ⊗ 1) = −1⊗ xn ⊗ y + (−1)n−1(x− y)⊗ xn ⊗ 1 + 1⊗ y2xn−1 ⊗ 1, and
1⊗ y2xn−1 ⊗ 1 has internal degree n+ 1, ∀n ≤ 2.

As in the previous example, it is straightforward to check that this structure satisfies
the needed compatibilities.

4.3 Obtaining commutativity from a double lax monoidal
functor

So far in this chapter, we have worked on a duoidal structure in the category A

(kG
kGYD

)
A

analogous to the braided monoidal structure in kG
kGYD. We have also defined a coduoid

up to homotopy in Ch
(
A

(kG
kGYD

)
A

)
using a free resolution P• → A, in a similar way as

we had previously defined a braided comonoid up to homotopy in Ch
(kG
kGYD

)
using the

complex S•.
Our next step will be to define a functor homAA(−,k) : A

(kG
kGYD

)
A → kG

kGYD in a
similar way to the definition of hom(−,k) : kG

kGYD → kG
kGYD in Example 3.1.8. Under

weaker finiteness conditions than in [MPSW10], it will coincide at the k-linear level with
the functor HomAA(−,k), sending a free resolution P• → A to the cochain complex used
to compute Hochschild cohomology. We will extend this to the monoidal structures on
them. The following definition is an analogue in the context of duoidal categories of the
concept of braided lax monoidal functors in braided monoidal categories.

Definition 4.3.1. Let (C, ⋄, I, ⋆, J, ζ) and (C′, ⋄′, I ′, ⋆′, J ′, ζ ′) be duoidal categories. A
double lax monoidal functor from C to C′ is a 5-tuple (F,φ, φ0, γ, γ0), where

• (F,φ, φ0) is a lax monoidal functor from (C, ⋄, I) to (C′, ⋄′, I ′).
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• (F, γ, γ0) is a lax monoidal functor from (C, ⋆, J) to (C′, ⋆′, J ′).

• The following diagrams commute:

(F (X) ⋆′ F (Y )) ⋄′ (F (Z) ⋆′ F (T ))
ζ′
F (X),F (Y ),F (Z),F (T ) //

γX,Y ⋄′γZ,T

��

(F (X) ⋄′ F (Z)) ⋆′ (F (Y ) ⋄′ F (T ))

φX,Z⋆′φY,T

��
F (X ⋆ Y ) ⋄′ F (Z ⋆ T )

φX⋆Y,Z⋆T

��

F (X ⋄ Z) ⋆′ F (Y ⋄ T )
γX⋄Z,Y ⋄T
��

F ((X ⋆ Y ) ⋄ (Z ⋆ T ))
F (ζX,Y,Z,T )

// F ((X ⋄ Z) ⋆ (Y ⋄ T )),

I ′
∆I′ //

φ0

��

I ′ ⋆′ I ′

φ0⋆′φ0

��

F (I)

F (∆I)

��
F (I ⋆ I) F (I) ⋆′ F (I),γI,I

oo

J ′ ⋄′ J ′ µJ′ //

γ0⋄′γ0

��

J

γ0
��

F (J)

F (J) ⋄′ F (J) φJ,J

// F (J ⋄ J),

F (µJ )

OO

I ′
ζ′0 //

φ0

��

J ′

γ0
��

F (I)
F (ζ0)

// F (J).

While lax monoidal functors preserve monoids and braided lax monoidal functors pre-
serve commutative monoids, we recall a proposition which states that double lax monoidal
functors preserve duoids.

Proposition 4.3.2. [AM10, Corollary 6.58] Given two duoidal categories (C, ⋄, I, ⋆, J, ζ)
and (C′, ⋄′, I ′, ⋆′, J ′, ζ ′), let (F,φ, φ0, γ, γ0) be a double lax monoidal functor from C to C′,
and let (A,µ, η, ν, ι) be a duoid in C. The 5-tuple (F (A), F (µ) ◦ φA,A, F (η) ◦ φ0, F (ν) ◦
γA,A, F (ι) ◦ γ0) is a duoid in C′.

In order to define the functor mentioned before Definition 4.3.1, let us recall the internal
hom in the category kG

kGYD from Examples 3.1.7 and 3.1.8. Componentwise, it is as follows:

hom(V, Y )h =
∏
s∈G

Homk(Vs, Yhs) = HomVectG(V, Y [h]),

Where the G-graded vector space Y [h] is defined in each component s ∈ G by the equality
Y [h]s = Yhs, for every h ∈ G.

The next definition resembles this internal hom.

Definition 4.3.3. Let A be an augmented algebra and M,N be two A-bimodules in
the monoidal category kG

kGYD, where G is an abelian group. The Yetter-Drinfeld module
homAA(M,N) is defined componentwise by

homAA(M,N)h = Hom
A(Vect

G)A
(M,N [h]) = HomAA(M,N) ∩ hom(M,N)h,

with the following action of kG:

(g · f)(x) = g · f(g−1 · x), ∀x ∈M, ∀g ∈ G, ∀f ∈ homAA(M,N)h.

There are several details implicit in this definition:
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• We are using the isomorphism kG
kGYD ≃ (kGMod)G of Example 2.2.17 to define a

Yetter-Drinfeld module by a G-grading and a kG-action on each component.

• The aforementioned isomorphism is also used to define the object N [h]. It can be
checked directly that N [h] is an A-bimodule in kG

kGYD if N is so.

• In Remark 2.2.24, we noticed that the forgetful functors kG
kGYD −→ VectG −→ Vect

are strong monoidal, so A can be regarded as a monoid and M,N,N [h] as A-
bimodules in any of these categories.

