
ISSN 1688-2806

Universidad de la República
Facultad de Ingenieŕıa

Audio-based Classroom Activity Detection for
Primary School Lessons

Thesis submitted to Facultad de Ingenieŕıa de la Universidad de la
República by

Braulio Ŕıos

in partial fulfillment of the requirements for the degree of
Master in Data Science and Machine Learning.

Thesis Directors
Pablo Cancela . Universidad de la República
Germán Capdehourat . Ceibal

Thesis Tribunal
Mart́ın Rocamora . Universitat Pompeu Fabra
Guillermo Carbajal . Universidad de la República
Andrés Ferraro . McGill University

Academic Director
Pablo Cancela . Universidad de la República

Montevideo
Wednesday 27th September, 2023

Audio-based Classroom Activity Detection for Primary School Lessons, Braulio Ŕıos.

ISSN 1688-2806

This thesis was prepared in LATEX using the iietesis class (v1.1) (adapted and translated).
Total pages: 108.
Compiled Wednesday 27th September, 2023.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

Acknowledgments / Agradecimientos

This is the only section that is not written in English, since it is intended to be read by people who
speak Spanish.

Quiero comenzar por agradecer a mis tutores, Pablo Cancela y Germán Capdehourat, quienes
no sólo me dieron incontables horas de su tiempo, toda su experiencia y apoyo durante todo el
desarrollo de este trabajo, sino que también fueron quienes me motivaron a retomarlo luego de un
intento frustrado. Además, lideran el proyecto del cual este trabajo forma parte apuntando a la
mayor excelencia, pero también generando un excelente ambiente de intercambio, colaboración y
trabajo en equipo entre todos los que participamos.

A mis otros compañeros en este proyecto, Emilio Mart́ınez y Diego Silvera, que siempre partic-
iparon activamente aportando ideas y opiniones durante las reuniones de trabajo, enriqueciendo el
proceso y el resultado. Todo esto además de tener un rol protagónico durante la etapa de etiquetado
y curado del dataset que se usa en este trabajo, haciendo de este proceso -en general tedioso-, algo
mucho más ameno y hasta memorable.

A Gonzalo Maŕın, por insistir en dar el paso para comenzar este viaje y motivarme siempre,
además de realizar algunos de los contactos iniciales con mis tutores. No sólo fue un ejemplo a seguir
en lo académico, sino también en muchos otros sentidos y fue un gran apoyo constante durante todo
este camino.

A los miembros del tribunal: Mart́ın Rocamora, Guillermo Carbajal y Andrés Ferraro, por
sus comentarios y preguntas que evidenciaron un muy detallado y cuidadoso análisis del trabajo,
resultando en correcciones que mejoraron el resultado final.

A la ANII (Agencia Nacional de Investigación e Innovación), por permitirme dedicarle mi
tiempo en forma casi exclusiva a este trabajo durante un amplio peŕıodo de tiempo, gracias a la
financiación mediante una beca de maestŕıa.

A Ceibal, por proveer los datos, facilitarnos las reuniones y a menudo las instalaciones para
que el resultado de este trabajo tenga un sentido práctico además de académico.

A la Facultad de Ingenieŕıa de la Universidad de la República, en la cual todo este trabajo se
llevó a cabo, además de toda la formación académica necesaria. En particular, cabe un especial
agradecimiento al Grupo de Procesamiento de Audio del Instituto de Ingenieŕıa Eléctrica (IIE).

A mi familia, mis amigos de la vida, y a los tantos buenos que hice siendo compañeros de
estudio o de trabajo. Son la razón de mi felicidad y por lo tanto quienes le dan sentido a todo esto.

ii

Abstract

Classroom Activity Detection (CAD) is a challenging task, especially for primary school lessons,
where student participation is fragmented, short, and often concurrent with teacher speech and
background noise. This thesis proposes and evaluates three CAD models: two based on supervised
audio classification (trained on a proprietary dataset that was annotated for this work), and one
based on unsupervised diarization.

These models are assessed through the visualization of the estimated label density, rather than
typical CAD segment visualizations. This approach proves to be more effective in dealing with the
highly fragmented segments observed in this specific use case. The main metric to compare these
models is the correlation coefficient between estimated and ground-truth label densities.

The density and correlation are used to evaluate the accuracy of the models in capturing the
temporal distribution of the different classroom activities. Complimentary to that, another metric
that is also used is the error in the total time estimated for each label (e.g., estimated Teacher
Talking Time or TTT).

The supervised models, based on an LSTM neural network and a decision tree classifier, achieve
similar classification performance, outperforming the unsupervised diarization pipeline. Even a
small amount of training data is enough for the supervised models to achieve the performance of
the diarization system, and they generalize well to previously unseen voices.

The unsupervised diarization model does not require training data for this particular task, but
its performance is not as good as the supervised models to detect the teacher’s voice. Additionally,
it cannot distinguish properly between the labels “single student” and “group work”.

Overall, the supervised CAD models proposed in this thesis demonstrate promising results for
primary school lessons, even with limited training data. These models could be used to develop
valuable tools to support classroom observation and evaluation.

iv

Contents

Acknowledgments i

Abstract iii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Challenges and particularities . 2
1.2 Objectives . 3
1.3 Summary of Results . 3
1.4 Considered approaches . 5

1.4.1 Why Diarization? . 5
1.4.2 Supervised Classification Models . 6

1.5 Related Work . 6

2 Methodological Foundations 9
2.1 Audio Features for Speech Processing . 9

2.1.1 STFT for speech signals . 11
2.1.2 Mel-filterbanks . 14
2.1.3 MFCC: Mel-filterbank Cepstral Coefficients 14
2.1.4 Other audio features . 15

2.2 Recurrent Neural Networks and the LSTM . 17
2.2.1 How LSTMs work . 19
2.2.2 Using LSTMs for audio classification . 19

2.3 XGBoost: Gradient Boosted Trees . 20
2.3.1 Gradient Boosting and CART . 20
2.3.2 How XGBoost works . 20
2.3.3 XGBoost for Audio Classification . 22

2.4 Diarization Overview . 22
2.4.1 Applications, similar problems, and challenges 23
2.4.2 Diarization metrics: DER, JER, EER . 24
2.4.3 Diarization pipeline . 25

2.5 Chapter summary . 29

3 Experimental Setup 31
3.1 Data and labeling . 31

3.1.1 Manual annotation protocol . 31
3.1.2 Simplifying labels: remapping . 32
3.1.3 Data splitting . 33

3.2 Evaluation metrics . 38
3.2.1 Label density estimation . 38

Contents

3.2.2 Confusion, Precision and Recall Metrics . 43
3.3 Evaluation metrics over different human annotators 47

3.3.1 Redundant human annotations . 47
3.3.2 Human performance metrics . 48

4 Implementation 53
4.1 Implementation of Audio Classifiers . 53

4.1.1 Audio Features . 54
4.1.2 LSTM based classifier . 54
4.1.3 XGBoost based classifier . 59

4.2 Diarization based pipeline . 62
4.2.1 Voice, Segmentation and Overlap Detection 62
4.2.2 Speaker Embeddings, Clustering and Resegmentation 63
4.2.3 Using Diarization for Classroom Activity Detection 65

5 Analysis and comparison of results 67
5.1 Analysis of the LSTM Classifier . 67
5.2 Comparing LSTM vs. XGBoost . 70

5.2.1 Teacher Talking Time with Classification Models 74
5.2.2 Benchmark of execution times . 76
5.2.3 Summary: LSTM vs. XGBoost . 78

5.3 LSTM vs. Diarization . 78
5.3.1 Teacher Talking Time with Diarization vs. Classification 82

5.4 Impact of Data on a Supervised Model . 83
5.4.1 Adding more lessons . 84
5.4.2 Adding more time per lesson . 87

5.5 Chapter Summary . 89

6 Conclusions 91
6.1 Main Findings . 91
6.2 Review of Research Questions . 92
6.3 Contributions . 93
6.4 Future Work . 94
6.5 Personal Reflections . 95

vi

Chapter 1

Introduction

1.1 Motivation
The design and development of classroom activities in primary school lessons play an important
role in shaping students’ learning experiences. With a growing focus on student-centered learn-
ing techniques, understanding these activities has become essential to improve learning outcomes,
highlighting the need for thorough observation and evaluation procedures. However, traditional
approaches often rely entirely on manual assessment by trained observers, which is time-consuming
and impractical for large-scale evaluations. Therefore, the need for automated analysis tools to
assist in this task has become increasingly important.

This work is carried out as part of a larger research project in partnership with Ceibal1, a public
institution aimed at advancing education through digital inclusion and innovation. The objective of
the project is to create valuable tools to aid in the analysis of teaching practices, and this particular
work focuses on the Classroom Activity Detection (CAD) module, as will be described below. The
lessons to be analyzed are conducted by remote teachers using the Ceibal platform, which enables
them to connect with primary school students in different regions of Uruguay. Ceibal’s evaluation
primarily centers on the remote teachers who use their platform.

Currently, the evaluation process consists of human evaluators meticulously watching and
listening to recorded videos from virtual lessons multiple times to identify key moments, such as
student participation, teacher speaking, and group work, following some guidelines and evaluation
forms. This entirely manual approach is resource-intensive and requires significant effort and time
from the evaluators. Consequently, only a fraction of all virtual lessons can be evaluated, severely
limiting the scope of feedback and potentially overlooking crucial insights to enhance teaching
methodologies.

In some courses, the entire evaluation of a full lesson may take one week per evaluator, using
only manual assessment and considering some back and forth with the teachers, to provide them
feedback. This limitation results in a small, random fraction of the total teaching time being
observed. In fact, the current goal is to evaluate only one class per teacher per year, which represents
a minimal fraction of the total teaching time throughout the year. Although different courses may
have specific evaluation guidelines to follow, it has been recognized (through meetings with the
people involved in the process) that assessing the level of student engagement, instances of group
work, and comparing them with the Teaching Talking Time (time the teacher spends speaking) are
generally crucial aspects.

1https://ceibal.edu.uy/

https://ceibal.edu.uy/

Chapter 1. Introduction

The CAD module developed in this work aims to automatically analyze audio recordings and
identify key moments within the classroom, such as student participation, teacher instructions,
and group interactions. This result should be visualized as a function of time, to understand the
development of the lesson and provide an overview that facilitates the search and replay of specific
sections. Additionally, the system should also provide global metrics such as Teacher Talking Time
and the fraction of time spent in relation to student-centered activities.

It is important to emphasize that this work does not aim to automatically evaluate any aspect
of the activities or directly replace any part of the evaluators’ task. Instead, the aim is to provide
them with support to make the process less repetitive and more efficient. Manual evaluation involves
watching multiple replays of the recorded video and taking notes about different aspects to observe
(the specific technique may vary based on the evaluator), resulting in an inevitably slow and hardly
uniform process. Combining insights provided by the automatic analysis tool and the evaluators’
criteria, the process should improve significantly in all these aspects.

The implementation of an automated analysis tool not only has the potential to reduce the
time and effort required, but also allows for a more uniform evaluation criteria and provides ob-
jective feedback for educators to refine their teaching methodologies. Finally, due to the reduced
time required to get an overview of a number of lessons, it enables the design of guidelines to select
the lessons to observe, and also facilitates the identification of patterns and trends that may oth-
erwise go unnoticed, thereby enabling data-driven decisions and promoting continuous pedagogical
improvement.

1.1.1 Challenges and particularities
Although there is a vast literature on speech processing and classification, and even some particular
on the topic of Classroom Activity Detection (CAD), to the best of our knowledge, there are no
works that solve the problem presented here out-of-the-box. The main differences from some systems
found so far are the following:

• Systems oriented to the analysis of college-level courses are not adequate, since the classroom
dynamics are completely different from primary school lessons. In the latter case, student
participation is very spontaneous and usually short, with conversations between teacher and
student where some interventions may not exceed one second in duration. In fact, children
rarely speak for more than a few seconds without being interrupted. In other words, the
conversations are very fragmented and there are frequent overlaps between the teacher and
students’ voices.

• There is a need to perform well on children’s voices. Although this distinction might seem
an advantage to separate the voices of teachers from students easier (adults and children),
there is also great variability within the voices of children, with some being even in lower
pitch than the teacher’s voice. Except for some audio detection models aimed specifically
at children’s voice classification (which does not match entirely the problem presented here),
most models are pre-trained over datasets where there are only -or a vast majority of- adult
voices. This leads to unpredictable behavior when faced with out-of-distribution samples
such as children’s voices, potentially in an overlapping and noisy environment.

• In the case of student activity observed in this data, clear individual participations are not
frequent, and instead it is more common for many students to respond simultaneously to
teacher questions. When providing simple answers, it may be the case that many children
respond synchronously (in a chorus-like voice), but in general the responses consist of multiple
voices overlapping, saying slightly different things, or hardly intelligible words.

• Group work instances bring up another set of challenges, since there might be long time
intervals where there are no student or teacher interventions. Instead, a background whis-
pering can be heard with varying intensity, eventually some voices might stand out and short

2

1.2. Objectives

conversations with the teacher arise (queries and clarifications), but also long silences and all
kind of sudden noises are observed, depending on the motivation and structure of the class.

For this work, the aim is to create a system that is capable of finding and distinguishing
classroom activities (i.e., different kinds of student participation) and some global statistics, like
total time estimates and percentages, in a way that is robust to the high variability observed among
recordings, in terms of noise levels, audio quality, particular set-ups, and video-conference systems
used.

Exact temporal precision is not a priority in this case (as might be the case in standard
diarization systems, for example), which was also proven to be a hardly feasible task, given the
observed amount of overlapping and high fragmentation between voices. From conversations with
the evaluators, it was derived that providing time-based statistics with some localization over the
audio (but not necessarily high temporal precision and resolution), combined with some global
quantities (e.g: teacher talking time vs. students) would be a more effective approach to help them
in their task.

1.2 Objectives
The main goal of this thesis work is to understand and evaluate audio processing and machine
learning techniques to distinguish the teacher and student voices, enabling the detection of the key
moments and activities in a recorded lesson, such as situations with high student participation or
group work.

It is appealing to compare the performance of a diarization system (referred to as the unsuper-
vised approach, since it does not require specific fitting to the problem’s data) versus a supervised
classification model, trained over a small dataset that will be manually annotated for this work.
Both approaches shall be evaluated over the same test data.

Aside of providing a tool to assist the evaluators on their task, this enquiry is aimed to provide
some answers to the following questions:

• What useful information can be extracted by using an out-of-the-box diarization system over
the classroom audio?

• What is the human effort required and the best annotation criteria to create training and
evaluation datasets for our task?

• What is a good evaluation criteria to compare diarization and audio classification models, in
a way that relates to the value provided for the intended users of the system?

• Is the supervised approach able to generalize to new recorded lessons? How much human-
annotated data is needed to make it comparable to the unsupervised approach?

1.3 Summary of Results
This section aims to provide an overview of the main results that were obtained throughout this
work, according to the objectives presented above. All these results are discussed in more detail in
the following sections.

As a general result, three different models of Classroom Activity Detection (CAD) were de-
veloped, specifically tailored for primary school lessons. All of these models were evaluated and
compared, highlighting their advantages and weaknesses.

An end-to-end CAD system was developed, capable of processing any recorded lesson with
any of the implemented models, generating an output video with the detection results. An example
capture of the output can be observed in Figure 1.1. This video interface is intended as a tool to

3

Chapter 1. Introduction

Figure 1.1: Capture of an example output video using our CAD system. It shows the original recorded lesson
on top of the resulting plots. The user can easily navigate through the lesson, and the red cursors over the
plots will mark the current position, relative to each track. The upper track covers the entire lesson and is
considered the main result from the system. The curves represent the label densities as a function of time,
showing the amount of teacher/student/groupwork activity (respectively in blue/red/yellow). The lower track
plots the detected segments in a zoomed window of 30 seconds, showing the high level of fragmentation in the
interventions.

assist evaluators, who can have an overview of the lesson and easily navigate through it. Other
global metrics such as Teacher Talking Time are also calculated, and could be provided in the form
of a PDF report.

To enable this research, a custom audio dataset was annotated, allowing us to train, evalu-
ate, and compare the models. Although the dataset is not publicly available, we provide detailed
descriptions of the annotation protocol, labeling criteria, and the challenges faced during the pro-
cess. The data quality that results after following this protocol is assessed by comparing redundant
human annotations in selected audio fragments.

The implemented CAD models consist of two supervised approaches (which require a portion
of the annotated dataset for training) and one unsupervised model (which does not require training
data). All these models were evaluated and compared on the data fraction that is not used for
training.

To better understand the supervised models’ performance and generalization capabilities, we
designed a data partitioning approach to create balanced audio splits and groups, in which the
models can be trained and evaluated separately. This enables us to understand how the model
performance varies across lessons, how it improves with more training data, and how it generalizes
to new lessons.

4

1.4. Considered approaches

Figure 1.2: Example of a typical visualization of results from other CAD systems, tailored for college-level lessons.
Source: [41]

A simple heuristic is proposed to implement the unsupervised model, converting diarization
results into CAD outputs. We achieve accurate identification of the teachers’ voice, but showing
limitations in distinguishing student interventions and multiple background voices. We also compare
the supervised model with increasing training data, to this unsupervised approach.

Finally, a new visualization approach was designed to show and compare CAD results specifi-
cally for the case of primary school lessons. Its usefulness can be appreciated by comparing Figure
1.1 (our system, designed for primary school lessons) with Figure 1.2 (another system, tailored
for college-level lessons). The former shows detected segments only in a 30-second window (lower
track with “zoomed” results), while the latter shows the detected segments in the whole 50-minute
lesson. The interventions in our case are significantly more fragmented than those of college-level
courses. In fact, showing the results in the usual CAD style (i.e., all detected segments for the usual
45-minute primary school lessons) turns out to be a very cluttered and confusing visualization for
our use case, hardly useful in practical terms. Therefore, we introduce a method based on label
density estimation (upper graph in Figure 1.1) and measure its performance by calculating the
correlation coefficient with the reference density. This evaluation method is discussed in detail and
compared to other usual metrics to justify its convenience.

1.4 Considered approaches
At the time of carrying out this work, no open datasets could be found aimed at detecting the kinds
of classroom activities and scenarios that were required in this case. However, Ceibal provided
several hours and instances of recorded lessons. Initially, some of these needed to be annotated in
order to evaluate the performance of the implemented system, but it was also decided to spend
some more annotation effort in order to create an initial training set for a supervised system.

Under these conditions, two CAD approaches were proposed: Diarization and Classification.

1.4.1 Why Diarization?
Audio diarization is the task of automatically detecting the speakers in a conversation and the
exact intervals where they spoke. This must be achieved without knowing beforehand the number
of speakers and without prior samples of their voices. The great advantage of these systems is that
once trained, they can run on any audio with unknown speakers. That is, if we find a pre-trained
diarization system, we can run and evaluate it on our lessons without needing any training data.

In order to achieve its task, a diarization system must extract audio features whose values
depend primarily on the particular voice speakers, and are in turn invariant to the different words
and intonations with which each person may speak. These features allow identifying audio segments
that belong to the same speakers.

Once the system is trained, it must work with voices that were not present in the training
set. Given a conversation, it makes the decision about which segments are similar enough to assign
them to the same speaker. This is why understanding the functioning of a system with these
characteristics seems very relevant to solving the problem of this work, where the main objective
is to distinguish the voice of the teacher from those of the students.

5

Chapter 1. Introduction

Although the teacher’s voice would not be known directly from the diarization output, in
practice it has been observed that it is always the most frequent in primary school lessons. Therefore,
if the diarization output is accurate enough, the speaker with the longest accumulated duration can
be assigned to the teacher and the remaining ones should correspond to students in general.

However, there are limitations and potentially serious problems with this approach. The most
important one is that depending on any heuristic -taking the predominant voice and assigning it
to the teacher- usually leads to important errors when unforeseen conditions appear. For example,
if the teacher is detected as two different speakers for some reason (e.g., due to a change in the
video conference setup), only a fraction of its voice will be correctly identified, while the rest would
be erroneously assigned to student participation. This would produce important errors in the
estimations or even swapped labels.

Furthermore, estimations could be unpredictable during group work or when many students
speak with a certain degree of overlap. This is, in fact, the most common scenario (as noted in
Section 1.1.1), since it is uncommon for students to participate for long periods of time without
interruptions. Although this is not the usual case in the datasets used to train diarization systems,
it is very common in primary classroom audios.

1.4.2 Supervised Classification Models
A CAD system can also be implemented as a time-based classification model, where each time
interval must be assigned a predefined label, such as teacher’s voice, student’s voice, groupwork,
among other possibilities. This is the most common approach in the CAD literature.

The main disadvantage of this approach is the need to manually create a training set. The
problem is that deep learning systems generally require a huge amount of labeled data in order to
achieve good results, and there are limited resources for such a task in this work.

In any case, the idea of training these models is to have an estimate of the amount of data
needed to have comparable results with the diarization system, and understand how the available
data impacts the predictions (on lessons with known/unknown teachers).

This approach also aims to determine the appropriate audio features for this task. While
there are numerous audio classification systems designed for diverse purposes, the uniqueness of
this problem lies in distinguishing between adults’ and children’s voices in an environment with
echoing, overlapping, and very fragmented voices, making it a distinctive domain. Therefore, it is
essential to invest time in evaluating which audio features are relevant and suitable to address this
specific challenge.

1.5 Related Work
The literature on Classroom Activity Detection (CAD) has seen significant advances in recent
years, since it has become an area of interest in education research. The increasing interest in
student-centered learning techniques promotes the analysis of classroom activities to maximize
learning outcomes. Traditional approaches rely on manual annotation by trained observers, which
is time consuming and impractical for large-scale evaluations. Therefore, there is a growing need
for automated solutions in this field.

The detection of classroom activities has been performed in a wide range of scenarios, but
most of the existing work is intended to automate the analysis of college-level courses. Wang et al.
(2014) proposed training a random forest model using the outputs of modified wearable devices to
predict activities such as “teacher lecturing”, “whole class discussion” and “student group work”
[16].

6

1.5. Related Work

Owens et al. (2017) developed the DART system (Decibel Analysis for Research in Teaching),
which used decision trees over signal amplitude statistics such as sound intensity and its variance,
to predict the amount of time spent on single voice activities (e.g., lecture), multiple voice (e.g.,
peer-to-peer discussions), and no voice activities (other sounds) [26].

Cosbey et al. (2019) improved upon DART by employing a Gated Recurrent Unit (GRU)
neural network on top of Mel-filterbank features [29]. They used the same three labels as DART
but reported significant reductions in error rates compared to it, showcasing the potential of neural
networks in CAD.

Another line of research from Li et al. (2020) focused on distinguishing between teacher and
student speaker roles using siamese networks and an attentional prediction mechanism, on top of
features that can be trained using representation learning [36].

More recently, Slyman et al. (2021) [41] compare many model architectures including recurrent
and time-delay networks on top of different audio features such as Mel-filterbank and modern self-
supervised embeddings, to perform CAD with different label granularity levels. At a fine-grained
level, they define 9 labels, which include 4 instructor modes (lecture, asking/answering questions, or
announcement) and 2 student modes (asking/answering question). Otherwise, they collapse these
categories into 5 or 4 labels, which allows comparison with previously existing systems. A result
from this particular work is shown in Figure 1.2.

It can be seen that the literature in CAD encompasses a range of approaches, including portable
and wearable audio recording devices, model architectures based on deep neural networks including
recurrent, siamese and attention-based mechanisms, and making use of many different audio features
and embeddings aimed at speech processing.

Although previous work demonstrated many advances in this field, challenges persist in accu-
rately recognizing speaker roles in classrooms. Particularly for primary school lessons, the challenge
of fast turn-taking (i.e., fragmented interventions) and high overlap is such an issue that the stan-
dard way of showing CAD results as a timeline bar with different colors (as in Figure 1.2) is not
suitable to compare predictions against reference ground truth labels. Some segments are so short
that they may not even be visible on a time scale that covers the entire lesson.

Furthermore, our CAD model needs to work under particular conditions, including high levels
of noise, low audio quality, and the diverse set-ups and video-conference systems used. In addition,
primary school lessons are outside the regular domain of systems focused on college-level lessons,
where students are basically adults. The developed solution must be robust to all these varying
conditions and the results must be evaluated and compared in a way that is related to the value of
the information that they provide to the users.

7

Chapter 1. Introduction

8

Chapter 2

Methodological Foundations

In this chapter, we discuss some of the theoretical underpinnings that are needed to understand
the different CAD models implemented in this work.

We begin with the essential elements of audio and speech processing, from the vocal tract
model to a recap of some important concepts and tools of time-frequency analysis, such as the
Short-Time Fourier Transform (STFT) and Mel-Frequency Cepstral Coefficients (MFCC). These
techniques are examined in detail, as they are the basis for capturing the distinguishing features
of speech and audio, in general. Other audio features based on statistics of the time-frequency
components of audio signals are also described, among others, spectral mean, bandwidth, and
contrast.

