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Abstract

One of the biggest innovations on 5G and beyond is the support of
three different services with particular delay and bandwidth require-
ments, such as Massive Machine Type Communications (MMTC),
enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low Latency
Communications (URLLC). In order to achieve these multiple service
requirements, all users have to share resources over the 5G Orthogo-
nal Frequency-Division Multiple Access (OFDMA) frame. One of the
strategies proposed by the 5G standard is puncturing, which allows the
scheduler to assign eMBB services on a timescale, and on a shorter
timescale to preemptively overwrite part of the eMBB assignment when
a URLLC user arrives. The optimization of puncturing poses a chal-
lenging problem: the optimal allocation depends on traffic arriving over
different timescales, which forces the scheduler to make allocation deci-
sions without knowledge of future users’ demands, all while having
to satisfy several strong constraints. This kind of multiple timescales
optimization with restrictions is also to be found in many interesting
problems, such as energy management. We propose a learning mecha-
nism where the system learns offline the optimal allocation according
to the network state. This learned estimation is then used online to
determine the optimal allocation. Through simulations, we verify that
the proposed learning strategy provides results close to the optimal
policy, improving state of the art proposals for puncturing schemes.
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1 Introduction

Next generation wireless networks introduce many interesting challenges,
enabling and promoting the use of machine learning in order to optimize
resources and services [1, 2]. From beam selection in massive Multiple
Input Multiple Output schemes [3, 4] to Non-Orthogonal Multiple Access
(NOMA) [5], from cyber security [6] to user centered QoE [7, 8], the machine
learning revolution has set foot on open problems arising from new generation
wireless communications. We focus here in the coexistence and resource sharing
of two different types of users in 5G and beyond: the classical high bandwidth
user (eMBB - enhanced Mobile Broadband) and the innovative reliable and low
latency new users (URLLC - Ultra-Reliable Low Latency Communications).
Each of these services has very different characteristics and requirements.
While eMBB users demand high data rates and thus an important set of
resources of the OFDMA (Orthogonal Frequency Division Modulation Access)
grid, URLLC services require high reliability and very low latency [9].

In order to satisfy the aforementioned requirements, the 5G New Radio
(NR) standard proposes different mechanisms [10], among them the so-called
puncturing scheduling. In this case both services are assigned resources on the
OFDMA grid at different timescales: slots for eMBB and (shorter) minislots
for URLLC (see Figure 1). The main idea behind puncturing is to assign with
preemptive priority URLLC traffic over eMBB resources. In this case, the
scheduler assigns resources to each eMBB user every time slot, but URLLC
traffic are assigned on a minislot timescale.

The resulting resource allocation problem is inherently complex given the
coupled nature of the two timescales involved (URLLC and eMBB scheduling),
and the uncertainty of future URLLC demand: the scheduler needs to assign
resources to eMBB users so as to maximize a chosen metric (i.e. throughput
for eMBB users), resources that may be later overwritten in order to satisfy
URLLC requirements, unknown at the moment eMBB resource are scheduled.
Naturally, assigning an OFDMA resource during a minislot to a URLLC user
on a resource already assigned to an eMBB user implies that the latter will
receive, at least, part of the corresponding frame with errors. Thus the sched-
uler has to solve two optimization problems at different timescales but highly
coupled. Adding further difficulty, the scheduling decisions have to be made
in a very narrow time lapse.

Naturally, this resource allocation problem has attracted much research
attention [11]. For instance, the performance of specific assignment policies
have been extensively studied [12–15]. On the other hand, some works for-
mulate the optimization problem on puncturing in 5G NR and search for
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Fig. 1 Puncturing scheme. The OFDMA grid is split in time (slots and minislots) and fre-
quency. While resources to eMBB users are assigned at the slot timescale, URRLC users’
resources are allocated at the minislot timescale, overwriting eMBB data and possibly result-
ing in errors for the corresponding eMBB receiver.

heuristics that behave reasonably well for particular given scenarios [16, 17].
Other authors propose a Q-learning or deep-learning approach to obtain a
solution to the puncturing problem [17, 18]. A very recent and interesting arti-
cle proposes the utilization of reconfigurable intelligent surface (RIS) in order
to optimize eMBB and URLLC coexistence [19]. These works allow us to visu-
alize how puncturing behaves in certain scenarios and provide insight into the
problem. We particularly remark the paper [20], where authors formalize the
puncturing optimization problem and analyze some practical interesting cases.
An interesting observation in [20] is that when the problem’s functions (loss,
constraints) are non-convex (e.g. threshold loss) and as URLLC’s traffic load
grows their proposed methods for puncturing increasingly differ from the opti-
mal solution. It is important to note that, as discussed for instance in [21], bit
error rate (BER) on OFDM systems follows a threshold-like phenomena with
noise and interference. As puncturing increases, such behaviour is expected,
highlighting the relevance of finding policies that are well-adjusted to threshold
losses.

