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Abstract. Heterogeneity characterises real-world networks, where nodes
show a broad range of different topological features. However, nodes also
tend to organise into communities – subsets of nodes that are sparsely
inter-connected but are densely intra-connected (more than the net-
work’s average connectivity). This means that nodes belonging to the
same community are close to each other by some distance measure, such
as the resistance distance, which is the effective distance between any
pair of nodes considering all possible paths. In this work, we present au-
tomation (i.e., unsupervised) and missing accuracy tests for a recently
proposed semi-supervised community detection algorithm based on the
resistance distance. The accuracy testing involves quantifying our algo-
rithm’s performance in terms of recovering known synthetic communities
from benchmark networks, where we present results for Girvan-Newman
and Lancichinetti-Fortunato-Radicchi networks. Our findings show that
our algorithm falls into the class of accurate performers.

Keywords: Community Detection, Benchmark Tests, Resistance Dis-
tance

1 Introduction

A network is an abstract model of the inter-relationships (links) between the
elements (nodes) of a data-set [1], which can result in extremely complex struc-
ture. However, real-world networks also show the presence of communities; that
is, densely connected groups of nodes with sparse inter-group connections [2].
The ability to detect these community structures has many practical applications
[3], mainly, because it simplifies the network analysis to clustered subgroups.

Because we lack a strict definition of community, the detection problem may
present different solutions (particularly when dealing with a definition that uses
macroscopic quantities such as the density of links), leading to the development
of many methods with varying degree of success [4,5,6,7,8,9,10,11,12,13,14,15,16,17].
A community detection method success requires testing its accuracy on networks
where the community structure is known [18,19,20,21]. This can be achieved by
selecting benchmark networks, such as the synthetically generated by Girvan
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and Newman (GN) [18] or Lancichinetti, Fortunato, and Radicchi (LFR) [20]
benchmark models.

Recently, Zhang and Bu (ZB) [17] proposed a new method for community
detection based on the resistance distance. The resistance distance includes more
information than the shortest paths, since it also considers every different possi-
ble path between any two nodes, weighing them as parallel paths [22,23,24,25].
Although the resistance distance has been widely used for network analysis
[26,27,28,29,30,31], its use for community detection has been limited [32,17]. ZB
report [17] accurate results on small-sized networks (Zachary ’s karate club [33],
dolphin social network [34], and the college football network [18]), in comparison
to the methods by Kannan, Vempala, and Vetta (KVV) [35] and spectral mod-
ularity [10,11]. However, ZB’s method lacks benchmark testing and automation.

Here, we adapt ZB’s algorithm to detect communities on networks without
needing to specify the number of communities beforehand, making it an unsu-
pervised method. We test the accuracy of our modified algorithm’s detection
rate in GN and LFR benchmarks, which allows us to compare it with previously
reported results from other methods. Our findings show that the algorithm’s
accuracy is comparable – in LFR networks – or better – in GN networks – than
methods such as clique percolation (also known as CPM or Cfinder) [9], Markov
Clustering algorithm (MCL) [36], hierarchical divisions [5], and exhaustive mod-
ularity optimisation [7,8]. Because the resistance distance is unrestricted to these
particular networks, we expect that our algorithm can detect communities in
weighted, directed, and even, evolving networks.

2 Methods

2.1 Definitions and Notation

A network is a pair of sets, G = {V, E}, where V is a set of N nodes (vertices)
and E ⊂ V × V is a set of M links (edges) from the unordered set of node pairs
V×V = {(i, j) : i ∈ V, j ∈ V}. G can be represented by its adjacency matrix, A,
such that Aij = 1 if there is a link connecting node i to j, or Aij = 0 otherwise.
When G is undirected and unweighted, Aij = Aji and N−1 ≤M ≤ N(N−1)/2.
Also, the node’s degree is the number of neighbours of a node, such that ki =∑N
i=1Aij and

∑N
i=1 ki = 2M = N 〈k〉, making the network’s link density be

ρ(G) =
|E|
|V × V|

=
2M

N(N − 1)
=
〈k〉

N − 1
. (1)

A community is a subset of nodes, W ⊂ V, namely, a partition, that can be
defined in terms of its relative link density [2,6,13,15], ρ(W), such that it fulfil

ρ(W) > ρ(G) > ρ(G\W), (2)

where ρ(G\W) is the link density between W and its complement, W̄ = G\W.
We note that Eq. (2) leads to several ways to define which nodes belong to W,
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since small changes can leave it unaffected (such as, depending on the network,
the effect of removing or including a node toW). However, because of the higher
density of links within a community, its nodes tend to be topologically closer.

