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Abstract text

Machine  Learning  has  had  a  significant  impact  on  microscopy,

enabling faster  and more accurate  analysis  of  biological  imaging

data. In particular, Generative Adversarial Networks (GANs) and U-

Net have emerged as powerful tools in this field.

GANs (I. Goodfellow et al. 2020) are a type of deep learning model

that  consists  of  two  neural  networks,  a  generator  and  a

discriminator.  The  generator  creates  synthetic  images  while  the

discriminator attempts to differentiate between the synthetic images

and real  images. Through this adversarial  process, the generator
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improves  its  ability  to  generate  realistic  images,  while  the

discriminator improves its ability  to differentiate between real  and

synthetic images.  In microscopy, GANs can be used to generate

synthetic microscopy images or to fill in missing or degraded image

data as we show in this work.

U-Net (O. Ronneberger et al. 2017) is a type of convolutional neural

network that is specifically designed for image segmentation tasks.

The architecture of U-Net consists of an encoder and a decoder,

with skip connections between corresponding layers in the encoder

and  decoder.  In  microscopy,  U-Net  has  been  used  to  segment

objects of interest in microscopy images, such as cells or subcellular

structures, enabling more accurate analysis of the images.

Overall, the integration of machine learning techniques, particularly

GANs  and  U-Net,  into  microscopy  has  enabled  researchers  to

analyze imaging data more efficiently and effectively, leading to new

insights and advances in the field of biology(K. Dunn 2019, F.Long

2020).

In  this  work,  a  GAN architecture  is  trained  to  generate  confocal

fluorescence  microscopy  synthetic  images  from  blood  monocyte

stacks  from  control  individuals  and  patients,  where  nuclei  and

mitochondria were marked with different fluorescent probes. These

images  are  then  processed  by  an  own  implemented  pipeline

consisting of deconvolution, segmentation and feature extraction for

mitochondria classification

In the deconvolution stage, the methods implemented in the ImageJ

plugin "DeconvolutionLab2" (D. Sage et al. 2017) are used, where



their performance is analyzed based on the parameters used and

their  characteristics,  such  as  whether  they  are  regularized

algorithms or if they are iterative or non-iterative. .

For segmentation, different approaches are evaluated, starting with

traditional histogram-based thresholding methods (Otsu, Huang, Li,

among  others),  non-supervised  clustering  methods  such  as  K-

Means (Lloyd 1957; MacQueen 1967), and Deep Learning methods

such as the U-Net neural network. .

In  feature extraction,  morphological  and connectivity  features are

obtained. The morphological characteristics obtained are the usual

ones  (volume,  area,  sphericity,  among  others).  The  connectivity

characteristics are found from skeletonization,  pruning and graph

modeling  (M.  Zanin  et  al  2020).  The  parameters  found  are  the

number  of  nodes,  the  density  of  links  and  the  efficiency,  among

others.

Finally,  for  the  mitochondrial  classification,  classical  approaches

such  as  Decision  Tree,  Logistic  Regression  and  Support  Vector

Machine (SVM) were used.

The work was done in the Python programming language. We are

currently working on making this framework publicly available.

The final result of the work is an end-to-end pipeline with different

processing options in the deconvolution and segmentation stages

usable for different microscopy data, a synthetic data generator that

achieves  performance  when it  comes to  simulating  the  effect  of

fluorescence in binary masks, and an application of both products



for the mitochondrial classification with an accuracy result greater

than 70%.

It is concluded that neural networks have a fundamental role in the

processing of medical and biological images, and can be used for

data augmentation, segmentation and classification.
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