It is important to highlight that this kind of highly coupled optimization
problems with multiple time basis and hard constrains can be found in many
fields besides wireless communications. For instance, a two timescales problem
arising from long term storage management is studied in [22]. Similar problems
are studied in the more general field of resource allocation [23], as in [24] where
a two timescales coupled optimization problem arises from management of IoT
devices, or [25] where authors use supervised learning in order to solve wireless
IoT networks’ resource allocation problems. The authors of [26] study a two
timescales optimization problem arising from micro grid scheduling, and [27]
studies the optimization problem given by the need to make predictions over
energy consumption for electrical vehicles charging on two timescales.
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In order to decide now the best resource allocation without knowing future
puncturing needs, we propose a supervised learning framework that learns to
approximate both scheduling policies. The key observation is that, although
the optimal solution for our coupled optimization problem is unavailable at
the scheduling intervals, it can be found afterwards, once events have hap-
pened and we can consider all necessary data from a certain time slot (and
its corresponding minislots). If the loss due to puncturing penalizes the eMBB
user’s utility through a convex loss function, the problem turns out to be
a convex optimization problem, which has led to numerous and well known
solutions [20]. But if the loss penalty is not convex (for example, a threshold
penalty, a much more suitable model for the actual wireless communication
link [21]), as we mentioned before proposed solutions can grow afar from opti-
mal. In such cases, the optimal policy would have to be found by trying all
possible scheduling scenarios, making it impossible to find online.

Following the ideas of the ‘learning to optimize’ paradigm (as in [28]
and [29]), we propose a statistical learning method that enables the exploita-
tion of signal’s correlations in order to approximate optimal solutions. The
proposed learning framework separates the resource assignation problem over
each timescale, although incorporating significant statistical information. This
is achieved by training two learning machines (agents) that will be decision
makers for each timescale resource assignation. As we show in the simula-
tions section, this method has shown to be well suited for learning when
faced with non-convex loss functions, allowing the proposed learning formu-
lation to surpass current state of the art policies for the eMBB and URLLC
coexistence dilemma. Crucially, since actual resources are assigned in the
inference phase of the learning algorithms (i.e. costly training is peformed
offline) the computational cost of the proposed method’s operation is extremely
lightweight.

All in all, the main contributions of this work are the general formula-
tion we propose to deal with a two timescales coupled optimization problem,
following the learning to optimize paradigm. We also provide a concrete appli-
cation to the 5G NR problem of scheduling eMBB and URLLC users through
puncturing. Our adaptive learning framework allows us to find a close to opti-
mal policy given any loss function. This distinguishes our practical approach
from similar state-of-the-art proposals, enabling more realistic scenarios. As
succinctly presented in Table 1, when compared to other methods available in
the literature, our proposal is able to closely approximate optimal policies all
while being computationally amenable to an online operation.

In Section 2 we define a mathematical formulation for the puncturing prob-
lem and detail the proposed learning framework. This general problem, which
as we mentioned before appears in several other domains, is instantiated in the
URLLC and eMBB puncturing case in Section 3, using it as a use case example
and proposing different system reward functions, formulating the offline opti-
mization problems with which we get the optimal solutions. As we present in
Section 4 our proposal yields state of the art results for convex loss functions,
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Table 1 Comparative analysis of State-of-the-Art proposals.

Minislot Puncturing lossess

Proposal scheduling Linear Quadratic Threshold Other

[13–15](Round Robin
heuristic)

✗ ✓ ✗ ✗ ✗

[16](House Allocation
Policy heuristic)

✓ ✓ ✗ ✗ ✗

[17](Mixed integer
linear programming-
deep reinforcement
learning)

✓ ✓ ✗ ✗ ✗

[18] (Q-learning) ✗ ✓ ✗ ✗ ✗

[19]a (Alternating
optimization based
Heuristic)

✗ ✓ ✓ ✓ ✗

[19]b (Heuristic) ✗ ✓ ✓ ✓ ✗

[20] (Gradient scheduler
based optimization)

✓ ✓ ✓2 ✓2 ✗

Ours: Learning
to Optimize paradigm

✓ ✓ ✓ ✓ ✓

2 For certain scenarios and specific URLLC traffic distributions they find approximately
optimal policies.

while allowing for a much closer approximation to the optimal solution than
most widely used algorithms in the non-convex case. Furthermore, we compare
the results of using several supervised learning algorithms, illustrating that the
mathematical formulation of the learning problem is robust and generalizes
well with different techniques. This allows for a combination of total or par-
tial handcrafted algorithms (which are widely used in practical applications)
with state of the art learning techniques (which are widely used in scientific
research).

