
A Chlorophyll-a Algorithm for
Landsat-8 Based on Mixture
Density Networks
Brandon Smith1,2, Nima Pahlevan1,2*, John Schalles3, Steve Ruberg4, Reagan Errera4,
Ronghua Ma5, Claudia Giardino6, Mariano Bresciani6, Claudio Barbosa7, Tim Moore8,
Virginia Fernandez9, Krista Alikas10 and Kersti Kangro10

1NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Science Systems and Applications Inc., (SSAI), Lanham,
MD, United States, 3Department of Biology, Creighton University, Omaha, NE, United States, 4Great Lakes Environmental
Research Laboratory, NOAA, Ann Arbor, MI, United States, 5Key Laboratory of Watershed Geographic Sciences, Nanjing
Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China, 6Institute for Electromagnetic Sensing of the
Environment, National Research Council of Italy, Milan, Italy, 7Instrumentation Lab for Aquatic Systems, National Institute for
Space Research, São José dos Campos, Brazil, 8Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce,
FL, United States, 9Departament of Geography, Faculty of Sciences, University of the Republic, Montevideo, Uruguay, 10Tartu
Observatory of University of Tartu, Tartu, Estonia

Retrieval of aquatic biogeochemical variables, such as the near-surface concentration of
chlorophyll-a (Chla) in inland and coastal waters via remote observations, has long been
regarded as a challenging task. This manuscript applies Mixture Density Networks (MDN)
that use the visible spectral bands available by the Operational Land Imager (OLI) aboard
Landsat-8 to estimate Chla. We utilize a database of co-located in situ radiometric and
Chla measurements (N � 4,354), referred to as Type A data, to train and test an MDN
model (MDNA). This algorithm’s performance, having been proven for other satellite
missions, is further evaluated against other widely used machine learning models (e.g.,
support vector machines), as well as other domain-specific solutions (OC3), and shown to
offer significant advancements in the field. Our performance assessment using a held-out
test data set suggests that a 49% (median) accuracy with near-zero bias can be achieved
via the MDNA model, offering improvements of 20 to 100% in retrievals with respect to
other models. The sensitivity of the MDNA model and benchmarking methods to
uncertainties from atmospheric correction (AC) methods, is further quantified through a
semi-global matchup dataset (N � 3,337), referred to as Type B data. To tackle the
increased uncertainties, alternative MDN models (MDNB) are developed through various
features of the Type B data (e.g., Rayleigh-corrected reflectance spectra ρs). Using held-
out data, along with spatial and temporal analyses, we demonstrate that these alternative
models show promise in enhancing the retrieval accuracy adversely influenced by the AC
process. Results lend support for the adoption of MDNBmodels for regional and potentially
global processing of OLI imagery, until a more robust AC method is developed. Index
Terms—Chlorophyll-a, coastal water, inland water, Landsat-8, machine learning, ocean
color, aquatic remote sensing.
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INTRODUCTION

Near-surface concentration of chlorophyll-a (Chla), a proxy for
phytoplankton biomass, has been observed and quantified in
aquatic ecosystems through optical remote sensing for many
years (Clarke et al., 1970; Wezernak et al., 1976; Smith and
Baker 1982; Gordon et al., 1983; Bukata et al., 1995). This
technique has led to the routine production of Chla
distributions for the global oceans for more than two decades.
The heritage algorithms have used blue-green band-ratio models
to estimate Chla (Gordon et al., 1980; O’Reilly et al., 1998), which
are realistic representations of biomass in ecosystems where other
constituents, such as detritus and colored dissolved organic
matter (CDOM), co-vary with Chla. In optically complex
inland and coastal waters however, the color of water is
further modulated by the presence of organic and inorganic
particles, as well as dissolved matter (Han et al., 1994;
Harding et al., 1994) that do not generally co-vary with
phytoplankton, rendering retrievals of Chla a far more
challenging task (IOCCG 2000). To improve estimates of Chla
in these turbid and eutrophic environments, other methods have
been developed. For example, spectral bands within the red-edge
(RE) region (690–715 nm) (Vos et al., 1986; Mittenzwey et al.,
1992), combined with red bands have shown to correlate well
with Chla in turbid and/or eutrophic waters (Munday and
Zubkoff 1981; Gower et al., 1984; Khorram et al., 1987;
Gitelson 1992; Rundquist et al., 1996; Gitelson et al., 2007).
The RE observations, however, are not available in the suite of
measurements made by heritage missions – such as
Landsat—which have provided the longest record of Earth
observation from space (Goward et al., 2017).

The Operational Land Imager (OLI) aboard Landsat-8 was
launched in February 2013 to continue Landsat’s mission of
monitoring Earth systems and capturing changes at relatively
high spatial resolution (30 m) (Irons et al., 2012). This mission
has offered significant improvements in both data quality and
quantity (i.e., both spectral and spatial coverage) over previous
heritage instruments (Markham et al., 2014; Pahlevan et al.,
2014; Markham et al., 2015). Several methods have been
developed to retrieve Chla from the four OLI visible bands
(Allan et al., 2015; Watanabe et al., 2015; Concha and Schott
2016; Manuel et al., 2020), yet Chla retrieval methods in inland
and coastal waters using traditional approaches are challenged
by optical complexity and high dynamic ranges where water
types can range anywhere from very clear to highly turbid and
eutrophic (Spyrakos et al., 2018). It is, therefore, critical to
continue to formulate novel methodologies that enable the
production of viable Chla products from Landsat-8 data for
global scientific studies and applications (Snyder et al., 2017).
Pahlevan et al. (2020) successfully applied Mixture Density
Networks (MDNs) – a class of neural networks that estimates
multimodal Gaussian distributions over a range of solutions – to
Sentinel-2 and Sentinel-3 data for mapping Chla. This model has
further been extended to the hyperspectral domain to obtain
Chla and phytoplankton absorption properties from the images
of the Hyperspectral Imager for the Coastal and Ocean (HICO)
(Pahlevan et al., 2021).

Our motivation for this study is to test the feasibility of using
MDN algorithms extended to the OLI imagery for Chla retrievals.
Four different MDN models were trained, evaluated, and
compared against current machine learning (ML) algorithms
using the visible spectral bands. One model (MDNA) was
developed similar to that of Pahlevan et al. (2020), using
paired in situ Chla and remote sensing reflectance (Rrs)
(Mobley 1999), whereas three other models (MDNB) were
trained using in situ Chla matchups and atmospherically
corrected (or partially corrected) products (Cao et al., 2020).
These latter models, developed to compensate for uncertainties in
the atmospheric correction (AC) (Warren et al., 2019), were
trained using input features comprised of: 1) satellite-derived Rrs
(hereafter referred to as RΔ

rs); 2) R
Δ
rs in combination with ancillary

data; and 3) intermediate Rayleigh-corrected reflectance products
(ρs) (Wynne et al., 2013) combined with ancillary data. The
manuscript follows with sensitivity analyses on: 1) the
contribution of different spectral bands to the outputs of the
model; 2) the impacts of different AC methods; and 3)
the implications for aquatic science and applications.

Chla RETRIEVALS FROM VISIBLE BANDS

For satellite missions like Landsat-8 that do not support
measurements in the RE, Chla algorithms tend to rely on
either blue-green ratio algorithms (O’Reilly et al., 1998) or
neural network (NN) models (Doerffer and Schiller 2007;
Kajiyama et al., 2018) that apply all (or a subset of) bands
within the visible (VIS) and near infrared (NIR) bands.
Algorithms based on band ratios for Chla work well in ocean
environments; however, when applied to optically complex
waters, such as in coastal or inland areas, performance
significantly degrades (Bukata et al., 1981; Le et al., 2013;
Freitas and Dierssen 2019). Most research on these
environments has focused on instruments like the MEdium
Resolution Imaging Spectrometer (MERIS), equipped with RE
bands (Gitelson 1992; Gower et al., 2005; Gitelson et al., 2007);
however, these algorithms are not applicable to OLI or missions
without such measurements (e.g., the Moderate Resolution
Imaging Spectroradiometer [MODIS (Esaias et al., 1998),
Visible Infrared Imaging Radiometer Suite (VIIRS) (Wang
et al., 2014), and Geostationary Ocean Color Image (GOCI)
(Ryu et al., 2012)]. Thus, the only widely used Chla estimation
algorithms available are those of the band-ratio Ocean Color
(OC) family (e.g., OC3), a combination of those (Neil et al., 2019),
or ML models. Regional and local algorithms specific to OLI
imagery have also been attempted with some success in lakes and
reservoirs (Allan et al., 2015; Watanabe et al., 2015).

Over the years, several generic ML methods have been utilized
in the OC or aquatic remote sensing domain. Among them,
Multilayer Perceptrons (MLP), Support Vector Machines (SVM),
and Extreme Gradient Boosting (XGB) have shown promise in
retrieving Chla. MLPs are NNs with feed-forward connections
arranged in a series of layers, which perform regression by
learning a set of weights that are used in dot products through
sequential layers (Hinton 1990). This type of model has been
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employed in past research to obtain various bio-optical
parameters as well as Chla (Schiller and Doerffer 1999; Gross
et al., 2000; Ioannou et al., 2011; Vilas et al., 2011; Jamet et al.,
2012; Chen et al., 2014; Hieronymi et al., 2017). SVMs on the
other hand, perform regression by finding a maximal separation
hyperplane, fitting the training samples within some margin of
tolerance. This margin is tunable, and influences over- and
under-fitting (Chang and Lin 2011). This method has
previously been utilized for Chla estimations in open ocean
environments (Kwiatkowska and Fargion 2003; Zhan et al.,
2003). Lastly, XGB is a highly optimized tree-based method
which fits a series of models to the training data,
incrementally reducing the error through gradient
boosting—a specific type of ensembling focusing on the
error gradient as the target (Chen and Guestrin 2016). This
approach has been proven to improve Chla retrieval from OLI
ρs products in highly turbid or eutrophic lakes in China (Cao
et al., 2020). The MDNs utilized in this research is a variation
of MLPs that learn a probability distribution over the output
space to allow for multimodal target distributions (Section
Mixture Density Network). This multimodality is a
fundamental characteristic of inverse problems, owing to
the non-unique relationships between input and output
features (Sydor et al., 2004).