• It is straightforward to check that if f is in homAA(M,N)h, then g · f belongs to
homAA(M,N)h as well. Thus, homAA(M,N)h is a kG-submodule of hom(M,N)h
for every h ∈ G, and consequently homAA(M,N) is a G-graded kG-submodule of
hom(M,N).

• It can also be easily checked that precomposing with A-bimodule morphisms in the
first coordinate and postcomposing with A-bimodule morphisms in the second one
preserves the G-grading and the kG-action. This allows us to regard homAA(−,−)
as a bifunctor from A

(kG
kGYD

)
A
op × A

(kG
kGYD

)
A to kG

kGYD.

Remark 4.3.4. Let M be a Yetter-Drinfeld module over kG isomorphic to the free A-
bimodule A⊗V ⊗A as a bimodule in VectG. The adjunction between the functor A⊗−⊗A
and the forgetful functor from A(Vect

G)A to VectG gives a canonical isomorphism

Hom
A(Vect

G)A
(A⊗ V ⊗A,N [h]) ≃ HomVectG(V,N [h]).

This implies that
homAA(A⊗ V ⊗A,N) ≃ hom(V,N)

as G-graded vector spaces. If, in addition, V is a finite dimensional vector space, then

homAA(A⊗ V ⊗A,N) ≃ hom(V,N) ≃ Homk(V,N) ≃ HomAA(A⊗ V ⊗A,N).

Since all these isomorphisms are natural, so is their composition.

Proposition 4.3.5. Let A be an augmented algebra in the monoidal category kG
kGYD for

an abelian group G. Suppose that there exists a chain complex P• → A in A

(kG
kGYD

)
A

which is a resolution of A in AModA, and such that for every n ∈ N0 the A-bimodule Pn

is isomorphic as a G-graded vector space to A⊗Vn⊗A, with Vn finite dimensional. There
is an isomorphism of Z-graded vector spaces

H•(A, k) ≃ H(homAA(P•,k)).

Proof: Since Vn is finite dimensional, by the previous remark homAA(A ⊗ Vn ⊗ A, k) is
isomorphic to HomAA(A⊗ Vn ⊗A,k).

Using that P• → A is a projective resolution in Vect gives

H•(A,k) = Ext•AA(A,k) = H(HomAA(P•,k)) ≃ H(homAA(P•,k)).

Now we know that, under some finiteness conditions, the functor homAA(−, k) can
be used to compute Hochschild cohomology. The following step is giving this functor a
double lax monoidal structure relating the coproducts ω and δ of Theorem 4.2.4 to the
cup product of H•(A,k).
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Definition 4.3.6. Let (A,µ, η,∆, ε) be a bimonoid in kG
kGYD, and let M,N ∈ A

(kG
kGYD

)
A.

• The morphism φM.N : homAA(M,k)⊗homAA(N, k) −→ homAA(N⊙M,k) is defined
by φM,N (f ⊗ g) = g ⊙ f .

• The morphism φ0 : k −→ homAA(k,k) is defined by φ0(1) = idk.

• The morphism γM.N : homAA(M,k) ⊗ homAA(N, k) −→ homAA(N ⊗A M, k) is
defined by γM,N (f ⊗ g) = g ⊗A f .

• The morphism γ0 : k −→ homAA(A,k) is defined by γ0(1) = ε.

Theorem 4.3.7. Let A be a bimonoid in kG
kGYD. The 5-tuple

(
homAA(−, k), φ, φ0, γ, γ0

)
is a double lax monoidal functor from

(
A

(kG
kGYD

)
A
op
, ⊙̃ , k, ⊗̃A , A,

(
ζA

) ⊙̃ , ⊗̃A
)

to the

duoidal category
(
kG
kGYD,⊗, k, ,⊗, k, ζc

)
.

Proof: First of all, notice that φ and γ are natural transformations due to the functoriality
of the products ⊙,⊗A and ⊗. Associativity an unitality of both lax monoidal structures
can be checked directly, as well as the axioms involving the respective comonoid and
monoid structures on the first and second units. Let us pay attention to the relation

between the functor homAA(−, k) and the interchange laws
(
ζA

) ⊙̃ , ⊗̃A and ζc. We need
to prove the commutativity of the following diagram for every M,N,K,L ∈ A

(kG
kGYD

)
A,

where for X ∈ {M,N,K,L} the object homAA(X,k) is denoted by X◦.

M◦ ⊗N◦ ⊗K◦ ⊗ L◦
id

M◦⊗c
N◦,K◦⊗id

L◦
//

γ
M,N

⊗γ
K,L
��

M◦ ⊗K◦ ⊗N◦ ⊗ L◦

φ
M,K

⊗φ
N,L

��
(M ⊗̃A N)◦ ⊗ (K ⊗̃A L)

◦

φ
M ⊗̃A N,K ⊗̃A L

��

(M ⊙̃ K)◦ ⊗ (N ⊙̃ L)◦

γ
M ⊙̃ K,N ⊙̃ L

��[
(M ⊗̃A N) ⊙̃ (K ⊗̃A L)

]◦ (
(ζA)

⊙̃ , ⊗̃A
M,K,N,L

)∗
//
[
(M ⊙̃ K) ⊗̃A (N ⊙̃ L)

]◦
,

which translates into

M◦ ⊗N◦ ⊗K◦ ⊗ L◦
id

M◦⊗c
N◦,K◦⊗id

L◦
//

γ
M,N

⊗γ
K,L

��

M◦ ⊗K◦ ⊗N◦ ⊗ L◦

φ
M,K

⊗φ
N,L

��
(N ⊗A M)◦ ⊗ (L⊗A K)◦

φ
N⊗AM,L⊗AK

��

(K ⊙M)◦ ⊗ (L⊙N)◦

γ
K⊙M,L⊙N

��[
(L⊗A K)⊙ (N ⊗A M)