2 System Model and Problem Statement

Let us consider the following optimization problem. A finite and fixed amount
of a certain resource has to be distributed over time to different users, who will
in turn profit from the assignation by obtaining an utility. Consider two groups
of users: E primary users, and U secondary users that will be puncturing
primary users. In a more general formulation, instead of users there could be
simply two sets of resource consumers. The second group of resource recipients
has strong requirements with regard to the resource utility to be satisfied (a
certain demand to fulfill), which implies the utilization of resources already
assigned to the first set. A decision maker has to make resource assignations
to both sets, satisfying the second group’s demands all the while trying not to
harm the first group’s utility.
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We will consider that time is slotted on two scales: a generic time slot t of
length T will contain M minislots indexed by τ . At each time slot t there is
a resource assignation decision to make, represented by the vector x[t] ∈ RE

assigning resources to each of the E primary users during time slot t. The
vector x[t] can be constructed, for example, by indicating in its e-th entry the
amount of resources assigned to user e. Similarly, for every minislot τ of time
slot t, there is a resource assignation matrix y[t, τ ] ∈ RU×E . In the same way
as with x[t], this second resource assignation variable indicates on its u, e entry
the amount of resources of each primary user e reassigned to the secondary
user u. By summing over row u of matrix y[t, τ ] we get the total number of
resources assigned to user u, while by summing over column e we get the total
number of resources previously assigned to e and now reassigned to users of
the U group. We will denote as y[t] = [y[t, 0],y[t, 1] . . .y[t,M−1]] ∈ RE×U×M

the minislot based assignations during time slot t.
We will consider two kinds of random variables. On the one hand a ran-

dom vector R[t] ∈ RE+U , that will be drawn at the beginning of each time
slot. This vector represents the user’s ability of exploiting the resources; for
instance, maximum attainable rate over a wireless channel for all users, or
an electrical generation capacity. On the other hand, random vector D[t] =
[D[t, 0],D[t, 1] . . .D[t,M − 1]] ∈ RM×U , with realizations for every minislot
τ in time slot t. This vector represents a certain requirement for secondary
users; for example, a data rate demand to be satisfied, or an electrical energy
requirement. As we mentioned, these requirements only correspond to sec-
ondary users, and we consider primary users to be greedy towards resources
(resources are shared among them in order to maximize some utility). It is
important to note that random vector D has realizations on a minislot basis,
thus not being known when resource assignation to primary users happens.
Suppose all random vectors (D and R) and policy assignments (x and y) are
coupled through a set of H restrictions. Choosing both assignment policies in
order to maximize a certain function of the variable leads to a very general
formulation as a constrained stochastic optimization problem:

max
x[t],y[t]

f(x[t],y[t],R[t],D[t]) (1)

s.t.:

gi(x[t],y[t],R[t],D[t]) ≤ 0, i = 0, . . . ,H − 1. (2)

These optimization problems depending on random variables with realiza-
tions posterior to the decision instant are very hard to solve. Note the difficulty
of making resource assignation decisions at the beginning of a time slot when
resource demands and resource assignation decisions for the same time period
are unknown and bound to affect all utilities. Our proposed supervised learn-
ing framework on its most general form will try to approximate the optimal
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solution (x∗,y∗) in the following manner. After a time slot has elapsed, all ran-
dom variables realizations are known and the optimal solution can be found
offline. Therefore the approximate solution will be learned from the combined
data set of the random variables’ realizations and the optimal assignation pol-
icy. The set of constrains has to be ensured after the supervised agents make
their assignations, which can be achieved through some projection over the
feasible space. The algorithm consists of the following steps during training:

1. Given K previous realizations of the random variables R and D, we solve
the optimization problem and find optimal assignments (x∗[t],y∗[t]) for
every t ∈ [0,K].

2. We train supervised learning agent 1 with available random variables real-
izations as features and the optimal assignments as targets for every t. The
features may include the last K1 realizations. As an example, for time slot
q, realizations R[t] with t ∈ [q−K1 . . . q] and D[t] with t ∈ [q−K1 . . . q−1]
will be considered as features and x∗[q] will be choosen as target.

3. We train a second supervised learning agent on a minislot basis, considering
the last K2 ×M + p minislots’ realizations of random vectors D and R in
order to predict an approximation to the optimal policy for minislot p in
time slot q. In this case, features will be R[t] with t ∈ [q − K2 . . . q], D[t]
with t ∈ [q − K2 . . . q − 1], and D[q, τ ] with τ ∈ [0 . . . p]. Finally, another
feature that will be used is the found value of x∗[q]. Our target will be the
minislot assignation policy y∗[q, p].

Together, our learned agents will be able to forecast online resource assigna-
tions (x̂∗[t], ŷ∗[t, τ ]). Note that the training phase is done offline, with no time
constrains, which enables step 1 to eventually solve non-convex optimization
problems. Also observe that when using a time slot basis, mini slot features
have to be somehow summarised into a time slot basis (for example, as the
aggregated demand over the time slot); similarly, time slot based data has to
be transformed into mini slot based realizations. Both learning agents offer
the freedom to choose architectures over the vast world of supervised learning,
according to the problem’s nature and/or domain knowledge over the problem
and random variables R and D.