DATASETS

Two datasets are utilized in this study: paired in situ
Chla— Rrs measurements (Type A); and near-simultaneous
Chla— RΔ

rs satellite matchups (Type B). Using both Type A
and Type B datasets provides significant benefits in
understanding an algorithm’s performance. Co-located Rrs -
Chla measurement pairs (Type A) provide the theoretically
ideal environment, as performance on this dataset quantifies
the quality of estimates when applied to sample spectra with
minimal noise. Near-simultaneous satellite matchups (Type B),
on the other hand, provide a practical demonstration of an
algorithm’s capability when applied with significant noise.
Both sets have Chla ranging from 0.1 to >1,000 mg m−3 (as
shown in Figure 1 and Supplementary Appendix A).
Continental distributions of the datasets are provided in Table 1.

Type A: In situ Data
Type A data consists of radiometric and biogeochemical
parameters that have been collected and assembled from
various lakes, bays, estuaries, coast lines, and rivers from
around the world (Figure 2), covering a wide range of trophic
states and geographic locations (Pahlevan et al., 2020). The
frequency distribution of Chla, Total Suspended Solids (TSS),
and the absorption by CDOM at 443 nm (aCDOM (440)) is shown
in Figure 1. Although our in situ measurements are not void of
uncertainties, this dataset has proven useful for model
development and validation (Pahlevan et al., 2020),
representing the closest to ideal while still considering
instrument and human errors.

The radiometric quantity primarily used for model
developments in this study is the remote sensing reflectance (Rrs):

Rrs(λ) � Lw(λ) /Ed(λ) (1)

FIGURE 1 | Distribution of Chla, TSS, and aCDOM (440) (data (Type A).

TABLE 1 | Data distribution.

North
America

South
America

Europe Asia Australia/
Oceania

Type A 2,836 121 794 552 51
Type B 2,287 46 568 1 420
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Rrs(sr
−-1) is determined using the water-leaving radiance Lw and

downwelling irradiance Ed in the air, just above the water surface.
Hyperspectral Rrs spectra were resampled according to the OLI’s
relative spectral response functions. Furthermore, the data was
preprocessed before being used as input into any machine
learning models, with Rrs data transformed according to a
robust median-centering interquartile range (IQR) scaling
process (fit to the training data); and the Chla values being
log-scaled, and transformed to be within the interval (−1, 1).
Type A data were used for training and validation of the first
MDN model (MDNA; Section Mixture Density Network Model
Types), and for performance assessment against that of other
Chla algorithms (Section Performance Assessment).

Type B: Satellite Matchups
The satellite matchup dataset (Type B) is composed of two sources:
Level-1TP OLI scenes, and in situ Chla measurements made
during cruises, at buoys, or via site visits carried out through
routine monitoring activities. The in situ data were obtained via a
search of national/international water quality databases, such as the
Water Quality Portal (WQP), NOAA’s Chesapeake Bay
Interpretive Buoy System (CB), Environment and Climate
Change Canada (ECCC), the World Ocean Database (WOD),
and others. The data acquired from CB are near-surface calibrated
fluorometry data, while remaining data represent near-surface or
depth-integrated Chla determined via laboratory analyses. The
application of Type B data is twofold: 1) to evaluate the

FIGURE 2 | Geographic distribution of in situ measurements (Type A) (N � 4,354) Background map was obtained from http://www.shadedrelief.com/.

FIGURE 3 | Geographic distribution of satellite matchups (Type B) (N � 3,371) Background map was obtained from http://www.shadedrelief.com/.
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performance of the MDN model applied to atmospherically
corrected products (RΔ

rs) (Section Atmospheric Correction and
Matchup Selection); and 2) to explore alternative inputs for MDN
models (MDNB types) using RΔ

rs and ρs products, combined with
ancillary data (Section Mixture Density Network Model Types).
The former analysis enables gauging the performance of MDN
models in practice, comparing its efficacy with our previous studies
(Pahlevan et al., 2020; Pahlevan et al., 2021) and quantifying how
uncertainties in RΔ

rs propagate to Chla products. The motivation
behind focusing on RΔ

rs and ρs products (the latter analysis) is to
identify alternative approaches [e.g., Cao et al. (2020)] to use
the provisional, readily accessible, United States Geological
Survey aquatic reflectance products (Franz et al., 2015;
Pahlevan et al., 2017b). The locations of all successful OLI
matchups are mapped in Figure 3 (Section Atmospheric
Correction and Matchup Selection), and the histograms of
relevant parameters are shown in Supplementary
Appendix A.

METHODS

Mixture Density Network
Radiative transfer theory details a series of equations that are
concerned with the forward problem: given a set of parameters
which describe the inherent optical properties (IOPs) of the
water, concentrations of water constituents (e.g., Chla), and a
set of boundary conditions, which limit the environment itself,
how the relevant apparent optical properties (AOPs) can be
discerned (Mobley, 1994). In the same manner, the standard
target of a model in machine learning takes the form of a
forward problem: given a set of independent variables, the goal
is to find a function which approximates the relationship
between these and the dependent variables. In particular,
the relationship must be right-unique, which guarantees
there is a single set of true outputs (y) for any given set of
input (x) variables in a dataset D:

∀(x, y) ∈ D∧(x, y′) ∈ D0y � y′ (2)

Plainly, for any input-output pair in a dataset, any samples
with the same input must also maintain the same output
(conditioned on noise). Inverse problems reverse the
relationship however, i.e. switching x and y, which leads to
violations of this core assumption. In natural environments,
bio-optically active constituents and illumination conditions
cause observed Rrs; the same set of input parameters, with
perfect knowledge, should always lead to the same Rrs. In the
inverse formulation, we attempt to instead determine bio-optical
parameters and biogeochemical properties from the Rrs
observations, and thus have the possibility of a single Rrs
spectrum leading to multiple sets of valid parametric solutions
(and so, multiple valid environments in which the spectrum
might have been observed) (Pahlevan et al., 2020; Pahlevan
et al., 2021).

Mixture Density Networks (MDN) (Bishop 1994) are a class of
neural networks which attempt to address this one-to-many

mapping (Sydor et al., 2004; Defoin-Platel and Chami 2007).
Where a standard neural network (e.g. MLP) directly models the
Rrs �> Chla relationship, MDNs model a conditional probability
distribution, i.e., p(Chla|Rrs), over the Rrs �> Chla mapping as a
mixture of multiple (c) Gaussian functions:

p(Chla|Rrs) � ∑c
i�1

πi(Rrs)ϕi(Chla|Rrs) (3)

ϕi(Chla|Rrs) � exp( − (1/2)(Chla − μi)T∑−1
i (Chla − μi))								

(2π)d|Σi|
√ (4)

with c mixture components and dimensionality d, μ being the
mean vector, and ϕ denoting a Gaussian distribution. A valid
Gaussian mixture requires that the mixing coefficients π and
the covariance matrix Σ adhere to the constraints explained in
detail in Bishop (1994). The final model estimate is then taken
to be the maximum likelihood, which represents the area of
highest probability mass. In our formulation, Bootstrap
Aggregation (bagging) (Breiman, 1996) is also applied to
the model to improve the quality and consistency of
estimates. The practice of bagging is an ensemble technique
which is intended to reduce variance and improve
generalization. In short, the idea is to repeatedly resample
the available training set into a smaller subset (in practice,
50–75% of the original size) and train the model on this new,
randomly sampled training subset. After some number of
models is added to the ensemble, the median of all model
estimates is taken as the final output.

Atmospheric Correction and Matchup
Selection
There are several viable AC methods suitable for OLI data
processing; nonetheless we focused only on one processing
chain, i.e., the SeaWiFS Data Analysis System (SeaDAS), the
heritage ocean color AC processing scheme adopted for OLI
(Franz et al., 2015). This processing approach is also adopted by
the USGS Earth Resource Operation and Science center (EROS)
to produce aquatic reflectance products, which are equivalent to
Rrs products normalized by π. In this study, OLI images were not
only fully processed to Rrs but also partially processed to output
intermediate ρs that is corrected for atmospheric gaseous
absorption, molecular scattering effects, and air-water interface
multiple scattering phenomena (Gordon 1997). To compare the
effects of AC schemes on Chla retrievals, a single OLI image was
processed by three other methods: Polynomial based algorithm
applied to MERIS (POLYMER) (Steinmetz et al., 2011),
Atmospheric Correction for OLI lite (ACOLITE)
(Vanhellemont and Ruddick 2018), and Case-2 Extreme
Waters (C2X) (Brockmann et al., 2016) (Section Impacts of
Atmospheric Correction).

To create satellite matchup datasets (Type B), SeaDAS-
processed OLI scenes were paired with in situ measurements
on same-day overpasses and the matchup criteria proposed in
Bailey and Werdell (2006) was followed using strict
spatiotemporal filters to remove matchups with questionable
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quality. A 3 × 3-element box centered on the closest geographic
coordinates of the in situ measurement was used to select
potential satellite observations (Figure 3), and any matchup
was discarded if four or more pixels were flagged as invalid.
Further, any cruise samples <500 m apart were considered
duplicates and removed. Temporal mismatch criteria were
further tightened for dynamic aquatic ecosystems (e.g.,
Chesapeake Bay, riverine systems) to 30 min to minimize the
associated uncertainties. The median value of valid pixels within
the 3 × 3-element box was then derived for each parameter and
preprocessed in the same manner as the Type A data. All relevant
reflectance products, including top-of-atmosphere reflectance
(ρt), ρs, and RΔ

rs, as well as ancillary (anc) parameters (e.g.,
sensor and solar viewing geometries, water vapor content,
etc.), were simultaneously extracted, filtered, and stored.