]◦
(ζAL,N,K,M)

∗
//
[
(L⊙N)⊗A (K ⊙M)

]◦
,

Now, let a, b, c, d be elements of G. We will chase an element f ⊗ f ′ ⊗ g ⊗ g′ along the
diagram above, where f ∈ homAA(Ma, k), f ′ ∈ homAA(Nb, k), g ∈ homAA(Kc,k) and
g′ ∈ homAA(Ld,k) respectively. Notice that, since k is concentrated in degree 1G, the
respective internal degrees of f, f ′, g, g′ are a−1, b−1, c−1, d−1. Following the top and right
sides of the diagram gives the element (g′⊙ f ′)⊗A (b−1 · g⊙ f), while following its left and
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bottom sides gives ((g′ ⊗A g)⊙ (f ′ ⊗A f)) ◦ ζAL,N,K,M . To show that both terms are equal,
it suffices to evaluate them in a generic element (w′ ⊙ v′)⊗A (w⊙ v), where v, v′, w, w′ lie
in Ma, Nb,Kc, Ld respectively. Evaluating the first term yields

(g′ ⊙ f ′)⊗A (b−1 · g ⊙ f) ((w′ ⊙ v′)⊗A (w ⊙ v)) = g′(w′)f ′(v′)(b−1 · g)(w)f(v)
= g′(w′)f ′(v′)g(b · w)f(v),

since the action of kG on k is trivial, while evaluating the second term yields(
(g′ ⊗A g)⊙ (f ′ ⊗A f)

) (
ζAL,N,K,M ((w′ ⊗A v

′)⊙ (w ⊗ v))
)

=
(
(g′ ⊗A g)⊙ (f ′ ⊗A f)

) (
(w′ ⊗A b · w)⊙ (v′ ⊗A v)

)
= g′(w′)g(b · w)f ′(v′)f(v).

This shows that both compositions of the diagram coincide when evaluated in a generic
element f ⊗ f ′ ⊗ g ⊗ g′, proving the compatibility of the functor homAA(−,k) with the
interchange laws.

In the following theorem, we prove the result on graded braided commutativity up to
k-linear homotopy which leads to the desired property of graded braided commutativity of
the Hochschild cohomology with trivial coefficients, under hypotheses that include Nichols
algebras such as the Jordan and super Jordan plane.

Theorem 4.3.8. Let A be a bimonoid in the braided monoidal category
(kG
kGYD,⊗,k, c

)
for an abelian group G. Suppose that there exists a complex P• → A in A

(kG
kGYD

)
A which

is a projective resolution of A in AModA, and such that for every n ∈ N0 the A-bimodule
Pn is isomorphic as a G-graded vector space to A⊗Vn⊗A, where Vn is finite dimensional.
Then the differential graded algebra HomAA(P•,k) with the opposite of the cup product is
graded braided commutative up to k-linear homotopy.

Proof: In the same way as in Theorem 3.3.6, one can consider the opposite of the category
Ch

(
A

(kG
kGYD

)
A

)
, which is isomorphic to the category of cochain complexes in A

(kG
kGYD

)
A

with cochain morphisms in AModA in the opposite direction.
On the other hand, let Ch

(kG
kGYD

)
denote the category whose objects are cochain com-

plexes of Yetter-Drinfeld modules over kG, and whose morphisms are k-linear homotopy
classes of k-linear cochain morphisms. It is a braided monoidal category with the tensor
product defined as in Remark 2.2.13 and the graded braiding.

It is posible to define componentwise a cochain version of the functor homAA(−,k) from
the duoidal category

(
Ch

(
A

(kG
kGYD

)
A

)op
, ⊙̃ ,k0, ⊗̃A , A0,

(
ζA

) ⊙̃ , ⊗̃A ,gr
)
to the duoidal

category
(
Coch

(kG
kGYD

)
,⊗,k0,⊗, k0, (ζc)gr

)
. All the axioms of a double lax monoidal

functor hold at the cochain level because they do componentwise, and the graded inter-
change laws are compatible with the signs of the differentials given as in Remark 2.2.13,
observing that they are being taken on the transpose product.

Translating the result of Theorem 4.2.4 to this context, one has that (P•, δ, f0 ◦ ε0, ω, f0)
is a duoid in Coch

(
A

(kG
kGYD

)
A
op
, ⊙̃ ,k0, ⊗̃A , A0,

(
ζA

) ⊙̃ , ⊗̃A ,gr
)
. Proposition 4.3.2 im-

plies that the double lax functor homAA(−,k) sends the duoid P• to a duoid homAA(P•,k)
in

(
Coch

(kG
kGYD

)
,⊗, k0,⊗,k0, (ζc)gr

)
. This duoid turns out to be a commutative monoid

in the braided monoidal category
(
Coch

(kG
kGYD

)
,⊗, k0, cgr

)
by the Eckmann-Hilton ar-

gument in Example 4.2.2. As proved in Proposition 4.3.5, the finiteness conditions on the
free resolution P• imply that homAA(P•, k) is isomorphic to HomAA(P•, k) as a cochain
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complex of k-vector spaces. Regarding the monoid structure on HomAA(P•,k) as the one
induced by the comonoid (P•, ω, (idA)0) via the lax monoidal functor (homAA(−,k), γ, γ0),
one deduces that it coincides with the opposite of the usual cup product as defined in Ex-
ample 2.2.20.

