
Respiratory rate estimation on embedded system
Isabel Morales, Leonardo Martı́nez Hornak, Alfredo Solari, and Julián Oreggioni

Abstract—We present the design, implementation, and results
of an algorithm for respiratory rate estimation using respiratory-
induced frequency, intensity, and amplitude variation calculated
from the infrared (IR) channel of the SEN-15219 board for
photoplethysmography (PPG) acquisition. First, the algorithm
was developed in Python (on a PC) using synthetic signals and
publicly available respiration and PPG data. We also include a
graphical user interface to process data from sensors and display
vital signs. Later, we ported the algorithm to an MSP432P401R
microcontroller to complete our wearable prototype. Results are
promissory and show that respiratory rate estimation can be
performed on the selected platform with our proposed Fourier
Product (FP) method, which results in a Mean Absolute Error
of 4.1 using 16-seconds windows of IR-PPG signals.

Index Terms—Respiratory rate estimation, photoplethysmog-
raphy, signal processing, low-power embedded system

I. INTRODUCTION

Photoplethysmography (PPG) is a technique that uses a light
source, mainly red (R) and infrared (IR) light, capable of
transmitting different wavelengths and a photodetector. The
transmitted light is absorbed and spread throughout human
tissue; thus, the reflected light variations correspond to blood
volume changes [1]. Electronic devices can provide robust
measurements of blood oxygen saturation level (SpO2) and
heart rate (HR, expressed in bpm, beats per minute) using
PPG in a non-invasively manner [1].

PPG signal can also be used to estimate the respiratory rate
(RR, expressed in rpm, respiration per minute), an important
physiological indicator. Nonetheless, PPG acquisition poses
several challenges, including variability with skin color, age,
sex, obesity, artifacts, ambient light, and the finger pressure
applied at the measurement point [2].

A good estimation of RR can be obtained using ECG [3],
[4]; however, ECG is not a comfortable signal to be acquired
in a wearable device. Some state-of-the-art implementations
use deep learning techniques to precisely estimate the RR
using PPG [5]–[8]. However, it is not feasible to incorporate
these techniques in a low-resource microcontroller and obtain
adequate autonomy. Finally, some works report estimations of
RR using processing techniques feasible to be implemented in
a low-power embedded system [9]–[12]. However, to the best
of our knowledge, none of them have actually implemented
an algorithm in an embedded system, such as those required
in a wearable device.

The motivation of this work is to generate an estimation of
the RR using non-invasive acquisition methods to contribute
to developing a wearable solution. Then, this work presents

This work was partially funded by CSIC, Universidad de la República,
Uruguay (Udelar).

Isabel Morales, Leonardo Martı́nez Hornak, Alfredo Solari, and
Julián Oreggioni are with Facultad de Ingenierı́a (Udelar). E-mail:
imorales@fing.edu.uy.

Fig. 1. Wearable vital signs monitoring device.

the implementation of an algorithm for RR estimation that is
a variant of already proposed ones in [11], [12]. The main
contribution of this work is to implement and characterize
a state-of-the-art RR estimation running in a low-resource
embedded system. In the near future, we aim to incorporate
this algorithm into a wearable vital signs monitoring device
(see Fig. 1).

II. RESPIRATORY RATE ESTIMATION ALGORITHM

We implemented an algorithm for RR estimation calcu-
lating the respiratory-induced frequency variation (RIFV),
respiratory-induced intensity variation (RIIV), and respiratory-
induced amplitude variation (RIAV) from the PPG signal [11].
We developed a Python version of the algorithm on a PC and
validated it using the BIDMC (Beth Israel Deaconess Medical
Center, Boston, MA, USA) dataset [13]. Later, the code was
migrated to C and ported to a microcontroller. We used
the ARM’s CMSIS library [14] to implement mathematical
functions efficiently.

Algorithm 1 presents our proposal using RIIV as the es-
timator. To illustrate the functioning of our algorithm, we
artificially generated PPG signals (with a fixed HR of 75 bpm)
with 3 RR values (12, 18, and 24 rpm). Fig. 2 highlights the
main steps of our algorithm. The algorithm for RIFV, RIAV,
or other estimators is analogous.

Firstly, the algorithm standardizes the signal, subtracting the
mean of the signal and dividing it by its standard deviation;
then, it filters the raw samples in 16-seconds windows (see
Fig. 2-top). The band-pass filter (0.1 - 4 Hz) is divided into
two infinite impulse response filters, each of order 4.