MDN Model Types
The naming convention used for MDN model developments
follows the format listed in Table 2. Each of the MDN models
was trained with 50% of the total available samples within the
respective dataset, chosen uniformly at random (with the same
set of samples used to train all ML models; Section
Benchmarking). The remaining, held-out portion of the
dataset was then used to test the models. The “bagging”
scheme was also applied to all ML models—in order to
ensure a fair comparison between algorithms—with 75% of
the training data used per bagging estimator (without
replacement), and an ensemble size of 10 estimators. All
hyperparameters of the benchmark models were chosen via
a 5-fold cross validation grid search on the training data. For
a detailed discussion on MDN hyperparameters, see
Supplementary Appendix C.

In those MDN models which utilize ancillary data, these
features are added alongside their respective RΔ

rs (or ρs) spectra
as inputs. Bagging was also applied to these ancillary features
when they are included (i.e., keeping only a random 75% of
the ancillary features for each estimator in the bagging
ensemble); the full VIS RΔ

rs (i.e., 443, 482, 561, 665 nm) or
ρs (443, 482, 561, 665, 865, 1609 nm) spectrum for a sample
was always included as input. Ancillary data (Supplementary
Appendix B) included per pixel imaging geometry, coarse
scale wind parameter estimations, and other general
atmospheric condition variables which were available from
SeaDAS (e.g., NO2, O3, water vapor). We hypothesize that

these additional features help the model to learn the biases
and uncertainties specific to the AC method, which uses these
features in their derivations of RΔ

rs. For instance, wind
parameters are known to correlate well with sunglint signal
(Wang and Bailey 2001; Kay et al., 2009), and are not utilized
by default in SeaDAS. Unaccounted water vapor absorption,
which affects the OLI’s red and ShortWave InfraRed (SWIR)
bands, can also introduce additional uncertainties in RΔ

rs. On
the other hand, ρs products contain aerosol scattering and
absorption governed by imaging geometry parameters; hence,
the sun-sensor geometries must be evaluated when retrieving
Chla through MDNρs,anc

B , a point not taken into consideration
in other studies which utilize similar features (Cao et al.,
2020).

In order to help prevent the models from learning
spurious relationships due to temporal misalignment, we
added one additional feature to all MDNB models, which
represents the number of minutes between the satellite
overpass and the in situ measurement, i.e., Δt. This
number is negative if the in situ measurement was taken
prior to the overpass, and positive if after. When applying
the model to a scene to generate Chla maps (see Spatial
Analysis), this feature is simply set to 0 for all pixels for the
exact time of the overpass.

Benchmarking
Given their previous application in the aquatic remote sensing
area, MLP, SVM, and XGB were the main ML models
identically trained and tested with the MDNA model. Due
to its simple implementation and successful application in
classification problems, K Nearest Neighbor (KNN) was also
added as another benchmark (Altman 1992). In spite of its
expected performance loss in waterbodies rich in organic or
inorganic material, the OC3 model was also used as another
benchmark (Franz et al., 2015). The MDNB models were
further benchmarked against another XGB model, hereafter
referred to by its name in original publication (BST),
developed and tested by Cao et al. (2020).

To quantify performance, we primarily examined three
metrics: Median Symmetric Accuracy (Morley et al., 2018),
referred to as “Error” in all plots and tables; Symmetric Signed
Percentage Bias (Morley et al., 2018), referred to as “Bias” in all
plots and tables; and the slope of the least-squares linear
regression line on the log-transformed data (Campbell 1995).
All three have straightforward interpretations, though to clarify
the first two:

• Median Symmetric Accuracy (“Error”) can be interpreted
as a symmetric percentage error, equally penalizing over-
and under-estimation. Lower values indicate better
performance, with perfect accuracy being assigned a
value of 0%.

Error � 100 × (e median(|log(Ĉhla/Chla)|) − 1) (5)

TABLE 2 | MDN model types. VIS indicates OLI’s visible bands.

Model Input feature Data
type

Number of samples

Training Testing Total

MDNA Rrs(VIS) A 2,177 2,177 4,354
MDNB RΔ

rs(VIS), Δt B 1,686 1,685 3,371
MDNanc

B RΔ
rs(VIS), anc, Δt

MDNρS ,anc
B ρs(443≤ λ≤1609),

anc, Δt
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• Symmetric Signed Percentage Bias (“Bias”), as with the
former metric, is interpretable as a percentage bias that
maintains symmetry between over- and under-estimation.
Values closer to zero indicate better performance, with
positive values indicating over-estimation and negative
indicating under-estimation.

MdLQ � median(log (Ĉhla/ Chla ) ) (6)

Bias � 100 × sign(MdLQ) × (e | MdLQ | − 1) (7)

In the equations above (5–7), Chla denotes the in situ value and
Ĉhla is the estimated value. Both metrics are designed to address
the widely documented drawbacks (Makridakis 1993; Hyndman
and Koehler 2006; Tofallis 2015) of other commonly used
statistical measures (e.g., MAPE). For a thorough discussion
on the advantages of these methods over others commonly
found in literature, we direct the reader to (Morley et al.,
2018). One should also note that the above metrics are
zero-centered and symmetric compared to recently
proposed metrics in Seegers et al. (2018).

RESULTS

Performance Assessment
The performance of MDNA, the other ML models, and OC3
and the corresponding statistical metrics (N � 2,177) are
provided in Figure 4. The MDN model outperforms other
ML models with improvements in error ranging from 30 to
60%, and MLP ranking as the second-best performer. In fact,
given the coarse hyperparameter grid search performed for
other ML methods, and the lack of equivalent optimization
for MDN parameters, the improvement in performance is
even more significant than shown here (Supplementary
Appendix C). The MDN model, as well as other ML
models, remarkably outperform OC3, which overestimates
Chla in the 1–10 mg/m3 range and underestimates in the
higher range. Yet, compared to Pahlevan et al. (2020)1, the
performance is worse since Rrs simulated for the

FIGURE 4 | Performance of all algorithms on the in situ dataset (Type A; N � 2,177). MDNA, despite using suboptimal hyperparameters, still outperforms all other
surveyed algorithms. The contour lines correspond with density estimates.

1Comparison with Pahlevan et al. (2020) is possible through the relationship:
Error � 100 x (MAE-1).
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MultiSpectral Instrument (MSI) and Ocean Land Color
Instrument (OLCI) contain the RE bands (Gitelson et al.,
2007).

To gauge the level of noise introduced through the AC
(SeaDAS), we also produced Chla scatter plots via MDNA and
other benchmark algorithms applied to the Type B dataset

FIGURE 5 | OLI-retrieved Chla evaluated using satellite matchups, i.e., Type B dataset (N � 3,371). SeaDAS was used for the atmospheric correction in all cases.

FIGURE 6 | Performance assessment of MDNB models using half of the Type B dataset (N � 1,685). The performance of the original model by Cao et al. (2020) is
included. Red dots indicate negative estimates or failure.
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(i.e., satellite matchups) (Figure 5). The model performances
degrade considerably when applied to SeaDAS-derived RΔ

rs. Error
levels exceeding 100% render the utility of OLI-derived Chla
somewhat impractical for robust scientific applications (Trinh
et al., 2017; Bresciani et al., 2018). Further, all the models tend to
overestimate Chla >1 (mg m−3), suggesting primarily
underestimated RΔ

rs. This is in agreement with other studies in
which the confounding effects of AC have been highlighted; OLI-
retrieved RΔ

rs over coastal and inland waters are known to carry
these major biases and uncertainties due to imperfections in the
AC process (Werdell et al., 2009; Zibordi et al., 2009; Pahlevan
et al., 2017a; Ilori et al., 2019; Kuhn et al., 2019). The AC
processor introduces varying degrees of error in Chla
estimates, due to issues in the shape and magnitude of RΔ

rs
spectra estimated. Regardless, while evaluating Chla retrievals
against the satellite matchups is informative, the differences
between the Type A and Type B sets are too large to draw any
firm conclusions about the underlying models (see Figures 1
and Supplementary Appendix A). In Type B data, error is
introduced by spatial differences, temporal differences,
adjacency effects, variability in atmospheric conditions, and
image artifacts, to name a few. Performance metrics will
therefore reflect these errors as much as any error inherent
to the models themselves.

In spite of these issues, Landsat-matchup trained MDNmodel
MDNB is to some extent capable of improving the accuracy as
compared to that of the original (MDNA) model (Figure 6). In
essence, the model accounts for some uncertainties inherent to
the RΔ

rs products—though still exhibiting a fair amount of error
due to the limited information contained in the four available RΔ

rs
bands. This error is reduced further for MDNanc

B . By including
ancillary data, this MDN model compensates for uncertainties
from AC sources in SeaDAS retrievals of RΔ

rs. With some of the
uncertainties in AC addressed (e.g., imperfect accounting of sun-
sensor geometry; (Pahlevan et al., 2017b; Gilerson et al., 2018)),
the model can, in general, make more accurate estimates. The
comparable performance of MDNρs , anc

B demonstrates viable
retrievals in areas with both highly eutrophic and/or turbid

waters (Bailey et al., 2010) and increased water-surface signal
induced by residual and/or moderate sunglint (Harmel et al.,
2018). The recently published model in Cao et al. (2020) (BST) is
also added as another benchmark, which poorly predicts
Chla—likely because of the drastic differences in the
distribution of training data, i.e., the median Chla in Cao et al.
(2020) was >10 [mg·m−3].