Corollary 4.3.9. Under the conditions above, H•(A,k) is a graded braided commutative
algebra in kG

kGYD.

The projective resolutions of the Jordan and super Jordan plane shown respectively
in Examples 4.2.5 and 4.2.6 verify the hypotheses of the previous theorem, therefore their
respective Hochschild cohomology algebras with the opposite of the cup product are graded
braided commutative algebras in kZ

kZYD.
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Appendix A

Computations for the Jordan and
super Jordan planes

In this Appendix we make the computations needed to check the commutativity of the
second diagram in Remark 3.2.3, that is of:

HomAA(A
⊗p+2, k)⊗HomAA(A

⊗q+2,k)
⌣p,q //

(−1)pq⌣p,q ++

HomAA(A
⊗p+q+2,k)

HomAA

(
id

A
⊗c

A⊗p,A⊗q⊗id
A
,k
)

��
HomAA(A

⊗p+q+2, k)..

In order to check the commutativity of this diagram after taking cohomology, we will
choose in each case a suitable projective resolution of A as A-bimodule, denoted P• → A,
along with comparison morphisms f• : P• → B•(A) and g• : B•(A) → P•.

For any two cocycles α and β, let us write α ∼ β if their cohomology classes coincide.
Commutativity means that

HomAA

(
idA ⊗ c

A⊗p,A⊗q ⊗ idA , k
) (

⌣p,q (ψ
′ ⊗ φ′)

)
∼ (−1)pq ⌣p,q (ψ

′ ⊗ φ′),

for every ψ′ ∈ HomAA(A
⊗p+2,k) and φ′ ∈ HomAA(A

⊗q+2, k), that is:

(ψ′ ⌣ φ′) ◦
(
idA ⊗ c

A⊗p,A⊗q ⊗ idA

)
∼ (−1)pq(ψ′ ⌣ φ′).

Replacing the bar resolution by P• this reads as

(ψ ◦ gp ⌣ φ ◦ gq) ◦
(
idA ⊗ c

A⊗p,A⊗q ⊗ idA

)
◦ fp+q ∼ (−1)pq(ψ ◦ gp ⌣ φ ◦ gq) ◦ fp+q,

for every ψ ∈ HomAA(Pp,k) and φ ∈ HomAA(Pq, k). This equivalence of A-bimodule
morphisms from Pp+q to k is what we will check.

Let us start with the Jordan plane. We will use the resolution of Example 4.2.5:

0 // A⊗R⊗A
d1 // A⊗ V ⊗A

d0 // A⊗A // 0,

where V = k{x, y} and R = kr.
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It is possible to define comparison morphisms f• : P• → B•(A) and g• : B•(A) → P•
such that:

f0 = g0 = idA⊗A,
f1(1⊗ v ⊗ 1) = 1⊗ v ⊗ 1, ∀v ∈ V,

g1(1⊗ xkyl ⊗ 1) =
∑k−1

i=0 x
i ⊗ x⊗ xk−1−iyl +

∑l−1
j=0 x

k ⊗ y ⊗ yl−1−j

f2(1⊗ r ⊗ 1) = 1⊗ y ⊗ x⊗ 1− 1⊗ x⊗ y ⊗ 1 + 1
2 1⊗ x⊗ x⊗ 1.

Notice that the commutativity needs to be checked only for the cup products of
H1(A,k) with itself, since H0(A, k) consists only of scalar multiples of the unit object
and the product of an element in H2(A, k) with one in H1(A, k) or H2(A,k) is zero since
H3(A,k) = 0. Now, let ψ,φ ∈ HomAA(P1,k) be two 1-cocycles:

(ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ r ⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ g1)

(
1⊗ y ⊗ x⊗ 1− 1⊗ x⊗ y ⊗ 1 + 1

2 1⊗ x⊗ x⊗ 1
)

= φ(g1(1⊗ y ⊗ 1))ψ(g1(1⊗ x⊗ 1))− φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ y ⊗ 1))
+ 1

2 φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ x⊗ 1))
= φ(1⊗ y ⊗ 1)ψ(1⊗ x⊗ 1)− φ(1⊗ x⊗ 1)ψ(1⊗ y ⊗ 1)

+ 1
2 φ(1⊗ x⊗ 1)ψ(1⊗ x⊗ 1).

To compute the element we want to compare with the one above, recall that we write
kZ = k[t, t−1], and the braiding is given by cV,W (v⊗w) = tn ·w⊗ v, where n is the degree
of v. From now on, let cp,q denote the map idA ⊗ c

A⊗p,A⊗q ⊗ idA for every p, q ∈ N0.

(ψ ◦ g1 ⌣ φ ◦ g1)(c1,1(f2(1⊗ r ⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ g1)

(
c1,1

(
1⊗ y ⊗ x⊗ 1− 1⊗ x⊗ y ⊗ 1 + 1

2 1⊗ x⊗ x⊗ 1
))

= (ψ ◦ g1 ⌣ φ ◦ g1)
(
1⊗ t · x⊗ y ⊗ 1− 1⊗ t · y ⊗ x⊗ 1 + 1

2 1⊗ t · x⊗ x⊗ 1
)

= (φ ◦ g1 ⌣ ψ ◦ g1)
(
1⊗ x⊗ y ⊗ 1− 1⊗ (x+ y)⊗ x⊗ 1 + 1

2 1⊗ x⊗ x⊗ 1
)

= −φ(1⊗ y ⊗ 1)ψ(1⊗ x⊗ 1) + φ(1⊗ x⊗ 1)ψ(1⊗ y ⊗ 1)
− 1

2 φ(1⊗ x⊗ 1)ψ(1⊗ x⊗ 1)
= − (ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ r ⊗ 1))

as we wanted to prove.