When working online, the procedure is very simple:

1. At time slot t, features are available for supervised agent 1 to predict
assignation x̂[t].

2. Projection of x̂[t] if needed in order to satisfy restrictions over x.
3. For every minislot τ , features are available for the second agent to predict

assignation ŷ[t, τ ].
4. Projection of ŷ[t, τ ] if needed in order to satisfy restrictions over y.

It is important to remark that the projection is needed in order to satisfy
restrictions and propose policies belonging to the feasible space of solutions.
There are different ways of projecting that can be used in order to ensure that
restrictions are complied, which we will further discuss in subsection 3.3.
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In the next section we introduce a practical example of the frameworks’
utilization, through the coupled problem that arises from URLLC and eMBB
coexistence in 5G NR.

3 URLLC and eMBB coexistence in 5G NR

As we have introduced, 5G NR establishes three types of users. Two of these
users, URLLC and eMBB, share resources of the OFDMA grid. But their coex-
istence comes at a price: puncturing over eMBB assigned resource is done in
order to satisfy URLLC demand. This degrades performance for eMBB users,
which poses a challenge: to minimize puncturing effects on eMBB users, all the
while satisfying URLLC demand. Because URLLC’s demand and allocation
happens at more frequent intervals, eMBB resource assignation and puncturing
which may be studied as a coupled optimization problem over two timescales,
as those discussed in section 1.

3.1 Definitions and optimization problem

In the frequency domain, the OFDMA grid is divided into sub-channels,
whereas in the time domain it is split into slots and minislots (a set of OFDM
symbol times). The 5G NR standard defines the minimum set of OFDMA
resources that can be assigned to an eMBB user: a Resource Block -RB-, which
in this paper corresponds to what we call a time slot and a set of sub-channels.
Considering the complete OFDMA grid, the system disposes of a total of NRB

resource blocks.
At each slot t a first scheduler distributes among active eMBB users the

set of resource blocks. The system has a set of eMBB users in each time slot
t: e ∈ {1, .., E}. We will assume that eMBB users’ traffic follows a full buffer
model. Figure 2 pictures actions from the first scheduler with respect to eMBB
users.
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Fig. 2 First resource allocation scheduling, corresponding to eMBB users on a time slot
basis. Scheduling of eMBB users is prior to scheduling of URLLC users. Features used by
the scheduling agent are composed of eMBB and URLLC rates, throughputs and demands
of past time slots.

As seen in the previous section, and using the same notation for ease of
exposition, we define a time slot t as divided into time minislots indexed by
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τ ∈ {1, ...,M}. The system has a set of U URLLC users, u ∈ {1, .., U}. Each
URLLC user u at (t, τ) has a byte demand du(t, τ), which is the realization
of a random variable Du, known at the beginning of each minislot. In order
to fulfill URLLC traffic demands, a second scheduler assigns at each minislot
resource blocks that share the same set of sub-channels of an RB assigned to
an eMBB user, but the time duration of a minislot. Figure 3 allows readers to
visualize the minislot based puncturing action for URLLC users, overwriting
assigned resources to eMBB users.
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Fig. 3 The second agent schedules resources to URLLC users on a minislot basis. These
resources were already assigned to eMBB users, and may thus inflict losses to eMBB com-
munications.

All users have a wireless channel with the base station that varies between
time slots depending on the channel’s fading and noise. We assume the base
station knows the SNR of each user at all times, which is constant over a times-
lot. Using the 5G NR standard, the system can find the maximum reachable
rate for any user by using the measured SNR and the corresponding coding
and modulation. This SNR evolution and its impact on the maximum attain-
able rate introduces a time slot and user dependent random variable Re for
eMBB users and Ru for URLLC users, with realizations re(t) and ru(t) known
at the beginning of each time slot. We consider all users’ peak rates at time
slot t on vector R[t] = [re(t), ru(t)]

e∈{0...E},u∈{0...U} and demands for URLLC
users on vector D[t] = [du(t)]

u∈{0...U}.
Typically these random vectors have correlations between them and

temporal correlations during consecutive time slots and minislots. These
dependencies are to be exploited in order to learn accurate predictions, as well
as the impact of the scheduling policies on the overall utility.

We consider the vector x[t] = {x1(t), ..., xE(t)}, where xe(t) represents the
total number of RBs assigned in slot t to eMBB user e (e.g. x[t] = [2, 1, 2] in
figure 2). We define as well the RB assignation to URLLC users as the vector
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y[t] = {y1(t), ..., yE(t)}, where ye(t) is the sum over all minislots on slot t
of the number of punctured RBs being assigned to eMBB user e (e.g. y[t] =
[0.6, 0.2, 0.6] in figure 3). In a similar way, we represent by ye,u(t, τ) the number
of RBs reassigned from eMBB user e to URLLC user u at time slot t and
minislot τ (e.g. y2,1(t, 0) = 0.2 in figure 3), and thus yu(t, τ) =