A measure to quantify the topological distance between pairs of nodes is the
resistance distance [22,23,24,25]. For nodes i and j, it can be determined by

Rij =

N∑
n=2

1

λn(L)
|[φn]i − [φn]j |2 ≥ 0, (3)

where λn(L) is the n-th eigenvalue of the Laplacian matrix L and [φn]i is the
i-th component of the corresponding eigenvector, i.e., Lφn = λn(L)φn, with
{0 = λ1 < λ2 ≤ . . . ≤ λN}. L(A) = D − A, where D is the diagonal matrix
containing the node degrees, making L(A) a positive semi-defined matrix when
the network is undirected. It has been shown that nodes within a community
have smaller Rij values than nodes belonging to different communities [32]. The
reason is that Rij is small (Rij < 1) when there are parallel paths between nodes,
but increases with serial paths (Rij > 1), as in a bridge between communities.

2.2 Resistance-Distance-based Community Detection Method

We modify the algorithm by Zhang and Bu (ZB) [17] to automate the partition-
ing process. That is, we include points 7-10 to the original algorithm.

1. Compute Rij(p) from Eq. (3) for all Np ×Np pairs of nodes belonging to
the p-th partition Vp ⊂ V.

2. Apply a Gaussian transformation to Rij(p): Sij(p) = Aij exp
(
−Rij(p)2/2

)
,

which highlights the different resistance distances between nodes.

3. Compute normalised Laplacian matrix of S(p): LS(p) = D
−1/2
S L(S)D

−1/2
S ,

where L(S) = DS − S(p) with [DS ]ii = κi =
∑Np
i=1 Sij(p) and [DS ]ij = 0.

4. Find the eigenvector ψ2 of LS(p) associated to the algebraic connectivity
[37], i.e., the smallest non-zero eigenvalue.

5. Order ψ2 in ascending magnitude: ψ2 → [ψ2]π1 < [ψ2]π2 < . . . < [ψ2]πNp .
6. Partition Vp according to the minimisation of the Cheeger constant [38]:

hG(W?
π) = min

Wπ⊂Vp

{ ∑
i∈Wπ

∑
j∈Wπ

Aij

min
{∑

i∈Wπ
ki,
∑
i∈Wk

ki
}} , (4)

where Vp =Wπ∪Wπ for any π ∈ {π1, π2, . . . , πNp}. Equation (4) minimises
the ratio between the number of inter-partition links (numerator) and the
number of intra-partition links to give the optimal π?, defining the subset
W?
π = {π1, . . . , π?} and its complement, W?

π = {π?, . . . , πNp}.
7. Update tentative community structure: Bnew = {V1∪· · ·∪Vp−1∪W?

π∪W?
π∪

Vp+1∪· · ·∪VN(B)new} ← Bold = {V1∪· · ·∪Vp−1∪Vp∪Vp+1∪· · ·∪VN(B)old},
where N(B)new = N(B)old+1 is the number of communities up to this point.
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8. Compute modularity [10]: Q(Bnew) = 1
4M

∑
i,j

(
Aij − ki kj

2M

)
(si sj), where

si sj = 1 if nodes i and j belong to the same community, otherwise si sj = 0.

9. Accept partition if Q(Bnew) > Q(Bold). Otherwise, discard Bnew.

10. Repeat steps 1 to 8 changing p→ p+ 1 while p+ 1 < N(B) < N .

We initialise the community detection by generating an initial partition,
Binit, by applying steps 1 to 7 on G = V0, which divides the network into 2
subsets based on Cheeger’s constant [Eq. (4)]. This means that ZB’s method
can divide each subset into two new subsets, successively.