The computation for the super Jordan plane is more involved, since the minimal res-
olution, which is free, is as follows -see Example 4.2.6-:

· · · d3 // A⊗ V3 ⊗A
d2 // A⊗ V2 ⊗A

d1 // A⊗ V1 ⊗A
d0 // A⊗A // 0,

where V1 = k{x, y} and Vn = k{xn, y2xn−1}, ∀n ≥ 2.
For checking the commutativity condition, we will use the comparison morphisms

f• : P• → B•(A) and g• : B•(A) → P• defined in [RS18, Section 5]. Since the chain
morphism g• is only partially defined in [RS18], we need to extend the definition of gn for
n ≥ 2 as follows:

gn(1⊗ x⊗i ⊗ xy ⊗ x⊗n−1−i ⊗ 1) = 0 ∀i : 0 ≤ i ≤ n− 2,
gn(1⊗ x⊗n−1 ⊗ xy ⊗ 1) = 1⊗ xn ⊗ y.

It is a straightforward computation to prove that this extension indeed gives a chain
morphism.
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Again, H0(A,k) = k, so we will check the condition for cocycles in degrees greater or
equal to 1. The cup products to be computed lie in Hn(A, k) for n ≥ 2, so we are going to
evaluate them on the basis of Pn. Let ψ ∈ HomAA(Pp, k) and φ ∈ HomAA(Pq, k) be two
cocycles, for p, q ≥ 1. We need to consider four cases. In all of them, when applying the
morphisms gn, we keep in mind that ψ(gn(a0⊗a1⊗· · ·⊗an⊗an+1)) = 0 if a0 or an+1 are
homogeneous of positive degree, because they act by 0 on k, and the same holds for φ.
For p = q = 1:

Evaluating in 1⊗ x2 ⊗ 1 gives

(ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ x2 ⊗ 1)) = (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ x⊗2 ⊗ 1)
= φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ x⊗ 1))
= φ(1⊗ x⊗ 1)ψ(1⊗ x⊗ 1),

(ψ ◦ g1 ⌣ φ ◦ g1)(c1,1(f2(1⊗ x2 ⊗ 1))) = (ψ ◦ g1 ⌣ φ ◦ g1)(c1,1(1⊗ x⊗ x⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ t · x⊗ x⊗ 1)
= (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ (−x)⊗ x⊗ 1)
= − φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ x⊗ 1))
= − φ(1⊗ x⊗ 1)ψ(1⊗ x⊗ 1)
= − (ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ x2 ⊗ 1)),

while evaluating in 1⊗ y2x⊗ 1 gives

(ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ y2x⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ y ⊗ yx⊗ 1− 1⊗ x⊗ y2 ⊗ 1− 1⊗ x⊗ yx⊗ 1)
= φ(g1(1⊗ y ⊗ 1))ψ(g1(1⊗ yx⊗ 1))− φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ y2 ⊗ 1))

− φ(g1(1⊗ x⊗ 1))ψ(g1(1⊗ yx⊗ 1))
= 0,

since g1(1⊗ a⊗ 1) = 0 if a is homogeneous of degree greater than 1. On the other hand,

(ψ ◦ g1 ⌣ φ ◦ g1)(c1,1(f2(1⊗ y2x⊗ 1)))
= (ψ ◦ g1 ⌣ φ ◦ g1)(c1,1(1⊗ y ⊗ yx⊗ 1− 1⊗ x⊗ y2 ⊗ 1− 1⊗ x⊗ yx⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ t · yx⊗ y ⊗ 1− 1⊗ t · y2 ⊗ x⊗ 1− 1⊗ t · yx⊗ x⊗ 1)
= (ψ ◦ g1 ⌣ φ ◦ g1)(1⊗ yx⊗ y ⊗ 1− 1⊗ (y2 − xy − yx)⊗ x⊗ 1− 1⊗ yx⊗ x⊗ 1)
= φ(g1(1⊗ yx⊗ 1))ψ(g1(1⊗ y ⊗ 1)− φ(g1(1⊗ (y2 − xy − yx)⊗ 1))ψ(g1(1⊗ x⊗ 1)

− φ(g1(1⊗ yx⊗ 1))ψ(g1(1⊗ x⊗ 1))
= 0 = − (ψ ◦ g1 ⌣ φ ◦ g1)(f2(1⊗ y2x⊗ 1)).

For p = 1, q ≥ 2, evaluating in 1⊗ x1+q ⊗ 1 gives on one hand

(ψ ◦ g1 ⌣ φ ◦ gq)(f1+q(1⊗ x1+q ⊗ 1)) = (ψ ◦ g1 ⌣ φ ◦ gq)(1⊗ x⊗1+q ⊗ 1)
= φ(gq(1⊗ x⊗q ⊗ 1)(ψ(g1(1⊗ x⊗ 1))
= φ(1⊗ x⊗q ⊗ 1)ψ(1⊗ 1),

and on the other hand

(ψ ◦ g1 ⌣ φ ◦ gq)(c1,q(f1+q(1⊗ x1+q ⊗ 1)))
= (φ ◦ g1 ⌣ ψ ◦ gq)(c1,q(1⊗ x⊗1+q ⊗ 1))
= (φ ◦ gq ⌣ ψ ◦ g1)(c1,q(1⊗ x⊗ x⊗q ⊗ 1))
= (ψ ◦ g1 ⌣ φ ◦ gq)(1⊗ t · (x⊗q)⊗ x⊗ 1)
= (ψ ◦ g1 ⌣ φ ◦ gq)(1⊗ (t · x)⊗q ⊗ x⊗ 1)
= (ψ ◦ g1 ⌣ φ ◦ gq)(1⊗ (−x)⊗q ⊗ x⊗ 1)
= (−1)q (ψ ◦ g1 ⌣ φ ◦ gq)(1⊗ x⊗1+q ⊗ 1)
= (−1)q (ψ ◦ g1 ⌣ φ ◦ gq)(f1+q(1⊗ x1+q ⊗ 1)),
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while evaluating in 1⊗ y2xq ⊗ 1 gives