∑
e ye,u(t, τ) is

the total resource block assignation for URLLC user u.
Please note that for a given URLLC user u, its byte demand du(t) has to

be satisfied over a minislot, meaning that assignation yu(t, τ) multiplied by
the time slot peak rate ru(t) has to equal the users demand. As puncturing
of a certain eMBB user cannot exceed its original total amount of resources,
ye(t) ≤ Mxe(t), ∀e, t. Combining the aforementioned analysis, puncturing has
to verify the following equations:

ye(t) =

M∑
τ=1

U∑
u=1

ye,u(t, τ) (3)

du(t, τ) =

E∑
e=1

ye,u(t, τ)× ru(t) (4)

As we mentioned before, we want the resource allocation to eMBB and
URLLC users to be performed so that a certain utility function f is maximized.
We will consider this reward to be a function of random variables realizations:
r[t], d[t] and of course of assignations x[t], y[t]. In particular, the decision on
y[t] will impact on the performance as perceived by the eMBB users, as part
of their transmission is overwritten.

We assume that by knowing a time slot’s realizations (and past if needed),
the scheduler can find the optimal assignment in the present slot t:

x∗[t],y∗[t] = arg max
x[t],y[t]

f(x[t],y[t], r[t],d[t]) (5)

The total utility of our system f will be defined as the sum over eMBB
users’ utility, which is in turn defined as a per user utility function U con-
structed as some combination over eMBB users’ throughput. As an example,
we could use as global and per user utilities f =

∑
e U(the(t)) =

∑
e log(1 +

the(t)). Throughput the(t) for user e at slot t is defined as a running mean
with averaging ratio α over the effective rate (7), which is defined as a func-
tion of the assigned resources xe(t), maximum attainable rate re(t) and, as
we mentioned before, the rate loss due to puncturing of user’s e transmission
(a function we will denote as L(xe(t), ye(t))). We consider throughput for all
eMBB users at time t in vector th[t] ∈ RE .

f(x[t],y[t], r[t],d[t]) =
∑
e

U(the(t)) (6)

the(t) = αthe(t− 1) + (1− α)ce(t) (7)
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ce(t) = xe(t)re(t)(1− L(xe(t), ye(t))) (8)

All in all, the resulting optimization problem is as follows:

max
x[t],y[t]

E∑
e=1

U(the(t)) (9)

s.t.:

the(t) = αthe(t− 1) + (1− α)ce(t) (10)

ce(t) = re(t)(1− L (xe(t), ye(t))) (11)∑
e

xe(t) = NRB (12)∑
u

ye,u(t, τ) ≤ xe(t) ∀ t, e, τ (13)

ye(t) =
∑
τ

∑
u

ye,u(t, τ) ∀ t, e (14)

∑
e

ye,u(t, τ) =
du(t, τ)

ru(t)
∀t, τ, u (15)

ye,u(t, τ) ≥ 0 ∀ e, u, t, τ (16)

xe(t) ≥ 0 ∀ t, e (17)

Restrictions ensure that definitions hold to the puncturing model. For
instance, any resource assignation has to be positive, and there cannot be
more resources punctured to an eMBB user than the ones originally assigned.
Constraints will be further analyzed in subsection 3.3.

Let us further discuss the loss function L. As puncturing of eMBB and
URLLC in 5G is a hard to solve optimization problem, different scenarios have
been proposed in the literature, mainly using heuristics yielding good results
for particular settings. Other approaches, as [20], formulate optimization prob-
lems very similar to our own, and consider convex functions for U and L. They
prove that some policies are optimal under certain conditions, notably a pro-
portional fair assignation for eMBB resources and a random assignation for
URLLC resources. However, digital communications’ performance exhibit a
non-convex response to interference, that can be viewed as a threshold penalty:
if interference is larger than a certain value, then the message is completely
lost [21].

We will thus test our framework using two kinds of loss functions: convex
(quadratic) and the more realistic non-convex threshold. This allows a com-
parison with regard to optimal solutions with theoretical guarantees (as in the
convex scenarios), as well as with state of the art proposed solutions on the
threshold case, which is a much more realistic approach, and closer to applica-
tion. Our proposed learning method proves to be able to generalize to different
scenarios all while maintaining close to optimal mean utility for eMBB users.
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The offline optimization phase may be performed using any chosen solver
when the loss and utility functions are convex. For the threshold scenario, even
if this is not a convex optimization problem, it can be transformed and solved
by optimizing 2E convex optimization problems. Even though challenging, the
computational complexity of solving the threshold scenario only depends then
on the number E of EMBB users, and neither on the number of active URLLC
users nor the number of resource blocks the system disposes.

As stated, in a general non-convex scenario, the optimal policy has to
be found by trying all possible policies, which is highly time and resources
consuming. Still, in our framework this is feasible since solving the optimization
problem and the training phase are both done offline.

3.2 Learning formulations

An important consideration to be made over resource block assignations and
puncturing is the strong time limitation a 5G scheduler meets. As an example
to fix this idea, a time minislot in 5G is on the order of the hundreds of
nanoseconds. This is why supervised learning is an appropriate choice in order
to exploit statistical information: once trained, execution is very quick.