Next, we delve into the machine learning classification models employed in our supervised
approaches. We start with Recurrent Neural Networks (RNN) and Long Short-Term Memory
(LSTM), a particular type of architecture that is well-known for sequence classification tasks. Then
we also discuss Classification and Regression Trees (CART) models and in particular the widely
used XGBoost classifier. It serves as an alternative for comparison, being a robust and versatile tool
in machine learning that is not specifically tailored for sequence classification, but can be adapted
for it.

Furthermore, we provide an extensive overview of a typical diarization pipeline, which is the
competing unsupervised approach that we want to compare to the supervised models mentioned
above. We briefly explain the main concepts and metrics used. Then, a diagram of the pipeline is
outlined and the main blocks are described, including speaker embedding extraction and clustering,
describing some example algorithms that are typically used for each task.

Building upon these fundamental techniques, we lay the groundwork for the subsequent chap-
ters, where we dive into the implementation, experimentation, and evaluation of our approach.

2.1 Audio Features for Speech Processing
The human voice is generated by the vocal tract, which includes the larynx, pharynx, oral cavity,
and nasal cavity. To produce voiced sounds, air is pushed out of our lungs and passes through the
vocal folds in the larynx (see Figure 2.1), causing them to vibrate and produce an impulse train
that is the basis of the voiced sound synthesis process. This train can be seen as the output Tp of
the excitation generator in Figure 2.2.

This sound then travels through the vocal tract, where it is shaped by the different structures,

Chapter 2. Methodological Foundations

Figure 2.1: Cut of the vocal tract (sagittal), trachea and lungs (Source: [13])

Figure 2.2: Diagram of the signals involved in speech synthesis, as they are output from the different components.
These signals can be visualized in the time (up) and frequency (down) domains (Source: [13])

10

2.1. Audio Features for Speech Processing

creating specific resonances, and producing unique speech sounds. The vocal tract can basically
be modeled as a linear system that shapes the amplitude of the different frequency components, as
shown at the bottom of 2.2, where the frequency response of each part of the synthesis is placed
below the corresponding block. Mathematically, the frequency representation of an impulse train is
another impulse train but in the frequency domain (as shown at the left of the figure), which is then
filtered by the represented linear system, and results in a series of frequency peaks (or harmonics)
with different magnitude that is obtained by multiplying both functions in the frequency domain
(shown at the bottom right of the figure).

The frequency of the impulse train, which is the rate at which the vocal folds vibrate and
determine the pitch of the voice, is called the fundamental frequency (F0). This is the lowest
frequency and also determines the harmonics positions, since they are multiples of F0.

F0 varies according to the speaker, gender and emotional state and can be used to distinguish
between different speakers.

However, F0 alone is not enough to identify speakers as different voices can have similar pitch
values. Therefore, speech analysis also involves formant analysis, which refers to the resonances
of the vocal tract that shape the sound of the voice. These formants cannot be observed directly
(that is, the exact shape of V (jΩ) in Figure 2.2), but they can be estimated from the final result
in S(jΩ), with a resolution that depends on the fundamental frequency value, since the spacing
between peaks is determined by it.

Formants are determined by the size and shape of the vocal tract and are characterized by
their center frequency, bandwidth, and amplitude. By analyzing the formants of different speakers,
unique patterns that are specific to each individual can be identified. This information can be used
to detect and differentiate between different speakers’ voices, even in complex acoustic environments.

It is important to note that all these parameters are not fixed, but they change in time as
the speech signal is produced. However, if the observed time interval is small enough, they can be
considered to be approximately constant in these segments. Time-frequency analysis is particularly
useful in this context, as it enables us to analyze speech signals in both the time and frequency
domains. By applying techniques such as the Short-Time Fourier Transform (STFT), features can
be extracted from speech signals that reveal their spectral and temporal characteristics, so that
formants and F0 can be approximated and visualized as a function of time.

Finally, it is worth mentioning that in speech there are also unvoiced sounds (e.g., consonants
“f”, “s”), which do not involve activity in the vocal folds at all. These sounds have a frequency
spectrum that is basically white noise reshaped by the vocal cavity filters. These differences are
described in more detail in the next section, showing examples of voiced and unvoiced sounds in
Figure 2.3.

2.1.1 STFT for speech signals
Vowels and some consonants like m and n, which involve the vibration of the vocal folds, will
exhibit a harmonic spectrum, which means that there is a fundamental frequency and multiples of
it, with different frequency envelopes. These are distinguished as voiced sounds, as opposed to the
mentioned unvoiced sounds.

This can be better visualized by observing the spectrogram of some examples. In Figure 2.3
there are two consecutive vowels (a and e), and one consonant at the end (f).

The horizontal lines observed are precisely the frequency peaks due to harmonics (the bottom-
most line being F0), so in the first two vowels, it can be seen that F0 is similar, but the intensity of
the harmonics varies because of the different formant frequencies. At the end, the non-voiced sound
of the consonant is visualized as a non-harmonic spectrum (no lines corresponding to F0 multiples),
which instead shows a flat response over a wide frequency range, similar to filtered white noise.

11

Chapter 2. Methodological Foundations

Figure 2.3: Spectrogram of two voiced sounds (vowels a, e) with harmonic spectrum, and an unvoiced consonant
at the end (f). Horizontal axis represents time, vertical axis shows frequency, and lighter colors mean higher
signal intensity at the given time-frequency point

Another important point to observe from this figure is the fact that most of the signal power for
voiced sounds is in the harmonics below 4 kHz, which means that it should be possible to distinguish
voices by looking at this restricted bandwidth.

Windowing and the Uncertainty Principle

One of the most fundamental parameters to choose in any time-frequency transformation (like the
STFT), is the size of the sliding window that is evaluated at each time interval, on top of which
the Fast Fourier Transform (FFT) is calculated.

The range of good values for this parameter depends on the kind of signals under analysis and
the intended application. Conceptually, note that if the windows are too short, they will not cover
enough cycles of the signal (mainly in the lower frequency components) to calculate its frequency
components precisely (i.e: low frequency resolution), which is visualized as a spectrogram with a
lot of uncertainty due to wide frequency bands.

On the other hand, if the window is made much larger so as to include many cycles, two
problems arise. First, the temporal resolution is lower, because now the location of the sliding
window belongs to a wider time interval (e.g: if there is a sudden frequency change, the spectrogram
will react slowly, so the exact time of the event is less clear). And second, the voice signal may change
its frequency components widely in the time duration of a large window, leading to a mixture where
the frequency components are not well-defined because they represent a signal where the frequencies
are not nearly constant.

This uncertainty principle (which is an adaptation of the same Quantum Mechanics principle
for signals) actually has a precise mathematical definition and an equation to calculate the relation
between time and frequency uncertainties. In fact, as both quantities cannot be minimized at the
same time, considering the particular example of a pulse with uncorrelated time frequency (e.g.,
symmetric in time), pulse width T and bandwidth B (defined as the time and frequency standard
deviations, respectively), the following inequality holds (see [6]):

T.B ≥ 1

2
. (2.1)

12

2.1. Audio Features for Speech Processing

Figure 2.4: Spectrograms of the same audio signal, using different sliding window lengths (see plot titles).

This means that, regardless of its shape, it is not possible to create a pulse without some uncertainty
in its time position or in frequency. Some edge cases to illustrate this: the Dirac delta (δ(t)), has a
precise instantaneous position (pulse width/variance T = 0), but infinite bandwidth (B =∞); and
an infinite sine wave has a precise frequency (bandwidth B = 0), but it is impossible to know its
exact location (pulse width T =∞).

That said, the shape of the pulse does make a difference in the actual uncertainty that the
signal has, since this inequality only imposes a lower bound on the product. There is a family of
complex Gaussian pulses that are optimal in time-frequency localization, in the sense that they
reach the equality value in this equation. This is part of the theoretical framework behind the
so-called Gabor filters, which have recently been used by Google to develop an audio front-end for
feature extraction called LEAF, similar to STFT or Mel-filterbanks but with learnable parameters
that are fitted to the training data [42]. This is an alternative that could be evaluated in the future
and include in audio classification models.

The uncertainty principle is also useful in practice when the STFT of a signal is extracted,
since the FFT is calculated at each frame after the windowing process, which basically converts the
signal into a short pulse with the duration of the window, at each step. This windowing process has
the effect of increasing the bandwidth of the frequency peaks (since the time location is decreased,
the frequency uncertainty increases). That is why speech signals are a challenge: a good frequency
resolution is needed from frequencies around 100Hz (period of 10ms, so the window must be chosen
above that), but at the same time the signal properties change rapidly as people can pronounce
numerous phonemes in a fraction of a second.

The effect of this parameter on a speech signal can be clearly visualized in Figure 2.4, where in
the top example there is a long window size of 200ms, hence the frequency bands in the spectrogram
are quite narrow (good frequency resolution), but the time resolution is very bad compared to the
cases below, and the changes in the waveform are not clearly delimited in the spectrogram.

In the opposite extreme, there is a short window size of 5ms at the bottom, where it is observed

13

Chapter 2. Methodological Foundations

Figure 2.5: Triangular filters used to calculate the Mel-filterbank features. The center and width of each filter
are evenly sized in the Mel scale (Source: [13])

that the frequency bands of the harmonics are no longer distinguished, but all the time transients
of the signal are clearly delimited.

The image in the center, with a window size of 20ms shows a good balance between the
frequency and time resolutions. For speech processing, the window sizes are generally between
20ms and 30ms.

2.1.2 Mel-filterbanks
These features are widely used, and they produce a spectrogram that is basically a transformed
version of the STFT-based spectrogram.

The goal of Mel-filterbanks (named after the pitch measurement unit mel) is to mimic the
human ear’s sensitivity to different frequencies. The human ear is more sensitive to frequencies
in the range of speech and music, and less sensitive to frequencies outside that range. Also, at
higher frequencies, larger changes are needed for the ear to perceive them, so the filters in this
transformation are also aimed at grouping together the frequencies that would not be perceived as
different by a human, producing a spectrogram that reflects better the human perception.

By using Mel-filterbanks, the important frequency components of an audio signal can be
captured, while reducing the noise introduced by frequencies outside that range.

Mel-filterbanks work by dividing the frequency spectrum of an audio signal into a set of
overlapping triangular filters, as shown in Figure 2.5. Each filter has a center frequency that
corresponds to a specific Mel frequency, and the width of the filter is determined by the critical
bandwidth at that point (the minimum change that the human ear would perceive).

The filters are evenly spaced on a Mel frequency scale, which is a non-linear scale that maps the
frequency spectrum of sound to the Mel scale, which is usually approximated by the Equation 2.2
(see [13]):

m = 1127.01048 ln{1 + f/700}. (2.2)

The output of each filter is the energy of the signal within that filter’s frequency range. This energy
is typically computed using a discrete cosine transform (DCT). The result is a set of filterbank
outputs that represent the energy distribution of the input signal across the Mel frequency scale.
The number of filters to use (and hence the frequency range to cover) can be changed, and for
speech processing applications, the minimum number that should be used is 24 filters, which covers
the most relevant range of human voice, that is 0− 4 kHz.

2.1.3 MFCC: Mel-filterbank Cepstral Coefficients
The notion of cepstrum was introduced in a landmark paper published in 1963 titled “The Que-
frency Analysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum,

14

2.1. Audio Features for Speech Processing

Figure 2.6: Complete diagram of the MFCC calculation from the signal waveform, including the FFT transform
over the windowed frames (which is the STFT), the Mel-filterbank transformation, the log operation and finally
the discrete cosine transform. (Source: [19])

and Saphe Cracking.” The term “cepstrum” is derived from “spectrum” spelled quite randomly,
just as “quefrency” derives from “frequency” and “lifter” from “filter”.

The reason for introducing these funny names is that this technique involves taking the inverse
Fourier transform of the logarithm of the power spectrum of a signal, and it contains information
about the periodicities and repetitions in the log spectrogram. Since there are two Fourier trans-
forms involved (one is inverse but over the logarithm of the magnitude), the new signal cannot be
interpreted in units of time or frequency; hence the name quefrency was introduced.

In 1980, these techniques were adapted particularly for speech processing in [2], by performing
cepstral analysis on top of the Mel log-spectrogram, giving rise to the so-calledMFCC: Mel-filterbank
Cepstral Coefficients. The exact formula to calculate these coefficients can be found in Eq. 2.3, where
instead of the inverse Fourier, the DCT: Discrete Cosine Transform is used.

c[n] =
1

R

R∑
r=1

log(pf [r]). cos

(
2π

R
(r + 0.5) .n

)
. (2.3)

Where pf [r] are the Mel bands (using a total of R bands), as shown in Figure 2.6, where there is a
complete diagram of this calculation from the signal waveform.

Basically, the log operation over the Mel spectrum will enhance small peaks, which usually
correspond to higher-order harmonics, making it easier to observe the periodicity of the signal
spectrum. Then, by performing the cosine transform, the signal is transformed into the quefrency
domain, where the lower quefrency coefficients will capture the slowly varying spectral envelope
of the signal, which is information about the frequency formants. In these coefficients, the many
periodic peaks of the harmonics (multiples of F0) are filtered out, the short distance between them
is not relevant, and only their modulation envelope is captured.

The information about F0 is instead encoded in the higher-order coefficients or high quefren-
cies, since its responsible for the rapid periodicities observed in the harmonic spectrum.

2.1.4 Other audio features
There are other audio features that were used or evaluated in this work, some of them are just
statistics on top of the spectrogram, and further information can be found on the documentation
of the librosa library [48]. In this section, a brief description and an explanation of how they could
be relevant for speech processing is provided.

15

Chapter 2. Methodological Foundations

Spectral Flatness
Spectral flatness is a measure of the level of distribution of energy across the frequency spectrum of
an audio signal. This is also referred as the tonality coefficient, and quantifies how much noise-like
a sound is, as opposed to being tone-like. In speech recognition, this means that it can be useful
to distinguish voiced and non-voiced sounds, as was explained in the previous sections.

A high spectral flatness (closer to 1) indicates that the spectrum is similar to white noise,
which can also be interpreted as a signal with high randomness [11]. In these cases, the energy
is distributed uniformly across the frequency range, as was observed for the consonant sound in
Figure 2.3.

Spectral Mean
Spectral mean or centroid is a measure of the central value of the frequency spectrum. It is computed
by first normalizing the magnitude spectrogram as a density distribution and then taking its average
value.

This means that a speaker with a high-pitched voice may have a higher spectral mean than a
speaker with a lower-pitched voice. This is not equal to the actual pitch, which is measured from
the fundamental frequency, but instead it can be more robust to overtone or undertone errors due
to detecting higher-order harmonics instead of the actual F0.

Because of this property, the spectral mean can also be used to distinguish between male
and female speakers, as male speakers typically have a lower spectral mean than female speakers,
and this is also the case with adult and child voices, which is very useful for Classroom Activity
Detection.

Spectral Bandwidth
Spectral bandwidth is a measure of the spread of the frequency spectrum of an audio signal. It is
computed by taking the standard deviation of the power spectrum, where the mean is the spectral
mean. The spectral bandwidth captures the range of frequencies present in the signal.

It is useful for speaker recognition because it can capture the timbre of the speaker’s voice.
For example, a speaker with a nasal voice may have a narrower spectral bandwidth than a speaker
with a more resonant voice.

Spectral Contrast
The spectral contrast is not a scalar value, but a vector. Each frame of the spectrogram is divided
into a few sub-bands. These should not be too narrow bands, as they need to include peaks and
valleys. For example, the default value of librosa is 7 bands. For each subband, the contrast is
estimated by comparing the mean energy in the top quantile (peak energy) to that of the bottom
quantile (valley energy).

High contrast values generally correspond to clear narrowband signals, whereas low contrast
values correspond to noise in that frequency band.

Different speakers may have different spectral contrast patterns across the frequency bands,
and so this feature vector can be useful for our classification systems.

Signal Power
This is a measure of the energy of the audio signal, in each windowed frame. It can be computed
by adding the squares of the signal samples and dividing by the number of samples, which provides
an estimate of the loudness of the signal at each time interval.

16

2.2. Recurrent Neural Networks and the LSTM

Figure 2.7: Basic architecture of a Recurrent Neural Network (RNN), showing that it contains a recurrent loop
(left) that can be also visualized as an unrolled sequence with multiple copies of the same network, with the same
parameters but different states and inputs at each step (right). Source: [18]

It can also be calculated for each frame directly from the spectrogram (using the Parseval
theorem, which states that the energy in the frequency domain must be equal to the energy in the
time domain), and this is the preferred method since the signal is already windowed.

In this work, the power is estimated by calculating the RMS (Root Mean Square) value first
(which is available in librosa), and then converted to Decibel scale, using the audition threshold
(20µP - RMS sound pressure in pascals) as reference:

P (t)dB = 20 log(RMS(t)/20× 10−6). (2.4)

It’s important to normalize the average audio loudness of each recording during training and infer-
ence, since the important feature is the relative loudness of the speaker’s voice at any given time,
and it should not depend on the volume at which the recording was configured.

Zero Crossing Rate (ZCR)
ZCR is a straightforward measurement on the time domain: it counts how often the audio signal
crosses the zero level. The number of times the audio signal changes sign is counted and divided
by the duration of the frame interval.

Although it may lead to unintuitive results for signals with noise or with a complex mix of
frequencies, it is often considered for speech recognition applications due to its simplicity [13].

2.2 Recurrent Neural Networks and the LSTM
Recurrent Neural Networks (RNNs) are a specialized architecture designed to handle sequential
data, where the order of input elements is significant. Their main advantage is their ability to
retain a hidden state that preserves information about past inputs in the sequence. This serves
as a form of memory, enabling RNNs to capture dependencies and patterns over time. This is
achieved by using loops in their architecture (as in the left side of Figure 2.7), allowing the network
to process each element of the input sequence while updating the hidden state with information
from the previous steps.

The loops can also be visualized in its “unrolled” form, as a series of interconnected copies of
the network, one for each time step (as in the right side of Figure 2.7). The unrolled visualization
helps to understand the flow of gradients through time and how they affect the updates of the
network’s parameters. It becomes evident that the gradients at each time step depend not only on
the current step but also on the gradients from subsequent ones, which represent the influence of
future time steps on the current one. Considering this interdependence of gradients across time,
it is possible to understand that long-term dependencies can lead to issues known as vanishing or
exploding gradients in conventional RNNs, and the need for architectures that allow better control
on the flow of information through the network, like the LSTM.

17

Chapter 2. Methodological Foundations

Figure 2.8: Unrolled diagrams of recurrent networks. The input is a sequence x1..T and the output is usually
extracted only at the last step as hT , the final state after the whole sequence has been processed. Top: Standard
RNN network, consisting of a single block where each state is calculated as ht = tanh(Wxxt + Whht−1 + b).
Bottom: LSTM network, with all the gate mechanisms to control the information flow to the memory cells, and
avoid the exploding/vanishing gradients problem. Source: [18]

The basic architecture of the LSTM was proposed in 1997 by Schmidthuber & Hochreiter
[8], and was later improved by the same authors in 2000 [9] with the introduction of the forget
gate. In subsequent years, researchers have proposed various modifications and extensions to the
LSTM architecture. A comprehensive examination of various architectures was conducted in 2015
by researchers at Google, accompanied by an empirical evaluation of the components to assess
their impact on performance [17]. It is also worth mentioning that a great conceptual explanation
including a walkthrough on how this architecture works has been published by Cristopher Olah on
his personal blog [18].

As mentioned, one of the main problems of conventional RNN architectures (top image in
Figure 2.8) is known as the exploding or vanishing gradients, which can arise in deep neural networks
when backpropagating errors through many layers. In RNNs, this is especially problematic because
of the Backpropagation Through Time (BPTT) process: the gradient flows through the network
for multiple sequence steps because of its recurrent nature. As a consequence, if the sequence is
too long, the training process becomes unstable.

In the LSTM architecture (bottom image in Figure 2.8), this problem of divergent gradients
is mitigated by using a gating mechanism that controls the information flow through the network,
allowing the gradients to be backpropagated through many time steps without being significantly
amplified or attenuated, which makes the training process stabilize even for long sequence lengths.

18

2.2. Recurrent Neural Networks and the LSTM

2.2.1 How LSTMs work
For this work, the LSTM in use is defined by the following set of equations [15], which have a
correspondence with the elements in the diagram at the bottom of Figure 2.8 from left to right:

ft = σ(Wifxt +Whfht−1 + bf)

it = σ(Wiixt +Whiht−1 + bi)

gt = tanh(Wigxt +Whght−1 + bg)

ot = σ(Wioxt +Whoht−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct).

(2.5)

Here, all the Wnm, bm parameters are learnable matrices or biases, respectively. The symbol ⊙
means the element-wise product (i.e., Hadamard product).

Let us first identify all the σ(·) blocks in Figure 2.8 and also in the equations (left to right
in the figure is mapped as top to bottom in the equations). They are called the forget gate ft,
input gate it and output gate ot. The symbol represents the standard sigmoid function, which maps
any input value to the range [0, 1], hence the name gate: by multiplying its output by a vector,
it controls how much information flows through the gate (that is why all gates are followed by
multiplication blocks).

Next, observe that the lower arrow lane in the LSTM figure, takes its input from the output
ht−1 of the previous step. In each cell, ht is calculated from the upper lane after passing through
a tanh(·) block. The upper lane represents ct in the equations, which is the cell state or memory.
The memory value passes through tanh(·) to ensure that it is in range [−1, 1] and then through the
output gate ot, to produce the output ht.

At this point, the role of gt can also be clarified: this is the new candidate value for updating
the cell memory. In the figure, it is the output of the yellow tanh block, which applies linear
transformations and adds biases to the sequence input xt and the previous output ht−1. The new
candidate to update the memory value must pass through the input gate it, and then be added to
the upper lane ct, which represents the memory as mentioned before, to update it.

The memory state from the previous step ct−1 can be preserved if ft ≃ 1 (first yellow block
σ) or totally reset if ft = 0, hence the name forget gate.

This LSTM definition has been used successfully for a wide range of tasks including speech
recognition and audio classification, but also for any kind of problem involving inference over
sequences of feature vectors (like time series forecasting, natural language processing, video pro-
cessing, etc.). There are also many variants proposed for the LSTM and conventional RNN, such
as the more recent GRU: Gated Recurrent Unit which is simpler and achieves similar results to
LSTM in some tasks, but was not implemented in this work.

2.2.2 Using LSTMs for audio classification
LSTMs can be used for a variety of audio classification tasks, including speaker recognition, music
genre classification, and detection of sound events [15], [41].

To use an LSTM for audio classification, we first convert the audio signal into a sequence of
feature vectors as seen in Section 2.1.

These feature vectors are then fed into the LSTM one at a time, along with the previous
hidden state. After processing the entire sequence, the final hidden state is fed to a fully connected
layer (i.e. a learnable linear transformation) that maps the hidden state dimension to the number
of classes or labels in the classification problem. Finally, these numbers are translated into a
probability distribution over the possible output classes by using a softmax layer.

19

Chapter 2. Methodological Foundations

It is usual to stack LSTMs in multiple layers, by using the output sequence ht from one network
as the input of another network.

The number of layers and the hidden dimension (i.e., the dimensions of ct and ht) are important
parameters that affect the performance of the LSTM. Increasing the number of layers and the hidden
dimension can improve the LSTM’s ability to capture complex features and relationships in the
audio signal but may also increase the risk of overfitting.

2.3 XGBoost: Gradient Boosted Trees
Another family of supervised classification models that is evaluated in this work is based on Deci-
sion Trees instead of Recurrent Neural Networks like the LSTM. These models are fundamentally
different in their working principles, and are based on CART (Classification and Regression Trees)
algorithms introduced in 1984 by Leo Breiman et al. [3].

In particular, XGBoost (eXtreme Gradient Boosting) [20] is an advanced and powerful machine
learning algorithm that combines CART with the principles of gradient boosting introduced by
Jerome Friedman in 2001 [10]. It is known for its efficiency, accuracy, and scalability and has been
widely used in various machine learning competitions and real-world applications.

There are two important reasons for studying this particular model. On one side, we check the
LSTM’s performance against another state-of-the-art classifier that works with a different principle,
and on the other side we have an alternative that does not require any special hardware to run. It
can be trained on CPU and does not depend on a GPU like the LSTM does -the latter is orders of
magnitude slower without it-.

2.3.1 Gradient Boosting and CART
To understand how XGBoost works, let us break down its key components and the steps involved:

• CART is a decision tree algorithm that can be used for both classification and regression tasks.
It recursively partitions the input data on the basis of certain feature thresholds, creating a
binary tree structure. Each internal node represents a decision based on a characteristic and
each leaf node holds a prediction value.

• Gradient boosting is an ensemble learning method that combines multiple weak prediction
models (typically decision trees) to create a strong predictive model. It builds the model in
an iterative manner, sequentially adding new weak predictors to correct the errors made by
the previous ones.

XGBoost employs gradient boosting as its foundational framework, using decision trees for
week predictors.