2.3 Method Validation: Benchmark Testing and Accuracy

We test our ZB algorithm’s ability to correctly detect communities on 100 net-
work realisations of Girvan-Newman (GN) [18] and Lancichinetti-Fortunato-
Radicchi (LFR) [20] benchmarks. 4 examples of these reference networks, {Aref},
with predefined N(A) communities, are shown in Fig. 1. We generate these
benchmarks by freely available codes from Refs. [39,40] (GN) and [41] (LFR).

Fig. 1. Force-directed layouts of benchmark networks. Top panels show Girvan-
Newman [18] networks with N = 128 nodes and average degree 〈k〉 = 16. Bottom
panels show Lancichinetti-Fortunato-Radicchi [20] networks with N = 1000 nodes,
average degree 〈k〉 = 15, and power-law’s exponent for the degree and community-size
distributions being γ = 2 and β = 1, respectively. Left [Right] panels are networks with
mixing parameter µ = 0.1 [µ = 0.3]. Colours indicate the predefined communities.



Community detection by resistance distance 5

GN networks are generated from the Erdös-Réyni (ER) random network
model [1]. This model sets N(A) = 4 communities with nj = 32 nodes each

(N =
∑N(A)
j=1 nj = 128), assigning intra-community links with probability pin

and inter-community links with probability pout, where 0 < pout/pin < 1. These
probabilities are related to the internal and external node degrees, kin and kout,
respectively – the attachment probability, p, in ER networks is such that p =
ρ(G) = 〈k〉 /(N − 1) [see Eq. (1)]. We fix the average node degree to 〈k〉 = 16
and change the mixing of communities by changing pin and pout such that

µi =
kouti

kouti + kini
< 1. (5)

The mixing control parameter is then the network average
∑
i µi/N = µ ∈ [0, 1].

LFR networks are generated by assigning each node degree, ki, from a power-
law distribution: P (k) ∼ k−γ . The distribution range is set to satisfy the prefixed
network-average, 〈k〉. The size of each community, nj , is assigned from another

power-law distribution: P (n) ∼ n−β , such that
∑N(A)
j=1 nj = N . Then, nodes

are assigned randomly to these communities, as long as the community size
is bigger than the internal degree of the node. Finally, links are assigned by
various rewiring steps that modify the internal and external degrees of each node,
without modifying the node’s degree, ki, until kin ≈ µki and kout ≈ (1 − µ)ki,
where the mixing parameter is defined by Eq. (5).

We measure the community detection accuracy by the Normalised Mutual
Information, I [19,21], which quantifies the similarity between a reference struc-
ture, Aref = {V1 ∪ V2 ∪ . . . ∪ VN(A)} with N(A) communities, and a detected
structure, B = {W1 ∪W2 ∪ . . . ∪WN(B)} with N(B) communities. Specifically,

I(Aref ,B) =
−2
∑N(A)
i=1

∑N(B)
j=1 Cij log

(
Cij N
Ci Cj

)
∑N(A)
i=1 Ci log

(
Ci
N

)
+
∑N(B)
j=1 Cj log

(
Cj
N

) , (6)

where Cij is the number of nodes in community i of Aref that are also in
community j of B, Ci =

∑
j Cij , and Cj =

∑
i Cij .

3 Results

Figure 2 shows degree (top panels) and spectral (bottom panels) distributions,
P (k) and P (λ), respectively, for 8 benchmark networks. The 6LFR networks
show power-law degree-distributions, which fit the expected exponent γ = 2, as
can be seen by the dotted lines in Figs. 2(a) and (b). Because the Laplacian
matrix is closely related to the node degrees, the spectral distributions, P (λ),
also tend to a power-law with similar exponent, as can be seen from their tails
in Figs. 2(c) and (d). On the other hand, GN networks have a narrow degree
distribution (not shown), since we fix 〈k〉 = 16, which implies that P (k) ∼ δ(k−
16). Because of the random features, GN spectral distribution tends to Wigner’s
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semi-circle distribution, as can be seen from the dashed curves in Fig. 2(c) and
(d). These characteristics are translated to the resistance distance by means of
Eq. (3), where the smaller eigenvalues have the larger influence, particularly, the
algebraic connectivity (also known as Fiedler eigenvalue [37]).