(ψg1 ⌣ φgq)(f1+q(1⊗ y2xq ⊗ 1))
= (ψg1 ⌣ φgq)(1⊗ y ⊗ yx⊗ x⊗q−1 ⊗ 1− 1⊗ x⊗ (y2 + yx)⊗ x⊗q−1 ⊗ 1

+
∑q−2

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗q−2−i ⊗ 1)
= φ(gq(1⊗ y ⊗ yx⊗ x⊗q−2 ⊗ 1))ψ(g1(1⊗ x⊗ 1))

− φ(gq(1⊗ x⊗ (y2 + yx)⊗ x⊗q−2 ⊗ 1))ψ(g1(1⊗ x⊗ 1))

+
∑q−3

i=0 (−1)i φ(gq(1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗q−3−i ⊗ 1))ψ(g1(1⊗ x⊗ 1))
+ (−1)q−2 φ(gq(1⊗ x⊗q ⊗ 1))ψ(g1(1⊗ (y2 + yx)⊗ 1))

= φ(1⊗ y2xq−1 ⊗ 1)ψ(1⊗ x⊗ 1),

(ψg1 ⌣ φgq)(c1,q(f1+q(1⊗ y2xq ⊗ 1)))
= (ψg1 ⌣ φgq)(c1,q(1⊗ y ⊗ yx⊗ x⊗q−1 ⊗ 1− 1⊗ x⊗ (y2 + yx)⊗ x⊗q−1 ⊗ 1

+
∑q−2

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗q−2−i ⊗ 1))
= (ψg1 ⌣ φgq)(1⊗ t · yx⊗ (t · x)⊗q−1 ⊗ y ⊗ 1

− 1⊗ t · (y2 + yx)⊗ (t · x)⊗q−1 ⊗ x⊗ 1

+
∑q−2

i=0 (−1)i 1⊗ (t · x)⊗1+i ⊗ t · (y2 + yx)⊗ (t · x)⊗q−2−i ⊗ x⊗ 1)
= (ψg1 ⌣ φgq)(1⊗ yx⊗ (−x)⊗q−1 ⊗ y ⊗ 1

− 1⊗ (y2 − xy)⊗ (−x)⊗q−1 ⊗ x⊗ 1

+
∑q−2

i=0 (−1)i 1⊗ (−x)⊗1+i ⊗ (y2 − xy)⊗ (−x)⊗q−2−i ⊗ x⊗ 1)
= (−1)q−1 φ(gq(1⊗ yx⊗ x⊗q−1))ψ(g1(1⊗ y ⊗ 1))

− (−1)q−1 φ(gq(1⊗ y2 ⊗ x⊗q−1 ⊗ 1))ψ(g1(1⊗ 1))
+ φ(gq(1⊗ x⊗q−1 ⊗ xy ⊗ 1))ψ(g1(1⊗ x⊗ 1))

= (−1)q φ(1⊗ y2xq−1 ⊗ 1)ψ(1⊗ x⊗ 1)
= (−1)q (ψg1 ⌣ φgq)(f1+q(1⊗ y2xq ⊗ 1))

For p ≥ 2, q = 1, evaluating in 1⊗ xp+1 ⊗ 1 gives

(ψ ◦ gp ⌣ φ ◦ g1)(fp+1(1⊗ xp+1 ⊗ 1)) = (ψ ◦ gp ⌣ φ ◦ g1)(1⊗ x⊗p+1 ⊗ 1)
= φ(g1(1⊗ x⊗1 ⊗ 1)(ψ(gp(1⊗ x⊗p ⊗ 1))
= φ(1⊗ x⊗ 1)ψ(1⊗ xp ⊗ 1)

(ψ ◦ gp ⌣ φ ◦ g1)(cp,1(fp+1(1⊗ xp+1 ⊗ 1))) = (ψ ◦ gp ⌣ φ ◦ g1)(cp,1(1⊗ x⊗p+1 ⊗ 1))
= (ψ ◦ gp ⌣ φ ◦ g1)(cp,1(1⊗ x⊗p ⊗ x⊗ 1))
= (ψ ◦ gp ⌣ φ ◦ g1)(1⊗ tp · x⊗ x⊗p ⊗ 1)
= (ψ ◦ gp ⌣ φ ◦ g1)(1⊗ (−1)px⊗ x⊗p ⊗ 1)
= (−1)p(ψ ◦ gp ⌣ φ ◦ g1)(1⊗ x⊗p+1 ⊗ 1)
= (−1)1p(ψ ◦ gp ⌣ φ ◦ g1)(fp+1(1⊗ xp+1 ⊗ 1)).
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Evaluating in 1⊗ y2xp ⊗ 1 gives

(ψgp ⌣ φg1)(fp+1(1⊗ y2xp ⊗ 1))
= (ψgp ⌣ φgq)(1⊗ y ⊗ yx⊗ x⊗p−1 ⊗ 1

− 1⊗ x⊗ (y2 + yx)⊗ x⊗p−1 ⊗ 1

+
∑p−2

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−2−i ⊗ 1)
− φ(g1(1⊗ y ⊗ 1))ψ(gp(1⊗ yx⊗ x⊗p−1 ⊗ 1))