2.3.2 How XGBoost works
XGBoost starts by defining an objective function that needs to be optimized during the training
process. This means choosing the model parameters θ that minimize the objective function L(θ).
The function consists of two parts: a loss function L(θ) that increases with a greater difference
between predicted and actual values, and a regularization term Ω(θ) that controls the complexity
of the model to prevent overfitting [20]:

L(θ) = L(θ) + Ω(θ). (2.6)

During the training process, XGBoost builds the ensemble of weak predictors in an iterative manner.
It starts with an initial prediction (usually the average of the target values) and calculates the

20

2.3. XGBoost: Gradient Boosted Trees

Figure 2.9: Examples to illustrate the regularization concept of an XGBoost model. The data points to fit are
user’s interest on a topic as a function of time (top left). If the complexity of the model is too high (i.e. overfitting
the data), the regularization term Ω(f) is high, hence the objective function would not be at a minimum (top
right). If the tree split parameters are not optimal, then L(f) is high, and again the objective function would not
be optimal (bottom left). When the regularization parameters are properly selected and the objective function
is minimized, the resulting predictions should be as observed in the bottom right case. Source: [20]

gradient of the loss function with respect to the current prediction. Then, it fits a new decision
tree aiming to improve the prediction at that step, which can be calculated as the sum of all the
weak learners so far:

Assume that we are training on a dataset of samples with features and target values xi, yi.
At the iteration step t, it creates a new weak learner tree ft, to improve the predictions from the
previous training step ŷt−1

i .

ŷt
i =

t∑
k=1

fi(xi) = ŷt−1
i + ft(xi)

Only the parameters of ft are adjusted in each training step t, based on the gradient of the
loss function. The loss Lt(θ) from the above equation is the sum of the sample losses l(.) for this
step (which could be the squared error or logistic loss, for example). So, given a set with n samples,
we add up:

Lt =

n∑
i=1

l(yi, ŷ
t−1
i + ft(xi)) + Ω(ft).

Here, the regularization term for the new tree is Ω(ft) = γT + 1
2
λ||ω||2. In turn, γ, λ are scalar

parameters of the model, T is the number of leaves, and ω are the weights of the tree ft. This term
controls the complexity of the model and prevents overfitting. It penalizes the complexity of the
trees (through the variable T) and also encourages simpler or even sparse solutions (through L2
regularization in this case, but L1 can be used instead).

The optimization of the objective function Lt in each step is then performed using some
approximations and the gradient of this function with respect to the parameters of the new tree ft

21

Chapter 2. Methodological Foundations

[20]. This means calculating the best split points for each feature in the newest tree.

The process continues until a stopping criterion is met, such as reaching a maximum tree depth
or the improvement in the loss function falls below a threshold.

For example, using the early stopping technique, the predictions are evaluated in a separate
validation set, containing samples that are not used to calculate the loss gradient and update the
parameters during training. When the error in this separate subset is no longer decreasing for a
certain number of rounds, the training process is stopped regardless of the fact that Lt may continue
decreasing with more iterations. The validation set is used to test the generalization capacity of
the model, so the early stopping method avoids overfitting the training set.

The regularization parameters γ, λ, which also improve generalization (e.g. if the gap between
training and validation errors seems too large, they should be increased), can be found by training
several variants in a hyperparameter tuning procedure and picking the one with the lowest validation
error at the end.

Figure 2.9 shows examples of different balances in the optimization function L, depending on
the regularization term Ω(f) and the training loss value L(f).

In summary, XGBoost combines the techniques of gradient boosting and CART to build an
ensemble of decision trees, optimizing an objective function through gradient-based optimization.

2.3.3 XGBoost for Audio Classification
The same audio features that can be used to train an LSTM model can be also used as input to the
XGBoost algorithm. XGBoost will learn to classify audio samples based on the features provided
by iteratively constructing a set of decision trees, each focused on different aspects of the feature
space. The ensemble of these decision trees forms the final XGBoost model, which can be used to
predict the audio labels for each feature vector.

It is important to note that models based on decision trees do not have a built-in mechanism
to classify sequences of data. In other words, each feature vector that is classified is treated as
completely independent of other neighboring samples.

In order to leverage the temporal sequence nature of the audio classification problem, a Con-
text Window must be implemented externally. Therefore, when classifying a given sliding window,
for example of 20ms duration, the features extracted for this particular sample can be concate-
nated with the feature vectors of neighboring samples. For example, using a context window of
5 samples before/after, suppose that there are 20 audio features extracted per sliding window,
then the concatenated vector to classify with the boosted tree model will have a dimension of
(5 + 1 + 5)× 20 = 220 input features.

One notable aspect of XGBoost is its ability to provide insight into the importance of features.
By keeping track of how often and how much each feature is used in the construction of the
trees, XGBoost assigns importance scores to the features. This information can be valuable for
understanding the underlying patterns in the data and selecting the relevant features.

2.4 Diarization Overview
The goal of diarization is to detect speaker changes in an audio recording and to identify which
speech segments correspond to the same speaker (see Figure 2.10), answering the question of who
spoke when.

This problem is different from transcription because it focuses on segmentation of the audio
and identification of different speakers. Transcription consists of detecting what was said in each
part and turning it into text.

22

2.4. Diarization Overview

Figure 2.10: Example of audio diarization with 3 speakers [14]

While diarization can be used to complement transcription, to know who said each part, it’s
important to note that from the point of view of the audio representations (or embeddings) that
are useful to solve them, they are almost opposite problems:

• For diarization, an ideal audio representation would allow separating different voices, being
invariant to the particular words and phonemes of the segment to encode.

• For transcription, the ideal representation would allow one to identify words, being invariant
to the particular voice of the speaker.

This means that these representation vectors or embeddings for diarization or speaker identi-
fication applications are generally very different from those used for text transcription.

It is important to keep in mind this clarification, since recently there have been significant
advances in transcription models that use deep learning and large volumes of data, like OpenAI’s
Whisper model [45] or the models in use by popular platforms like YouTube, to automatically
generate subtitles for the videos, which show impressively accurate results.

This may intuitively generate the idea that diarization is simply a sub-problem of transcription
that should be easily solved in comparison. However, while diarization systems have also seen great
improvements by using deep learning and large amounts of data, it is necessary to understand that
advances in each of these problems do not generally transfer directly to each other, considering that
the challenges involved, and even the training data used in each case, are generally different. For
transcription tasks, even though the manual annotation effort is much higher in general, there are
some huge preannotated data sources ready to use, such as audiobooks and movie subtitles.

For diarization, a popular dataset used mainly to evaluate models is Voxconverse [34], which
was obtained from videos that were processed with a face recognition system, to automatically label
audio segments that match the detected speakers. It consists of approximately 20hs of data for
development, and 43hs intended for testing. Other popular datasets are CALLHOME (1997) [7],
which consists mainly of phone recordings of american speakers, and the DIHARD dataset [32],
which is a compilation of different audio sources with a variety of settings.

2.4.1 Applications, similar problems, and challenges
Audio diarization is often used as a pre-processing step for other applications, or as an end in itself.

For example, in the case of Acoustic Speech Recognition (ASR) for audio-to-text transcription,
as mentioned earlier, a diarization or speaker change detection stage is usually performed beforehand
to improve context information when performing the speech recognition.

In turn, the result of diarization can be useful in itself, for example, to automatically analyze
recorded customer service phone calls, patient-doctor interviews, or classroom activity. The use
case that will be emphasized in this work is the automatic analysis of recorded virtual classes to
estimate the intervals in which the teacher or students speak.

23

Chapter 2. Methodological Foundations

Figure 2.11: Errors that a diarization system can introduce, showing an example with two speakers (green and
blue). Source: [28]

A subproblem of diarization is speaker change detection, which, together with voice/speech
activity detection (VAD or SAD), allows for speaker segmentation. These can be considered as
previous steps because they do not require identifying whether the voices after each change or
in each segment had previously participated in the conversation, but rather they are sufficient to
delimit the voice segments that potentially belong to different speakers.

Another problem that could be considered a subproblem is speaker verification. In this case,
it is required to verify whether two given audio segments belong to the same speaker. The audio
representations used to solve this problem can distinguish voices from each other, and therefore
can be used as part of a diarization system. However, speaker verification is intended to analyze
short audio segments, which contain only one speaker, and it is not important to do any kind of
temporal delimitation of the sequence.

A diarization system is basically the combination of the two previous tasks: first delimiting
voice segments, and second knowing which ones belong to the same speakers, or to an entirely new
speaker who may not have previously participated in the conversation (the number of participants is
not known a priori). For this reason, diarization competitions and challenges usually have different
tracks, where some focus specifically on solving one of the previous subproblems.

For example, in the DIHARD 2018 challenge [27], there is the first track where audio segmen-
tation is already provided, and the task is to detect which speaker each segment belongs to, and
the second track is for complete diarization. In the VoxSRC-21 challenge [38], there are the first
three tracks for speaker verification, and only the fourth is for complete diarization.

2.4.2 Diarization metrics: DER, JER, EER
The most widely used metric for speaker diarization is the DER: Diarization Error Rate, defined in
Equation 2.7 as the sum of False Alarm, Miss, and Confusion errors divided by the total number of
speech segments in the reference signal ([24], [27]). Figure 2.11 illustrates the types of errors that
a diarization system can make in a two-speaker scenario.

DER =
False Alarm + Miss + Confusion

Total
. (2.7)

The overlap component, which represents speech segments in which multiple speakers are talking
simultaneously, is usually discarded because including these segments and adding them to the
numerator can result in a DER greater than 1 [28]. Furthermore, when audio segmentation is
known and provided as input to the diarization system, as is the case in some evaluation challenges
mentioned before, only the Confusion component is used to calculate the error, since False Alarm
and Miss correspond to segmentation errors, specifically related to the Voice Activity Detection
(VAD) process.

24

2.4. Diarization Overview

Note that speaker IDs in the reference and those detected by the system generally do not
coincide. For instance, speakers labeled 1, 2, and 3 in the reference may correspond to those
detected by the system, but assigned IDs 2, 4, and 1, respectively. Mapping speakers is not trivial,
as it requires assigning speakers whose segments coincide to the greatest extent. Note that following
the order of appeareance would not be robust, since one single false speaker detection would shift
all subsequent speaker numbers. In order to match the speaker numbers whose segments overlap
the most, the Hungarian algorithm [1] for optimal assignment is often used, and that is the case in
the open source library pyannote.metrics [24], which is widely adopted in industry and academia.
This is not a DER-specific problem, but a general one in any metric used to compare these speaker
detections with references, as the ID mapping cannot be known a priori.

As a secondary metric for speaker diarization, JER: Jaccard Error Rate (introduced in [32])
is often used. It is based on the popular Intersection over Union (IoU) metric, also known as
the Jaccard index, which is popular in object detection tasks. In this case, the same principle is
applied to the speech segments detected by the system and those in the reference. After optimal
mapping, each reference speaker ID is paired with a detected ID, and the temporal Intersection
over Union (IoU) is measured for all these speaker segments. The JER for that speaker is then
JERi = 1− IoUi. Here the subindex i is the speaker number. This value is then averaged over all
reference speakers.

The intersection of the segments, which is the interval where they overlap, corresponds to
I = Total−False Alarm−Miss (discarding the overlap and not using the Confusion component in
this case, as each IoU is calculated between only one detected speaker and one reference speaker
after the optimal assignment). The union corresponds to U = Total, and therefore:

JERi = 1− I

U
=

False Alarm +Miss

Total

Finally, it is worth mentioning another metric known as EER: Equal Error Rate, which
sometimes appears in some parts of diarization system publications. Although it is not directly
applicable to speaker diarization but only to speaker verification tasks, it can be used to evaluate
the quality of the voice embeddings (the audio representations mentioned before), which are vectors
that should be close together when the voices are similar and distant otherwise.

To measure this in an interpretable way, the rate of true positives and false positives are
calculated, using these vectors with different distance thresholds for the classification task (when
the distance between two vectors is less than the threshold, it is considered that they belong to
the same speaker). However, to obtain a metric that does not depend on the chosen threshold
parameter, one option is to use the area under the ROC curve, or a simpler option is to find the
point where the rate of true positives and false positives coincide, and this coinciding rate value is
the EER.

2.4.3 Diarization pipeline
In the following sections, we detail the function of each block of a typical diarization system, with
some optional components and different possible configurations, as shown in Figure 2.12.

Audio Features
The first block is feature extraction, which basically means extracting vectors at periodic time
intervals, with meaningful values to understand aspects of the signal, according to downstream
tasks in the pipeline.

Typically, the waveform of the signal is not directly used, although there are some deep learning
models that operate directly at that level. Most likely, the signal is converted into a sequence of
feature vectors (see Section 2.1), which could be some statistics of each segment (such as ZCR:

25

Chapter 2. Methodological Foundations

Audio
Features Segmentation Speaker

Embeddings Clustering
Input Audio

Outputs

Seg 1: sp 1
Seg 2: sp 1
Seg 3: sp 2

…MFCC, ZCR, etc.
~30ms windows

VAD, Speaker change
~1 to 5 sec. segments

ECAPA, xvector Cluster embeddings
into speakers

Re-
segmentation

Clusters to time
domain

Figure 2.12: Components diagram of a typical diarization system.

Zero Crossing Rate, signal power, amplitude, etc.), or a time-frequency representation such as the
spectrogram or Mel frequency bands, or the mentioned cepstral coefficients MFCC, which can be
useful to reduce the dimensionality of the features.

As mentioned in Section 2.1, these local features are extracted over sliding windows that
usually have a duration of between [20, 30]ms for voice processing applications, and an overlap of
at least 50% in most cases.

The tradeoff to select an appropriate window size in the case of a time-frequency representation
is given by the uncertainty principle for signal processing (also mentioned in Section 2.1), which
opposes frequency resolution with temporal resolution [6]. This implies that if the windows are
much shorter than 20ms, they will not cover enough cycles of the voice signal (mainly in the
low frequency components), as to calculate its frequency components precisely (i.e: low frequency
resolution), which is visualized as a spectrogram with a lot of uncertainty due to wide frequency
bands.

Although the mathematical formulation of this principle only applies to time-frequency trans-
formations, this trade-off must be considered at least qualitatively with any features extracted over
sliding windows, as they are approximations that assume that the signal parameters are approxi-
mately constant in that interval.

Voice Activity Detection, Overlapping, and Speaker Changes
The second block of Figure 2.12 (VAD: Voice Activity Detector) detects voice activity to avoid
processing segments where other types of sound such as noise, music, etc., are present. Although
not common, some systems do not use a specialized VAD module, but instead calculate embeddings
for all segments and eventually discard some by evaluating them a posteriori.

After the VAD, there are further variations in different systems. There may be an overlapping
detection module to ignore these segments or process them in some particular way. There may
also be an optional segmentation module that detects potential speaker changes (speaker change
detection). Other systems do not use any of these optional blocks and instead calculate speaker
embeddings for all voice-detected segments, in some cases detecting speaker changes or overlapping
with some postprocessing technique (the overlapping problem is often simply ignored).

A very interesting approach that covers the functionality of all the above blocks is the model
used by pyannote.audio, performing VAD, speaker change detection and speaker overlap detection
all at once [37]. This is achieved by training a local speaker classification model with a permutation-
invariant loss, which outputs the probability of 3 different speakers restricted to short time intervals
(around 3 seconds), taking advantage of the fact that it is very rare to have more than 3 different
voices in such a short period of time. This approach will be discussed further.

Speaker Embeddings
The speaker embeddings block depicted in Figure 2.12 plays a crucial role in the transformation
of audio features at that stage. Its primary objective is to generate a vector representation that
remains relatively constant for a specific speaker, regardless of the language sounds and words that

26

2.4. Diarization Overview

they produce. This vector should ideally change only when the speaker changes. In essence, it
should exhibit invariance to variations in language, remaining close to any other voice segment
uttered by the same individual. In contrast, it should ensure substantial dissimilarity from voice
fragments spoken by different speakers, even if they are saying the same words.

As mentioned earlier, this fundamental distinction sets apart voice-to-text transcription sys-
tems, where the focus lies on achieving invariance to speaker voices and maximizing distinction
between different words.

The segments or sliding windows over which these embeddings are calculated usually last
between 0.5 and 3 seconds, and there is a trade-off between using short windows to have good
temporal resolution by quickly detecting speaker changes, or using longer windows to generate a
good context of a few seconds of audio that allow proper voice characterization and differentiation.

Intuitively, this can be compared to the time it takes a human to distinguish a certain voice.
This tradeoff may not be confused with the uncertainty principle for signals mentioned before,
although there is some resemblance in the discussion. In general these embeddings are not calculated
directly over the waveform domain, but instead over a sequence of vectors with the higher-level
features extracted in the first block.

For example, in [28], an LSTM receives as input a sequence with a span of 240ms, where
each element of the sequence is a feature vector of dimension 40 representing the logarithmic Mel-
filterbank energies extracted from frames of 25ms, with a step of 10ms. The output is an embedding
that they call d-vector, and the neural network is trained using a contrastive loss, so that these
embeddings are close to others from the same speaker and far away from other different voices.

Another example using more modern attention mechanisms and Time-Delay Neural Networks
(TDNN) is shown in [35], where the input features are vectors containing 80 MFCCs, also extracted
over 25ms frames with 10ms step. This model known as ECAPA-TDNN, is widely used as one
of the state-of-the-art embedding models from many speech recognition applications, including
diarization (for example, in the SpeechBrain library [40]).

Clustering
In the clustering stage, all the embedding vectors are taken for each audio segment, and an attempt
is made to group them together to generate clusters that contain segments from the same speaker,
whether they are consecutive in time or not. Ideally, the number of clusters should match the
number of people in the conversation.

For this stage, the most widely used clustering algorithms are Agglomerative Clustering and
Spectral Clustering.

Agglomerative clustering is the “bottom-up” approach to the more general hierarchical clus-
tering [23]. The process begins by considering each data point as its own individual cluster. Then,
based on a specified similarity measure, the algorithm progressively merges the closest clusters to-
gether to form larger clusters. This merging process continues iteratively until all data points are
combined into a single large cluster or until some specified criteria are met.

The sequence of cluster mergers leads to a tree-like representation of the hierarchical clustering
process called dendogram, showing for example the number of clusters at each similarity level. There
is some flexibility to choose the linkage criterion, which is the method used to compute the similarity
between clusters during the merging process.

For example, the centroid linkage method uses the distance between cluster centroids as the
similarity measure, while the single linkage uses the minimum distance between data points in each
pair of clusters to determine its similarity. There are many other methods, and this adaptability
allows the algorithm to be tailored to specific datasets, accommodating different types of data
and cluster shapes effectively. Since it does not assume any particular shape for the clusters, it

27

Chapter 2. Methodological Foundations

Figure 2.13: Embeddings affinity matrix and refinements applied to regularize it before spectral clustering. The
original affinity matrix is shown in the top-left corner, and it can be seen that after the final normalization step
(bottom-right), the dark blocks are more clearly defined. Each of these blocks represent zones of high affinity (or
low distance) between consecutive embeddings, which indicate that they belong to the same speaker. Source:
[28]

is applicable to a wide range of data distributions, making it very versatile and suitable for the
high-dimension vectors often used as speaker embeddings.

However, aggomerative clustering does not leverage any information about the temporal po-
sition of embeddings. For example, there would be no special consideration for two samples corre-
sponding to consecutive audio segments, and they would have exactly the same probability to be
merged into the same cluster as two distant samples. Some diarization models make the assumption
that, in most conversations, each speaker will talk for a couple seconds (several consecutive frames)
before giving way to another person. Therefore, they impose a structural bias on the clustering
algorithm to favor grouping together consecutive samples.

Spectral clustering allows for the implementation of this structural bias, by applying some
refinements to the embeddings’ affinity matrix (Figure 2.13). In this matrix, the dot product
between all embeddings is calculated, where the row and column numbers represent the position of
each embedding (i.e., consecutive samples lead to embeddings in consecutive rows and columns).
Each cell in the matrix represents the dot product between two embeddings, with dark pixels
meaning high affinity (high dot product).

It is worth noting that well-defined segments that belong to the same speaker lead to well-
delimited dark blocks in the matrix, since they are areas of high similarity between contiguous
embeddings.

Spectral clustering consists of finding lower-dimensional embeddings that still reproduce this
affinity pattern between embeddings. The name comes from the fact that in graph theory, this
affinity matrix represents the connectivity between the graph nodes (in this case, each node would
be a sample’s embedding) and the clusters or “node communities” are identified by analyzing the
“spectrum” of the matrix (i.e., the eigenvalues and eigenvectors of the matrix in graph theory).

However, before performing the spectral decomposition of the affinity matrix, some refinements
are applied to it, in order to improve the definition of the dark blocks that represent each speaker’s
intervention. The regularized matrix is less prone to spurious patterns that would generate inter-
mittent changes in the speaker, and this is assumed to be a positive thing in most conversations,
as mentioned before.

After the refinements, the matrix is diagonzalized using the eigenvalues. Since the affinity
matrix is symmetric (the dot product is commutative, so Aij = Aji), this decomposition is of the

28

2.5. Chapter summary

form:
S = P ·D · PT , (2.8)

where D is a diagonal matrix with the eigenvalues and the rows of P (or columns of PT) are
the eigenvectors associated with those eigenvalues. If we assume that S ∈ Mn×n (where n is
the number of audio segments on which the embeddings were computed), the diagonalization also
results in three matrices n× n.

However, only a subset m < n of the eigenvalues can be used, and the corresponding rows
and columns can be eliminated from P to obtain Pr ∈ Mn×m, PT

r ∈ Mm×n, and Dr ∈ Mm×m

such that, when multiplied, the resulting matrix Sr still has dimension n, and becomes increasingly
similar to S as n −→ m. By filtering a certain number m of eigenvalues, an approximation of S (as
good as desired) is obtained, but more importantly, a matrix Pr ∈ Mn×m is obtained, where each
of the n audio segments corresponds to a row in the matrix, which can be seen as a new embedding
for the segment, with reduced dimension m.

Finally, a clustering algorithm such as k-means is used to group embeddings with reduced
dimension. The essential aspect of this spectral smoothing and clustering procedure is that a
structural bias is introduced into the system, favoring embeddings close in time to belong to the
same cluster (same speaker), and at the same time filtering out noisy detections (spurious dark
blocks in the affinity matrix).

A widely recommended source of consultation on this topic is “A Tutorial on Spectral Clus-
tering” by Ulrike von Luxburg [12].

At first hand, it is not clear that introducing this temporal structural bias in the system would
lead to better results in the case of the diarization system to develop in this work, because most
frequently, interventions from students are actually very short in time. A structural bias that favors
longer interventions could lead to undetected student participation.

Resegmentation
After the embeddings are assigned to different clusters that correspond to each speaker, the problem
is almost solved. If there is no overlapping between the segments on which the embeddings were
calculated, the resegmentation process would only consist of positioning each cluster number into
the corresponding embedding segment.

However, in most cases, the embeddings do have overlapping, and hence there are multiple
clusters to choose from at any given instant. There must be some sort of aggregation method
to decide which cluster to choose from. In the open source diarization pipeline available from
pyannote.audio [33], this is implemented by creating a separate channel for each cluster: the level
of the signal in each channel is an integer that counts the number of overlapping segments that
were assigned to this cluster. Then the signal with maximum value is chosen and its corresponding
cluster is assigned to that interval. All in all, this is basically a vectorized implementation of a
majority voting mechanism, between all the overlapping clusters at a given timestamp.

The result of this stage is a sequence of time-bounded segments with the assigned speaker
number as the label. By adding up the duration of each speaker’s segments and then selecting the
one with the largest sum, the teacher can be assigned to this particular speaker, while all the other
segments can be assigned to the generic student label. This process will be discussed further in the
implementation section.

2.5 Chapter summary
In this chapter, we established the methodological foundations to understand the upcoming sections.
Further practical details about how the specific models were implemented, will be provided in
following sections.

29

Chapter 2. Methodological Foundations

So far, we explored crucial aspects of speech processing, including the vocal tract model, Short-
Time Fourier Transform (STFT), and Mel-Frequency Cepstral Coefficients (MFCC). These audio
features enable us to capture distinct characteristics of adult and children’s voices in challenging
audio environments.

Furthermore, we introduced the main machine learning models used in this work: XGBoost,
a versatile classifier, and LSTM, suitable for sequence classification tasks.

Additionally, we discussed the diarization pipeline, on top of which we intend to develop an
unsupervised classroom activity detection system. We provided some details about the most usual
metrics used (which are not necessarily the same as will be used in this work, since this is not
a diarization system), and described some example components of the pipeline, like embedding
models and clustering algorithms.

The next chapter will delve into data annotation, analysis and preprocessing steps, to create
the training and testing datasets, to develop and compare our different implementations. Also, the
evaluation metrics that will be used for this comparison are introduced and discussed in detail.

30

Chapter 3

Experimental Setup

In this chapter, we lay the foundations for evaluating and measuring the effectiveness of the different
approaches to CAD that are implemented in the following sections. We begin by presenting the
available data and introducing the data annotation protocol, specially designed for this work.