Different supervised learning methods could be exploited. The chosen learn-
ing machine will typically depend on domain knowledge, mainly on the nature
of the random variables, depending if and how much we know about them.
The range of possible choices goes from well known methods as Random For-
est or Support Vector Machines up to the newest deep learning architectures,
including custom made algorithms. In section 4 we show results with different
learning agents.

Whichever learning method is chosen, with our proposed statistical learning
framework they will all share features and target. Our first scheduler makes
the prediction of x∗[t], for which we use the following features:

featsx∗[t] = [r[t] . . . r[t−KR],d[t− 1] . . .d[t−KD],

th[t− 1] . . . th[t−Kth]] (18)

We include rate for all users (of both kind) for this time slot and past KR

time slots. We also consider eMBB users’ throughput and URLLC demand
for the past KD and Kth time slots respectively; observe that neither eMBB’s
throughputs nor URLLC’s demands are available at present time slot t.
Demand from URLLC users has a different timescale, so including the minis-
lot demand has little significance. Instead, we consider the aggregated sum of
URLLC users’ demands over each time slot. With regard to the more general
formulation described in section 2, note that we have introduced as a feature
the throughput instead of the assignation x, both being directly related: with
the assignations and rates the throughput can be easily obtained. We con-
sider the throughput to be a more direct feature than to introduce the past
assignations for the present learning poblem.
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Our second scheduler will be working on a minislot time basis. In order
to match dimensions over a minislot basis, timeslot features are extended to
the M minislots (e.g. rates). Besides past and present rates for all users and
throughput for eMBB users, we use URLLC users demands per minislot (past
and present), and resource assignation for eMBB users x∗[t]. This results in:

featsy∗[t,τ ] = [r[t],d[t, τ ] . . .d[t, τ −KD], th[t− 1],x∗[t]] (19)

3.3 Optimization constraints

The regression problem formulated in our approach must take into account
the constraints of the system. In the estimation of the eMBB assignments, we
must ensure the following constraints:∑

e

xe(t) = NRB (20)

xe(t) ≥ 0 ∀ e (21)

Regarding the estimation of the URLLC allocation we must ensure the
following constraints:

∑
u

ye,u(t, τ) ≤ xe(t) ∀ e, t, τ (22)

∑
e

ye,u(t, τ) =
du(t, τ)

ru(t, τ)
∀τ, u, t (23)

ye,u(t, τ) ≥ 0 ∀ e, u, t, τ (24)

These constraints must be imposed on the learning regression system.
There are two types of constraints in the previous equations. The first type
guarantees that the output vector of the regression (x[t] or y[t, τ ]) has all terms
greater or equal than zero and the sum of its components must equal some
fixed value: the total amount of resources for x, and the demand satisfaction
for y. This type of constraints can be imposed using a well known method
consisting of a logarithmic transformation over the normalized target vector,
as is described in [30]. This transformation ensures that the regression output
satisfies fixed sum constraints.

The other type of constraint is:

∑
u

ye,u(t, τ) ≤ xe(t) ∀ e, τ (25)

This constraint must be imposed in the regression of the y values where
the xe values were calculated in the first regression. This type of constraint
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is more difficult to impose together with the first type of constraints. In this
case after the regression with the log transformation, we assure that all the
constraints for y are verified by projecting the output values obtained y∗[t, τ ]
to the constraint space.

min
y

∑
e

(ye,u(t, τ)− ŷe,u(t, τ))
2 (26)

s.t.:∑
e

ye,u(t, τ) =
du(t, τ)

r̂u(t)
∀u (27)∑

u

ye,u(t, τ) ≤ xe(t) ∀e (28)

ye,u(t, τ) ≥ 0 ∀e, u, t, τ. (29)

The projection is realized for each minislot τ .

4 Simulations and Results

In order to validate our system model and learning procedure, we compare
our results to the proposed solution of [20], which we will refer to as ‘baseline’
in experiments and tables. In a nutshell, this heuristic consists of a propor-
tional fair assignation for eMBB users and a random assignation for URLLC
puncturing. This comparison might be unfair, given that the solution is only
optimal in certain specific scenarios (for example, for convex loss functions),
but it is a state of the art algorithm for puncturing optimization, and as such
serves well as a baseline in order to compare our proposed learning procedure
behaviour. We use well known supervised learning methods such as the classic
Support Vector Machines (SVM) and different flavours of the more modern
Recurrent Neural Network (RNN), and implement the learning algorithm over
different synthetic scenarios.1