− φ(g1(1⊗ x⊗ 1))ψ(gp(1⊗ (y2 + yx)⊗ x⊗p−1 ⊗ 1))

+
∑p−2

i=0 (−1)i φ(g1(1⊗ x⊗ 1))ψ(gp(1⊗ x⊗1+i ⊗ (y2 + yx)⊗ x⊗p−2−i ⊗ 1))
= −φ(1⊗ y2xp−1 ⊗ 1)ψ(1⊗ y2xp−1 ⊗ 1), (ψgp ⌣ φg1)(cp,1(fp+1(1⊗ y2xp ⊗ 1)))

= (ψgp ⌣ φg1)(cp,1(1⊗ y ⊗ yx⊗ x⊗p−1 ⊗ 1
− 1⊗ x⊗ (y2 + yx)⊗ x⊗p−1 ⊗ 1

+
∑p−2

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−2−i ⊗ 1))
= (ψgp ⌣ φg1)(1⊗ tp+1 · x⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1

− 1⊗ tp+1 · x⊗ x⊗ (y2 + yx)⊗ x⊗p−2 ⊗ 1

+
∑p−3

i=0 (−1)i 1⊗ tp+1 · x⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i ⊗ 1
+ (−1)p−2 1⊗ tp · (y2 + xy)⊗ x⊗p ⊗ 1)

= (ψgp ⌣ φg1)(1⊗ (−1)p+1 x⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1
− 1⊗ (−1)p+1 x⊗ x⊗ (y2 + yx)⊗ x⊗p−2 ⊗ 1

+
∑p−3

i=0 (−1)i 1⊗ (−1)p+1 x⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i ⊗ 1
+ (−1)p−2 1⊗ (y2 − (p− 1)yx− pxy)⊗ x⊗p ⊗ 1)

= (−1)p+1φ(g1(1⊗ x⊗ 1))ψ(gp(1⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1))
= (−1)p+1φ(1⊗ y2xp−1 ⊗ 1)ψ(1⊗ y2xp−1 ⊗ 1)
= (−1)p (ψgp ⌣ φg1)(fp+1(1⊗ y2xp ⊗ 1)).

The last case to consider is p, q ≥ 2, evaluating in 1⊗ xp+q ⊗ 1 gives

(ψ ◦ gp ⌣ φ ◦ gq)(fp+q(1⊗ xp+q ⊗ 1)) = (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ x⊗p+q ⊗ 1)
= φ(gq(1⊗ x⊗q ⊗ 1))ψ(gp(1⊗ x⊗p ⊗ 1))
= φ(1⊗ xq ⊗ 1)ψ(1⊗ xp ⊗ 1),

(ψ ◦ gp ⌣ φ ◦ gq)(cp,q(fp+q(1⊗ xp+q ⊗ 1))) = (ψ ◦ gp ⌣ φ ◦ gq)(cp,q(1⊗ x⊗p+q ⊗ 1))
= (ψ ◦ gp ⌣ φ ◦ gq)(cp,q(1⊗ x⊗p ⊗ x⊗q ⊗ 1))
= (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ tp · (x⊗q)⊗ x⊗p ⊗ 1)
= (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ (tp · x)⊗q ⊗ x⊗p ⊗ 1)
= (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ ((−1)px)⊗q ⊗ x⊗p ⊗ 1)
= (−1)pq(ψ ◦ gp ⌣ φ ◦ gq)(1⊗ x⊗p+q ⊗ 1)
= (−1)pq(ψ ◦ gp ⌣ φ ◦ gq)(fp+q(1⊗ xp+q ⊗ 1)),

For 1⊗ y2xp+q−1 ⊗ 1 we get

(ψgp ⌣ φgq)(fq+p(1⊗ y2xq+p−1 ⊗ 1))
= (ψgp ⌣ φgq)(1⊗ y ⊗ yx⊗ x⊗q+p−2 ⊗ 1

− 1⊗ x⊗ (y2 + yx)⊗ x⊗q+p−2 ⊗ 1

+
∑q+p−3

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗q+p−3−i ⊗ 1)
= φgq(1⊗ y ⊗ yx⊗ x⊗q−2 ⊗ 1)ψgp(1⊗ x⊗p ⊗ 1)

− φgq(1⊗ x⊗ (y2 + yx)⊗ x⊗q−2 ⊗ 1)ψgp(1⊗ x⊗p ⊗ 1)

+
∑q−3

i=0 (−1)i φgq(1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗q−3−i ⊗ 1)ψgp(1⊗ x⊗p ⊗ 1)

+
∑q+p−3

i=q−2 φgq(1⊗ x⊗q ⊗ 1)ψgp(1⊗ x⊗2+i−q ⊗ (y2 + yx)⊗ x⊗q+p−3−i ⊗ 1)

= φ(1⊗ y2xq−1 ⊗ 1)ψ(1⊗ xp ⊗ 1) + (−1)q−2φ(1⊗ xq ⊗ 1)ψ(1⊗ y2xp−1 ⊗ 1).
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Most of the terms in the above sums vanish because

gn(1⊗ x⊗j ⊗ y2 ⊗ x⊗n−1−j ⊗ 1) = gn(1⊗ x⊗j ⊗ yx⊗ x⊗n−1−j ⊗ 1) = 0, ∀n ≥ 2, j ≥ 1.