To assess the performance and generalization power of our supervised approaches, we carefully
explain the data splitting process. The data is divided into training and test sets, but also creat-
ing five groups of audio from different lessons. This grouping allows us to measure the system’s
performance on known and unknown voices or lessons, and with increasing training data.

Another critical aspect of the evaluation process is the selection of appropriate visualizations
and metrics. We introduce label density as a function of time, a novel approach to show the
CAD results that provides a more concise representation of the activity dynamics in the virtual
classroom environment. It is particularly well suited for very fragmented interventions that are
typically observed in primary school lessons. Additionally, we justify our choice to evaluate density
estimation using the correlation coefficient instead of regular regression metrics.

Throughout the chapter, we illustrate various examples to highlight the challenges encoun-
tered during the experimental setup and the solutions devised to overcome them. And finally, we
calculate these metrics on a subset of the data that was redundantly annotated by three different
human annotators, in order to calibrate expectations. By meticulously designing the experimental
framework, we aim to provide robust and meaningful insights into the performance and capabilities
of all our CAD models.

3.1 Data and labeling
The data for this work consist of 25 video recordings, composed of 20 in Pensamiento Computacional
and 5 in Ceibal en Inglés. These videos are referenced throughout the text by their keys pc1, ...,
pc20 and eng1, ..., eng5, having a one-to-one correspondence with their actual file names.

The duration of each of these videos is approximately 45 minutes. Although some recordings
span more than 1 hour -presumably accidentally- the actual class duration varies between 40-50
minutes, with irrelevant video/audio at the beginning and the end.

3.1.1 Manual annotation protocol
The audio from these classes was labeled for this work, using two separate tracks: speaker and
ambient. The former is the most relevant since it contains the actual classification labels, and the

Chapter 3. Experimental Setup

latter is just used as an optional mask to indicate when the classroom environment is noisy and
disorganized, which might lead to less accurate or ambiguous labels in the first track.

The speaker track, contains the following labels:

• p: Teacher’s voice, with no gender distinction.

• a: Student’s voice, gender is not apparent from the voice.

• b: Student’s voice, apparently boy.

• g: Student’s voice, apparently girl.

• m: Multiple voices speaking simultaneously (e.g: group work or answering questions)

• c: Multiple voices speaking synchronously (e.g: choir-like short responses)

• l: Local teacher intervention.

• o: Other audio sources (e.g: music, recordings)

• n: None of the known categories.

The ambient track, might optionally indicate:

• d: long disorganized classroom activity, which does not seem intentional regarding the
proposed task.

• r: Sudden short noise masking some label from the speaker track (e.g., moving furniture,
distortion).

In practice, the labeling process can sometimes be ambiguous when the classroom activity
is unclear due to overlapping situations. So, for example, while the teacher is speaking (label p)
it is quite frequent to hear short interventions from students (labels a, b, g, m), sometimes with
very short duration. It is even more frequent to hear the voices of other children when there is
participation from the students, which makes it difficult to select between the labels a, b, g, or
the m. As a general criterion, it was decided that labels with a duration less than 1 second can
be avoided during labeling, in order to make the process more straightforward. Since the labeling
resources are quite limited for this work, it is important to optimize the process to get the highest
value from it, and delimiting all short fragments can be a time-consuming task with low benefits
for the purpose of this work.

In order to have an estimate of the effort that it takes to manually label a recorded class, the
human time required in each case was logged in a spreadsheet. The observed values vary greatly
depending on the organization of the class and the experience of the annotator. The median value
is around 1.5 hs of effort to annotate an entire audio recording (approximately 45-50 minutes long,
as mentioned before), with some instances taking from 1 hour to 2.5 hs to fully annotate.

The total audio duration of all these lessons (discarding any accidental recordings greater than
50 minutes) is 18.25 hs, and the label coverage is about 81% considering only the speaker track,
which adds up to 14.7 hs of annotated audio in total. This coverage is approximately constant on
each audio, and the excluded segments correspond mostly to the beginning and end of the lesson
(students entering or leaving the classroom, etc.) and silences.

3.1.2 Simplifying labels: remapping
The annotation protocol defined previously has a high granularity in the types of labels defined.
This is because since the annotation process is manual and requires a lot of effort to listen to the
audios many times at each interval, it is not a significant overhead to add some more specific labels
that might be simple to distinguish by a human (as long as the list does not become too long or
complex). Also, some of these labels might be useful beyond the needs of this particular work.

32

3.1. Data and labeling

However, the main focus of this work is to distinguish two situations: whether the teacher or
the students are speaking. As a secondary objective, it is also useful to distinguish when a single
student is speaking, from the moments when there are many students speaking at the same time,
or the kind of background voices and noises that are present when the students are working on
some task while the teacher waits for it to complete.

For evaluation purposes, only the following 4 labels are considered, and all other labels are
remapped to one of them as indicated:

• p: Includes p, o. This avoids detecting other sources of audio (e.g: music, recordings) as
students’ participation.

• a: Includes a, b, g, l. This basically groups any single speaker in the classroom, that is not
the remote teacher. The local teacher participations are almost negligible in practice.

• m: Includes m, c. Any kind of multiple or background voices. The aim is to associate this
label with students working in groups or individual activities.

• -: Null label, includes n, any non-labeled or silence intervals. To ease the manual annotation
process, some silence pauses in speech are left as part of a single longer segment, but then
these small differences are ignored in error metrics by forcing any segment below a 30 dB to
this null label.

3.1.3 Data splitting
In order to evaluate supervised methods, we need to split the data at least into train and test sets,
in the first place. But also, one of the objectives of this work is to understand how the amount
and type of annotated data affects the performance of the models, and to gain a better idea of
the generalization power of the solution. For example, it is important to know if a model is able
to identify new teacher’s voices, even when there are no samples of their particular voices in the
training set.

To answer those questions, the 25 recordings (with different teacher’s voices) are divided into
five groups of five lessons. Since teachers are not repeated, this means that the groups contain
disjoint teacher voices. Each of these groups is divided into train and test.

Since we have five test groups containing different teacher voices, we can calculate five inde-
pendent values for any performance metric, not only to get their mean value but also to understand
the variability of the predictions on different kinds of voices and lessons.

Furthermore, in order to understand how the annotated time per lesson impacts the perfor-
mance of the supervised models, the training set is further divided into five splits, which can be
added incrementally. In quantitative terms, 50% of each audio is assigned to the test set (named
Split 0), and the remaining 50% is further divided into 5 train splits (Split 1..5). This means that
the training data can be added in steps of 10% of the entire dataset.

The reason to reserve this unusually small fraction of the data for training purposes and so
much for testing, will become clear when analyzing the results. In short, small increments in the
amount of training data were required in order to find the point where the supervised approach is
comparable to the unsupervised one.

In summary, there are 5 groups of audios, each one divided into 6 splits (Splits 0..5). Table
3.1 shows the amount of annotated data (in seconds) of all these subsets, and the total amounts
after aggregating all available train and test data.

The first two columns show each of the five groups with the corresponding classroom recordings
that are combined to create them. At the bottom of the table, it is shown that the total annotated
time in the entire train set is 26698 s (7.4 hs) and in the entire test set is 26432 s (7.3 hs). The small

33

Chapter 3. Experimental Setup

Group Lessons
Test Train

Split 0 Split 1 Split 2 Split 3 Split 4 Split 5
1 eng1,pc3,pc7,pc12,pc17 4949 1086 1074 1074 1109 1111
2 eng2,pc2,pc8,pc13,pc18 5162 1030 1014 998 1048 1061
3 eng3,pc4,pc10,pc19,pc20 6010 1195 1203 1125 1164 1208
4 eng4,pc5,pc9,pc14,pc15 5469 1144 1082 1128 1073 1022
5 eng5,pc1,pc6,pc11,pc16 4842 958 963 918 925 983

All groups 26432
5413 5337 5244 5319 5385

26698

Table 3.1: Duration -in seconds- of each group/split in which the data is divided. Split number is not related to
the position of the subset in the original audio.

difference between the two groups is because the split times are calculated using both speaker and
ambient track annotations, but the table times only consider the speaker track annotations.

The numbering of the splits is not related to its position in the original audios, so it is important
to note that the test split (Split 0) is not necessarily at the beginning of the class recordings. The
exact mapping of the splits and their position in the original lesson audio are shown on the data
map in Figure 3.1.

One problem that may arise when a dataset is divided is that the resulting subsets might not
have the same balance or proportion of each label as the whole dataset, in which case the data is
said to be unbalanced. The grouping and order of the splits in the audios were chosen to make the
train and test splits as balanced as possible, following the procedure described in the next section.

Creating balanced splits/groups
Since this is a sequence classification task, each sample needs a surrounding context to be classified
and, in general, there is overlap between the sequences that are provided as context to classify each
sample. Considering this overlapping between sequences, the standard stratification techniques to
create balanced subsets, cannot be used (i.e., it is not possible to pick individual samples from the
whole dataset to create train/test sets in such a way that the proportion of labels is maintained,
because samples may overlap), because it would lead to leaks between those sets. Hence, splitting
of the data in sequence prediction problems needs to partition the input sequences into two or more
chunks, and map them to train or test as a whole, so that the resulting samples in each set are
consecutive.

In this work, the procedure to create the splits and groups from the input lessons recordings
is entirely manual and fixed, in order to obtain subsets that are approximately balanced and with
similar amount of labels:

1. Each lesson recording (approx. 45 minutes length) is manually assigned a group number.

2. Each lesson is manually assigned a split ordering (e.g., [1, 0, 5, 3, 4, 2]), indicating the position
of each split in the original audio.

3. The labeled duration of each recording (from the first label to the last label in the audio) is
divided into 2, to obtain the train/test durations.

4. The train duration is further divided into 5 segments, with the same labeled duration.

5. The original audio and labels are divided into chunks from beginning to end, assigning each
chunk to a split according to the order of step 2, with the corresponding duration.

6. To create a group split, filter the lessons that belong to the group, filter the desired split
interval from each lesson, and then concatenate the audio and the annotations from all those
chunks.

34

3.1. Data and labeling

Figure 3.1: Position of each split in the original audios. The test (Split 0, in blue) and train segments can be
allocated in different positions to avoid biases towards some particular part of the class, and to balance the label
proportions throughout groups and splits.

The groups composition and the split numbers are configured manually by observing the re-
sulting label balance. Label proportions are fixed in each lesson recording and split, but can be
combined in groups and splits in order to mitigate this unbalance. For example, by observing Fig-
ure 3.2 (top), the groups’ composition (input key with the same color) can be changed to maintain
the average fraction of each label approximately equal. The results are then verified by checking
the bottom plot, and in case there is an unbalanced group in some label, the upper plot can be
revisited to check what input keys could have their group assignments swapped. The images shown
correspond to the final assignments, which led to appropriately balanced groups, as can be seen.

After balancing the groups, the splits can also be balanced using a similar strategy, by observing
Figure 3.3. In this case, when there is an unbalanced split, each input key needs to be examined
to find one in which the split composition is similarly unbalanced. For example, if the resulting

35

Chapter 3. Experimental Setup

Figure 3.2: Top: Balance of labels per lesson recording file input key, and their assigned group (colors 1-5).
Bottom: Resulting balance per group and label (the colors correspond to the groups on the top image).

36

3.1. Data and labeling

Figure 3.3: Top: Balance of labels per lesson recording file input key, and split number (colors 0-5). Split 0
(blue) is always assigned to the test set. Bottom: Resulting balance of labels per split (colors do not correspond
to the split colors on the top image).

37

Chapter 3. Experimental Setup

split 5 contains more p time and less a time than the average, then we need to examine individual
lessons and find which one is causing the problem, and then change the split ordering accordingly
to reverse the balance.

After this procedure, the resulting subsets are at least approximately balanced at an aggregated
level: groups are balanced considering all splits, and splits are balanced considering all groups. In
particular, Split 0 (test) has a similar balance to the average of the train splits.

3.2 Evaluation metrics
In this section, we explain the evaluation criteria used to assess and compare the results of our
models. In particular, we discuss the reasons for using a different visualization style based on
plotting label densities as a function of time, instead of the usual CAD or diarization graphics
(as shown in Figures 1.2 and 2.11). Also, we explain why the reliability of density estimations is
measured in terms of the correlation coefficient instead of more standard regression metrics.

Despite the fact that a diarization system is being used as one of the approaches to CAD in
this work, the standard error metrics used in those problems (e.g., DER, JER and EER mentioned
in Section 2.4.2), were not deemed useful after a deeper consideration. In particular, because exact
temporal precision is not a requirement in this case (as mentioned in the motivation section), and
since these metrics are based on matching predicted and labeled segments in their exact position,
they turned out to be poorly informative and unintuitive to understand the performance of each
model.

Also, since the main objective is to distinguish the teacher’s voice from student activity, it is
of interest to know what kind of errors the models are more prone to. Errors in predicted labels are
more important when the labels a and p (student and teacher) are swapped than when there is a
mistake between a and m (single or multiple students) for example. To assess these errors, we also
describe in detail the confusion matrix visualization that is used throughout the following sections.

In light of these requirements, there were several iterations testing different metrics and ways
to visualize the results for this work.

3.2.1 Label density estimation
One of the challenges of evaluating the predictions for a 45-minute lesson is that the segments in
which students participate are often very short (i.e., duration of a couple seconds), so it is really
hard to visualize those intervals at the time scale of the entire lesson.

Verifying the predictions for a single lesson would require one to zoom in shorter intervals
and slide through the whole session looking at how the predicted segments match the reference
annotations. Aside from the fact that this requires interactivity (which is only feasible for an
output video as shown in Figure 1.1), it quickly becomes unmanageable to process many lessons.

An alternative visualization which significantly improved the evaluation process was to create
a moving window (with a duration of 30 seconds in this case) and calculate the label density in each
window: add the duration of all segments of a given label inside the window and divide it by the
window length (one density per label). The equation is as follows:

Dt(L) =
1

W

(t+1)W∑
k=t·W

I(labelk = L). (3.1)

Where labelk is the discrete label in a sampling step k, hence I(labelk = L) takes a value of one on
all occurrences of label L inside each window of length W starting in sample t ·W .

38

3.2. Evaluation metrics

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
Prediction
Average

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
Prediction
Average

Figure 3.4: Examples of the density estimation for label p in the same audio. The bottom image shows a better
estimation compared to the top image, where some of the peaks are not correctly detected. The horizontal line
corresponds to the average value of the reference density.

Examples of this density estimation can be seen in figures 3.5 (for student’s voice label L = a)
and 3.4 (for teacher’s voice label L = p). Aside of providing a concise and intuitive representation,
estimating this density function also removes the need for precise segmentation (which is not re-
quired for our use case as mentioned in Section 1.1.1), as long as the average duration of each label
is correctly estimated on each window Dt(L).

This means that if a model makes predictions that do not exactly match the boundaries of
reference annotated segments, but statistically produces more segments of type a in zones where
there is high student participation, it will be evaluated as a good model by looking only at the
density estimation. This is actually a more robust way to evaluate a model since the labels for
student participation are usually ambiguous due to overlapping with the teacher’s voice, and so
detecting zones of high student participation is more important than detecting exactly the same
boundaries that were labeled by humans.

For evaluators who need a general idea of the lesson development and to quickly traverse the
recording to listen to specific sections, this visualization is much more useful than a fine-grained
classification per segment. Therefore, instead of measuring the overlap between segments, the main
metric to use will be based on how accurate this density estimation is.

Metrics to evaluate the density estimation
Looking at the problem as an approximation of a real-valued function, the initial idea that usually
comes to mind is to judge the estimation using regression metrics. As such, several of these metrics
were studied and compared, including scale-dependent (i.e. absolute error or distance between

39

Chapter 3. Experimental Setup

0 1000 2000 3000 4000 5000
t (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
 e

st
im

at
io

n

Reference
Prediction
Average

0 1000 2000 3000 4000 5000
t (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
 e

st
im

at
io

n

Reference
Prediction
Average

Figure 3.5: Examples of the density estimation for label a in the same audio. At the top image there’s a bad
estimation compared to the bottom one. In the latter example, the peaks of the predicted density match pretty
accurately the peaks of the reference labels. The horizontal line corresponds to the average value of the reference
density.

curves) and scale-independent (i.e. relative errors, like percentage or normalized to range [0-1])
[22].

In the first category, there are some well-known metrics like RMSE: Root Mean Square Error
and MAE: Mean Absolute Error. Other metrics like MSE: Mean Square Error are not ideal because
its value is not comparable to the difference in the signals, since the magnitude corresponds to the
squared error (i.e: the error unit is not the same as the unit of the signals).

From these alternatives, the preferred metric is MAE, since it is intuitive and straightforward
to interpret (and does not have a bias to over-penalize larger errors like the RMSE does due to
squared terms in the summation). For label L, we can calculate MAE as:

MAE(L) =
1

T

T∑
t=1

|Pt(L)−Rt(L)|. (3.2)

Where Pt(L) and Rt(L) are the predicted and reference densities for label L, respectively, calculated
according to 3.1. In our use case, MAE will be restricted to the interval [0, 1], since the densities
Pt, Rt only take values in this range.

The problem with regression metrics
Despite being a straightforward metric to interpret, it is important to keep in mind that MAE is a
scale-dependent metric, since multiplying the reference and predicted densities by a scalar will also

40

3.2. Evaluation metrics

scale the MAE value. Therefore, signals with larger average values tend to show larger errors if the
distance between curves is similar in relative terms.

In particular, the scale of the signal must be considered when the densities of the label p are
compared to m or a, the former showing larger absolute errors in general because the function
takes larger values, even though the approximation might appear to be much better in relative
terms when looking at the plots.

The first approach to try and solve this problem is to use relative error metrics such as MAPE:
Mean Absolute Percentage Error and SMAPE: Symmetric MAPE [5], which are basically the MAE
divided by the reference value at each point or the sum of the reference and predicted values,
respectively.

However, both of these metrics have problems when dealing with signals that may often take
zero values. In the case of MAPE, the metric is not even defined when the reference value is zero,
and the SMAPE solves this problem by adding the predicted value in the denominator, but still
the error is 100% at these points, leading to an overestimation of errors for these kinds of signal.

This problem is relevant in this use case because the predicted densities for label a are usually
very low or null. As an example, the SMAPE (using the standard definition in [5]) for the signal at
the bottom of Figure 3.5 has a value of 55.1%, which does not seem intuitive from the differences
observed in the signal. For reference, the image at the top of Figure 3.4 has a SMAPE of 16.7%, even
though the errors are at least comparable. The high value in the first case is due to the reference
signal taking null values at several points, which adds an error of 100% even if the predicted value
is very small but not null.

Other variants of SMAPE and MAPE have been implemented and tested to try to overcome
this problem, some of which use an average value of the whole signal in the denominator (such as
the metric known as Weighted-MAPE or WMAPE), raising another set of issues. More complex
relative error metrics like MAAPE: Mean-Arctangent Percent Error [22] were also tested, showing
results that were not convincing or not easily interpretable.

After a thorough case-by-case analysis, a deeper problem was identified due to the very nature
of regression metrics, including the already discussed scale-dependent MAE. To contextualize this
problem, let us compare the MAE values in Figure 3.5, all of which belong to the same label a so
there is no issue of scale dependence. The values are as follows:

• MAE for bottom image prediction: 0.07916.

• MAE for top image prediction: 0.1802.

• MAE predicting Average value (horizontal dashed line): 0.09871.

As expected, the lowest error is for the bottom image, which shows a good prediction where
most peaks would be actually useful for a person trying to find moments of high student activity.
However, this value is very close to the MAE measured by comparing the Reference signal against
the constant function with the Average value.

In fact, the constant average signal has a much lower error than the signal in the top image.
This may actually make sense for a regression metric, but when considering that the aim of this
system is to provide the observer with useful time markers to find particular moments of the lesson
with different degrees of participation, it becomes evident that a constant signal is completely
useless for this purpose.

Even though the predictions of the top image are bad compared to the bottom example (the
discussion is still about Figure 3.5), the curves are in both cases informative about the general
development of the lesson. The point is that both predictions in the mentioned image are informa-
tive, while the constant value is not. Then a metric should be chosen accordingly to indicate how

41

Chapter 3. Experimental Setup

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ed
ict

ed
 d

en
sit

y

Correlation RP = 0.37 (label='a')

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Correlation RP = 0.80 (label='p')

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Correlation RP = 0.76 (label='a')

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Correlation RP = 0.96 (label='p')

Figure 3.6: Alternative visualization to show the correlation between the predicted Pt and reference Rt values of
the density estimation. The Pearson correlation coefficients are included in the title for each case. Note that
the temporal dimension is lost.
Top images: correlations for the top examples of figures 3.4 and 3.5 (labels a and p), which corresponded to bad
density estimations.
Bottom images: correlations for the bottom images of the same figures, which had better density estimations
for labels a and p.

informative the predicted curve is, despite the possible over/under-estimations. This is not the aim
of regression metrics, either absolute or relative.

The metric chosen to indicate how informative is the predicted density, is the widely known
Pearson correlation coefficient, defined as [39]:

corr(R,P) =
cov(R, P)

σRσP
=

∑T
t (Rt − R̄)(Pt − P̄)√∑T

t (Rt − R̄)2
√∑T

t (Pt − P̄)2
. (3.3)

Where R̄, P̄ are the average values of the respective reference and predicted densities, and T is the
total number of samples or steps t. The numerator in the first equality is the covariance between
both signals Pt and Rt, and the denominator is the product of their standard deviations.

42

3.2. Evaluation metrics

Recall that covariance measures the extent to which the signals vary together. A positive co-
variance indicates that the signals tend to increase or decrease together, while a negative covariance
indicates that they tend to increase or decrease in opposite directions. Values near 0 indicate that
the two signals vary independently and are not related.

The magnitude of the covariance indicates the strength of the relationship between the signals,
but it also depends on the variance of each signal. By dividing between the standard deviations, we
obtain this normalized correlation coefficient in range [−1, 1], that can be used to compare signals
regardless of the scale.

Figure 3.6 shows examples of higher and lower correlations, corresponding to the same signals
in Figures 3.4 and 3.5. Note that the highest value corresponds to the best prediction, which is
visualized as a line near the identity function. The low values correspond to point clouds where a
difference in the horizontal axis does not lead to a difference in the vertical axis with high probability.
For example, a horizontal line (i.e: predicting a constant value) leads to null correlation, which is
coherent with the fact that it does not provide any useful information about the development of
the lesson.

3.2.2 Confusion, Precision and Recall Metrics
Raw Confusion Matrix
Another visualization that is very useful for multi-label classification problems like this is the
confusion matrix plot, which aims to clearly show which labels are being confused by the model.

From the previous density estimations, when there is an error in the prediction for a label,
it is not clear why the error happens, what is exactly the other label that the model is choosing
instead of the right one. It is possible to estimate it by looking at the density functions for all
labels, and compare what label is being underestimated vs. overestimated. But in order to see the
more general patterns of the model, it is better to have a more compact visualization for this.

Figure 3.7 shows the most basic form of the confusion matrix, which just counts the number of
samples that fall in each cell. For example, we see that there are 12902 samples correctly classified
as p, 3446 correct predictions for label m, and only 1139 for a. In turn, there are 1093 samples
misclassified as a, since they were actually annotated as m.

Normalizing the Confusion Matrix
The main problem with the unnormalized -i.e., raw- confusion visualization, is that it depends on
the total number of samples. These numbers will change for another audio with different length.
One way to overcome this, is to normalize by the total sample count in the whole audio, which will
result in a matrix whose entries should add up to 1.

Reading such a matrix would answer the following question: what’s the probability of a sample
being annotated with some ground-truth label and at the same time, being predicted with the given
predicted label? The result, it turns out, is highly dependant on the label balance, and is very likely
to lead to false conclusions. Also, the information it provides is not very relevant.

The problem is that label p, which has 60% of the total sample count, will always have a greater
probability to be chosen in the first place, and also any random model is more likely to classify it
correctly just by chance. As a result, even if the classifier is actually far better distinguishing the
label a (only 10% of the samples), the metrics will still show a much greater probability to select
and classify correctly a sample with label p.

As an illustrative example, a perfect classifier would show a probability P (pred = p, ref =
p) = 0.6 in the teacher’s cell, and P (pred = a, ref = a) = 0.1, even though the probability to hit
the correct label is 1 in both cases.

43

Chapter 3. Experimental Setup

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

12902 664 916

616 3446 1093

148 616 1139 2000

4000

6000

8000

10000

12000

Figure 3.7: Unnormalized Confusion Matrix between labels, showing the total sample count per cell. Each row
corresponds to a ground-truth label, while columns indicate the predicted labels. For example, the cell in the first
row (top) and second column, shows how many samples with label p where actually classified as m by the model.

A better metric to evaluate the classification performance is: given a sample with some ground-
truth label A, measure the probability that it will be classified as B. For example: if we are looking
at a sample labeled as a, show the probability that the classifier will predict it correctly, which can
be written as P (pred = a|ref = a) (the pipe symbol means “given that”, which is the standard
notation in probability theory).