Fig. 2. Degree and spectral probability distributions, P (k) and P (λ), of net-
works with communities. All panels have Lancichinetti-Fortunato-Radicchi net-
works [20] with N = 1000 nodes, generated from P (k) ∼ k−2 (dotted line) and com-
munities with sizes following P (n) ∼ n−1, where 〈k〉 = 15 (black), 〈k〉 = 20 (blue),
or 〈k〉 = 25 (magenta), changing the distribution ranges. Bottom panels have Girvan-
Newman networks [18] with N = 128 and 〈k〉 = 16 (red dashed). Panels (a) and (c)
[(b) and (d)] show the distributions when the mixing parameter µ = 0.1 [µ = 0.3].

As can be seen from Fig. 3, the shape of the degree distributions from Fig. 2
remain nearly unaltered when analysing node strengths, κ, resultant from the
weighted degrees of the Gaussian transformation of the resistance distance (steps
2 ad 3 in Sect. 2.2). Specifically, we find power-law distributions, P (κ) ∼ κ−2,
for the LFR networks – Figs. 3(a) and (b) – and a narrowly Gaussian-like
distribution for the GN networks – Figs. 3(c) and (d). These distributions hold
for both mixing parameters, µ = 0.1 and µ = 0.3, which also correspond to
the networks shown in Fig. 1. Because the node strength distribution share
similarities with the node degree distribution, we also find that the spectral
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distribution of the Gaussian-transformed resistance distance is similar to that of
the initially unweighted network (not shown). This means that ZB’s community
detection method (Sect. 2.2) keeps the main topological properties of the original
network and that its partitioning process can be narrowed to the network’s
Fiedler eigenvector, which fits into the category of spectral methods.

Fig. 3. Node strength probability distributions, P (κ), of benchmark net-
works. The i-th node strength, κi =

∑
j Sij(Rij), is the weighted-degree of the

Gaussian-transformed resistance distance, Rij , of the network [Eq. (3)]. Top panels
show P (κ) for the Lancichinetti-Fortunato-Radicchi networks of Figs. 2(a) and (b).
Bottom panels show P (κ) for the Girvan-Newman networks in Fig. 1. Mixing param-
eters, colours, and symbols follow those of Fig. 2.

In spite of ZB’s method being (in its core) a spectral partitioning method,
the inclusion of the resistance distance [Eq. (3)] as the matrix to use for the par-
titioning process results in more accurate community detection – as we show in
Fig. 4. In particular, the normalised mutual information, I, values we obtain for
100 GN network realisations show excellent results (I ' 1) up to µ = 0.4, when
I starts to decline – this can be seen from Fig. 4(a). On the other hand, results
for 100 LFR network realisations show a monotonous decline in accuracy, from
I ' 1 when µ = 0.1 to I ' 0.7 when µ = 0.6, as can be seen from the remaining
panels in Fig. 4. These values are nearly unchanged when considering differ-
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ent network-average node degrees, 〈k〉, which are shown by differently coloured
curves and symbols (following the same pattern as in Figs. 2 and 3). However, in
all LFR tests, I slightly increases for all µ when 〈k〉 is increased. Overall, we note
that the algorithm perform sufficiently accurate, particularly, performing better
than previously reported results [15,20,42] that use Fast Greedy Optimisation
[43] or Label Propagation [44], to name a few.