Secondly, it detects the peaks of the signal using a non-
overlapping 1-second window (SamplingWindow). The de-



2

Algorithm 1: RR Estimation Algorithm using RIIV
Input: IR PPG raw values (IRRawSamples)
Output: Respiration Rate (RR in RR)
Result: Respiration rate estimation based on PPG’s

induced intensity variation due to blood
perfusion

while RRAlgorithmEnded = 0 do
IRSamples ← Standardize(IRRawSamples);
SamplingWindow ← BandPassFilter(IRSamples);
if WindowCounter < 16 then

PA ← CalculatePeaks(SamplingWindow);
AdjustTime(PA);
WindowCounter++;

end
else

PIA ← AnomalyFilter(PA);
PIA4 ← ResampleTo4Hz(PIA);
PIA4FFT ← FFT(PIA4);
RIIV ← GetAreaOfInterest(PIA4FFT);
RR ← 60*Max(RIIV);
RRAlgorithmEnded=1;

end
end

tected peaks are those that have at least 40 % of the maximum
peak-to-peak amplitude in each window. Then, it generates a
peak array (PA) that stores its time and intensity (see peaks
marked with colored dots in Fig. 2-top).

Next, the algorithm executes an anomaly filter in the PA to
eliminate peaks detected at a non-expected time. Peaks that
generate an HR lower than 90 % or higher than 115 % of
the subject’s HR are considered anomalous and are discarded.
Therefore, a peak intensity array (PIA) is obtained. The PIA
is re-sampled to 4 Hz [11]. Due to being unequally spaced,
linear interpolation is performed. Fig. 2-center shows the
interpolation performed on the PIA.

Finally, the algorithm performs a 512-points FFT (Fast
Fourier Transform) on the re-sampled data. The maximum
power registered in the area of interest, between 8 and 28
rpm, corresponds to the RIIV, which is our estimation of the
RR (see Fig. 2-bottom).

III. EMBEDDED SYSTEM

The hardware design was previously reported in [15] (see
Fig. 3). The SEN-15219 board from Sparkfun acquires the
HR, SpO2 (blood oxygen saturation level), and PPG data.
The core of the device is the MSP432P401R from Texas
Instruments, a 32-bit ARM-Cortex M4F microcontroller with
a hardware floating-point unit. It works in two modes: i) low
power mode 0 (LPM0) to save energy during the wait times in
the communication with the SEN-15219 board, and ii) active
mode at 48 MHz. The device wirelessly transmits IR and R
PPG signals via an HC-06 Bluetooth module. We used the
TI v20.2.6 LTS compiler from Texas Instruments with level 2
(–opt level = 2) optimizations (global).

The embedded software follows a Function-Queue-
Scheduling architecture [16]. We modified the embedded soft-

Fig. 2. RR algorithm running in MSP432 processing synthetic PPG signals
using RIIV as the estimator. Top: a 16-seconds window of IR PPG samples
(standardized and filtered). Center: detected peaks at the corresponding signal
intensity value and the interpolation. Bottom: frequency response of the 4 Hz
re-sampled intensity variability signal. The maximum corresponds to the RR
estimation.

Fig. 3. Device prototype, which consists of an embedded system and a GUI.

ware reported in [15], adding the estimation of RR (Fig. 4
illustrates the software workflow). After system initialization,
which includes the configuration of the SEN-15219 board and
microcontroller peripherals, the device enters LPM0. Then, the
embedded system performs the same tasks periodically. Every
40 ms, it obtains PPG (IR and R), HR, and SpO2 samples
from the SEN-15219 board. When 200 ms elapsed, it sends
the PPG signal values to the BT module, which are forwarded
to the PC for real-time visualization. Finally, every 1 second,
it acquires and sends HR, SpO2, and temperature to the PC.

We developed a graphical user interface (GUI) to support
our research. The application runs on Windows 10 and depends
on Pybluez [17], a Python library for Bluetooth communica-
tion. Fig. 3 shows the main view of the GUI. The application
enables receiving, storing, processing, and analyzing sensor
data. In addition, the application allows the display of raw
and processed data from the R and IR channels of the PPG
sensor and the configuration of alarms for the future wearable.



3

Fig. 4. Embedded software workflow

IV. EXPERIMENTAL RESULTS

In order to assess our algorithm using a controlled setup,
the software module responsible for receiving the sample data
from the SEN-15219 board via I2C is replaced by a Test
Double [18]. The Test Double module supplies data that the
microcontroller reads directly from its memory.

We assessed several calculation methods to select the best
RR estimator. The evaluation was carried out on 10,000 ran-
domly selected 16-seconds windows samples from the BIDMC
dataset [13]. Firstly, we considered RIFV, RIAV, and RIIV
as RR estimators. Secondly, the mean of RIFV, RIIV, and
RIAV (Mean). Thirdly, the product of the Fourier transforms
of RIFV, RIAV, and RIIV and then taking the maxima (Fourier
product or FP). FP produces a better result than mixing them
linearly or non-linearly after the maximum frequency of each
signal is found. Figs. 5 and 6 present the histograms to asses
the absolute error.