Note that the probability conditioned to an event, multiplied by the probability of the event
itself, is the combined probability used before:

P (pred = a|ref = a)× P (ref = a) = P (pred = a, ref = a)

=⇒ P (pred = A|ref = B) =
P (pred = A, ref = B)

P (ref = B)
.

(3.4)

The last line is the well-known Bayes’ equation. This division can be readily calculated from the
unnormalized confusion matrix:

P (pred = A|ref = B) =
count(pred = A, ref = B)/total

count(ref = B)/total
=

count(pred = A, ref = B)

count(ref = B)
. (3.5)

Calculating this is equivalent to normalizing by row, since count(ref = B) is the sum of all cells
with the reference label -True label- B.

Figure 3.8 shows the confusion matrix for the same predictions that were in the previous raw
matrix, but normalized by row in this case.

These results are better to interpret. For example, 89% of the teacher’s voice is correctly
covered by the classifier. 60% of the student samples are correctly classified and only 7.8% are

44

3.2. Evaluation metrics

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

0.89 0.046 0.063

0.12 0.67 0.21

0.078 0.32 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.8: Confusion matrix normalized by row, i.e. the sample count in each cell is divided by the number of
samples with this ground-truth label. The diagonal elements are equivalent to recall per label: what fraction of
all samples annotated with this label are classified correctly)

incorrectly classified as p. The remaining 32% is due to the difficult challenge of distinguishing
between a and m. A similar analysis can be performed for the row with label m.

Reference Confusion Matrices
With the normalization described previously, a perfect classifier would result in a confusion matrix
equal to the identity matrix (see the right side of Figure 3.9). The probability of hitting the right
labels (diagonal) is always 1, and for wrong labels (off-diagonal) it is 0. This is convenient for
interpretation.

However, there is still one issue to consider when using this matrix. It is still a harder challenge
for any model to “find” correctly the labels that are less frequent. This is a real challenge though,
it is not a consequence of the metric used. But it is important to consider this fact in order to
evaluate the performance of the classifier fairly.

To illustrate this issue, let us consider a blind model which selects labels randomly, but with
probabilities that match the actual balance of the data, so that in average it is not biased towards
any particular label. To avoid systematic overestimation or underestimation of any label, this model
should be calibrated with the same balance of the training set:

Pblind(pred = p) = 0.61

Pblind(pred = m) = 0.30

Pblind(pred = a) = 0.09.

Since this random model is “blind”, it does not look into the audio features, so the probabili-
ties of predicting any given label are completely independent of the actual label of the sample.
Mathematically speaking, this means that:

45

Chapter 3. Experimental Setup

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l
0.61 0.3 0.091

0.61 0.3 0.091

0.61 0.3 0.091

0.1

0.2

0.3

0.4

0.5

0.6

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

1 0 0

0 1 0

0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.9: Reference confusion matrices. Left: confusion (normalized by row) for a blind model that randomly
predicts the label for each sample, with probability according to the label balance. i.e., the lower boundary to
compare any classifier model’s confusion. Right: confusion for a perfect ideal model, that catches all labels
(diagonal elements are 1) and never makes mistakes (off-diagonal elements are 0).

Pblind(pred = A) = Pblind(pred = A|ref = ...)

which results in the confusion matrix shown on the left side of Figure 3.9. Since this is the per-
formance achieved by a random model, the diagonal values are the lowest boundaries that any
machine learning model should aspire to.

Looking back at the matrix from Figure 3.8, and considering this random/blind model matrix
as a lower-limit reference, the performance of each label can be better contextualized. So, for exam-
ple, the label p has the highest performance of 89%. Remembering the probabilistic interpretation,
it means that if we look at 10 samples with that label, 9/10 of them would be correctly predicted
using the model, but using the random model we could have predicted 6/10.

Reasoning in the same way for the label a, only 1/10 would have been guessed using the
random choice, but the machine learning model increases this chance to 6/10. In this case there
are 6X more chances to get it right using the model, which shows that it is actually working pretty
well to detect that label. And that is the reason why this reference matrix is useful.

Relation to Precision and Recall

Precision and Recall metrics are ubiquitous in classification problems, and they will also be explicitly
included in some sections of this work. So it is worth mentioning their relation to the confusion
matrix described previously.

In the first place, Recall is defined as the number of true positives (correctly classified samples)
divided by the total number of elements that belong to that class. This is exactly equivalent to the
elements on the diagonal of the confusion matrix, which are normalized by row (total number of
samples for that True label). It can also be deduced by looking at Equation 3.5 and setting A = B
for the predicted and reference labels:

Recall(A) = P (pred = A|ref = A) =
count(pred = A, ref = A)

count(ref = A)
. (3.6)

Secondly, Precision is defined with the same numerator (number of true positives for the label) but
divided by the total number of elements predicted with this label. So, the equation now becomes:

46

3.3. Evaluation metrics over different human annotators

Precision(A) = P (ref = A|pred = A) =
count(pred = A, ref = A)

count(pred = A)
. (3.7)

This, in turn, is equivalent to normalizing the confusion matrix by columns instead of rows and
extracting the diagonal values. But this normalization of the confusion matrix is not going to be
used in this work. Instead, only the precision values per label will be included when relevant.

In summary, the Precision (per label) is the probability that the predicted label is actually
correct, when looking at a sample that was classified with that label by the model. And Recall
(per label) is the probability that a sample with the given reference label will be correctly predicted
by the model.

F1 score
Finally, another metric that can be used to combine both aforementioned values for a given label
is the F1 score. This is the harmonic mean of Precision and Recall, balancing both metrics to give
a single performance value:

F1 = 2× ((Precision×Recall)/(Precision+Recall)). (3.8)

The F1 score is also widely used in classification problems, especially when dealing with unbalanced
data sets. It is a good substitute for the Accuracy value, which will not be used in this work, as it
can be misleading (e.g., the model might achieve high accuracy by simply predicting p most of the
time).

By combining both metrics, the F1 score provides a comprehensive evaluation of a classifier’s
performance, reflecting both its ability to correctly identify positive instances and its ability to avoid
false positives. However, it does not have a probabilistic interpretation, which makes it conceptually
less clear, and that is the reason to prefer the previous metrics individually, when summarization
is not required.

3.3 Evaluation metrics over different human annotators
3.3.1 Redundant human annotations
In order to verify the designed annotation protocol (explained in Section 3.1) and also to better
understand the selected evaluation metrics, some audio segments were selected from the available
recorded lessons, and redundantly labeled by 3 different human annotators over the same time
intervals, following the same annotation protocol.

This process served as a warm-up before annotating all available data, and was particularly
useful to refine the procedure, unify criteria, and detect ambiguities or possible misinterpretations
in the instructions. The hypothesis was that after some iterations comparing and improving the
instructions, more uniform results should be obtained in the subsequent stage of annotating the
entire data set.

After this redundant labeling process was completed, these annotations were used to test the
evaluation metrics on them. The metrics are designed to compare the output predictions against a
ground truth reference. But in this case, there are 3 possible references, since all human annotators
are considered equally trained for the task. In order to measure the errors ensuring that there are
no asymmetries or biases towards one particular annotator, all metrics were calculated over all the
pair permutations of annotators, reversing which one is considered reference. For each segment
annotated by the 3 annotators, namely ann_1, ann_2 and ann_3, the reference and prediction labels
are created by concatenating them as follows:

47

Chapter 3. Experimental Setup

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Label: a Label: m Label: p

Figure 3.10: Comparison of the temporal density calculated over manual labels a,m,p, annotated by 3 different
annotators. In this visualization, all the annotated audios (5 segments of 10 minutes each, 3000 seconds approx.)
were concatenated.

reference = [ann_1, ann_1, ann_2, ann_2, ann_3, ann_3]

prediction = [ann_2, ann_3, ann_1, ann_3, ann_1, ann_2]

In this way, all pairs of labels and their reverse (swapping prediction and reference) are com-
pared when calculating the metrics. This redundantly labeled subset of the data consisted of five
segments of 10 minutes extracted from 5 different lessons, for a total of 50 minutes of activity,
particularly selected to include student participation, in order to test diverse situations (otherwise,
label p is usually dominant).

3.3.2 Human performance metrics
As mentioned in the previous sections, the most relevant metrics (correlation and MAE) are cal-
culated over a temporal density function (per label) that is obtained using Equation 3.1, which is
basically an indicator of the fraction of time that each label (a,m,p) appear on a moving window
of a given size (30 seconds in this case).

The resulting density function for all 3 different human annotators and labels is shown in
Figure 3.10. The overall differences between human annotators can be observed in this figure, and
some relevant parts will be analyzed deeper.

Note that the sum of the densities of the three possible labels (a,m,p) does not necessarily
add up to 1, because there are frequent short intervals that are not labeled by the annotators (i.e:
silences, non-identified sounds, or sounds that do not belong to any of the labels a,m,p evaluated
here).

Once these densities are obtained, the correlation (corr) and error (MAE) can be calculated
on top of them (see equations 3.3 and 3.2). These metrics are calculated individually for each of
the five segments-of 10 minutes each- mentioned before, and also for all of them concatenated -as
a single 50-minute segment, leading to a kind of average value-, as shown in Table 3.2.

It is interesting to note that in many cases there is an apparent discrepancy between both
metrics, meaning that a lower MAE (error) does not necessarily mean a higher correlation.

48

3.3. Evaluation metrics over different human annotators

Segment
MAE corr

a m p a m p
segment 1 (eng) 0.0264 0.0399 0.0341 0.9731 0.8919 0.9654
segment 2 (eng) 0.0204 0.0271 0.0256 0.8838 0.9641 0.9738
segment 3 (PC) 0.0265 0.0399 0.0261 0.9200 0.9814 0.9914
segment 4 (PC) 0.0371 0.0531 0.0287 0.8078 0.9266 0.9739
segment 5 (PC) 0.0414 0.0804 0.0614 0.9061 0.1805 0.7325
all segments 0.0316 0.0462 0.0344 0.9344 0.9288 0.9526

Table 3.2: MAE (absolute error in Eq. 3.2) and correlation (Pearson’s coefficient in Eq. 3.3) of density functions
for all labels, between all pairs of human annotators. In the first 5 rows, they are calculated over individual
segments (2 in english -eng- and 3 in computational thinking -PC- lessons), and in the last row, all segments are
concatenated.

As a first example, the MAE value for the m label in segment 4 seems quite high, but the
correlation for that same label is not particularly low compared to other entries (e.g., label a in
segment 4 has a lower MAE and lower correlation as well, and the same happens with label m in
segment 1 and label a in segment 2).

This example with high error but also relatively high correlation is shown in Figure 3.11, and
the reason for this phenomenon becomes apparent from the top image: the density for annotator
3 (in green) has a constant overestimation bias with respect to the other 2 annotators. This kind
of shift affects the MAE (i.e., the mean distance between curves; see Equation 3.2) but not the
correlation, which only accounts for deviations from the mean value (see Equation 3.3).

In fact, comparing both plots at the bottom of Figure 3.11, it is shown that the correlation
coefficient (see the title of each plot) is similar in both cases, even though the points on the right
side (i.e: comparing against annotator 3) have a constant vertical deviation from the identity line
x = y (not shown but can be inferred as the exact diagonal). As mentioned before in Section 3.2,
this is a desired feature of the correlation metric, aimed at capturing how informative the curve is
to find peaks of activity of the different labels during the lesson.

Another example worth examining in detail from Table 3.2, is in the segment 5 (last row),
where the correlation value for label m is surprisingly low. Although the MAE value is the highest
for this entry as well, the correlation is disproportionately low considering the full range [0-1] that
both metrics have. This example is shown in Figure 3.12.

In the top image of the figure, it is shown that the curves have important differences but in
some segments they are actually not so far from each other, since all the signals have a low average
value. Looking more carefully, however, it becomes clear that the 3 largest peaks from the green
curve (annotator 3) are out of phase with the peaks in the other annotators. Also, there are other
non-matching peaks between the other annotators. This causes many points in the x-y axes which
push the correlation towards zero in the left-bottom plot (remember that a completely horizontal
or a vertical line means zero correlation). Even worse, in the right-bottom plot there is a negative
correlation, caused by the fact that the peaks are out of phase and hence an increase in one signal
seems to produce a decrease in the other one.

Looking more carefully at this last segment 5 in Table 3.2, it is not clear what the exact problem
is with this particular label m, since there is no other label with a comparable low correlation, to
establish the cause of confusion. Although the main candidate is the label p because it also has the
lowest correlation of all examples, it does not seem to fully explain the cause.

To answer those questions, the confusion plots shown in Figure 3.13 are quite useful. By
observing the right plot (corresponding to the mentioned example) it is clear that the bottom row
is much worse than the compared segment to the left. To interpret these results, recall that each

49

Chapter 3. Experimental Setup

0 100 200 300 400 500 600
t (s)

0.0

0.2

0.4

0.6

0.8

De
ns

ity
 e

st
im

at
io

n

Labeler 1
Labeler 2
Labeler 3

0.0 0.2 0.4 0.6 0.8 1.0
Density for labeler 1

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 fo

r l
ab

el
er

 2

Correlation 1 2 = 0.87 (label='m')

0.0 0.2 0.4 0.6 0.8 1.0
Density for labeler 1

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 fo

r l
ab

el
er

 3

Correlation 1 3 = 0.84 (label='m')

Figure 3.11: Comparison of densities for label m for the 3 human annotators. This example corresponds segment
4 in Table 3.2, which has a higher correlation than many entries with lower errors (MAE). Top: density estimation
for the 3 annotators as a function of time. Bottom: correlation of density values compared between pairs of
annotators (comparison between annotators 2 and 3 is excluded).

cell represents the count of samples in it, divided by the total number of samples with the same
reference label (True label). Hence, each row should add up to 1, except for the fact that there are
non-labeled segments of the audio.

Taking into account the above recap, the results mean that from all samples labeled as m only
33% match between pairs of annotators, and then 21% and 16% predicted as p or a, respectively.
The remaining 30% is not labeled by any other annotator.

Trying to better understand the cause for these differences in annotations requires listening
to the particular audio while looking at the corresponding annotations. Indeed, this case is unique
because it is a lesson where there are 3 remote teachers connected to the same lesson, and it is a
special day (one of the first days back in school after the COVID-19 pandemic), so the ambient is
very noisy and the amount of overlapping even between teachers is exceptionally high, leading to
an ambiguity about when to label p or m.

The main purpose of reviewing these examples in this section, is to calibrate the expectations
on what can be achieved with a machine learning system evaluated on manually labeled data,
considering the challenges that are shown in some of these examples. Also, it is very useful to
catch some relevant subtleties about the metrics used, by understanding some cases that may
seem discrepant at first sight when comparing the obtained metric values. Both the absolute error
(MAE) and the correlation metrics may be useful to understand different aspects of the signals

50

3.3. Evaluation metrics over different human annotators

0 100 200 300 400 500
t (s)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity
 e

st
im

at
io

n

Labeler 1
Labeler 2
Labeler 3

0.0 0.2 0.4 0.6 0.8 1.0
Density for labeler 1

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 fo

r l
ab

el
er

 2

Correlation 1 2 = 0.34 (label='m')

0.0 0.2 0.4 0.6 0.8 1.0
Density for labeler 1

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 fo

r l
ab

el
er

 3

Correlation 1 3 = 0.33 (label='m')

Figure 3.12: Comparison of densities for label m for the 3 human annotators. This example corresponds segment
5 in Table 3.2, which has a very low correlation value for this label. In fact this is the worse example in terms of
discrepancy between annotators. Top: density estimation for the 3 annotators as a function of time. Bottom:
correlation of density values compared between pairs of annotators (comparison between annotators 2 and 3 is
excluded).

p a m
Predicted label

p

a

m

Tr
ue

 la
be

l

0.91 0.0068 0.026

0.051 0.66 0.22

0.055 0.062 0.68
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p a m
Predicted label

p

a

m

Tr
ue

 la
be

l

0.84 0.01 0.036

0.027 0.79 0.072

0.21 0.16 0.33
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.13: Confusion matrices between human annotators for segment 4 (left) and segment 5 (right) from
Table 3.2. The comparison is done considering all pairs of annotators (swapping reference/prediction values as
described at the beginning of Section 3.3).

51

Chapter 3. Experimental Setup

being evaluated, and examining them on a per-label basis provides much more information than
aggregating them in one single value.

In this chapter, we presented the available data and the manual annotation protocol. Addition-
ally, we defined the metrics to be used and tested them on redundantly annotated data, providing
a reference for the best performance achievable by a system trained and evaluated on it.

These fundamental analyses and definitions serve as the building blocks for the subsequent
chapters. In the upcoming sections, we will implement, evaluate, and compare various models
against each other.

52

Chapter 4

Implementation

In this chapter, we delve into the practical implementation of all our Classroom Activity Detection
(CAD) variants. Our focus lies on two different approaches to CAD: supervised classification models
based on XGBoost and LSTM, both utilizing the same set of audio features, and an unsupervised
diarization pipeline, specifically adapted for this task.

We individually evaluate the models, comparing different parameter settings to identify the
best-performing candidate within each model family. The selected best candidates will be further
compared in the subsequent chapter, where we analyze and contrast the results obtained by each
approach.

At this point, we assume the reader’s familiarity with the methodological foundations presented
earlier in Chapter 2, and now we delve into additional practical details and reviews to reinforce the
implementation process.

4.1 Implementation of Audio Classifiers
The data and the audio features used for both implemented classifiers (LSTM and XGBoost) are
exactly the same, so that their performance can be fairly compared.

As detailed in Section 3.1.3, the data are first divided into many groups and splits, from which
we get a total of 7.4 hs of annotated audio for training purposes, and 7.3 hs for testing. The
most important rule here is that the test data cannot be used in any way by the models during the
training process.

In order to avoid overfitting or fitting to the noise, these models also need a validation set.
So, they can update their parameters using some other data, and then validate if the performance
actually improved on this set, which was left out during the parameter updating process.

This is done periodically during training and is intended to make sure that the model actually
learns generalizable patterns that extend to unseen data, instead of memorizing the training set. In
practice, this can be verified by comparing training versus validation losses, as can be seen in figure
4.1. These are two real examples while training the LSTM models, which clearly show that if the
training process was not stopped, the training loss would continue to improve but the validation
loss actually shows that the performance of the model is getting worse.

This technique is called Early Stopping, and was used in both XGBoost and LSTM classifiers.
The size of the validation set in both classifiers was 20% of the training data, but it is not reserved
beforehand, it is randomly chosen for each training job (although the random seed is fixed for

Chapter 4. Implementation

Figure 4.1: Loss function values for two different models during the training process, comparing evaluation over
Train (left) vs. Validation (right) sets. The horizontal axis is the training step. Each color represents a different
model being trained. The stop criteria is a certain number of steps without improvements in the validation loss.

reproducibility). Since the convention is to use the names Training / Validation / Test for these
sets (where Train is only the data that are used to update the actual parameters), we may also
refer to the set of union Training + Validation as the Development set (containing all 7.4 hs
data, from which 80% is Training and 20% is Validation).

4.1.1 Audio Features
As mentioned above, both classifier families use the same audio features. These are extracted over
sliding windows (frames) of 30ms length and a step (hop) size of 15ms, hence overlapping at 50%.

The entire feature vector is composed of the following components (see Section 2.1) for a
description of each of them:

• MFCC: 12 coefficients, from a Mel-filterbank of 60 bands, ranging from 60Hz to 8 kHz.

• Spectral Flatness: scalar value.

• Spectral Centroid: scalar value.

• Spectral Bandwidth: scalar value.

• Spectral Contrast: 7 values/bands.

• Signal Power (dB): scalar value.

In total, the feature vector has 23 components for each audio frame.

MFCC values are calculated using the speechbrain library [40], since it has better interoper-
ability with the rest of the code which uses torchaudio [46] for the most part. The rest of the
features are extracted using librosa [48], on top of the same STFT that was already extracted with
speechbrain.

The functionality is encapsulated in a specialized Featurizer object, which is used by both
types of classifiers. This object also implements a cache to temporarily save the features of the
input audio, speeding up computations by a large margin when multiple models are being evaluated
over the same test audios.

4.1.2 LSTM based classifier
The LSTM classifier for this work is implemented using PyTorch [31].

54

4.1. Implementation of Audio Classifiers

Featurizer

…

1 frame = vector of 23 features
frame window size: 30 ms

frame hop size: 15 ms

t=1 t=T

1 sample = sequence of 64 feature frames
sample length: ~1 s (975 ms)

Dataset LSTM1 Linear +
Softmax

h2T = vector of dim 64

LSTM state after x1…xT

Prob(a)
Prob(m)
Prob(p)

Label
probabilities
(per sample)

[x1…xT]

LSTM2

h1t

h1t

h2t

input size: 64
output size: 3

input audio
waveform

normalize features
(mean=0, std=1)

Figure 4.2: Diagram of the LSTM-based pipeline for Classroom Activity Detection. Each input audio is converted
into a dataset of consecutive samples, each one (≃ 1 s) being a sequence of feature vectors representing an audio
segment. The output is a vector with the label probabilities for each sample.

Any recurrent neural network requires that its inputs be a sequence of vectors. In this case,
the vectors are the audio features extracted over the sliding windows (frames) described in the
previous section.

Unless otherwise specified, each sample provided to the LSTM consists of a sequence of 64
frames. Given that the hop between frames is 15ms (see previous section), this means that each
sample covers a span of approximately 1 second (≃ 15ms× 64), which seems a reasonable amount
of time to distinguish class moments, according to the experience collected while analyzing and
labeling the data.

Figure 4.2 shows the whole pipeline for this classification system, receiving an audio waveform
signal, and predicting class probabilities for each sample, which represents a small segment of the
input audio. The label with the highest class probability is set as the label for the segment.

The figure shows the default configuration and parameters, where there are two layers of
LSTM blocks stacked. This means that the state of the first layer serves as the input sequence
to the second layer (as discussed in Section 2.2). Only the final state h2T from the second layer
(dimension hidden_dim=64 unless specified otherwise) is used to feed a linear layer (single fully
connected). The latter reduces the dimensionality to the number of labels in this classification
problem, which is set to 3 (a, p, m) in general. This layer is actually an affine transformation of
the form:

y = A · h2T + b

where A ∈M3×64, b ∈ R3 (assuming 3 labels and hidden_dim=64) are learnable parameters. Other
versions were also tested to output the finer-grained labels and then postprocess them for remapping
(see Section 3.1.2), but the results favored the current approach.

The final layer is just a softmax transformation:

softmax(yi) =
eyi∑3
j=1 e

yj

which maps the 3 raw outputs from the linear layer into probability-like values in range [0− 1].

55

Chapter 4. Implementation

Feature normalization

In the first stage of the pipeline, the audio signal is wrapped in a data set object. Different dataset
objects need to be created for training, validation, and testing purposes. All share the same audio
features, and so they are extracted using an instance of the same Featurizer object introduced in
the previous section.

A standard practice for neural networks is to normalize the input features, so that they have
zero mean value and unitary standard deviation. For the system to work properly, the same
transformation should be applied to all inputs, either training data or any other audio. However,
the model should not have access to the test data during the training process, so these parameters
are calculated using only the training data, assuming that it represents the data distribution.

When the Training Dataset is created, the mean (x̄train) and standard deviation (std or σtrain)
of each feature is calculated as follows:

x̄train =
1

Ntrain

∑
i∈train

x̃i

σtrain =

√
1

Ntrain

∑
i∈train

(x̃i − x̄train)2,

where x̃i is the non-normalized feature vector for the sample i, Ntrain is the number of samples in
the training set, and the abuse of notation i ∈ train is adopted to indicate only the training sample
indices.

These two vectors are stored in the same folder as the model weights, since they are needed
to normalize the features from any input audio (train, test, or any other inference) as follows:

xi =
x̃i − x̄train

σtrain
∀i ∈ train,val,test.

The Dataset object encapsulates all this functionality, allowing normalization of the training data
features and retrieval of the mean and std values used, and also to provide external mean and std
values (i.e., the saved values from the training data) to normalize the test data or any audio features
where the model is used for prediction.

Sample overlapping

Another thing that is slightly different in the train vs. validation / test data is the overlap between
samples. The Training Dataset is configured with a separation between samples that allows overlap-
ping in order to provide the model with time-shifted versions of samples, which is not exactly data
augmentation, but it serves the same purpose of increasing the generalization power. Although this
technique increases the correlation between samples weakening the iid assumption [21] of neural
network training procedures, it has shown better results in practice (note that the samples in each
training batch are randomized). In particular, this parameter is set to an overlap of 75% between
consecutive samples during training.

However, this overlap is not desired during evaluation stages (i.e: validation or test), since it
would slow down the process and even cast a pall of doubts on the results unnecessarily. Therefore,
for these datasets, the evaluated samples do not overlap.

Note that the validation data is a random subset of training data, representing 20% of the
available audio time. But since this subset does not allow overlapping between samples, the number
of samples is less than 20% of training samples -the proportion is defined in audio span duration-.