Spatial Analysis
The different models examined in SectionMethods are retrained
using the full datasets, rather than splitting into training and/or
testing sets. This allows for the model development to have the
widest range of data available. Using the retrained models, two
scenarios are demonstrated here.

As a first example, a natural color image of Lake Erie and the
derived products during a harmful algal bloom event on Sept.
14th, 2015 was used (Figure 7). The black “x” markers indicate
the positions of the three monitoring stations visited by the Great
Lakes Environmental Research Laboratory (GLERL) within ±1 hr
of Landsat-8 overpass. High concentrations of Chla in the
southwestern section of the lake are evident in the natural
color image generated from ρs products. The elevated

FIGURE 7 | Algorithm estimates for Lake Erie (Sept. 14th, 2015), with a bloom event occurring in the south-western portion of the lake apparent in the natural color
image (left column).

TABLE 3 | In situChladata collectednear-coincident (±1 h)with Landsat-8 overpasses.
The estimated Chla from various MDN models and OC3 are also tabulated. See
Figures 7 and 8 for the locations. Best performer for each station is boldfaced.

Site Station In
situ

MDNA MDNB MDN anc
B MDNρs , anc

B OC3

Lake Erie WE14 45.6 18.2 5.7 21.3 16.7 9.4
WE13 53.9 45.9 6.2 28.7 22.2 10.1
WE4 6.5 1.4 1.1 2.3 2.5 2.5

San
Francisco

33 8.8 15.6 6.6 5.4 6.8 5.57
32 7.9 8.9 5.8 5.3 5.5 5.10
31 6.2 5.9 6.0 5.2 5.6 5.12
30 6.0 5.6 3.9 5.6 5.7 5.17
29.5 7.2 8.3 3.6 5.6 5.9 5.15

(Mean)
Error (%)

NA 15.0 83.7 55.9 42.3 56.4
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backscatter evident in the natural color image of the northern and
central Lake St. Claire discharging into Lake Erie is commonly
attributed to suspended sediments and resuspension events
(Bukata et al., 1988; Hawley and Lesht 1992; Czuba et al.,
2011; Avouris and Ortiz, 2019). Table 3 contains the extracted
Chla measurements and the Chla estimates from the MDN
models. Although there is a slight temporal mismatch between
Landsat-8 overpass and in situ measurements, there is a clear
pattern in the results which quantitatively supports the accuracy
improvement made by the MDN models.

One point to note is the apparent underestimation of the
MDN Type B models. This can be at least partially attributed to
the AC frequently failing in highly eutrophic waters (Wang et al.,
2019): since the MDNB models are only trained on samples
(Figure 3 and Supplementary Appendix A) for which
SeaDAS gives a valid result, there will necessarily be a bias
toward lower concentration samples within the training data.
This bias does not appear to be present in the MDNA model, as it
would not have such a selection bias in its training set. Taking
WE13 station as an example, we note that in spite of the reported
concentrations >50 mg m−3, OC3 estimates a maximum of
around 10.1 mg m−3, with the majority of examined areas
below 11 mg m−3 (Table 3). MDNB exhibits similar behavior,
possibly due to the previously discussed selection bias in the
training data. However, when ancillary features are added to the
model inputs (as is the case with MDNanc

B ), the estimated Chla
concentrations become far more plausible. Furthermore, there is
a notable consistency between the maps predicted from MDNanc

B
and MDNρs , anc

B , implying ρs has the potential to be used as a

substitute for RΔ
rs. The benefit of this substitution is demonstrated

in the southern area of the image: for a large proportion of
Sandusky Bay, RΔ

rs through SeaDAS is unavailable and thus
missing within the MDNanc

B map.
Our second example is comprised of a scene over the San

Francisco Bay (SFB), imaged on April 27th, 2017 at 18:43 GMT
(Figure 8), for which there were a few near-simultaneous in situ
Chla measurements (Table 3) provided by SFB monthly cruises.
In contrast to MDNB-derived maps, the map obtained from
MDNA shows highly eutrophic areas (>20 mg·m−3) in the
south bay region. Retrievals from MDNA were similar to in
situmeasurements (in the lower bay) except for the estimate at
station 33—which is far greater than the measured
concentrations (Table 3). This might be caused by any
number of factors, not least of which being those biases
inherent to the AC process. An interesting feature in
Figure 8 is the Chla field outside the bay in the Pacific
coasts (or in San Pablo Bay) that has been merely predicted
by MDNρs , anc

B , suggesting the advantage of this model over
other models limited by the failure in the AC (e.g., due to haze
or over highly turbid/eutrophic waters).

Temporal Analysis
The Time-series of estimated Chla are compared with in situ
measurements in Figure 9. In this case, the in situ data (N ∼ 30)
were measured via calibrated autonomous fluorometers deployed
near-surface in Grizzly Bay, the northern section of the SFB
region (Figure 8). The errors (Eq. 5) for the different models
amounted to 54%, 41%, 120%, and 241% forMDNanc

B , MDNρs , anc
B ,

FIGURE 8 | Algorithm estimates for San Francisco (SF) Bay (April 27 th, 2017) shown along the natural color image (left column). Note the successful retrievals via
MDNρs , anc

B in the Pacific coastal waters where SeaDAS did not return valid RΔ
rs. In situChlameasurements for the stations are provided in Table 3. The Grizzly Bay station

whose time-series Chla data are shown in Figure 9 is highlighted.

FIGURE 9 | Time-series data extracted from in situ fluorometric Chlameasurements along with estimates derived from different versions of MDNmodels and OC3.
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MDNA, and OC3, respectively. The MDNA predictions, although
exhibiting enhancements over OC3, contain outliers, but the
MDNρs , anc

B and MDNanc
B predictions resemble the in situ

measurements without considerable noise, suggesting their
potential applicability if adequate training data are supplied.
This time-series analysis highlights the primary role of AC in
achieving high-quality Chla retrievals and the need for
improvement.

DISCUSSION

Based on these results, one infers that the MDN is a promising
model in retrieving Chla from OLI, offering improvements in
accuracy over other current models. Here, we further address why
this model is a likely choice for retrievals and demonstrate its
strength in suppressing noise in Rrs compared to other ML
models. This is followed by a discussion on the impacts of
varying AC methods on the performance of MDNA and the
implications of this research for studying and monitoring global
waterbodies using Landsat-8 and other missions.

Model Validity
Neural network models have long been regarded as black-box
models, with their complexity being a double-edge: providing
more accurate solutions than have been previously available, at
the cost of understanding the rationale in their estimations. This
loss of explicability is of great concern for those involved in

critical applications, due to the costs incurred in the event of
failures. Without a source to identify as the cause—as is often the
case in these models—the trust placed in the application is
eroded. Recent research has led to a number of methods
which allow for better model transparency, however. For
instance, with many models it can be helpful to visualize the
effect a given input feature has on the output of the model; in this
case the effect of a certain band on the Chla estimation.

One such method to do this is called an Accumulated Local
Effects (ALE) plot (Apley and Zhu 2016). The interested reader
may also examine the literature for the related Partial
Dependence (PD) plot—though these have the disadvantage of
assuming independence between input features, and so are not
the best choice in this case. ALE plots, on the other hand, calculate
the effect of a feature conditional upon the other input features.
Another way to explain this is, they examine the average change
in prediction over a window around an input feature’s values,
only conditioning upon other features in areas for which values
exist in the data set. Figure 10 shows the ALE plots for the OLI
bands, generated via the Type A data set. Note that the y-axis
values correspond to the accumulated local effect, which can be
thought of as “change in estimated Chla.” These plots indicate
that 561 nm, when observed with a large magnitude, has the
greatest (positive) effect on chlorophyll-a estimation. Not
surprisingly, 482 nm also appears to significantly impact
chlorophyll estimates with an inverse relationship: low
magnitude reflectances indicating a higher than average
chlorophyll-a value, and high magnitude reflectances

FIGURE 10 | ALE plots showing the sensitivity of MDN Chla estimates, with respect to changes in the input spectral bands. Y-axes measure the accumulated local
effect, which can be thought of as “change in estimated Chla.”
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indicating a lower than average chlorophyll-s value. On the other
hand, since the 655-nm band does not fully cover Chla
absorption at 676 nm, it appears to contain limited spectral
information pertaining to Chla (see Helder et al. (2018)).

Impacts of Atmospheric Correction
Although the primary processing scheme used here was SeaDAS,
here, we underscore the importance and challenges associated
with the AC. To that end, C2X, ACOLITE, and POLYMER, in
addition to SeaDAS, were implemented to a sample OLI scene
over Lake Peipsi, June 14th, 2016, followed by applying the
MDNA model to all the derived Rrs products. Figure 11 shows
the corresponding Chla map products. The inconsistency in the
relative distribution and the overall magnitude of products is
largely noticeable. For example, C2X appears to predict a large
bloom in the center of the lake whereas other schemes provide
values closer to the lake-wide average estimate. Moreover,
SeaDAS and ACOLITE tend to estimate relatively high Chla
in the southern and eastern basins while POLYMER retrieves

only slightly higher-than-average estimates. Same-day in situ
Chla measurements and the estimated Chla from MDNA and
OC3 from the four processors are included in Table 4 (Alikas
et al., 2015). Despite that the in situ dataset does not represent the
entirety of the ecosystem, it allows to better comprehend the
complexity induced through the AC process and how confusing
the output products may be. Given the statistics in Table 4, there
is no single processor that distinctly outperforms the rest for this
instance of OLI image and/or lake. It is worth noting that while
SeaDAS, ACOLITE, and POLYMER statistically yield better Chla
estimates via MDNA, retrieved Chla values from C2X through
OC3 resembles in situ samples more closely. This observation and
the discrepancies in the performances further corroborates the
need for an improved AC method for the OLI data processing to
achieve the theoretical limit shown in Figure 4.