Fig. 5. Absolute error for different RR estimators over 10,000 samples from
[13]. Left to right: RIFV, RIAV, RIIV.

To calculate the MAE (Mean Absolute Error), we consider
Eq. 1.

MAE =
1

n

n∑
i=1

yi − y
REFRR

(1)

Fig. 6. Absolute error for different RR estimators over 10,000 samples from
[13]. Left to right: Karlen et al. [11], Mean, and FP.

where n is the number of aleatory samples taken from all 53
patients of the BIDMC dataset, yi is our RR estimation, and
y
REFRR

is the dataset RR measured at 1 Hz.
Table I summarizes the results obtained when using these

different methods. FP shows a better MAE, and the Mean the
best STD (standard deviation of absolute error). [11] shows
similar results; however, that approach discarded 3152 samples
(more than 30 %). Our proposal obtained similar results to
[11], while no samples were discarded.

TABLE I
RR ESTIMATION RESULTS

Estimator MAE (rpm) STD (rpm)
RIFV 4.98 4.24
RIIV 4.38 4.40
RIAV 6.00 4.23
Mean 4.42 3.45
FP 4.13 3.97
Reproduction of Karlen et al [11] 4.51 3.78
Reproduction of Uguz [12] 4.89 4.32

Table II presents results on some particular patients from
the BIDMC dataset using our algorithm performed in Python
(running on the PC) and C (running on the microcontroller).
The absolute errors of these experiments are below 4 rpm.

TABLE II
RR ESTIMATION ALGORITHM RESULTS.

RR estimation (rpm)
BIDMC Ref PC - Python Abs. error Micro - C Abs. error

3 17.0 15.7 1.31 16.0 1.00
5 10.0 9.80 0.18 9.80 0.20
7 20.0 16.6 3.43 17.0 3.00
8 21.0 19.4 1.60 19.2 1.80

11 14.0 12.6 1.40 12.9 1.10
20 16.0 18.1 2.10 17.1 1.10

MAE (rpm) 1.70 1.40

The implementation of the algorithm on the microcontroller
requires 93.3 kB of flash memory (36.5 % of total memory)
and 13.5 kB of RAM. The execution time is around 22 ms



4

TABLE III
RESPIRATORY RATE ESTIMATION ALGORITHMS COMPARISON USING THE BIDMC DATASET

Algorithm Complexity Respiratory range (rpm) Discard samples Window MAE (rpm) STD (rpm)
This Work (FP) low 8-28 no 16 s 4.13 3.97
Karlen et al [11] made for this work low 8-28 yes 16 s 4.51 3.78
Karlen et al [11] made in [10] low 4-65 yes 32 s 5.80 >7.80
Uguz [12] made for this work low (autoregressive) 8-28 no 16 s 4.89 4.32
Pimentel et al [10] low (autoregressive) 4-65 no 32 s 4.00 >3.70
Bian et al [5] high 4-60 no 60 s 2.60 0.40
RRWaveNet [7] high ?-65 no 16 s 1.87 0.95

at 48 MHz, which makes it possible to estimate RR while
sending raw samples to the PC for visualization.

We measure the RMS current drained from the power supply
using a standard 3.5-digit multi-meter and Energy Trace from
Texas Instruments. The energy consumption of the system
was measured considering two operation modes. In continuous
mode, where the device acquires data and transmits it to a
PC, it consumes 128.8 mWh. In intermittent mode, where
every 256 seconds, a timer wakes the system up from low
power mode 3 (LPM3) to acquire data and transmit them for
32 seconds. In this mode, the device consumes 38.9 mWh.
The most power-hungry module is the SEN-15219 board (56
mWh, 43.4 %), mainly due to the power needed for the LEDs,
followed by the Bluetooth module (43 mWh, 33.3 %) and,
finally, the microcontroller (30 mWh, 23.3 %). The autonomy,
considering a 235 mAh coin cell lithium CR2032 battery, is
5.5 hours in continuous mode and 18.2 hours in intermittent
mode.

V. STATE-OF-THE-ART COMPARISON

Table III shows that implementations with high-complex
techniques can estimate the RR using PPG with reasonable
precision [5], [7]. However, it is not feasible to incorporate
these techniques in a low-resource microcontroller and achieve
high autonomy. On the other hand, the proposals that use
feasible low-power embedded system processing techniques
[10]–[12] are not so precise.