56

4.1. Implementation of Audio Classifiers

Training procedure

The first step of the process is to load all available audio segments for training. This is configurable
to some degree to allow only a subset of the data to be used, but the test splits are not available
for loading at this point. The Train Dataset is created by concatenating all these segments and
their labels, extracting their features and then defining the sequence of frames that belong to each
sample.

The training loop is implemented using the PyTorch Lightning library [30], and the total
training time is not deterministic, but it is rarely longer than 10 minutes on a single GPU (running
on a nvidia 3080, although the model would fit on a much smaller device) when using all the data.

The most important components and parameters used in the implemented training loop are
the following:

• Adam optimizer [25] from PyTorch [31] with an initial learning rate of 1× 10−3 that goes
down to 1×10−5 using the ReduceLROnPlateau strategy from PyTorch [31], which decreases
by a factor of 0.1 when the validation loss does not improve for 5 epochs.

• Loss function: is a weighted NLLLoss from PyTorch [31] on top of the log-softmax values
from the classifier. The weights configuration is described in the next section.

• Early stopping criteria, which stops the training when the validation loss does not improve
for 10 epochs. This implies a minimum number of epochs of 10 and, in practice, it means
that the loop stops well below the established limit of 200 max. epochs.

• Checkpointing: only the model weights that correspond to the minimum validation loss
are saved and used for prediction afterwards.

• Batch size: 64 samples. Also tried 32, 128 and 256, but the results were similar or worse.

Loss function: dealing with unbalanced and unlabeled data

The NLLLoss function mentioned above allows the use of different weights for each label. This is
very useful to tackle the problem of imbalanced data by using weights that counteract the different
fractions of samples with each label. The weight for each label is then calculated as:

weight(label) =
Nlabeled∑

i∈train I(labeli = label)

which is simply the inverse of the label fraction, compared to the whole labeled duration. It is
worth noting that Nlabeled only counts labeled samples in the training set.

For unlabeled samples, the loss function also has a parameter to ignore a given label (“-” in this
case), such that it does not contribute to the gradient in the backpropagation parameter updating
process. This also implies that the model will never predict the null label “-”, which instead is set
in a post-processing step when the signal power is below a given threshold.

Hyperparameter selection

Summing up the different parameters for the LSTM mentioned before, the default values chosen
for each of them are the following:

• hidden_dim: 64

• num_layers: 2

• frames_per_sample: 64

57

Chapter 4. Implementation

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
hidden_dim

0.5

0.6

0.7

0.8

0.9

co
rr

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
hidden_dim

0.6

0.7

0.8

0.9

re
ca

ll

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
hidden_dim

0.06

0.08

0.10

0.12

0.14

m
ae

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
hidden_dim

0.4

0.6

0.8

pr
ec

isi
on

p
a
m

Figure 4.3: Evaluation of the LSTM classifier varying hidden layer dimension, separated by label. The colored
spans around each curve represents the standard deviation of each metric, as measured on all 5 test groups.

Where hidden_dim is the size of the state vector in each layer of the LSTM, num_layers is
the number of stacked LSTM blocks (in Figure 4.2 it was fixed in 2, but it could be easily changed
using this parameter), and frames_per_sample is the sequence length or number of frames that are
included in each sample (represented by the letter T in the same figure).

Other important aspects of the system like the features to use or the number of fully connected
layers at the final classifier head could also be tuned, and in fact some variations were tested without
showing better results.

To understand whether the capacity of the model was adequate for the amount of data avail-
able, the hidden_dim parameter was tested over a range of possible values. This requires training
different variants of the model and evaluating each version on all 5 test groups (see Section 3.1.3),
allowing one to estimate the mean value and standard deviation of different metrics.

Figure 4.3 shows this comparison, making it clear that a value of hidden_dim=64 is the best
candidate considering all factors. The main improvement at that point can be observed in the recall
curve for the label a, meaning that more student audio segments are correctly detected. This is
very desirable because these are not frequent labels, and so this improvement should pays off for
the decrease in other metrics such as the recall for the label p.

The MAE (error) also increases for the label a at that point, suggesting that there are more
false positives detected as well, but this should not be a serious issue according to the precision
plot.

Another important parameter that was tested over a range of values is the sequence length or
frames_per_sample. From a sequence of 32 frames up to 256, which corresponds to time spans of
≃ 0.5 s up to ≃ 4 s.

From Figure 4.4 it can be deduced that a value of 64 frames (i.e., segments of ≃ 1 s) is the one
that shows the greatest benefit. There is some increase in the recall for label a at 128 frames, but

58

4.1. Implementation of Audio Classifiers

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
frames_per_sample

0.5

0.6

0.7

0.8

0.9

co
rr

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
frames_per_sample

0.4

0.5

0.6

0.7

0.8

0.9

re
ca

ll

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
frames_per_sample

0.06

0.08

0.10

0.12

0.14

0.16

m
ae

p
a
m

323232323232323232323232323232 646464646464646464646464646464 128128128128128128128128128128128128128128128 256256256256256256256256256256256256256256256
frames_per_sample

0.2

0.4

0.6

0.8

pr
ec

isi
on

p
a
m

Figure 4.4: Evaluation of the LSTM classifier with different number of frames for each sample sequence, separated
by label. The colored spans around each curve represents the standard deviation of each metric, as measured on
all 5 test groups.

this comes with a drop in the precision and an important increase in the relative and absolute errors
for this label, aside from a big cost in the recall of all other labels. Basically, with the exception
of that metric, all other performance metrics show a peak at 64 frames and errors are minimum as
well. This might be due to the fact that we only use one label for the whole sequence, and some
annotated segments have around 1 second of duration. If this was the case, it could be solved by
using a seq-to-seq model instead.

4.1.3 XGBoost based classifier
The audio features used for this classifier are the same vectors of 23 components used as input in
the LSTM pipeline (see Section 4.1.1 above).

The main difference in the preprocessing of these features, is that now these vectors are not
normalized in mean and variance because that is not needed for decision trees.

Also, since the decision trees do not have a state to process the inputs sequentially, the context
for each frame window (duration of 30ms) has to be added manually. This is implemented by using
an extended vector of concatenated features for a certain number of previous and following frames,
as can be seen in Figure 4.5. The number of frames to include is controlled using the context_window
parameter, which causes the input to the XGBoost model to multiply accordingly.

For example, a value context_window=10 means that 10 frames before and after the current
one are concatenated together with it, resulting in an input of dimension (10 + 10 + 1)× 23 = 483
for the model. This allows the classifier to consider an extended time span of approximately
21× 15 ms ≃ 300ms.

This parameter turns out to be the one with the greatest impact on all classification metrics,
as can be seen in Figure 4.6. Three models were trained with different values for this parameter,

59

Chapter 4. Implementation

Featurizer …

1 frame = vector of 23 features
frame window size: 30 ms

frame hop size: 15 ms

XGBoost
Prob(a)
Prob(m)
Prob(p)

Label
probabilities
(per sample)

input audio
waveform

Context
Window

… … ……

dim: 23 features x (1 + 2 context_window)

next frames

current frame

prev. frames

Figure 4.5: XGBoost classifier pipeline for Classroom Activity Detection. The featurizer generates a sequence of
vectors using a sliding window with the size and hop indicated. To create a sample, previous and following frames
are concatenated together with the current one, creating an input vector with higher dimension for the XGBoost
model, which also covers a larger time span to perform the prediction. Finally, the label from the current frame
is predicted in the XGBoost model.

555555555555555 101010101010101010101010101010 202020202020202020202020202020
context_window

0.6

0.7

0.8

0.9

1.0

co
rr

p
a
m

555555555555555 101010101010101010101010101010 202020202020202020202020202020
context_window

0.5

0.6

0.7

0.8

0.9
re

ca
ll

p
a
m

555555555555555 101010101010101010101010101010 202020202020202020202020202020
context_window

0.04

0.06

0.08

0.10

0.12

m
ae

p
a
m

555555555555555 101010101010101010101010101010 202020202020202020202020202020
context_window

0.4

0.6

0.8

pr
ec

isi
on

p
a
m

Figure 4.6: Evaluation of the XGBoost classifier with context windows size, separated by label.

and the largest context window shows the best results.

It is not clear whether or not using a larger context would continue improving the results, but
training and testing those variants was not possible with the available hardware resources, since the
concatenated feature vectors ends up with a very large dimensionality, consuming all the system
memory and computing resources, to the point of breaking the training process.

Also, although it is clear that with a context window of 20 the results are better, the pipeline
is also twice as fast when using a context of 10, making the overall solution a lot better with
only a marginal performance drop in that step. The highest improvement slope is obtained by
using context_window=10 instead of context_window=5. The difference in execution times is not
so significant in those cases.

60

4.1. Implementation of Audio Classifiers

444444444444444 666666666666666 888888888888888 101010101010101010101010101010
max_depth

0.6

0.7

0.8

0.9

1.0

co
rr

p
a
m

444444444444444 666666666666666 888888888888888 101010101010101010101010101010
max_depth

0.5

0.6

0.7

0.8

0.9

re
ca

ll

p
a
m

444444444444444 666666666666666 888888888888888 101010101010101010101010101010
max_depth

0.06

0.08

0.10

0.12

m
ae

p
a
m

444444444444444 666666666666666 888888888888888 101010101010101010101010101010
max_depth

0.4

0.6

0.8

pr
ec

isi
on

p
a
m

Figure 4.7: Evaluation of the XGBoost model with different maximum tree depths, separated by label.

Another parameter that also makes a difference in execution time but not so much in the
classification metrics is the max_depth parameter, which controls for the complexity of the trees by
limiting their allowed depth, which in practice also impacts in the maximum number of leaves the
tree can have (i.e. it limits the T value in Section 2.3).

The impact of this parameter is shown in Figure 4.7, and the tendency is not monotone for
most metrics and labels, although the point at max_depth=10 seems to be the best. However, the
impact of this parameter on execution time is very important, and in fact, inference is twice as fast
for the model at max_depth=6, without a huge performance drop. Both of these models are included
in the benchmark of execution times when comparing them to the LSTM system (see Table 5.2 in
Section 5.2).

The regularization parameter referred to as γ in Section 2.3 had no impact whatsoever on the
range of values tested, which started at γ = 0 and went up to γ = 2× 10−3

Training XGBoost: Undersampling, Nulls Removal, Early Stopping
To deal with the problem of unbalanced data, and mainly with the issue of the over-representation
of label p, the technique of undersampling is used, and the criteria are to randomly discard samples
until reaching the same amount as the second majority class. In this case, the second majority
class is the label m, which has approximately 30% of samples (see Section 3.1.3), so the original
proportion of 60% for p is halved.

Another consideration is that only 80% of the audio is annotated. There are 20% samples
without any label (i.e., null labels). In the LSTM this was achieved by ignoring them in the loss
function calculation, but the XGBoost model does not have such functionality. Therefore, these
samples are removed from the training samples after the context window operation. They are still
used as context for contiguous segments with valid labels.

The maximum number of trees for this model is 3000 (“weak learners” in Section 2.3), which is

61

Chapter 4. Implementation

a complexity that would easily overfit to the training data. This is avoided by using early stopping
(described in the same section). A validation set is needed for this purpose, which is randomly
selected as 20% of the total training samples. The loss function used is a multi-class logistic loss
(aka cross-entropy loss) on top of softmax outputs with the prediction scores for each class.

4.2 Diarization based pipeline
The diarization pipeline used in this work is the state-of-the-art system available with the open
source library pyannote.audio, being still under active development at the time of writing (version
2.1 is used) [33].

4.2.1 Voice, Segmentation and Overlap Detection
One of the key aspects of the pipeline used is the use of a novel overlap-aware segmentation model
developed by Hervé Bredin (2021) [37], which performs Voice Activity Detection (VAD), Speaker
Segmentation and Speech Overlap Detection all in one single model. This is achieved by using
a permutation-invariant speaker classification neural network, which is trained to select between
Kmax = 3 possible speakers in short segments of 5 s, and the output provides information that can
be aggregated and post-processed to estimate voice probability, speaker changes, and overlapping,
all at once.

Figure 4.8 shows two example outputs from this segmentation model, each corresponding to
a segment of 5 seconds of audio. The main assumption of this model is that it is very rare to find
such segments with more than Kmax = 3 different speakers. So the model is aimed to locally solve
a classification problem with 3 possible labels (speakers), which may have various types of voices.
The model is trained to distinguish between three potentially different voices in a segment of 5
seconds, regardless of their particular sounding.

Each speaker color in Figure 4.8 corresponds to one particular reference speaker, but only
during the local segment that is predicted. Thanks to the permutation-invariant training, note how
the orange speaker corresponds to the blue reference speaker in the left side segment and then in
the right side it corresponds to the red speaker. Both segments correspond to different moments of
conversation between the same speakers.

This trick actually consists of using a permutation-invariant loss function that does not penalize
swapping the reference and predicted speaker numbers, as long as each of them corresponds to one
particular speaker during the local 5 s segment [37]:

L(y, ŷ) = min
perm(y)

LBCE(perm(y), ŷ)

where ŷ is the predicted speaker for a given set of segments and y is the ground-truth label. The
BCE: Binary Cross Entropy loss function is actually calculated over a matrix ofKmax×Kmax = 3×3
between all pairs of labels, and then the correspondence between labels with the minimum total
cost is selected, solving an optimal assignment problem (the Hungarian algorithm is used for this
purpose [37]). For example, assume that the reference labels are r1, r2, r3 and the predicted labels
are p1, p2, p3. The correspondence between ri and pj is not known a priori, so all combinations are
tried (e.g. r1 ←→ p1, r2 ←→ p2, r3 ←→ p3, then also r2 ←→ p1, r1 ←→ p2, r3 ←→ p3, and so on
with all possible combinations), and the one with the minimum total loss is chosen.

After having the output with the speaker probabilities as shown in Figure 4.8, the voice activity
can be detected by just using a threshold on any speaker’s probability, and the speaker changes
and overlapping can also be decided using similar heuristics (see [37] for more details).

Since the label m in this work actually means “multiple speakers”, which refers to moments of
group work or students answering all at the same time (see Section 3.1 for exact definition), one of

62

4.2. Diarization based pipeline

Figure 4.8: Outputs from the permutation-invariant speaker classification model, showing two example segments
of 5 s at left and right -which actually correspond to different moments of a conversation between the same
speakers-. Top: Reference ground-truth labels for two different speakers. Center: Input audio segments wave-
form. Bottom: Predicted probabilities for 3 speakers, each one has a different color. One of the speakers (red)
has zero probability the whole time, since there are only 2 speakers (potentially simultaneously) in these segments.
The orange/green probabilities correspond to blue/red speakers on the left side respectively, but they swap to
the red/blue speakers on the right, thanks to permutation-invariant training. Source: [37]

the ideas was that maybe this label could be detected when the output of the segmentation model
-discussed previously- indicates that there are overlapping speakers. However, the attempt to do it
in practice was short-lived, because the label m is very often used when there are indistinguishable
voices in the background, typical when students are working in group activities. This situation was
not detected by the model, which is designed to work with foreground voices that are more clearly
defined.

4.2.2 Speaker Embeddings, Clustering and Resegmentation
The output from the speaker segmentation stage is a series of well-defined time segments that should
contain one particular intervention from one single speaker. It may overlap with other segments
from other speakers, but the particular speaker should be present during the whole segment.

The output segments are provided in 3 separate channels, one for each speaker. One particu-
lar speaker corresponds to one particular channel only during one single intervention, subsequent
interventions for the same speaker may show up as a segment in a different channel due to the
permutation-invariant nature of the segmentation model (as was previously explained).

These well-defined segments are fed into a speaker embedding model, which extracts vectors
that should characterize one particular speaker (see Section 2.4 for details on speaker embeddings).
The model used for this pipeline is the ECAPA-TDNN: Emphasized Channel Attention, Propagation
and Aggregation over a Time-Delay Neural Network [35], which is also a state-of-the-art model that
was successfully used in speaker recognition and diarization challenges [44], and is available on the
SpeechBrain open-source library [40] -used also in many of the building blocks of this work.

The result of this step is that each segment that corresponds to one intervention from one
particular speaker, is associated to one speaker embedding.

The next step is to run the clustering algorithm over these embeddings, in order to create

63

Chapter 4. Implementation

p a m

label

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
rr

centroid
median
complete
single
ward
average
weighted

p a m

label

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

centroid
median
complete
single
ward
average
weighted

p a m

label

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ae

centroid
median
complete
single
ward
average
weighted

p a m

label

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

centroid
median
complete
single
ward
average
weighted

Figure 4.9: Evaluation of the diarization pipeline with different clustering linkage criterions, separated by label.

groups of similar embeddings and associate one speaker to each group.

The clustering algorithm used in this particular pipeline is Agglomerative Clustering, which
was described in Section 2.4. This is the method that produced the best results in this particular
pipeline, despite it does not leverage the fact that embeddings near in time are more likely to
belong to the same speaker. The Spectral Clustering algorithm described in Section 2.4 (which is
very popular in diarization pipelines) is also available to use with the library, but the results were
not comparably as good.

In order to select the appropriate level of clustering between the bottom and top extremes
of the dendogram, a threshold on the similarity between clusters is used in this case. When the
similarity between the next clusters to merge is below this threshold, the process is stopped and
the resulting clusters up to that point are used. This threshold needs to be tuned for the specific
embeddings and similarity measure used.

As mentioned in Section 2.4, there are many strategies to measure similarity between clusters
to merge, in an operation that is called linkage. The linkage criterion determines the distance
between clusters as a function of the pairwise distances between their observations.

For example, the single criterion means that the distance between two clusters is determined
by the minimum distance between pairs of observations in those clusters. On the other hand, the
complete criterion uses the maximum distance between pairs. Themedian and average criterions use
the median and average distances between pairs, respectively. And the centroid criterion computes
the cluster centroids as a first step, and then measures the distance between to determine their
similarity [23].

In this work, these linkage criterions were put to test and compared, as shown in Figure 4.9.
The performance of the entire diarization pipeline is measured in the 5 test groups available for each
linkage method. It can be observed that the centroid, median and average criterions are the ones
with better and more consistent performances across metrics and labels. From those, the centroid
method was selected because it is the default method used in this pipeline and there is no other
method with a notorious advantage to justify a change.

Another important parameter to define in this pipeline is the minimum size that a cluster
can have, to be considered as a speaker. Clusters with fewer embeddings than the minimum are

64

4.2. Diarization based pipeline

10 15 25 40
clustering_min_size

0.2

0.4

0.6

0.8
co

rr

p
a
m

10 15 25 40
clustering_min_size

0.4

0.6

0.8

re
ca

ll

p
a
m

10 15 25 40
clustering_min_size

0.10

0.15

0.20

0.25

m
ae

p
a
m

10 15 25 40
clustering_min_size

0.2

0.4

0.6

0.8

pr
ec

isi
on

p
a
m

Figure 4.10: Evaluation of the diarization pipeline with different cluster minimum size, separated by label.

simply discarded because the segments belonging to that speaker would be too short and considered
insignificant.

The minimum cluster size was also evaluated at many values, and the results can be analyzed
in Figure 4.10. There is a clear drop in the MAE value (better, since this is an error metric) for
labels a and p when using clustering_min_size=15. The recall drops for label a but the precision
increases, and the opposite occurs for label p, which indicates that there are fewer false positives
in the detection of student participation. This is the value used for the parameter.

The reason why this happens will become clear in the next section, where the heuristic to
convert the diarization outputs into labels for Classroom Activity Detection is described.

4.2.3 Using Diarization for Classroom Activity Detection
The output of the diarization pipeline is actually a list of segments with their respective speaker
numbers.

Diarization does not solve the classification problem (or CAD, for this matter) directly, since
it does not predict if any given speaker is the teacher or some of the students. But assuming that
the teacher’s voice is always the most frequent speaker (which is the case in all the lesson recordings
that were analyzed for this work, as shown in Section 3.1.3), the speaker detected with the largest
time across the lesson can be assigned to it.

Note that this heuristic fails badly if the diarization predictions are not above a certain quality
threshold. From the results seen so far, where the correlation values for the teacher’s predicted
density are above 0.8, the conclusion is that the rule works successfully for that label.

The heuristics for assigning labels m and a are not as clearly effective. The rule is that any

65

Chapter 4. Implementation

speaker that is not the most frequent speaker but gets assigned its own cluster, is considered a
student, i.e. it is assigned label a. This assumes that single students participating in class have a
clear voice and those interventions are large enough as to be distinguished as a speaker.

The remaining segments, which are not assigned to any particular speaker, are classified with
label m, since there is no other possible label to use at this point (as was also the case for the
classifiers). Removing or including in this label the segments that are classified as overlapping
speech did not have any visible effect on the performance of the model.

Observing the results so far, the heuristic to detect the teacher’s voice seems to be appropriate,
but the conclusion is not so clear for the other labels a and m.

In this chapter, we have explored the practical details of all our CAD approaches, evaluat-
ing each model individually to adjust their parameters. We described the implementation and
evaluation of two supervised classification models (LSTM and XGBoost), and one unsupervised
diarization pipeline, for activity detection, specifically with the metrics defined in the previous
chapter. These efforts have laid the groundwork for subsequent analysis and comparison of results,
where we will work with the best versions of each model and compare them with each other.

66

Chapter 5

Analysis and comparison of results

In this chapter, we provide a comprehensive analysis and comparison of the results obtained from our
different Classroom Activity Detection (CAD) systems. We start by evaluating the LSTM model,
considered as the main candidate because of its speed and suitability for sequence classification
tasks. Then, we aim to understand its potential advantages compared to the more generic XGBoost
model, which also operates on the same audio features.

Next, we compare the supervised LSTM and the unsupervised diarization pipeline. Despite
being vastly different approaches, with the latter requiring no training data, we seek to ascertain
the worth of the effort invested in annotating data for training a supervised system. We aim to
gain insights into the trade-offs and effectiveness of each approach.

5.1 Analysis of the LSTM Classifier
As a first analysis, let us explore some results after performing CAD using the LSTM neural network
model. This is one of the supervised classifiers as explained in the previous section, and it is trained
with the same features as the XGBoost model.

The performance of both classifier models is similar -as will be shown in the following section-,
but the LSTM was mainly preferred to be explored in more detail because the inference process
runs considerably faster. Since this is a recurrent neural network, it is particularly well suited for
classifying sequences (see Section 2.2) and it can leverage the context information better (e.g., the
XGBoost has a major practical limitation on the context window length).

It is also important to mention that although the current implementation of this model over-
estimates the duration of label a more aggressively than XGBoost, this is only due to the particular
settings used. The label weights in the loss function of this model can be calibrated very precisely,
so this model is actually more flexible in this sense and could be readily adjusted upon users’
request.

The LSTM parameters in use, are those shown to produce the best results in Section 4.1.2:

• hidden_dim: 64.

• num_layers: 2.

• frames_per_sample: 64.

As an overview of the results, Figure 5.1 shows both of the main metrics that can be calculated
on top of the density estimations: correlation and Mean Absolute Error (MAE). This visualization

Chapter 5. Analysis and comparison of results

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
MAE

0.5

0.6

0.7

0.8

0.9

1.0
Co

rre
la

tio
n

Correlation vs. MAE for p

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
MAE

Correlation vs. MAE for m

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
MAE

Correlation vs. MAE for a
Test Group
1
2
3
4
5
all

Figure 5.1: LSTM values of correlation vs. MAE for all labels p, m and a (left to right) and all test groups
(groups 2 and 4 (red and orange) are overlapping on the label p plot). Note that top-left directions are better
(higher correlation and lower MAE).

0 500 1000 1500 2000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

p (ref)
p (pred)
m (ref)
m (pred)
a (ref)
a (pred)

Figure 5.2: Ground truth (ref) and LSTM (pred) densities for all labels over test group 5, which has an average
performance in terms of correlation and MAE (see Figure 5.1). This is an example of the result that a user
may see at the time of analyzing a 45-minutes lesson (slightly cleaner since the user will not have ground-truth
densities).

is useful to distinguish precisely which test groups are performing best or worst. As a reminder,
each of these 5 test groups corresponds to the test splits of different groups of audios, hence they
include different lessons. More precisely, each group contains five lessons.

The plots also show the metrics calculated on top of all test groups concatenated as one single
audio signal, so it is a kind of average value (see the brown dot labeled as group all). As expected,
there is a tendency in which higher correlation also mean lower MAE values, both of them being
associated to better estimations. In particular, group 2 is the one in which the model is working
better for all labels (it’s overlapping for label p with group 4), and group 1 is the worst for labels
p and a.

But let us first take a look at the performance of the model on an average group. Looking
back at Figure 5.1, it can be seen that the dot corresponding to test group 5 is close to the average
performance (the brown dot representing all groups) in all cases. The predictions of the model on
this average group can be seen in Figure 5.2. This plot is intended to show the output in a format
similar to that seen by a user of this CAD pipeline, showing the reference ground-truth densities as
solid lines and the predicted classroom activity as dotted lines, with the same color for each label.