We selected three particularly interesting scenarios. On the first experiment
we apply our proposed framework to a convex problem (both loss function and
utility are convex). This type of ‘convex’ scenarios have well known solutions
(as shown in [20]), which enable us to test a simple setting in order to verify
the correct behaviour of our learning agents. On the second and third scenarios
we use a threshold loss: if more than a certain amount of assigned resources
are punctured for an eMBB user, all communication will be considered lost
(meaning the rate for that user will be 0 for the whole time slot). On the other
hand, if that threshold is not surpassed, communications (and thus eMBB user
rates) are unaltered. This non-convex scenarios are studied by [20], and while
their proposed heuristic works reasonably well when URLLC demand is low, as
traffic increases the proposed solution grow afar from optimal policies. That is

1All code can be found at https://gitlab.fing.edu.uy/ai45g/puncturing-ai45g.

https://gitlab.fing.edu.uy/ai45g/puncturing-ai45g
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why we finally introduce a synthetic scenario with larger URLLC traffic loads,
maintaining the threshold penalty as the loss function. As mentioned before,
the system’s reward is defined as f(t) =

∑
e U(the(t)) =

∑
e log(1 + the(t)).

Besides our proposal and the solution described in [20], we compare our
results with a ‘random agent’. This agent will assign a fixed number of resource
blocks to eMBB users (total number of resource blocks over number of eMBB
users), and a random number of resource blocks to URLLC users. The idea
with this extremely simple agent is to obtain a minimum performance so as
to quantify the gain obtained by the other two methods. For all heuristics we
ensure restrictions are met by projecting the found resource assignations over
the feasible space of solutions.

Simulation parameters can be found in table 2. The total number of
resource blocks isNRB = 270 for all simulations. Channel evolution for all users
follows a finite Markov process as proposed in [31]. The URLLC users’ traf-
fic demand follows a two state finite Markov process, being URLLC’s demand
turned on and off. All convex optimization problems were solved using cvxpy
[32].

When using SVM, the regression for learning both policies is obtained by
using Scikit-learn Support Vector Regression (SVR) software[33]. Parameters
C and gamma of the Radial Basis Function (RBF) kernel are obtained via grid
search.

Recurrent Neural Networks are well known deep learning architectures par-
ticularly suited to learn and capture sequential dependencies (e.g. temporal
sequences), and are widely used in natural language processing. These proper-
ties make them a natural choice for our proposed statistical learning method.
We used the keras [34] implementation of recurrent neural networks, exper-
imenting with LSTM, GRU and vanilla RNN. We only present experiments
concerning the implementation achieving highest results, and we used a very
simple architecture: an LSTM (or GRU) layer followed by a fully connected
layer for regression purposes. In all cases, the learning rate follows an expo-
nential decay and the loss function is computed by using mean squared error.
The parameters of the RNN (number of neurons, learning rate, normaliza-
tion, sequence length) were also chosen using grid search, and details for each
experiment can be found in table 2. When using neural networks, normaliza-
tion was used prior to learning in order to accelerate convergence and obtain
better scores.

We first tried the proposed learning method using a quadratic loss function,
defined as L(xe, ye) = ( ye

xe×M )
2
. The predicted policy obtained is very close

to optimal as can be seen in figure 4, and the average utility is over 99%
of the optimal utility (see tables 3, 4). Observe that in this case all policies
behave really well; in a convex scenario the puncturing policy is not that
important in order to achieve good results, and an average distribution of
resources over eMBB users will be optimal in expectation. Results are good
but also expected, because by using a simple convex loss function the optimal
policy should be easily learned. This is caused because losses by puncturing
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Table 2 Table of Parameters

Scenario 1 Scenario 2 Scenario 3
Loss model Quadratic Threshold Threshold
eMBB users 20 10 10
URLLC users 5 3 3
Minislots (M) 3 3 3
α 0.8 0.8 0.8
Threshold - 0.11 0.11
T {train} 7700 7700 19700
T {test} 300 300 300
SVM-C (x) 50e3 1000 200
SVM-G (x) 1e−4 1e−6 5e−6

SVM-C (y) 100 5e3 20e3

SVM-G (y) 1e−7 5e−6 5e−7

Max Iterations 1e4 1e5 1e5

RNN Cell GRU LSTM LSTM
Hidden Layer (x) 24 24 24
Hidden Layer (y) 128 32 32
Normalization No Scaler MinMax MinMax
Learning rate (x) 1e−3 1e−4 1e−4

Learning rate (y) 5e−4 5e−4 5e−4

Sequence length (x) 2 4 4
Sequence length (y) 6 12 12

are not so dependent on the punctured eMBB user, as all eMBB users fare
similarly and contribute proportionally to the global utility. Also, on average
a mean distribution of resources for eMBB users will be optimal, meaning the
random heuristic proposed should (and effectively does) yield good results.
Yet, results are encouraging, as our proposed learning method fares as well as
heuristics that are optimal on mean (as the Baseline).