Fig. 4. Resistance-distance based community-detection accuracy as the com-
munities becomes mixed. Accuracy is measured by the normalised mutual informa-
tion, I [Eq. (6)], and community mixing is controlled by µ [Eq. (5)]. Panel (a) show
resultant detection accuracy from 100 GN network realisations, where N = 128 nodes
and 〈k〉 = 16 average degree. Remaining panels show resultant I from 100 LFR network
realisations, where N = 103 and 〈k〉 = 15 (black), 〈k〉 = 20 (blue), or 〈k〉 = 25 (ma-
genta), as in Figs. 2 and 3. The power-law exponents, γ and β, for the LFR networks’
node-degree and community-size are (γ, β) = (2, 1) in panel (b), (γ, β) = (2, 2) in
panel (c), (γ, β) = (3, 1) in panel (d), and (γ, β) = (3, 2) in panel (e). Every symbol
represents the median I of 100 realisations and shaded areas the 98% central I values.

In this accuracy analysis we have also used different LFR parameters to ex-
plore the effect of changing the degree distribution exponent, γ, and community
size distribution exponent, β. For example, when γ = 2 degree distributions are
as in Fig. 2, where there are some hub nodes (given by the distribution tail).
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The resultant accuracy for these networks can be seen in Figs. 4(b) and (c),
whose difference comes from having more (β = 1) or fewer (β = 2) communities
with varying size, respectively. Similarly, we analyse the resultant detection ac-
curacy when γ = 3, where the number of hubs decreases but they increase their
degrees. Resultant I values are shown in Figs. 4(d) and (e), where differences
emerge from changing β as in panels (b) and (c). Overall, Fig. 4 shows that
ZB’s method for community detection works fairly on GN and LFR networks,
complementing their previous results on small-sized real-world networks [17].

4 Discussion and Conclusions

Our works is based on extending Zhang and Bu (ZB) [17] method for community
detection to automate its operation and quantify its accuracy to correctly detect
communities in benchmark networks. In order to successively partition the net-
work into smaller modules, ZB method follows Kannan-Vempala-Vetta (KVV)
bi-sectioning algorithm [35] (steps 2-6 in Sect. 2.2), but it uses the resistance
distance of the network (step 2 in Sect. 2.2) instead of its adjacency matrix.
We add modularity optimisation to the process (steps 7-10), which makes the
resultant algorithm a hybrid method involving resistance distance, spectral par-
titioning, and modularity optimisation. Consequently, our adaptation allows to
iterate the algorithm without needing to specify the number of communities in
the network or control its outcomes, making it an unsupervised algorithm.

In order to quantify the method’s accuracy, we use Girvan-Newman (GN) and
Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, where N = 128
and 1000, respectively. These classes of networks are different in size and overall
topology. For example, the mixing parameter, µ, in GN networks relates to
the probabilities of intra- and inter-community links. On the other hand, µ in
LFR networks relates to the rewiring process by which scale-free degrees and
communities are inter-connected. However, according to our results from Fig. 4,
the modified ZB algorithm can detect communities in networks with significant
mixing, such as µ = 0.4 or 0.5, which as can be seen from the force-directed
layout in Fig. 1, the community structure presents serious challenges.

These benchmark tests extend ZB results (where N . 115) and complements
their work. In particular, Fortunato et al. [42] classifies community detection
algorithms as a function of µ and their performance on benchmark networks
according to 3 categories: a) bad (those that I → 0 rapidly with increasing
µ), b) fair (those that I declines with increasing µ but remains finite), and c)
good (those where I ∼ 1 for µ . 0.5). Therefore, ZB’s algorithm – with our
modifications – falls into the fair category on LFR networks and good category
on the GN networks, as it can be corroborated from Fig. 4. Although, we note
that there is room for improvement in terms of its the computational complexity,
which is the main drawback in most spectral methods.
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from fluctuations in random graphs and complex networks. Physical Review E,
70(2):025101, 2004.

8. Andres Medus, Guillermo Acuña, and Claudio Oscar Dorso. Detection of commu-
nity structures in networks via global optimization. Physica A: Statistical Mechan-
ics and its Applications, 358(2-4):593–604, 2005.
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21. Alessandra MMM Gouvêa, Tiago S da Silva, Elbert EN Macau, and Marcos G
Quiles. Force-directed algorithms as a tool to support community detection. The
European Physical Journal Special Topics, pages 1–19, 2021.
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