Implications for Aquatic Studies
Landsat-8 data, when combined with the data from Sentinel-2
and -3, are expected to allow for near-daily global observations of

FIGURE 11 | An OLI scene acquired on June 14th, 2016 processed via four different atmospheric correction methods. The MDNA model was used to generate
Chla from the output of the processors.

TABLE 4 | In situChla and retrieved Chla derived from four different AC processors by applying MDNA and OC3. The boldfaced values correspond to best estimates at each
station.

Station In Situ SeaDAS C2X ACOLITE POLYMER

MDNA OC3 MDNA OC3 MDNA OC3 MDNA OC3

P17 36.3 NA NA 32.5 32.3 168.5 7.39 23.6 10.0
P16 37.2 NA NA 3.9 25.6 73.8 5.29 12.2 9.5
P12 15.7 48.3 51.08 25.8 18.5 54.7 4.64 11.0 8.8
P38 10.3 8.7 119.62 4.4 12.3 10.2 3.28 8.8 5.7
P11 13.8 10.6 15.60 26.9 18.2 5.9 3.26 17.3 9.0
P4 9.2 14.4 15.90 27.1 21.3 12.0 3.70 11.7 8.4
P92 14.0 5.7 23.00 27.5 21.6 14.4 3.47 10.3 8.7
P2 10.6 13.9 22.72 21.0 19.0 10.6 3.55 11.3 8.4

(Mean) Error (%) 43.3 92.5 97.3 38.4 61.0 269.5 31.5 69.4
(Mean) Bias (%) 5.2 92.5 78.9 25.5 15.8 −269.5 −26.1 −69.4
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inland and coastal waters. Irrespective of differences in their
observation modalities, creating consistent Chla products is key
for successful assessment and monitoring of these ecosystems.
Considering the missing RE measurements in the OLI suite of
observations however, retrieving Chla as accurately as that with
MSI and OLCI appears challenging. Although the number of
matchups assessed is different, comparing to our previous results
(Pahlevan et al., 2020), it can be inferred that Rrs, or their
equivalent RΔ

rs and ρs, within the RE region contain significant
information related to Chla in eutrophic waters. These channels
also help constrain the solution space in less eutrophic waters
with higher turbidity, which may be mislabeled as having high
Chla with OLI. That said, the addition of spectral information
within the 865 nm band may prove valuable under such
circumstances (Cao et al., 2020), which has been the case for
our MDNρs ,anc

B model.
In addition to SeaDAS, we also implemented and tested

ACOLITE and POLYMER to assess the performance of
MDNA models. Our analyses showed that these alternative
models yield Chla as inaccurate as that from SeaDAS
(Figure 5). The performance of MDNB and MDNB

anc using
RΔ
rs derived from ACOLITE and POLYMER showed consistent

performances however, similar to those illustrated in Figure 6.
Therefore, it is surmised that until major improvements in the
state-of-the-art AC methods are achieved, an alternative
approach to obtaining improved Chla is through MDNB

models supplied with RΔ
rs, ρs, or a combination of both.

Assuming adequate matchups spanning a wide array of
trophic states and aerosol conditions are incorporated in
training (beyond what was used in our Type B dataset;
Supplementary Apendix A), such a model should provide
global retrievals nearly as robust as those obtained by MSI and
OLCI. This is likely the path forward, given the extent to which
AC degrades the performance of MDNA (rendering it virtually
equivalent to OC3). This approach is, in particular, applicable to
regional monitoring sites (e.g., western Lake Erie, Lake Taihu)
where ample high-quality, historic in situ datasets are available
for model training. In other words, a successful compilation of
high-quality discrete samples of Chla at global scales is a
challenging task and may take several years to achieve.

Spatial and temporal mismatches inherent to satellite
matchups introduce further uncertainties in our assessments.
Of concern is, in particular, our same-day criteria. We made
an attempt to diminish the impact of this noise source by
supplying Δt to the MDNB models, in the hopes that the
model could adjust for the importance of temporally distant
samples during the learning process. Overall, choosing an optimal
threshold for the temporal filtering is a trade-off between the
accuracy of the model, and the generalization capability conferred
by a wider range of samples and environments.

The inclusion of ancillary data, such as the solar angles, sensor
viewing angle, wind data, water vapor, and others, enhanced the
model performance noticeably when added to model input
features, regardless of AC processor. The improvements stem
from how SeaDAS utilizes the ancillary information itself
(Mobley et al., 2016) while some of the parameters are not
often used, e.g., wind speed, wind angle. In some cases, the

algorithm may apply simplifications, for example to reduce
computational burden, that may preclude a rigorous
integration of ancillary data in the process. In particular, we
found that our model is very sensitive to sensor azimuth angles,
which change sign for the two adjacent focal plane modules
(Markham et al., 2014). Our spatial analysis suggested that
including these angles yield alternate low-high Chla for the
odd and even focal plane modules (Pahlevan et al., 2017b);
hence, we decided to discard this information, which led to
more spatially uniform maps. Further, it is worth pointing out
that most ancillary variables (e.g., water vapor concentration)
are coarse-resolution features with little to no per-pixel
variability. Therefore, any fine structures or patterns seen in
the estimates can only be influenced by the spectral
information itself.

Future Work
This work introduces a great number of potential directions for
exploration. From the perspective of the aquatic remote sensing
field as a whole, it is yet to be determined how the MDN model
fares when applied to other missions. In the future, the
performance evaluation is expected to be carried out for other
ocean color missions, such as MODIS, which do not measure in
the RE region but provide relevant spectral content in the vicinity
of 750-nm region. Similarly, the MDN developed for OLI’s visible
bands might be further extended by including the panchromatic
band to further constrain the solution space (Castagna et al.,
2020). As the atmospheric correction process has been shown to
introduce significant errors in downstream products of such
missions, and ρs being a feasible substitute to bypass portions
of this process, the question becomes whether it is possible to
bypass AC completely and allow for direct retrieval of the relevant
biogeochemical properties. Alternatively: whether there are
certain AC-specific parameters which might be tuned, in order
to provide a more amenable input for learning the product
inverse function.

Other directions include those focused more on ML, and the
MDN itself. For instance, the MDN model also has the capability
to simultaneously estimate multiple products; to what extent do
the inclusion of additional variables in the model output (e.g.,
TSS) affect performance? Intuitively these additions should serve
only to improve accuracy overall, given the additional
information of target covariances—but which products might
be estimated synergistically is yet to be explored.

More theoretically, we might ask if there are non-Gaussian
distributions (e.g., Laplace, which may better represent the data);
or, whether the learned mixture components might relate to the
physical environments of the samples assigned. Further
exploration is required in regard to the model
hyperparameters, and the mixture components especially.
There are very likely advancements in the field of machine
learning (e.g., activation functions, batch normalization
procedures, convolutional/temporal architectures, etc.) which
could also be applied to enhance retrievals—though potentially
requiring alternative data formulations, such as incorporating
spatial or temporal information.
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CONCLUSION

In this work, we have gathered a global dataset of both Rrs – Chla
and RΔ

rs – Chla matchups, compiled from a variety of different
sources. These two datasets were used to train several machine
learning (ML) models, and in particular, used to train theMixture
Density Network (MDN)—an algorithm which we introduce as a
theoretically plausible model for biogeochemical variable retrieval via
remotely sensed radiometric data. These ML algorithms were
benchmarked against each other, in order to provide empirical
justification alongside the theory of MDN superiority on inverse
problems; as well as against OC3 to demonstrate accuracy on the
described task. Furthermore, we showed that instead of using RΔ

rs
spectrum as input, it is feasible to instead use ρs to achieve similar
performance in Chla estimation. The benefits of this were briefly
touched upon, where ρs -trained models were shown to seamlessly
retrieve Chla where previously unavailable due to AC failure.

The MDN algorithm represents a promising step toward the
goal of global simultaneous biophysical and biogeochemical
variable retrieval, in the context of aquatic remote sensing.
While results are promising, much work is left to be done in
both data acquisition and model validation. To truly design a
global-scale model, capable of approximating an inverse solution
to the radiative transfer equations, significantly more data is
required. Simultaneously retrieving all parameters of interest to
the community requires the potential dataset to have the
necessary information to learn relevant covariances in all
atmospheric conditions. Just as important, the various sources
of uncertainty andmisalignment must also be minimized in order
for the model to accurately learn these relationships.

We conclude with broad discussions of other justifications and
benefits, analyses on the hyperparameters, implications of the
model within the broader community, and potential directions
for further experimentation. These discussions are far from
exhaustive, but we hope they will provide the seed for future
advancements in remote sensing.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because data ownership belongs to partner organizations. The
data will be published in the future upon agreement with data

providers. Requests to access the datasets should be directed to
Nima.pahlevan@nasa.gov. All the developed codes are available
through https://github.com/STREAM-RS/STREAM-RS.

AUTHOR CONTRIBUTIONS

NP: Conceptualization; BS, JS, RM, CG, MB, CB, SR, RE, and
VF: Data curation; BS: Formal analysis; NP: Funding
acquisition; NP and BS: Investigation; BS: Methodology;
NP: Project administration; NP: Resources; BS: Software;
NP: Supervision; BS: Validation; BS: Visualization; NP and
BS: Roles/Writing – original draft; NP: Writing – review and
editing.

FUNDING

We acknowledge the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 730066,
EOMORES) to support in situ data collection in Estonian
inland waters. Nima Pahlevan is funded under NASA
ROSES contract # 80HQTR19C0015, Remote Sensing of
Water Quality element, and the USGS Landsat Science
Team Award # 140G0118C0011.