The estimator proposed in [11] is the mean value of RIFV,
RIAV, and RIIV when its STD is less than 4 rpm (discarding
the rest). Our implementation of [11] achieves a good STD;
however, more than 30 % of the samples were discarded.
Finally, [10] achieves the best MAE; however, the memory
required to process a 32-seconds window is inadequate for a
low-resource embedded system.

VI. CONCLUSIONS

This work has shown the feasibility of implementing an
algorithm for RR estimation in an MSP432 microcontroller.
Preliminary results show that the mean of RIIV, RIAV, RIFV,
and the proposed FP method are reasonable estimators of the
RR.

Estimating RR accurately from PPG is still an open prob-
lem. Even highly sophisticated techniques which are not
portable to a microcontroller do not achieve excellent results.
The proposed FP method is simple and provides acceptable
results. Nonetheless, the RIIV is not so unfavorable and is
easier to implement.

ACKNOWLEDGMENT

The authors would like to thank to Núcleo de Ingenierı́a
Biomédica, Comisión Sectorial de Investigación Cientı́fica
(CSIC, Udelar), and the Uruguayan chapter of the IEEE
Circuits and Systems Society.

REFERENCES

[1] J. G. Webster, Design of pulse oximeters. CRC Press, 1997.
[2] J. Fine, et al, “Sources of inaccuracy in photoplethysmography for

continuous cardiovascular monitoring,” Biosensors, vol. 11, no. 4, p.
126, 2021.

[3] J. Fan, S. Yang, J. Liu, Z. Zhu, J. Xiao, L. Chang, S. Lin, and J. Zhou, “A
high accuracy & ultra-low power ecg-derived respiration estimation pro-
cessor for wearable respiration monitoring sensor,” Biosensors, vol. 12,
no. 8, p. 665, 2022.

[4] P. H. Charlton, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and
P. J. Watkinson, “An assessment of algorithms to estimate respiratory
rate from the electrocardiogram and photoplethysmogram,” Physiologi-
cal measurement, vol. 37, no. 4, p. 610, 2016.

[5] D. Bian, et al, “Respiratory rate estimation using PPG: a deep learning
approach,” in International conference of the IEEE engineering in
Medicine & Biology Society (EMBC), 2020, pp. 5948–5952.

[6] V. Ravichandran, et al, “Respnet: A deep learning model for extraction of
respiration from photoplethysmogram,” in International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2019,
pp. 5556–5559.

[7] P. Osathitporn, et al, “RRWaveNet: A compact end-to-end multi-scale
residual CNN for robust PPG respiratory rate estimation,” arXiv preprint
arXiv:2208.08672, 2022.

[8] R. Dai, C. Lu, M. Avidan, and T. Kannampallil, “Respwatch: Robust
measurement of respiratory rate on smartwatches with photoplethysmog-
raphy,” in International Conference on Internet-of-Things Design and
Implementation, 2021, pp. 208–220.

[9] T. Iqbal, et al, “Photoplethysmography-based respiratory rate estimation
algorithm for health monitoring applications,” J. of med. and biol. eng.,
vol. 42, no. 2, pp. 242–252, 2022.

[10] M. A. F. Pimentel, et al, “Toward a robust estimation of respiratory rate
from pulse oximeters,” IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp.
1914–1923, 2017.

[11] W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multipa-
rameter respiratoy rate estimation from the photoplethysmogram,” IEEE
Trans. on Biomed. Eng., vol. 60, no. 7, pp. 1946–1953, 2013.

[12] D. Uguz, “Design of a multipurpose photoplethysmography sensor to
assist cardiovascular and respiratory diagnosis,” in 21th Int. Student
Conf. on Elect. Eng., vol. 21, 2017, pp. 1–7.

[13] A. Goldberger, et al. (2021, 05) BIDMC PPG and Respiration
Dataset, PhysioBank, PhysioToolkit, and PhysioNet: Components of a
new research resource for complex physiologic signals. Circulation.
[Online]. Available: https://physionet.org/content/bidmc/1.0.0/

[14] ARM. (2022, 06) CMSIS-DSP Software Libray Version 1.8.0. [Online].
Available: https://github.com/ARM-software/CMSIS 5

[15] L. Martı́nez Hornak, I. Morales, A. Solari, and J. Oreggioni, “Wearable
device prototype for vital signs monitoring,” in XII Congreso Argentino
de Sistemas Embebidos, UNLP, La Plata, Buenos Aires, Argentina.
CASE, 2022, pp. 70–72.

[16] D. E. Simon, “Survey of software architectures,” in An Embedded
Software Primer. Addison-Wesley Professional, 1999, pp. 115–136.

[17] Karulis. (2021, 08) Pybluez: Python extension module allowing
access to system Bluetooth resources. [Online]. Available: https:
//pybluez.github.io/

[18] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.