Regarding the unvanishing term, which corresponds to i = q − 2, we have that

gq(1⊗ y2 ⊗ x⊗q−1 ⊗ 1) = 1⊗ y2xq−1 ⊗ 1, and gq(1⊗ yx⊗ x⊗q−1 ⊗ 1) = y ⊗ xq ⊗ 1,

which vanishes after applying the A-bimodule morphism ψ. Finally

(ψ ◦ gp ⌣ φ ◦ gq)(cp,q(fq+p(1⊗ y2xq+p−1 ⊗ 1)))
= (ψ ◦ gp ⌣ φ ◦ gq)(cp,q(1⊗ y ⊗ yx⊗ x⊗p−2+q ⊗ 1

− 1⊗ x⊗ (y2 + yx)⊗ x⊗p−2+q ⊗ 1

+
∑p−3

i=0 (−1)i 1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i+q ⊗ 1

+
∑q+p−3

i=p−2 (−1)i 1⊗ x⊗p ⊗ x⊗2+i−p ⊗ (y2 + yx)⊗ x⊗q+p−3−i ⊗ 1))

= (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ tp+1(x⊗q)⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1
− 1⊗ tp+1(x⊗q)⊗ x⊗ (y2 + yx)⊗ x⊗p−2 ⊗ 1

+
∑p−3

i=0 (−1)i 1⊗ tp+1(x⊗q)⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i ⊗ 1

+
∑q+p−3

i=p−2 (−1)i 1⊗ tp(x⊗2+i−p ⊗ (y2 + yx)⊗ x⊗q+p−3−i)⊗ x⊗p ⊗ 1)

= (ψ ◦ gp ⌣ φ ◦ gq)(1⊗ ((−1)p+1x)⊗q ⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1
− 1⊗ ((−1)p+1x)⊗q ⊗ x⊗ (y2 + yx)⊗ x⊗p−2 ⊗ 1

+
∑p−3

i=0 (−1)i 1⊗ ((−1)p+1x)⊗q ⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i ⊗ 1

+
∑q+p−3

i=p−2 (−1)i 1⊗ ((−1)px)⊗2+i−p ⊗ (y2 − (p− 1)yx− pxy)

⊗((−1)px)⊗q+p−3−i ⊗ x⊗p ⊗ 1)

= (−1)(p+1)qφ(gq(1⊗ x⊗q ⊗ 1))ψ(gp(1⊗ y ⊗ yx⊗ x⊗p−2 ⊗ 1))

− (−1)(p+1)qφ(gq(1⊗ x⊗q ⊗ 1))ψ(gp(1⊗ x⊗ (y2 + yx)⊗ x⊗p−2 ⊗ 1))

+ (−1)(p+1)q
∑p−3

i=0 (−1)iφ(gq(1⊗ x⊗q ⊗ 1))
ψ(gp(1⊗ x⊗2+i ⊗ (y2 + yx)⊗ x⊗p−3−i ⊗ 1))

+ (−1)p(q−1)
∑q+p−3

i=p−2 (−1)iφ(gq(1⊗ x⊗2+i−p ⊗ (y2 − (p− 1)yx− pxy)

⊗x⊗q+p−3−i ⊗ 1))ψ(gp(1⊗ x⊗p ⊗ 1))

= (−1)(p+1)qφ(1⊗ xq ⊗ 1)ψ(1⊗ y2xp−1 ⊗ 1)

+ (−1)p(q−1)(−1)p−2φ(1⊗ y2xq−1 ⊗ 1)ψ(1⊗ xp ⊗ 1)
= (−1)pq

(
(−1)qφ(1⊗ xq ⊗ 1)ψ(1⊗ y2xp−1 ⊗ 1) + φ(1⊗ y2xq−1 ⊗ 1)ψ(1⊗ xp ⊗ 1)

)
= (−1)pq(ψ ◦ gp ⌣ φ ◦ gq)(fq+p(1⊗ y2xq+p−1 ⊗ 1)).

The second term, as well as the terms in the sums corresponding to i ≤ p−3, vanishes after
applying gp in their second factor. Those corresponding to i ≥ p−2 can be expressed as a
sum of three terms by distributing over the expression in the tensor y2 − (p− 1)yx− pxy.
The only non vanishing one corresponds to y2.

The term corresponding to −(p − 1)yx vanishes after applying gq, and the one corre-
sponding to −pxy is a coboundary by the following argument: Let b denote the differential
of the bar complex. Then, if p− 2 ≤ i ≤ q + p− 4,

b(1⊗ x⊗3+i−p ⊗ y ⊗ x⊗q+p−3−i ⊗ 1) = x⊗ x2+i−p ⊗ y ⊗ x⊗q+p−3−i ⊗ 1
+ (−1)2+i−p 1⊗ x⊗2+i−p ⊗ xy ⊗ x⊗q+p−3−i ⊗ 1
+ (−1)3+i−p 1⊗ x⊗3+i−p ⊗ yx⊗ x⊗q+p−i−4 ⊗ 1
+ (−1)q+1 1⊗ x⊗3+i−p ⊗ y ⊗ x⊗q+p−i−4 ⊗ x,

and, on the other hand,

gq(1⊗ x⊗3+i−p ⊗ yx⊗ x⊗q+p−i−4 ⊗ 1) = 0.

49



If i = q + p− 3,

b(1⊗ x⊗q ⊗ y ⊗ 1) = x⊗ x⊗q−1 ⊗ y ⊗ 1 + (−1)q−1 1⊗ x⊗q−1 ⊗ xy ⊗ 1
+ (−1)q 1⊗ x⊗q ⊗ y.

In both cases, gq(1⊗ x⊗2+i−p ⊗ (−pxy)⊗ x⊗q+p−3−i ⊗ 1) is a boundary plus a term that
vanishes after applying gq, plus terms that vanish after applying the A-bimodule morphism
φ.
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