ACKNOWLEDGMENTS

We would like to recognize all the individuals and entities that
acquired, processed, and prepared in situ data that are central to
the development of global algorithms. The principal investigators
providing the data include Caren Binding, Daniela Gurlin, Steve
Greb, Bunkei Matsushita, Anatoly Gitelson, Wesley Moses,
Moritz Lehman, and Michael Ondrusek. We also acknowledge
NASA’s support in creating and maintaining SeaBASS.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frsen.2020.623678/
full#supplementary-material.

REFERENCES

Alikas, K., Kangro, K., Randoja, R., Philipson, P., Asuküll, E., Pisek, J., et al. (2015).
Satellite-based products for monitoring optically complex inland waters in
support of EU water framework directive. Int. J. Rem. Sens. 36, 4446–4468.
doi:10.1080/01431161.2015.1083630

Allan, M. G., Hamilton, D. P., Hicks, B., and Brabyn, L. (2015). Empirical and semi-
analytical chlorophyll a algorithms for multi-temporal monitoring of
New Zealand lakes using Landsat. Environ. Monit. Assess. 187, 364. doi:10.
1007/s10661-015-4585-4

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor
nonparametric regression. Am. Statistician 46, 175–185. doi:10.2307/
2685209

Apley, D. W., and Zhu, J. (2016). Visualizing the effects of predictor variables in
black box supervised learning models. J. Royal Stat. Soc. Series B (Stat. Met.). 82
(4), 12377. doi:10.1111/rssb.12377 arXiv preprint arXiv:1612.08468.

Avouris, D. M., and Ortiz, J. D. (2019). Validation of 2015 Lake Erie MODIS image
spectral decomposition using visible derivative spectroscopy and field campaign
data. J. Great Lake. Res. 45, 466–479. doi:10.1016/j.jglr.2019.02.005

Bailey, S. W., Franz, B. A., and Werdell, P. J. (2010). Estimation of near-infrared
water-leaving reflectance for satellite ocean color data processing. Opt. Exp. 18,
7521–7527. doi:10.1364/OE.18.007521

Bailey, S. W., and Werdell, P. J. (2006). A multi-sensor approach for the on-orbit
validation of ocean color satellite data products. Rem. Sens. Environ. 102, 12–23.
doi:10.1016/j.rse.2006.01.015

Bishop, C. M. (1994). Mixture density networks NCRG/94/004. Birmingham,
United Kingdom: Aston University. Available at: http://www.ncrg.aston.ac.uk.

Frontiers in Remote Sensing | www.frontiersin.org February 2021 | Volume 1 | Article 62367814

Smith et al. Landsat-8 Chlorophyll-a via Mixture Density Networks

mailto:Nima.pahlevan@nasa.gov.
https://github.com/STREAM-RS/STREAM-RS
https://www.frontiersin.org/articles/10.3389/frsen.2020.623678/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsen.2020.623678/full#supplementary-material
https://doi.org/10.1080/01431161.2015.1083630
https://doi.org/10.1007/s10661-015-4585-4
https://doi.org/10.1007/s10661-015-4585-4
https://doi.org/10.2307/2685209
https://doi.org/10.2307/2685209
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1016/j.jglr.2019.02.005
https://doi.org/10.1364/OE.18.007521
https://doi.org/10.1016/j.rse.2006.01.015
http://www.ncrg.aston.ac.uk
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles#articles


Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123–140. doi:10.1007/
bf00058655

Bresciani, M., Cazzaniga, I., Austoni, M., Sforzi, T., Buzzi, F., Morabito, G., et al.
(2018). Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-
2A and Landsat-8. Hydrobiologia 824, 197–214. doi:10.1007/s10750-017-
3462-2

Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., and Ruescas, A.
(2016). Evolution of the C2RCC neural network for Sentinel 2 and 3 for the
retrieval of ocean colour products in normal and extreme optically complex
waters. ESA-SP 740, 54.

Bukata, R., Jerome, J., Bruton, J., Jain, S., and Zwick, H. (1981). Optical water
quality model of Lake Ontario. 1: determination of the optical cross sections of
organic and inorganic particulates in Lake Ontario. Appl. Optic. 20, 1696–1703.
doi:10.1364/AO.20.001696

Bukata, R. P., Jerome, J. H., and Bruton, J. E. (1988). Particulate concentrations in
Lake St. Clair as recorded by a shipborne multispectral optical monitoring
system. Rem. Sens. Environ. 25, 201–229. doi:10.1016/0034-4257(88)90101-0

Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., and Pozdnyakox, D. V. (1995).
Optical properties and remote sensing of inland and coastal waters. New York,
NY: CRC Press.

Campbell, J. W. (1995). The lognormal distribution as a model for bio-optical
variability in the sea. J. Geophys. Res. 100, 13237–13254. doi:10.1029/95jc00458

Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., et al. (2020). A
machine learning approach to estimate chlorophyll-a from Landsat-8
measurements in inland lakes. Rem. Sens. Environ. 248, 111974. doi:10.
1016/j.rse.2020.111974

Castagna, A., Simis, S., Dierssen, H., Vanhellemont, Q., Sabbe, K., and Vyverman,
W. (2020). Extending Landsat 8: retrieval of an orange contra-band for inland
water quality applications. Rem. Sens. 12, 637. doi:10.3390/rs12040637

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 1–27. doi:10.1145/1961189.1961199

Chen, J., Cui, T., Ishizaka, J., and Lin, C. (2014). A neural network model for remote
sensing of diffuse attenuation coefficient in global oceanic and coastal waters:
exemplifying the applicability of the model to the coastal regions in eastern
China seas. Rem. Sens. Environ. 148, 168–177. doi:10.1016/j.rse.2014.02.019

Chen, T., and Guestrin, C. (2016). “Xgboost: a scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, San Francisco, CA, August 13–17, 2016, 785–794.

Clarke, G. L., Ewing, G. C., and Lorenzen, C. J. (1970). Spectra of backscattered
light from the sea obtained from aircraft as a measure of chlorophyll
concentration. Science 167, 1119–1121. doi:10.1126/science.167.3921.1119

Concha, J. A., and Schott, J. R. (2016). Retrieval of color producing agents in case 2
waters using Landsat 8. Rem. Sens. Environ. 185, 95–107. doi:10.1016/j.rse.2016.
03.018

Czuba, J. A., Best, J. L., Oberg, K. A., Parsons, D. R., Jackson, P. R., Garcia, M. H.,
et al. (2011). Bed morphology, flow structure, and sediment transport at the
outlet of Lake Huron and in the upper St. Clair River. J. Great Lake. Res. 37,
480–493. doi:10.1016/j.jglr.2011.05.011

Defoin-Platel, M., and Chami, M. (2007). How ambiguous is the inverse problem of
ocean color in coastal waters? J. Geophys. Res.: Oceans 112, C003847. doi:10.
1029/2006JC003847

Doerffer, R., and Schiller, H. (2007). TheMERIS case 2 water algorithm. Int. J. Rem.
Sens. 28, 517–535. doi:10.1080/01431160600821127

Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W., Carder,
K. L., et al. (1998). An overview of MODIS capabilities for ocean science
observations. IEEE Trans. Geosci. Rem. Sens. 36, 1250–1265. doi:10.1109/
36.701076

Franz, B. A., Bailey, S. W., Kuring, N., and Werdell, P. J. (2015). ocean Color
measurements with the operational land imager on landsat-8: implementation
and evaluation in SeaDAS. J. Appl. Remote Sens. 9, 096070. doi:10.1117/1.jrs.9.
096070

Freitas, F. H., and Dierssen, H. M. (2019). Evaluating the seasonal and decadal
performance of red band difference algorithms for chlorophyll in an optically
complex estuary with winter and summer blooms. Rem. Sens. Environ. 231,
111228. doi:10.1016/j.rse.2019.111228

Gilerson, A., Carrizo, C., Foster, R., and Harmel, T. (2018). Variability of the
reflectance coefficient of skylight from the ocean surface and its implications to
ocean color. Opt. Exp. 26, 9615–9633. doi:10.1364/OE.26.009615

Gitelson, A. A., Schalles, J. F., and Hladik, C. M. (2007). Remote chlorophyll-a
retrieval in turbid, productive estuaries: Chesapeake Bay case study. Rem. Sens.
Environ. 109, 464–472. doi:10.1016/j.rse.2007.01.016

Gitelson, A. (1992). The peak near 700 nm on radiance spectra of algae and
water: relationships of its magnitude and position with chlorophyll
concentration. Int. J. Rem. Sens. 13, 3367–3373. doi:10.1080/
01431169208904125

Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H., and
Broenkow,W.W. (1983). Phytoplankton pigment concentrations in theMiddle
Atlantic Bight: comparison of ship determinations and CZCS estimates. Appl.
Optic. 22, 20–36. doi:10.1364/ao.22.000020

Gordon, H. R., Clark, D. K., Mueller, J. L., and Hovis, W. A. (1980). Phytoplankton
pigments from the nimbus-7 coastal zone color scanner: comparisons with
surface measurements. Science 210, 63–66. doi:10.1126/science.210.4465.63

Gordon, H. R. (1997). Atmospheric correction of ocean color imagery in the Earth
Observing System era. J. Geophys. Res. 102, 17081–17106. doi:10.1029/
96jd02443

Goward, S. N., Williams, D. L., Arvidson, T., Rocchio, L. E., Irons, J. R., Russell, C.
A., et al. (2017). Landsat’s enduring legacy: pioneering global Land observations
from space. Photog. Engin. Remote Sens. 84 (1), 9–10. doi:10.14358/PERS.84.1.9

Gower, J., King, S., Borstad, G., and Brown, L. (2005). Detection of intense plankton
blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Rem.
Sens. 26, 2005–2012. doi:10.1080/01431160500075857