68

5.1. Analysis of the LSTM Classifier

0.0

0.5

1.0
De

ns
ity

p (ref)
p (pred)

0.0

0.5

1.0

De
ns

ity

m (ref)
m (pred)

0 1000 2000 3000 4000 5000
t (s)

0.0

0.5

1.0

De
ns

ity

a (ref)
a (pred)

Figure 5.3: LSTM predictions for test group 2, which is the best example in terms of correlation and MAE for
all labels (see Figure 5.1)

The figure shows that the general shape of the curves is very closely related, allowing the
observer to estimate the main moments of the lesson precisely. At the beginning and end there is
more activity in the p (teacher introducing to the class, then explaining tasks, and finally closing
the lesson). In the middle of the lesson, there seems to be some group work activity that involves
the whole class (higher values on the label m), and there are particular peaks of activity in label
a where single students are intervening. All these key moments of the lesson are correctly detected,
despite some false detections on individual student participations, and some underestimation of
multiple voices.

All the peaks in label a are basically captured, except for the one around t ≃ 400 s, which
seems to be also mixed with label m in the reference. The false positives in label a generate small
density peaks in zones that should be null, for example around t ≃ 750, among other places. Those
in general correspond to short fragments where some student’s voice stands out during group work
instances. As was already discussed in previous sections, these cases can be very challenging to
disambiguate, even for a human annotator.

Now, let us take a closer look at comparing the predictions with the reference densities. The
best and worst performing groups (discussed above according to Figure 5.1) were chosen as a
reference, to better understand and calibrate what these metric values mean in terms of predicted
densities.

Figure 5.3 shows the predictions for test group 2, which corresponds to the best group in all
labels. Each label is shown on a separate plot in order to visualize it together with the reference
value and to note any subtle differences.

In this example, there are still overestimations in the label a, but the great majority of predicted
peaks are actually present in the reference. For label p the prediction is basically matching the
reference except for some minor shifts.

On the other hand, Figure 5.4 shows the predictions for test group 1, corresponding to the
worst estimations in labels p and a. In fact, the student activity is largely overestimated across the

69

Chapter 5. Analysis and comparison of results

0.0

0.5

1.0
De

ns
ity

p (ref)
p (pred)

0.0

0.5

1.0

De
ns

ity

m (ref)
m (pred)

0 1000 2000 3000 4000 5000
t (s)

0.0

0.5

1.0

De
ns

ity

a (ref)
a (pred)

Figure 5.4: LSTM predictions for test group 1, which is the worst group for labels p and a in terms of correlation
and MAE (see Figure 5.1)

lesson, being confused by both the teacher’s voice and group work. Aside of a couple false positive
peaks, it is also worth noting that the largest predicted peaks are still real and that no peak is
missed in this label.

In summary, in this introductory section, we have seen the performance of the LSTM model
in terms of correlation and MAE on all test groups and related some selected metric values to
actual estimated densities. Examples of the best -and worst- case predictions were shown, and also
one example showing all labels together on a 45-minutes audio with average performance, which is
similar to the results that would be seen by a user of the CAD module.

5.2 Comparing LSTM vs. XGBoost
This section aims to compare both supervised classification models against each other. To recall
from the implementation Section 4.1, these models are trained on top of the exact same audio
features to make sure that the comparison refers to the capabilities of each model.

Both of these models are viable contenders for this particular application and may be more
appropriate to use depending on the requirements and resources available. In particular, the LSTM
benefits by a huge margin in terms of inference time, which is an important aspect to consider
for this application. However, it requires GPU hardware in order to be trained, so this may be
a limiting factor for some future use cases where the system needs to be retrained frequently, for
example in the context of an active-learning platform.

As a first step, these models will be compared in terms of prediction performance in order to
understand whether or not they could be used interchangeably. If one of them is clearly a better
option, then the needed resources should be prioritized accordingly.

The comparison in this section is done using the best parameters for each model. The only
exception to this criteria is the context_window parameter in the XGBoost model, which makes the

70

5.2. Comparing LSTM vs. XGBoost

p a m
label

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Co

rre
la

tio
n

Correlation values for all labels

Model
LSTM
XGBoost

0.07 0.08 0.09 0.10 0.11 0.12 0.13
MAE

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Co
rre

la
tio

n

Correlation vs. MAE for label a
Test Group
1
2
3
4
5
all
Model
LSTM
XGBoost

Figure 5.5: Comparison between LSTM and XGBoost models, both supervised. Left: correlation values (vertical
axis) for all labels (horizontal axis) are shown for all 5 test groups and their concatenation (dots inside each
violin plot, some values may overlap), showing a similar performance in all cases. Right: correlation vs. MAE
values, only for label a, with different colors for each test group, allowing to see which group has each correlation
value. Note that the bigger points show the values calculated over all test groups concatenated, as an average
value. The point for test group 5 of XGBoost is not visible since it overlaps with the group all at (MAE=0.09,
Correlation=0.63).

inference process very slow to run and does not justify the marginal gain in prediction performance.
So the parameters chosen for each model are the following:

LSTM parameters

• hidden_dim: 64.

• num_layers: 2.

• frames_per_sample: 64.

XGBoost parameters

• context_window: 10.

• max_depth: 10.

• gamma: 0.

For more information on how these parameters were compared and chosen, see the Implemen-
tation Section 4.1).

The models with these parameters were run over all testing groups 1-5 (see Section 3.1.3), and
there is also another group all which consists of the concatenation of all these testing groups. Since
it is not obvious how to average each metric over data with slightly different label proportion and
duration, the metric values in this group can be considered as the average performance values.

On the left side of Figure 5.5 the correlation values are shown per label, for both models, in
all the available test groups. It can be seen that the distribution of correlation values across groups
in both models is very similar. This is a first indication that it might be possible to swap between
these models without a huge decrease in performance.

Looking inside of the distribution curves, there seems to be also a direct correspondence of
points in both models, so an observer might assume that these points correspond to the same test
groups (e.g.: it might be assumed that the points with the highest and lowest correlation in both
models for label a belong to the same group).

71

Chapter 5. Analysis and comparison of results

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
LSTM
XGBoost

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM corr. RP = 0.51

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

XGBoost corr. RP = 0.61

Figure 5.6: Comparison of predictions for label a over test group 1. This is the group with the largest difference
in favor of XGBoost, both in terms of MAE and correlation. Top: density for label a as a function of time,
removing non-labeled segments (there are still zero values in the reference which correspond to windows where
only other labels were used). Bottom: correlation plots and coefficient values (see plot titles) for the same
predictions shown on the top image. The temporal dimension is lost in this case.

To verify if this is the case, the plot on the right side of the same Figure 5.5 shows each test
group in a different color, and each model with a different shape, but only covers the label a. From
that plot, it is seen that the average correlation (group all) is basically equivalent, but the MAE is
0.03 higher (worse) for the LSTM.

To better visualize some of these differences with a concrete example, let us compare the
predictions for label a over group 1, which is the one with the highest difference in favor of XGBoost
according to the figure, both in terms of correlation and MAE. Figure 5.6 shows this comparison,
where its clear that both models tend to overestimate this label, but the LSTM does it to a larger
extent. Aside of that fact, both models are actually quite good at detecting peaks. From the
correlation plots (at the bottom of the same figure) it can be confirmed that there are not many
points where the reference is high but not the predictions, which is an indicator that both these
models are useful to find moments in which the students speak, even though they produce some
false positives.

A curious fact about the plot on the right in Figure 5.5, is that despite the correlation being
higher in groups 1,2,3 for XGBoost, and only better for LSTM in group 5 (which overlaps with
group all at (MAE=0.09, Correlation=0.63)), the average correlation for all groups is basically the

72

5.2. Comparing LSTM vs. XGBoost

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
LSTM
XGBoost

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM corr. RP = 0.68

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

XGBoost corr. RP = 0.63

Figure 5.7: Comparison of predictions for label a over test group 5. This is the only group where there is a
relevant difference in favor of the LSTM, only looking at the correlation value. However, it is enough to push
the average correlation values together (group all in Figure 5.5). Top: density for label a as a function of time,
removing non-labeled segments. Bottom: correlation plots and coefficient values (see plot titles) for the same
predictions shown on the top image. The temporal dimension is lost in this case.

same for both models.

To try and understand why the correlation of group 5 has such a big impact in the average
calculation, the predictions for it are also included in Figure 5.7. The particularity of that test set
is that it contains some large peaks in which the LSTM seems to work really well. Compared to
the previously analyzed test group 1 (in Figure 5.6), this group has sharper and higher peaks in
the reference density. Looking at the correlation plots at the bottom of the figure, it seems that
the LSTM follows those large values better (closer to the diagonal x = y).

In turn, large values tend to have a greater impact on the Pearson correlation coefficient being
used (introduced in Equation 3.3). In fact, a well-known problem of this particular coefficient is
that it can be affected by outliers, like these high density peaks appear to be. If this turned out to
be a serious problem, there are alternative formulations like Spearman’s rank correlation coefficient
[4] which are more robust to outliers, although they may also introduce undesirable effects.

To verify if these peak points are really outliers in the whole test data and to see if it is
actually a serious issue, all the predictions from both models for all test groups are included in the
correlation plots shown in Figure 5.8.

73

Chapter 5. Analysis and comparison of results

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM corr. RP = 0.63

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

XGBoost corr. RP = 0.63

Figure 5.8: Correlation of density for label a predicting with both models over all the test groups concatenated
(group all). There is a tie in the values of the correlation coefficients but actually each model has a distinctive
pattern of predictions: the LSTM seems to follow better the larger density values at the price of overestimating
more often. These predictions are not shown as a function of time because they cover a large time span and the
visualization is not clear.

From that figure, it seems more natural that both correlation coefficients are basically equal.
On one hand, although the LSTM model (left) tends to overestimate the density more often, it is
also better at predicting when the value is actually high. On the other hand, the XGBoost model
(right) shows more points below the diagonal line x = y, which means that there are some peaks
in student activity that may be underestimated or even go undetected in this model.

However, this is not necessarily a deficiency of either approach. This calibration can be
configured differently by modifying the label weights in the loss function for the LSTM model,
or the undersampling ratio for the p label that is used in the XGBoost model (see Section 4.1). In
both cases, these techniques aim to mitigate the severe label imbalance problem in which the p is
way more frequent, but there is room for refinements in their configuration (see Section 3.1.3).

In hope of increasing the probability of detecting less frequent labels such as a, some overesti-
mation might be acceptable even if it leads to false positive moments of student participation. The
good news is that this trade-off can be adjusted by iterating over these parameters, retraining, and
evaluating with the potential users.

This tendency to overestimate some labels and how it affects the detection of other labels can
be better understood by looking at the confusion matrix in Figure 5.9. Recalling the meaning of
this matrix from Section 3.2.2, each cell indicates the probability of hitting the Predicted label,
conditioned on the sample having the True label for that row (i.e., probabilities add up to 1 when
added per row). For example, for the LSTM (left), if we pick a segment with a reference label m,
there is a 10% chance that the prediction will be p, but only 4.7% to predict m if the true label is
p.

By comparing the confusion matrices in Figure 5.9, it can be seen that the probability to
correctly detect student samples a (that is, the recall of the label) is better for the LSTM than for
XGBoost (64% vs. 51%, respectively), but it also missclassifies more m segments as a (29% of the
m segments are wrongly classified as a in the LSTM vs. 23% in XGBoost).

5.2.1 Teacher Talking Time with Classification Models
A widely used metric in Classroom Activity Detection systems is the TTT: Teacher Talking Time
estimation (see Section 3.2), the total time the teacher talks in a lesson.

74

5.2. Comparing LSTM vs. XGBoost

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

0.89 0.047 0.06

0.1 0.61 0.29

0.095 0.26 0.64

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

0.88 0.078 0.041

0.074 0.7 0.23

0.1 0.38 0.51

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.9: Confusion matrices for the LSTM (left) and the XGBoost (right) models, considering all test groups.
The matrix is normalized to show hit probability conditioned on True label (see Section 3.2.2).

model label Min. Rel. Error (%) Max. Rel. Error (%)
XGBoost p -9.2 -1.5
XGBoost ma (a or m) 2.1 16.4
XGBoost a 29.1 77.4
XGBoost m -14.0 11.7
LSTM p -6.1 0.8
LSTM ma (a or m) -1.2 11.6
LSTM a 65.4 146.9
LSTM m -33.4 -8.3

Table 5.1: Comparison of relative errors in total label times estimated. The relative error is calculated as indicated
in Eq. 5.1, for each label. It was calculated separately on each of the 5 test groups (see Section 3.1.3), and only
minimum and maximum values are shown. The distribution of the errors is represented in Figure 5.10.

In the setup used in this work, the TTT is just the total duration of the label p. For com-
pleteness, the duration of the other labels a and m was also estimated, and as a final step they
were also measured together as one single label: ma, which is complementary to the label p.

The error for these estimations was measured separately in each of the 5 test groups available,
whose durations are between 5000-6000 s as seen in Table 3.1. These errors were then calculated
in relative terms so that they can easily be extended to any other audio duration, like a 45-minute
lesson. The relative error for the duration of each label is calculated simply using:

Rel. Error(%) = 100× Predicted duration−Annotated duration

Annotated duration
. (5.1)

The Annotated duration is the reference duration of ground-truth labels (human annotations). The
minimum and maximum relative errors for each label, after measuring in the 5 test groups, are shown
in Table 5.1. This corresponds to the worst-case underestimations (min error) and overestimations
(max error) of each model and label.

This table shows only the extreme values of the errors, but the distribution of those in the
different test groups can be appreciated in Figure 5.10. In that figure, the relative error is rescaled
using the average label duration in a lesson of 45 minutes. The proportion used for each label is
approximately equal as calculated in the data analysis section (3.1.3) and shown in fig. 3.3:

• Label p: 60%, or 27 minutes.

75

Chapter 5. Analysis and comparison of results

• Label m: 30%, or 13.5 minutes.

• Label a: 10%, or 4.5 minutes.

• Label ma (a or m): 18 minutes.

Then it is straightforward to translate the relative error to error in terms of minutes, by
multiplying with these factors.

In Figure 5.10, it becomes even more clear that the LSTM model overestimates the label a and
underestimates m to a greater extent than XGBoost (as was already shown with the confusion ma-
trix in the previous section). This is the consequence of the calibration of the loss weights discussed
in the previous section. These weights could be tuned to avoid this overestimation problem, but
it would be at the cost of potentially missing some density peaks in label a, which is challenging
to detect and is usually valuable information for the density plots, since they correspond to some
particular student’s participation.

With current calibration, the TTT is close to the ground-truth value in both models (that is,
the estimated duration for the label p only). Although it is being underestimated in most cases,
the error shift seems to be quite systematic in the LSTM, to the point that it could be corrected by
multiplying it by some fixed coefficient, which should be adjusted together with the loss weights.
This may be a workaround to better estimate the TTT without compromising the student peaks
detection, as discussed above.

It is interesting to note that although the LSTM is worse at estimating labels a and m sepa-
rately because of the calibration discussed, when both labels are considered together, the estimations
are slightly better than the XGBoost for both labels p and ma (bottom image of Figure 5.10).

5.2.2 Benchmark of execution times
Given that the performance of both models is similar in terms of classification accuracy, the inference
speed of each model becomes more relevant in order to use these models in a real-world application
in the future.

In this section, the execution time of both models was measured on the same hardware, which
has the following characteristics:

• CPU: Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz (64 bits).

• GPU: NVIDIA GeForce RTX 3090 @ 24 GiB RAM.

• RAM: 64 GiB DDR4.

It is worth noting that actually both models could run on a machine with much more limited
hardware, the only important requirement for the LSTM model is that it needs 770MiB of GPU
RAM. The XGBoost implementation cannot leverage GPU to perform faster inference (it does so
for faster training only).

The models were run on all five test groups two times. Since the test groups have slightly
different durations, the total inference time was divided by the input audio duration to normalize
the results to a per second basis. This was done after verifying that the total inference time is
directly proportional to the input duration, in both models and also in the feature extraction stage.

Since the feature extraction stage is exactly the same in both models (see Section 4.1), this
step was measured separately in both cases. The feature extraction time should be added to the
model inference in all cases to get the total processing time for the entire classification system. The
results are shown in Table 5.2.

In the table, two different versions of the XGBoost model are included because the inference
time is strongly dependent on this parameter. The reason to include those particular versions

76

5.2. Comparing LSTM vs. XGBoost

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Error (minutes)

p

m

a

la
be

l

LSTM
XGBoost

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Error (minutes)

p

ma

la
be

l

LSTM
XGBoost

Figure 5.10: Errors in the estimation of total times per label. The slashed lines indicate the average duration of
each label, as a reference value. The error was calculated on the usual 5 test groups, and then rescaled to the
duration of a regular lesson of 45 minutes. Top: Total durations are estimated separately for labels a, m and p.
Both models overestimate a and underestimate m. Bottom: Labels m and a are grouped together as one label
ma, so their errors tend to cancel out. As a result, ma is slightly overestimated, while p is slightly underestimated.

Model 1 second of audio (ms) 45 minutes of audio (s)
Feature extractor 1.05± 0.10 2.83± 0.27

LSTM 0.92± 0.02 2.50± 0.05
XGBoost (max depth=6) 10.51± 0.11 28.38± 0.31
XGBoost (max depth=10) 20.30± 0.25 54.82± 0.67

Table 5.2: Benchmark of inference execution times for the classification models. Inference time is directly
proportional to the input audio duration, so the first column corresponds to processing each segment of 1 s of
audio (note that inference time is in milliseconds in this case) and the last column is the time required to process
a whole lesson recording (assumed as 45 minutes of audio). The feature extraction stage is measured separately
in both models and should be added to either of them to calculate the total classification time.

77

Chapter 5. Analysis and comparison of results

is that the best model that was used in the comparison in the previous section is the one with
max_depth=10, but actually the alternative with max_depth=6 is twice as fast and has a very similar
performance in terms of accuracy (as was seen in Section 4.1).

In any case, the table shows that the LSTM is one order of magnitude faster than the best
XGBoost competitor. In fact, this model is even faster than the feature extraction stage because
it takes advantage of the parallel processing that the GPU hardware enables.

5.2.3 Summary: LSTM vs. XGBoost
In terms of prediction accuracy, there is no clear winner between the LSTM and XGBoost clas-
sification models. Any of them could be useful, depending on the available hardware and the
requirements of the particular application to develop. With the current settings, the LSTM seems
to overestimate the predictions for the student activity more often than the XGBoost model, but
it is also better at detecting peaks in this kind of activity. However, this could be adjusted in both
models (by tuning the loss weights in the LSTM or the under-sampling strategy in XGBoost) and
so it does not seem like a strong reason to prefer any of them.

The main decision factor would be the desired inference speed and available hardware resources.
The LSTM runs much faster, but it is only feasible if a GPU is available, so the XGBoost should
be considered as a backup option in the cases where the hardware budget is tight or when the
execution time is not considered a critical aspect of the system as a whole.

5.3 LSTM vs. Diarization
In this section, the supervised (LSTM) and unsupervised (Diarization) approaches to Classroom
Activity Detection are compared. In the previous section, it was observed that the differences
between supervised classifiers (LSTM and XGBoost) were not significant enough to discard any of
them. Instead, the decision should be based on the available hardware resources.

For this stage of the work, the GPU hardware (already mentioned in previous section) is
available and so the LSTM is chosen for the comparison in this section, since its much faster to
run inference on it. It is important to recall that the diarization pipeline being used also requires
a GPU to run the segmentation and embedding extraction steps.

As a first approach to the comparison, Figure 5.11 (left) summarizes all correlation values for
all labels a, m and p, in each of the five test groups.

On the right side of the same Figure 5.11, it is possible to see which group has the highest
or lowest correlation and MAE values. Test group 2 (orange) has the lowest performance for the
diarization system both in terms of correlation and MAE (bottom right circle dot). On the other
hand, group 5 (violet circle dot) is the one with the best performance for diarization.

Both test groups 2 and 5 overlap with other points for the LSTM values (they should be orange
and violet crosses), but they will be shown individually in the following figures.

Figure 5.12 shows the comparison of both models, particularly for group 2 (the one with the
worst performance for diarization). It is interesting to note that the LSTM model has a very high
correlation value of ρRP = 0.96 for that case. On the other hand, the diarization system is missing
some high peaks (see around t = 1000) and in turn it is predicting peaks that should not be there
(near t = 1500).

Unfortunately, it is not possible to include audio in this report, but listening to the audio of
those intervals manually, it was observed that there is nothing particularly challenging in those
sections. On the contrary, the teacher’s voice is very clear. For some reason, however, the diariza-
tion system is assigning those segments to another speaker different from the teacher, causing the
teacher’s density values to draw away from the reference.

78

5.3. LSTM vs. Diarization

p a m
label

0.0

0.2

0.4

0.6

0.8

1.0
Co

rre
la

tio
n

Correlation for all labels

Diarization LSTM

0.04 0.06 0.08 0.10 0.12 0.14
MAE

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Co
rre

la
tio

n

Correlation vs. MAE for p
Model
Diarization
LSTM

Test Group
1
2
3
4
5
all

Figure 5.11: Comparison between LSTM (supervised) and Diarization (unsupervised) models. Left: Correlation
values for all labels in all 5 test groups and their concatenation (dots inside each violin plot, some values may
overlap). Right: Correlation vs. MAE values (horizontal axis) only for label p, with different colors for each
test group, allowing to see which group has each correlation value. Note that the bigger points show the values
calculated over all test groups concatenated, as an average value.

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
LSTM
Diarization

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM corr. RP = 0.96

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Diarization corr. RP = 0.57

Figure 5.12: Comparison of predictions for label p over test group 2. This is the group with the worst performance
for the diarization system. Top: Predicted and References densities for label p as a function of time, removing
non-labeled segments. Bottom: correlation plots and coefficient values (see plot titles) for the same predictions
shown on the top image.

79

Chapter 5. Analysis and comparison of results

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
LSTM
Diarization

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM corr. RP = 0.96

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Diarization corr. RP = 0.94

Figure 5.13: Comparison of predictions for label p over test group 5. This is the group with the best performance
for the diarization system. Top: Predicted and References densities for label p as a function of time, removing
non-labeled segments. Bottom: correlation plots and coefficient values (see plot titles) for the same predictions
shown on the top image.

Having analyzed the case where the diarization system performs worse, let us now take a
look at Figure 5.13 which shows the test group with the best performance (group 5 as mentioned
previously).

In this case, the LSTM correlation is still better than the diarization value, but the difference
is very small. In fact, considering again Figure 5.11 and adding the correlation values for the LSTM
in groups 2 and 5 in figures 5.12 and 5.13, it can be confirmed that the LSTM works better than
the diarization system in all test groups for the teacher’s voice detection. However, except for test
group 2, the difference is not as great for this particular label.

However, for the other labels a and m, there appears to be a significant gain in performance
when comparing these models in Figure 5.11.

The main performance issue in the diarization model seems to be because it is not correctly
distinguishing the labels m and a -considering that the performance of p is much better than the
others-. To verify that hypothesis, the confusion matrices for these models can be compared in
Figure 5.14.

Looking at the confusions, it becomes clear that the main issue with the diarization model
is that the strategy used to select label m is not a good one. Indeed, picking a sample that was

80

5.3. LSTM vs. Diarization

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

0.89 0.047 0.06

0.1 0.61 0.29

0.095 0.26 0.64

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p m a
Predicted label

p

m

a

Tr
ue

 la
be

l

0.86 0.067 0.072

0.2 0.27 0.53

0.14 0.19 0.68

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.14: Confusion matrices for the LSTM model (left) and the diarization pipeline (right). The matrix is
normalized to show hit probability conditioned on True label (see Section 3.2.2).

p ma
label

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Correlation for all labels

Diarization LSTM

0.04 0.06 0.08 0.10 0.12 0.14
MAE

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Co
rre

la
tio

n

Correlation vs. MAE for ma
Model
Diarization
LSTM

Test Group
1
2
3
4
5
all

Figure 5.15: Comparison of correlations for both models on all 5 test groups, only trying to distinguish the
teacher’s voice p, or any of a,m (label ma). As expected, the distribution of each model in both labels are equal,
since the non-labeled segments are removed and so the proportion of p is complimentary to the proportion of
ma.

manually labeled as m (True label), there is a 53% probability that the diarization system will
make a mistake and choose label a instead, while the probability to predict it correctly is only 27%.

The probabilities of mistaking the labels a and m with p are also higher, as can be seen by
comparing the first column of both matrices. But since the problem is unbalanced and the label
p is way more frequent than the others, these mistakes are not so significant as to degrade the
performance in that label -as can be verified by looking at the top row of the matrices-.

Up to this point, it is clear that the diarization system is not good at distinguishing labels
a and m. However, the most important feature that these models need to have is to distinguish
the teacher’s voice (label p) from any student activity (labels m or a). So, to get an idea about
how good an unsupervised system can be for this task, this system was also evaluated using only
two labels: p vs. ma (a + m).