We then applied the framework in a more complex scenario, using the
threshold loss function formulation (see figure 5). Results are even more
encouraging, even if they are not as near optimal as in the quadratic case, the
utility achieved is almost 90% of the utility the optimal policy would obtain.
The difficulty when using the threshold loss function is that when an eMBB
user is punctured it may result in a null rate (re(t) = 0), which means the
discontinuities observable in the figures and an evident larger impact on the
utilities for different policies. For an agent to learn these highly discontinuous
patterns is not a trivial task, and yet our proposed method is able to grasp
statistical correlations and features’ relationships in order to choose close to
optimal policies.

In the work of [20], authors find greater differences between their proposed
heuristics and optimal solutions as the traffic load increases for URLLC users,
when using a non-convex loss function (for example a threshold loss). Even
if the discontinuities may appear more often (eMBB users with re = 0), this
may actually be beneficial for the learning agent. For instance, it will learn to
puncture those eMBB users with re = 0, since their limit threshold has already
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Fig. 4 Reward during online test for Scenario 1. All heuristics fare almost as well as the
optimal solution, given the convex setting for the trial: both loss function (quadratic) and
utility are convex. In this case the puncturing policy has a lesser effect on global utility, and
a mean distribution of resources for eMBB will have a good performance on expectation.

been surpassed. This is evidenced in the third scenario, where URLLC’s traffic
load is larger (see figure 6).

As expected, utilities are farther apart from optimal than in previous exper-
iments, although our framework fares much better than the rest of the proposed
solutions: while the other heuristics attain less than 50% of optimal utility
(and almost vanishing at certain time-slots), our proposed learning method
achieves over 75% of the optimal utility in all cases. Results are summarized
in tables 3 and 4. Table 3 compares achieved utilities for the optimal policy,
our proposed algorithm, the baseline and the random policy. In Table 4, the
obtained rewards are normalized with respect to the optimal value to derive
a performance metric. In the former mean reward depicts the overall utility
obtained with each method, whereas in the latter we present the algorithm’s
performance measured as the ratio between the achieved utility with regard
to the optimal utility.

Table 3 Mean reward for compared algorithms over different scenarios. Reward is
calculated by applying a fairness utility function to the eMBB users’ throughput as in eq. 6.

Mean Reward
Loss model Baseline Random SVM RNN Optimal
Quadratic 92.43 92.47 92.43 92.48 92.63
Threshold

(low demand)
45.30 40.13 45.32 47.62 53.94

Threshold
(high demand)

24.21 16.68 39.41 38.79 50.78
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Fig. 5 Reward during online test for Scenario 2 (Threshold Loss). During test, URLLC
traffic demand is low, allowing agents to either allocate all puncturing without losses or to
puncture one eMBB user over the threshold limit. This scenario is harder to learn, having
two very distinct scenarios (either send all puncturing to a user of distribute it evenly among
all users).

Table 4 Performance with respect to the optimal policy’s utility for proposed and
baseline heuristics.

Performance (%)

Loss model Baseline Random SVM RNN

Quadratic 99.78 99.83 99.78 99.84
Threshold

(low demand)
83.98 74.40 84.02 88.28

Threshold
(high demand)

47.68 32.85 77.61 76.39

5 Conclusions

We have presented a framework to solve online two timescales constrained
optimization problems. In our proposed learning approach, we use the sys-
tem’s state and statistical correlations in order to train two supervised agents,
one for each timescale policy. Our framework consists of an offline learning
phase, in which we train the learning agents with the system state and the
optimal assignments obtained offline. The supervised agents then apply online
the estimated optimal assignments.

The proposed framework is instantiated on resource allocation with punc-
turing in 5G networks. The optimization of 5G resources with puncturing is
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Fig. 6 Reward during online test for Scenario 3 (Threshold Loss). In this case during test
URLLC traffic demand is higher, which induces more losses because of the threshold penalty.
Even if global utility is lower because of heavier puncturing, the learning problem is easier
to approximate.

in general challenging, if possible, to solve directly. URLLC and eMBB coexis-
tence implies a downgrading of eMBB communications by reassigning eMBB
users’ resources to URLLC users in order to satisfy URLLC’s demand. We
solve the optimization problem arising from the aforementioned coexistence,
focusing on maximizing a throughput based utility for eMBB users all while
satisfying URLLC demands.

The effectiveness of the proposed approach was demonstrated through a
variety of simulations. We used different scenarios and established realistic set-
tings to prove the framework’s performance, achieving results above current
state of the art solutions. We were able to approximate online optimal solu-
tions, even in non-convex scenarios in which state of the art techniques do not
approximate well the optimal solution. On all scenarios our agents perform
better than compared heuristics, achieving up to a 50% increase on eMBB
users’ utility with regards to well known state of the art proposals.

In future works we plan to analyze other learning algorithms, modifying
restrictions and developing feature engineering, in order to find even better
policies approximations. It would also be interesting to explore on imple-
menting a combined training of both learning agents, by introducing in the
loss function a utility divergence penalty. This may allow to exploit domain
knowledge in order to achieve better results on particular problems. Finally,
application of this statistical learning method over a broader series of problems
with strong restrains and several timescales, as energy management, would be
interesting in order to further validate the proposal.
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