Gower, J., Lin, S., and Borstad, G. (1984). The information content of different
optical spectral ranges for remote chlorophyll estimation in coastal waters. Int.
J. Rem. Sens. 5, 349–364. doi:10.1080/01431168408948813

Gross, L., Thiria, S., Frouin, R., and Mitchell, B. G. (2000). Artificial neural
networks for modeling the transfer function between marine reflectance and
phytoplankton pigment concentration. J. Geophys. Res. 105, 3483–3495. doi:10.
1029/1999jc900278

Han, L., Rundquist, D., Liu, L., Fraser, R., and Schalles, J. (1994). The spectral
responses of algal chlorophyll in water with varying levels of suspended
sediment. Int. J. Rem. Sens. 15, 3707–3718. doi:10.1080/01431169408954353

Harding, L. W., Itsweire, E. C., and Esaias, W. E. (1994). Estimates of
phytoplankton biomass in the Chesapeake Bay from aircraft remote sensing
of chlorophyll concentrations, 1989-92. Rem. Sens. Environ. 49, 41–56. doi:10.
1016/0034-4257(94)90058-2

Harmel, T., Chami, M., Tormos, T., Reynaud, N., and Danis, P.-A. (2018). Sunglint
correction of the multi-spectral instrument (MSI)-SENTINEL-2 imagery over
inland and sea waters from SWIR bands. Rem. Sens. Environ. 204, 308–321.
doi:10.1016/j.rse.2017.10.022

Hawley, N., and Lesht, B. M. (1992). Sediment resuspension in lake St. Clair.
Limnol. Oceanogr. 37, 1720–1737. doi:10.4319/lo.1992.37.8.1720

Helder, D., Markham, B., Morfitt, R., Storey, J., Barsi, J., Gascon, F., et al. (2018).
Observations and recommendations for the calibration of Landsat 8 OLI and
Sentinel 2 MSI for improved data interoperability. Rem. Sens. 10, 1340. doi:10.
3390/rs10091340

Hieronymi, M., Müller, D., and Doerffer, R. (2017). The OLCI neural network
swarm (ONNS): a bio-geo-optical algorithm for open ocean and coastal waters.
Front. Marine Sci. 4, 140. doi:10.3389/fmars.2017.0014

Hinton, G. E. (1990). “Connectionist learning procedures,” in Machine learning.
Amsterdam, Netherlands: Elsevier, 555–610.

Hyndman, R. J., and Koehler, A. B. (2006). Another look at measures of forecast
accuracy. Int. J. Forecast. 22, 679–688. doi:10.1016/j.ijforecast.2006.03.001

Ilori, C. O., Pahlevan, N., and Knudby, A. (2019). Analyzing performances of
different atmospheric correction techniques for Landsat 8: application for
coastal remote sensing. Rem. Sens. 11, 469. doi:10.3390/rs11040469

Ioannou, I., Gilerson, A., Gross, B., Moshary, F., and Ahmed, S. (2011). Neural
network approach to retrieve the inherent optical properties of the ocean from
observations ofMODIS.Appl. Optic. 50, 3168–3186. doi:10.1364/AO.50.003168

IOCCG (2000). “Remote sensing of ocean colour in coastal, and other optically-
complex, waters,”in Reports of the International Ocean-Colour Coordinating
Group. Editor S. Sathyendranath (Canada: IOCCG).

Irons, J. R., Dwyer, J. L., and Barsi, J. A. (2012). The next Landsat satellite: the
Landsat data continuity mission. Rem. Sens. Environ. 122, 11–21. doi:10.1016/j.
rse.2011.08.026

Jamet, C., Loisel, H., and Dessailly, D. (2012). Retrieval of the spectral diffuse
attenuation coefficient Kd (λ) in open and coastal ocean waters using a neural

Frontiers in Remote Sensing | www.frontiersin.org February 2021 | Volume 1 | Article 62367815

Smith et al. Landsat-8 Chlorophyll-a via Mixture Density Networks

https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/s10750-017-3462-2
https://doi.org/10.1007/s10750-017-3462-2
https://doi.org/10.1364/AO.20.001696
https://doi.org/10.1016/0034-4257(88)90101-0
https://doi.org/10.1029/95jc00458
https://doi.org/10.1016/j.rse.2020.111974
https://doi.org/10.1016/j.rse.2020.111974
https://doi.org/10.3390/rs12040637
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.rse.2014.02.019
https://doi.org/10.1126/science.167.3921.1119
https://doi.org/10.1016/j.rse.2016.03.018
https://doi.org/10.1016/j.rse.2016.03.018
https://doi.org/10.1016/j.jglr.2011.05.011
https://doi.org/10.1029/2006JC003847
https://doi.org/10.1029/2006JC003847
https://doi.org/10.1080/01431160600821127
https://doi.org/10.1109/36.701076
https://doi.org/10.1109/36.701076
https://doi.org/10.1117/1.jrs.9.096070
https://doi.org/10.1117/1.jrs.9.096070
https://doi.org/10.1016/j.rse.2019.111228
https://doi.org/10.1364/OE.26.009615
https://doi.org/10.1016/j.rse.2007.01.016
https://doi.org/10.1080/01431169208904125
https://doi.org/10.1080/01431169208904125
https://doi.org/10.1364/ao.22.000020
https://doi.org/10.1126/science.210.4465.63
https://doi.org/10.1029/96jd02443
https://doi.org/10.1029/96jd02443
https://doi.org/10.14358/PERS.84.1.9
https://doi.org/10.1080/01431160500075857
https://doi.org/10.1080/01431168408948813
https://doi.org/10.1029/1999jc900278
https://doi.org/10.1029/1999jc900278
https://doi.org/10.1080/01431169408954353
https://doi.org/10.1016/0034-4257(94)90058-2
https://doi.org/10.1016/0034-4257(94)90058-2
https://doi.org/10.1016/j.rse.2017.10.022
https://doi.org/10.4319/lo.1992.37.8.1720
https://doi.org/10.3390/rs10091340
https://doi.org/10.3390/rs10091340
https://doi.org/10.3389/fmars.2017.0014
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.3390/rs11040469
https://doi.org/10.1364/AO.50.003168
https://doi.org/10.1016/j.rse.2011.08.026
https://doi.org/10.1016/j.rse.2011.08.026
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles#articles


network inversion. J. Geophys. Res.: Oceans 117 (C10), 8076. doi:10.1029/
2012jc008076

Kajiyama, T., D’Alimonte, D., and Zibordi, G. (2018). Algorithms merging for the
determination of chlorophyll-${a} $ concentration in the Black sea. Geosci.
Rem. Sens. Lett. IEEE. 16, 677–681. doi:10.1109/LGRS.2018.2883539

Kay, S., Hedley, J. D., and Lavender, S. (2009). Sun glint correction of high and low
spatial resolution images of aquatic scenes: a review of methods for visible and
near infrared wavelengths. Rem. Sens. 1, 33. doi:10.3390/rs1040697

Khorram, S., Catts, G. P., Cloern, J. E., and Knight, A. W. (1987). Modeling of
estuarne chlorophyll a from an airborne scanner. IEEE Trans. Geosci. Rem. Sens.
25, 662–669. doi:10.1109/tgrs.1987.289735

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M.,
et al. (2019). Performance of Landsat-8 and Sentinel-2 surface reflectance
products for river remote sensing retrievals of chlorophyll-a and turbidity. Rem.
Sens. Environ. 224, 104–118. doi:10.1016/j.rse.2019.01.023

Kwiatkowska, E. J., and Fargion, G. S. (2003). Application of machine-learning
techniques toward the creation of a consistent and calibrated global chlorophyll
concentration baseline dataset using remotely sensed ocean color data. IEEE
Trans. Geosci. Rem. Sens. 41, 2844–2860. doi:10.1109/tgrs.2003.818016

Le, C., Hu, C., English, D., Cannizzaro, J., Chen, Z., Feng, L., et al. (2013). Towards a
long-term chlorophyll-a data record in a turbid estuary using MODIS
observations. Prog. Oceanogr. 109, 90–103. doi:10.1016/j.pocean.2012.10.002

Makridakis, S. (1993). Accuracy measures: theoretical and practical concerns. Int.
J. Forecast. 9, 527–529. doi:10.1016/0169-2070(93)90079-3

Manuel, A., Blanco, A., Tamondong, A., Jalbuena, R., Cabrera, O., and Gege, P.
(2020). Optmization of bio-optical model parameters for turbid lake water
quality estimation using Landsat 8 and wasi-2D. Int. Arch. Photogram. Rem.
Sens. Spatial Inf. Sci. 11, 67–72. doi:10.5194/isprs-archives-xlii-3-w11-67-2020

Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., et al. (2014).
Landsat-8 operational land imager radiometric calibration and stability. Rem.
Sens. 6, 12275–12308. doi:10.3390/rs61212275

Markham, B. L., Barsi, J. A., Morfitt, R., Choate, M., Montanaro, M., Arvidson, T.,
et al. (2015). “Landsat 8: status and on-orbit performance,” in SPIE remote
sensing. Bellingham, WA: International Society for Optics and Photonics,
963908.

Mittenzwey, K. H., Ullrich, S., Gitelson, A., and Kondratiev, K. (1992).
Determination of chlorophyll a of inland waters on the basis of spectral
reflectance. Limnol. Oceanogr. 37, 147–149. doi:10.4319/lo.1992.37.1.0147

Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-
surface measurements. Appl. Optic. 38, 7442–7455. doi:10.1364/ao.38.007442

Mobley, C. D. (1994). Light and Water: radiative transfer in natural waters.
Cambridge, MA: Academic Press, Inc.

Mobley, C. D., Werdell, J., Franz, B., Ahmad, Z., and Bailey, S. (2016). Atmospheric
correction for satellite ocean color radiometry. Front. Earth Sci. 2019, 145.
doi:10.3389/feart.2019.00145 NASA/TM-2016-217551, GSFC-E-DAA-
TN35509

Morley, S. K., Brito, T. V., and Welling, D. T. (2018). Measures of model
performance based on the log accuracy ratio. Space Weather 16, 69–88.
doi:10.1002/2017sw001669

Munday, J., and Zubkoff, P. L. (1981). Remote sensing of dinoflagellate blooms in a
turbid estuary. Photogramm. Eng. Rem. Sens. 47, 523–531.

Neil, C., Spyrakos, E., Hunter, P. D., and Tyler, A. N. (2019). A global approach
for chlorophyll-a retrieval across optically complex inland waters based on
optical water types. Rem. Sens. Environ. 229, 159–178. doi:10.1016/j.rse.
2019.04.027

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S.
A., et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys.
Res. 103, 24937–24953. doi:10.1029/98jc02160

Pahlevan, N., Roger, J. C., and Ahmad, Z. (2017a). Revisiting short-wave-infrared
(SWIR) bands for atmospheric correction in coastal waters. Optic Express 25,
6015–6035. doi:10.1364/OE.25.006015

Pahlevan, N., Schott, J. R., Franz, B. A., Zibordi, G., Markham, B., Bailey, S., et al.
(2017b). Landsat 8 remote sensing reflectance (Rrs) products: evaluations,
intercomparisons, and enhancements. Rem. Sens. Environ. 190, 289–301.
doi:10.1016/j.rse.2016.12.030

Pahlevan, N., Lee, Z., Wei, J., Schaff, C., Schott, J., and Berk, A. (2014). On-orbit
radiometric characterization of OLI (Landsat-8) for applications in aquatic remote
sensing. Rem. Sens. Environ. 154, 272–284. doi:10.1016/j.rse.2014.08.001

Pahlevan, N., Smith, B., Binding, C., Gurlin, D., Li, L., Bresciani, M., et al. (2021).
Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in
inland and nearshore coastal waters. Rem. Sens. Envi. 253, 112200. doi:10.
1016/j.rse.2020.112200

Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., et al. (2020).
Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3
(OLCI) in inland and coastal waters: a machine-learning approach. Rem.
Sens. Environ. 240, 111604. doi:10.1016/j.rse.2019.111604

Rundquist, D. C., Han, L., Schalles, J. F., and Peake, J. S. (1996). Remote
measurement of algal chlorophyll in surface waters: the case for the first
derivative of reflectance near 690 nm. Photogramm. Eng. Rem. Sens. 62,
195–200.

Ryu, J.-H., Han, H.-J., Cho, S., Park, Y.-J., and Ahn, Y.-H. (2012). Overview of
geostationary ocean color imager (GOCI) and GOCI data processing
system (GDPS). Ocean Sci. J. 47, 223–233. doi:10.1007/s12601-012-
0024-4

Schiller, H., and Doerffer, R. (1999). Neural network for emulation of an inverse
model operational derivation of Case II water properties from MERIS data. Int.
J. Rem. Sens. 20, 1735–1746. doi:10.1080/014311699212443

Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and Werdell, P. J.
(2018). Performance metrics for the assessment of satellite data products:
an ocean color case study. Optic Express 26, 7404–7422. doi:10.1364/OE.26.
007404

Smith, R. C., and Baker, K. S. (1982). Oceanic chlorophyll concentrations as
determined by satellite (Nimbus-7 coastal zone color scanner). Mar. Biol. 66,
269–279. doi:10.1007/bf00397032

Snyder, J., Boss, E., Weatherbee, R., Thomas, A. C., Brady, D., and Newell, C.
(2017). Oyster aquaculture site selection using Landsat 8-derived sea surface
temperature, turbidity, and chlorophyll a. Front. Marine Sci. 4, 190. doi:10.
3389/fmars.2017.00190

Spyrakos, E., O’Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G., et al.
(2018). Optical types of inland and coastal waters. Limnol. Oceanogr. 63,
846–870. doi:10.1002/lno.10674

Steinmetz, F., Deschamps, P. Y., and Ramon, D. (2011). Atmospheric correction in
presence of sun glint: application to MERIS. Optic Express 19, 9783–9800.
doi:10.1364/oe.19.009783

Sydor, M., Gould, R. W., Arnone, R. A., Haltrin, V. I., and Goode, W. (2004).
Uniqueness in remote sensing of the inherent optical properties of ocean water.
Appl. Optic. 43, 2156–2162. doi:10.1364/ao.43.002156

Tofallis, C. (2015). A better measure of relative prediction accuracy for model
selection and model estimation. J. Oper. Res. Soc. 66, 1352–1362. doi:10.1057/
jors.2014.103

Trinh, R. C., Fichot, C. G., Gierach, M. M., Holt, B., Malakar, N. K., Hulley, G., et al.
(2017). Application of Landsat 8 for monitoring impacts of wastewater
discharge on coastal water quality. Front. Marine Sci. 4, 329. doi:10.3389/
fmars.2017.00329

Vanhellemont, Q., and Ruddick, K. (2018). Atmospheric correction of metre-scale
optical satellite data for inland and coastal water applications. Rem. Sens.
Environ. 216, 586–597. doi:10.1016/j.rse.2018.07.015

Vilas, L. G., Spyrakos, E., and Palenzuela, J. M. T. (2011). Neural network
estimation of chlorophyll a from MERIS full resolution data for the coastal
waters of Galician rias (NW Spain). Rem. Sens. Environ. 115, 524–535. doi:10.
1016/j.rse.2010.09.021

Vos, W., Donze, M., and Buiteveld, H. (1986). On the reflectance spectrum of algae
in water: the nature of the peak at 700 nm and its shift with varying algal
concentration. Delft, Netherlands: Delft University of Technology, Faculty of
Civil Engineering.

Wang, D., Ma, R., Xue, K., and Loiselle, S. (2019). The assessment of Landsat-8 OLI
atmospheric correction algorithms for inland waters. Rem. Sens. 11, 169. doi:10.
3390/rs11020169

Wang, M., and Bailey, S. W. (2001). Correction of sun glint contamination on the
SeaWiFS ocean and atmosphere products. Appl. Optic. 40, 4790–4798. doi:10.
1364/ao.40.004790

Wang, M., Liu, X., Jiang, L., Son, S., Sun, J., Shi, W., et al. (2014). “Evaluation of
VIIRS ocean color products,” in Ocean remote sensing and monitoring from
SpaceInternational society for optics and photonics, 92610E.

Warren, M. A., Simis, S. G., Martinez-Vicente, V., Poser, K., Bresciani, M., Alikas,
K., et al. (2019). Assessment of atmospheric correction algorithms for the

Frontiers in Remote Sensing | www.frontiersin.org February 2021 | Volume 1 | Article 62367816

Smith et al. Landsat-8 Chlorophyll-a via Mixture Density Networks

https://doi.org/10.1029/2012jc008076
https://doi.org/10.1029/2012jc008076
https://doi.org/10.1109/LGRS.2018.2883539
https://doi.org/10.3390/rs1040697
https://doi.org/10.1109/tgrs.1987.289735
https://doi.org/10.1016/j.rse.2019.01.023
https://doi.org/10.1109/tgrs.2003.818016
https://doi.org/10.1016/j.pocean.2012.10.002
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.5194/isprs-archives-xlii-3-w11-67-2020
https://doi.org/10.3390/rs61212275
https://doi.org/10.4319/lo.1992.37.1.0147
https://doi.org/10.1364/ao.38.007442
https://www.google.com/search?rlz=1C1GCEJ_enIN935IN935;q=Cambridge,+Massachusettsstick=H4sIAAAAAAAAAOPgE-LUz9U3MM8rzi5X4gAxDQszzLWMMsqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrjNTElMLSxKKS1KJihZz8ZLDwIlYJ58TcpKLMlPRUHQXfxOLixOSM0uLUkpLiHayMAA3xx4tpAAAAsa=Xved=2ahUKEwjL9POo45PuAhXqxzgGHdaEDVwQmxMoATAhegQIMRAD
https://doi.org/10.3389/feart.2019.00145
https://doi.org/10.1002/2017sw001669
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1029/98jc02160
https://doi.org/10.1364/OE.25.006015
https://doi.org/10.1016/j.rse.2016.12.030
https://doi.org/10.1016/j.rse.2014.08.001
https://doi.org/10.1016/j.rse.2020.112200
https://doi.org/10.1016/j.rse.2020.112200
https://doi.org/10.1016/j.rse.2019.111604
https://doi.org/10.1007/s12601-012-0024-4
https://doi.org/10.1007/s12601-012-0024-4
https://doi.org/10.1080/014311699212443
https://doi.org/10.1364/OE.26.007404
https://doi.org/10.1364/OE.26.007404
https://doi.org/10.1007/bf00397032
https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.1002/lno.10674
https://doi.org/10.1364/oe.19.009783
https://doi.org/10.1364/ao.43.002156
https://doi.org/10.1057/jors.2014.103
https://doi.org/10.1057/jors.2014.103
https://doi.org/10.3389/fmars.2017.00329
https://doi.org/10.3389/fmars.2017.00329
https://doi.org/10.1016/j.rse.2018.07.015
https://doi.org/10.1016/j.rse.2010.09.021
https://doi.org/10.1016/j.rse.2010.09.021
https://doi.org/10.3390/rs11020169
https://doi.org/10.3390/rs11020169
https://doi.org/10.1364/ao.40.004790
https://doi.org/10.1364/ao.40.004790
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles#articles


Sentinel-2A multispectral imager over coastal and inland waters. Rem. Sens.
Environ. 225, 267–289. doi:10.1016/j.rse.2019.03.018
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