Figure 5.15 shows this evaluation, where both systems compared only need to distinguish the
teacher’s voice, versus any of the m or a labels (labeled ma). As a sanity check, the first thing
to observe is that actually the distribution of each model in both labels is exactly equivalent, since

81

Chapter 5. Analysis and comparison of results

model label Min. Rel. Error (%) Max. Rel. Error (%)
Diarization p -7.1 8.1
Diarization ma (a or m) -10.6 12.8
Diarization a 167.8 235.4
Diarization m -67.8 -43.8

LSTM p -6.1 0.8
LSTM ma (a or m) -1.2 11.6
LSTM a 65.4 146.9
LSTM m -33.4 -8.3

Table 5.3: Comparison of relative errors in total label times estimated. The relative error is calculated as indicated
in Eq. 5.1, for each label. It was calculated separately on each of the 5 test groups (see Section 3.1.3), and only
minimum and maximum values are shown. The distribution of the errors is represented in Figure 5.16.

their densities are complimentary. In other words, we already had this information by looking only
at the p label in Figure 5.11 of this section.

Aside of that fact, this figure shows more clearly that the diarization system is comparable to
the LSTM when trying to distinguish only the teacher’s voice, considering that it is an unsupervised
method that does not require any training to run. Except for the test group 2 (the lowest point
for the diarization correlation), the differences between those models are not so large as to discard
the unsupervised option, as long as distinguishing m from a is not a priority issue for the desired
application.

5.3.1 Teacher Talking Time with Diarization vs. Classification
As was already estimated in the comparison between supervised models (see Section 5.2.1, another
important metric to compare between models is the Teacher Talking Time (TTT).

Fortunately, this information only depends on the estimation of the p label, and hence it should
be possible to have a relatively good approximation by using the unsupervised approach. As shown
in the previous section, for this particular label the performance of the unsupervised diarization
pipeline is worse in general but at least comparable to the supervised system (except in 1 of 5 test
groups where it is considerably worse).

The error was again measured separately on the five available test groups and then calculated
in relative terms using the elementary Eq. 5.1.

The results of measuring the relative error with that equation are shown in Table 5.3, where
it is seen again that it is only in an acceptable range for labels p or the combined label ma.

These relative errors are rescaled to the duration of a 45 minute lesson, using the same proce-
dure as in Section 5.2.1, so that the errors can be represented in minutes in Figure 5.16.

It is important to note that the diarization estimations are way off the reference value for labels
m and a separately, to the point that the durations seem even reversed (swapping the estimated
durations for these labels, would produce better results for this particular metric). This indicates
once more that the current heuristic for separating these labels in the diarization pipeline should
be revised or not used at all.

For the supervised model, it might be possible to decrease this error by tuning the label weights
in the loss function (see Section 2.2) to avoid such a large overestimation, but the problem is still
very challenging due to the very nature of these labels, which are very hard to disambiguate even
for a human in many situations. Furthermore, lowering the weight for a would mean that some
peaks of student activity may be lost in density estimates, which would probably be a negative
effect in terms of usefulness for evaluators.

82

5.4. Impact of Data on a Supervised Model

15 10 5 0 5 10 15
Error (minutes)

p

m

a

la
be

l

LSTM
Diarization

15 10 5 0 5 10 15
Error (minutes)

p

ma

la
be

l

LSTM
Diarization

Figure 5.16: Distribution of errors in the estimation of total times per label. The slashed lines indicate the average
duration of each label, as a reference value. The error was calculated on the usual 5 test groups, and then rescaled
to the duration of a regular lesson of 45 minutes. Top: Total durations are estimated separately for labels a,
m and p. It is important to note that the diarization distribution corresponding to label a is actually around the
average time of m, so the error is a lot higher than it may appear at first sight. Both models overestimate a and
underestimate m, but the diarization is way off the correct value. Bottom: Labels m and a are grouped together
as one label ma, so their errors tend to cancel out. As a result, ma is slightly overestimated, while p is slightly
underestimated.

5.4 Impact of Data on a Supervised Model
Aside of the different technical foundations, the two approaches being compared in this section are
very different in the requirements that they need to work.

With the amount of manually annotated data available, it was possible to use a part of it for
training the supervised classification models, and the remaining data were used to compare the
performance between them and also against the unsupervised diarization pipeline.

Up to this point, it was shown that the supervised approach was superior using the best

83

Chapter 5. Analysis and comparison of results

models that could be trained on these data. However, the real usage of these models will be to
detect classroom activity in new recorded lessons, not necessarily annotated by humans. The new
lessons may be from different teachers than those in which the system was trained.

So, one of the key questions that remains unanswered is whether or not the supervised approach
is able to generalize on new data. And how much human-annotated data is needed to train it such
that it is equal or better than the unsupervised approach?

More precisely, it is important to answer these questions about the supervised approach:

• How many lessons (i.e: different voices) do we need to add to the training set, in order to
generalize to new (unknown) lessons?

• How much time from each lesson do we need to annotate in order to make those voices
“known” to the model?

To answer both of these questions, many versions of the LSTM classification model were
created and compared, each of them trained on different variants of the available dataset. Only the
training data was changed, and each version was evaluated in the same 5 test groups as always.

The different variants of the training dataset were created using different combinations of the
data groups and divisions defined in Section 3.1.3. In fact, all the complexity involved in creating
such data groups was intended to answer these questions.

5.4.1 Adding more lessons
The aim of this section is to answer the first question posed above, which can also be interpreted
as: can we find the point at which the supervised model no longer improves after adding new
lessons and teacher voices? What is the minimum amount of training data required to surpass
the performance of the unsupervised system? Or how does the model improve when we add new
lessons?

It is important to recall from Section 3.1.3, that each of the 5 different data groups contained
audio from different lessons. In other words, the 25 available lessons are divided into these 5 groups.

The strategy to answer how the supervised model generalizes to new (unknown) lessons is to
train it on a dataset that only contains some groups, and then evaluate it on the groups that were
left out from the training set.

For example, as a first step, the model is trained using only group 1, and then the prediction
performance is measured on the test splits from groups [2, 3, 4, 5].

Only one example of this model being trained in group 1 and evaluated in test group 2 is
shown in Figure 5.17. The performance of this LSTM trained on reduced data is comparable to the
Diarization approach, although the sections where each model fails to detect peaks are different.
This test group was also used for comparison but using the full LSTM model, in Figure 5.12. But
in this new image, the predictions are significantly worse because not only the model is predicting
over unseen teacher voices, but it is only trained on 5 lessons (1 train group).

The same estimation is performed on all other test groups [3, 4, 5] that were not present in
the training set. On each of them, the correlation value is calculated.

Since there is nothing special about training with group 1, the model is also trained on group
4 and tested on [1, 2, 3, 5], and also trained on group 5 and tested on [1, 2, 3, 4].

So, only for the first step (Number of training groups: 1), there are 3 × 4 = 12 test densities
to calculate metrics and build a confidence interval and average value. This is the first point
for the LSTM value in Figure 5.18, where it is seen that the performance of the supervised and

84

5.4. Impact of Data on a Supervised Model

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 e

st
im

at
io

n

Reference
LSTM (only group 1)
Diarization

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

LSTM (only group 1) corr. RP = 0.88

0.0 0.2 0.4 0.6 0.8 1.0
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Diarization corr. RP = 0.94

Figure 5.17: Comparison of predictions for label p over test group 5. The LSTM model was only trained with
train group 1, so its performance is still worse than the Diarization pipeline. Top: Predicted and References
densities for label p. Bottom: correlation plots and coefficient values (see plot titles) for the same predictions
shown on the top image.

unsupervised approaches is quite similar in terms of correlation, when we only add one training
group.

The second step for the same figure (Number of training groups: 2), evaluates the same model
(with exact same hyperparameters) only trained on 2 groups, and evaluated on different remaining
3 groups. In this case, 3 different model variants are evaluated: trained in groups [1, 2] and tested
in [3, 4, 5], trained in [4, 5] and tested in [1, 2, 3], and trained in [1, 4] and tested in [2, 3, 5]. Hence,
there are 9 test points to build the confidence interval and average value.

The same basic procedure is repeated for all the other points, with the caveat that the more
training groups are added, the less test groups are available. In Step 3, each version of the trained
model can be evaluated in 2 groups (3 versions are trained, so there are 3 × 2 = 6 test points to
build the confidence interval and average value). In Step 4, since there is only 1 test group left, 5
different model versions are trained.

In the final step (Number of training groups: 5), the model is evaluated with previously seen
voices (since there are no groups left out). So, this step is added in order to show what the gain is
of evaluating the model only with known teachers. Surprisingly, this step is not particularly large
for label p after all previous audios were added.

85

Chapter 5. Analysis and comparison of results

0 1 2 3 4 5
Number of training groups

0.0

0.2

0.4

0.6

0.8

1.0
Co

rre
la

tio
n

p

LSTM
Diarization

0 1 2 3 4 5
Number of training groups

m

LSTM
Diarization

0 1 2 3 4 5
Number of training groups

a

LSTM
Diarization

Figure 5.18: Comparison between the unsupervised (Diarization) system vs. the supervised (LSTM) model, while
adding new groups of audios (i.e: adding new lessons and teachers) to the supervised model. In all cases the
model is tested only on non-training groups (unseen voices), except for the last one (since all 5 groups are used
for training). The colored spans around each curve represent the confidence interval of 95% of each metric, as
measured on all 5 test groups.

From this observation, it can be concluded that after adding 20 different teacher voices
(4 groups × 5 voices/group), there is no significant gain in adding more voices to the training
set. Even if the model is to be evaluated on unseen voices, there is no great benefit in adding some
annotated samples with these voices to the training set. At least, this seems to be the case for label
p, which is actually the one that should be more prone to a lack of generalization over the voices
of new teachers.

It is interesting to note that for label m there is no apparent benefit in adding new audios
to the training set. This may not be very surprising, considering that these samples are simi-
lar across different lessons, consisting of some noises and multiple background -most frequently
indistinguishable- voices with overlapping happening when students are working in pairs or answer-
ing the same questions together.

Perhaps more surprising is the fact that the label a is the one that improves the most when
more training data is added. Even extrapolating beyond 5 training groups, it seems to be the case
that this label could continue improving. The explanation for this fact might be that this label is
actually the one with the lowest proportion of samples (only around 10%, as shown in the previous
section and in Section 3.1.3). And, actually, these samples correspond to students whose voices are
clear and distinguishable. So, these samples should not be imagined as a generic children’s voice
but instead as other particular voices, only with very few samples each one.

For this label, it could be said that even though the performance of the supervised model is
better than the unsupervised one, it is not yet at a level of maximum generalization. In other
words, the supervised model would benefit from a larger training set, with more samples with label
a and more diverse student voices, particularly.

To put these metrics in more context, we can visualize the evolution of the LSTM model as
more training data are added. Figure 5.19 shows the particular example of the predictions for test
group 5 and label p, while Figure 5.20 shows the same evolution for the same test group, but for
label a.

In both cases, it is worth noting that the estimations and the correlation values (shown in the
titles of the plots at the bottom as ρRP) are not monotonically improving as more data are added.
There are some groups that actually make the model worse at predicting this particular test group
(e.g., groups 2 and 4 in this case, have lower correlations than groups 1 and 3 respectively).

This is not so surprising, considering that the data being added belong to completely different

86

5.4. Impact of Data on a Supervised Model

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
De

ns
ity

 e
st

im
at

io
n

Adding group 1
Adding group 2
Adding group 3
Adding group 4
Adding group 5
Reference

0.00 0.25 0.50 0.75 1.00
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Add grp.1 RP = 0.88

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.2 RP = 0.89

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.3 RP = 0.93

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.4 RP = 0.89

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.5 RP = 0.96

Figure 5.19: Improvement in predictions for label p over test group 5, while adding training groups 1 to 5. Top:
Predicted and References densities. Bottom: correlation plots and coefficient values (see plot titles) for the same
predictions shown on the top image.

lessons with different voices and even environments (noise levels, classroom organization, etc.). But
looking at the first and last correlation values, it is clear that the improvement in the correlation
value is significant.

5.4.2 Adding more time per lesson
In this part, the aim is to answer the second question posed at the beginning of this section: How
much time from each lesson do we need to annotate in order to make those voices “known” to the
model?

This question can also be stated as: How does the model improve when we add more annotated
time, always using the same groups of lessons?

Again, the strategy to answer these questions involves training many versions of the same
model on different training datasets. This time, making use of the training splits that were also
defined in Section 3.1.3.

From that section, let us also recall that the position of the splits and the audios included on
each group, were carefully chosen to create balanced splits and groups, in terms of the resulting
label proportions. This balance is guaranteed when any given split is selected, as long as all the
groups are included. For example, we should not create a training dataset using only split 1 from
group 1, because that particular subset might have a balance between labels that is completely

87

Chapter 5. Analysis and comparison of results

0 1000 2000 3000 4000 5000
t (s)

0.0

0.2

0.4

0.6

0.8
De

ns
ity

 e
st

im
at

io
n

Adding group 1
Adding group 2
Adding group 3
Adding group 4
Adding group 5
Reference

0.00 0.25 0.50 0.75 1.00
Reference density

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 d
en

sit
y

Add grp.1 RP = 0.52

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.2 RP = 0.48

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.3 RP = 0.61

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.4 RP = 0.58

0.00 0.25 0.50 0.75 1.00
Reference density

Add grp.5 RP = 0.68

Figure 5.20: Improvement in predictions for label a over test group 5, while adding training groups 1 to 5. Top:
Predicted and References densities. Bottom: correlation plots and coefficient values (see plot titles) for the same
predictions shown on the top image.

different from the test splits where it is going to be evaluated.

So, the models are trained using always all the groups, but only some splits. As a first step,
the model is trained using only split 1 from all groups. Then it is evaluated on the test split 0 from
all groups separately. Another version of the model is trained using only split 2, and yet another
using only split 3. All are tested on the same five test splits, so we get 3 × 5 = 15 data points
to measure the prediction performance. These measurements are averaged and used to build a
confidence interval at the first data point (Number of training splits: 1) in Figure 5.21.

The same procedure is repeated using only two splits (2 versions are trained: using only splits
[1, 2] and using [4, 5]), and so on up to including all the 5 splits. The result is shown in all the
other values of Figure 5.21.

Unfortunately, by observing that figure, it is seen that except for the label a, the other labels
seem to reach plateau performance even after adding only one training split. There must be a point
at which the supervised model is worse than the unsupervised one, but finding it would require
even less training data than the minimum size of splits used in Section 3.1.3.

Note that it is a challenging problem to create smaller splits keeping the label balance in the
data. Currently, each training split is created using only 10% of each lesson’s audio (test split 0
takes 50% of each lesson, and the remaining is divided into five training splits), and the proportion
between labels in those segments varies widely (as shown in Figure 3.3 of that section).

88

5.5. Chapter Summary

0 1 2 3 4 5
Number of training splits

0.0

0.2

0.4

0.6

0.8

1.0
Co

rre
la

tio
n

p

LSTM
Diarization

0 1 2 3 4 5
Number of training splits

m

LSTM
Diarization

0 1 2 3 4 5
Number of training splits

a

LSTM
Diarization

Figure 5.21: Comparison -in terms of correlation between predicted vs. reference densities- between the unsuper-
vised (Diarization) system vs. the supervised (LSTM) model, while adding more labeled time in the same groups
of audios (i.e: more time from the same lessons and teachers) to the supervised model. The colored spans around
each curve represent the confidence interval of 95% of each metric, as measured on all 5 test groups.

In summary, we are unable to find the point at which the supervised model is worse than the
unsupervised one, but these results suggest that labeling 10% of each lesson is enough to train the
best possible version of the model, at least with the current features and architecture.

5.5 Chapter Summary
In this chapter, we have conducted a thorough comparison of all implemented models, focusing on
their ability to accurately localize classroom activities in time, as evidenced by the label density
estimation plots. Additionally, we extracted global metrics, such as Teacher Talking Time, to
understand the overall performance of each model.

To establish a baseline for our comparisons, the LSTM model was used as a reference point
and the results of the other approaches were evaluated in comparison to it. This analysis enabled
us to grasp the strengths and limitations of each model, offering valuable insights for further refine-
ment. Additionally, since both supervised classification models turned out to be similar in terms
of detection performance, they were also benchmarked to highlight important differences in their
inference speeds.

Finally, since supervised classification demonstrated considerably better detection performance
compared to the unsupervised diarization system, we also conducted comparisons by incrementally
adding more data to the supervised approach. By considering two distinct scenarios, one involv-
ing different lessons with diverse teacher and student voices, and the other focusing on adding
more annotated audio time from the same lessons, we gained valuable understanding about the
generalization power and the impact of labeled data on the supervised model’s performance.

89

Chapter 5. Analysis and comparison of results

90

Chapter 6

Conclusions

6.1 Main Findings
The first thing that this study suggests is that performing Classroom Activity Detection (CAD)
for primary school lessons poses greater challenges compared to college-level courses. Fundamental
differences in class organization, fragmented student participation, short speaker turns, and high
levels of noise and overlap from other students make it more complex. It is worth noting that the
existing literature on CAD primarily focuses on college-level courses, making direct comparisons
difficult and hardly relevant.

From the supervised models proposed, both the XGBoost and LSTM models demonstrate
similar classification performance, despite the inherent lack of a built-in mechanism for sequence
classification in XGBoost. To overcome this limitation, a context window was used, which extends
the input vector by adding features from neighboring frames. But it is important to consider that
the context cannot be excessively large in this approach due to the associated high computational
requirements. In this sense, the LSTM is more flexible for sequence classification.

In terms of unsupervised audio diarization, the current heuristic which assigns the most fre-
quent speaker as the teacher achieves a satisfactory performance in distinguishing his voice from
the students’. Notably, this method does not require specific training data, but relies on the more
general application for which it has been pre-trained. Nevertheless, even with a limited amount of
training samples, supervised classifiers outperform the diarization method, even when faced with
new voices from teachers and students that were not part of the training set.

By dividing the training data into subgroups, the performance of the LSTM could be studied
as a function of the available data. This analysis was done in two ways: by adding new voices and
by adding more time from the same voices. It was observed that the supervised model generalizes
when faced with previously unseen voices, to the point that adding one single training group -5
lessons- is enough to attain the diarization system’s performance. Furthermore, the study revealed
that augmenting the annotated time from the same lessons proves effective only when focusing on
segments with significant student participation. In contrast, the classification performance for the
teacher’s voice plateaus after incorporating the first split of data.

The complexity of diarization extends beyond what can be gleaned from research papers
alone, in general. Various subtleties, such as the aggregation of overlapping embeddings and output
clusters into segments, are often omitted in the literature. By dismantling the pipeline implemented
in the library pyannote.audio, many of these details came to light. This is an important reason to
prefer open source solutions, which can also be further adapted to the application needs.

Chapter 6. Conclusions

One limitation of the diarization approach is the incapability to distinguish labels a from
m (single students vs. group work and background noise). Using a speaker segmentation model
to identify multiple voices or voice overlap does not work properly, since the voices of students
engaged in group work often constitute background noise, lacking clear definition and not necessarily
overlapping continuously.

With the current implementation, the LSTM model exhibits nearly the same speed as the
feature extraction step, thanks to GPU utilization. On the other hand, XGBoost is slower but still
reasonably fast, taking less than a minute for inference execution on our hardware. The advantage of
XGBoost lies in its independence from GPU requirements, so it can be considered as an alternative
solution if the available hardware is limited in that way.

The utilization of density estimation for predicted labels proves to be an effective means of
summarizing results concisely. This is one important difference with respect to other CAD systems,
in the way that results are shown. The usual plot that shows a plain timeline with student or teacher
segments, is too congested with short segments in this case. Visualizing the density estimation
proved useful to understand the results easier for this use case.

On top of the density estimation, the correlation coefficient allows to evaluate the prediction
in terms of the information provided to an observer, that needs to quickly understand the key
moments of the lesson. This metric evaluates that the shapes of the curves (peaks and valleys)
are similar, but it is invariant to systematic biases (i.e., vertical shifts) in detecting any particular
label.

To complement the correlation coefficient, the absolute error (MAE) and total label times are
good complimentary metrics to consider. In that sense, the total times for labels a and m were
not correctly estimated at an individual level -they are also hard to disambiguate manually-, but
combining them or measuring the total time for label p led to very precise estimations of the Teacher
Talking Time (TTT), which is widely employed in classroom activity analysis.

6.2 Review of Research Questions
Aside of the implementation and evaluation of different models, this study also posed some research
questions (see Section 1.2) to answer during the process. Let us review them and verify if they were
properly answered.

• What useful information can be extracted by using an out-of-the-box diarization system over
the classroom audio?

As was shown in Section 2.4 and mentioned above, the diarization system allows to distinguish
the teacher’s voice from other kind of participation, but it is less precise than the supervised
classifiers and it is not good at refining those labels any further.

• What’s the human effort required and the best annotation criteria to create training and
evaluation datasets for our task?

This question was mainly answered in Section 3.1 combined with the analysis on how the
LSTM works with different amounts of data, in Section 5.4. About the annotation criteria, it
was hard to disambiguate in practice between labels a and m, but the classifiers were able to
distinguish them to some degree, although it is the main source of confusion in the classified
samples. The usefulness of providing those labels separately could be further discussed with
the final users.

• How to compare diarization and audio classification systems, in a way that is significant for
the actual problem that we are trying to solve?

There were several iterations to find a proper visualization and a performance metric that
reflects the value of the information provided by the system. As shown in Section 3.2, using

92

6.3. Contributions

the label density estimations and correlation coefficient was considered the most effective way
to evaluate the results.

• Is the supervised approach able to generalize to new recorded lessons? How much human-
annotated data is needed to make it comparable to the unsupervised approach?

In Section 5.4 it was clear that the supervised LSTM generalizes to new voices, working better
than the diarization system even with reduced data (10% of the dataset), as was already
mentioned above. The amount of data needed to reach or surpass diarization performance
is less than the smallest subgroup of data that could be evaluated -it is hard to create even
smaller subgroups maintaining label balance-.

6.3 Contributions
This research makes some contributions to the field of CAD using audio-based methods. These
contributions are summarized as follows:

• An audio annotation protocol that enabled the creation of a data set for the training and
evaluation of CAD models. Although the dataset cannot be released to the general public,
the labeling criteria and effort estimation were described. The challenges and ambiguities
involved in the process were also discussed by comparing redundant human annotations in
some audio fragments.

• A comprehensive comparison between unsupervised diarization and supervised audio classi-
fication methods was conducted over the annotated dataset. This comparison is particularly
relevant as unsupervised methods do not require annotated training data.

• A simple heuristic was proposed to use diarization outputs as a basic CAD pipeline. Notably,
the experiments demonstrated that this approach performed well in identifying the teacher’s
voice (label p) but was very limited in accurately distinguishing between labels m (multiple
background voices, group work) and a (student intervention).

• A data partitioning approach was proposed to create balanced subgroups for incremental
training of the supervised model. This approach enabled a systematic exploration of how
model performance improves with increased data and facilitated the estimation of its gener-
alization capabilities to new voices. The experiments revealed that the supervised classifier
demonstrates an effective generalization to new lessons after incorporating only five different
lessons. Moreover, the experiments provided insights into where to prioritize data annotation
efforts, as label a consistently improved while labels p and m exhibited limited improvement
with increasing data from the same lessons.

• A visualization and evaluation method based on label density estimation and correlation
was introduced to address the challenge of handling fragmented interventions and detections.
This approach differs from conventional CAD systems intended for college-level courses and
offers improved insight into the analysis of primary school lessons.

• An efficient classifier based on Long Short-Term Memory (LSTM) networks and classical au-
dio features was implemented, which proved to be effective for the task at hand. Additionally,
an alternative classifier that uses decision trees (XGBoost) was developed, which does not
require specialized hardware such as a Graphics Processing Unit (GPU). Despite its slower
inference speed and limitation on the maximum sequence length to process, the XGBoost
classifier achieved comparable results.

These contributions collectively enhance our understanding of CAD in educational settings
and provide insights into the performance and limitations of different methods. The findings of
this research may be helpful for developing more robust and accurate CAD systems, especially in
primary school environments characterized by unique challenges.

93

Chapter 6. Conclusions

6.4 Future Work
While this research provides some insights into Classroom Activity Detection using audio-based
features, its scope was limited, so there are inherent limitations that should be acknowledged and
several avenues for future exploration.

To begin with, while the dataset used in this study underwent manual annotations, the re-
sources allocated for reviewing and refining these annotations were limited. Therefore, a critical
area for future work lies in conducting thorough reviews of the annotations to address any ambigu-
ities or inconsistencies. By refining the dataset and ensuring its accuracy, the overall performance
and generalizability of the CAD system can be significantly enhanced.

Additionally, exploring more advanced audio feature extraction techniques should be a priority.
The current study relies on basic audio features, which may limit the richness of information
captured. By incorporating more sophisticated approaches, we can potentially improve classification
performance and enhance the system’s ability to accurately detect and classify classroom activities.

Further exploration of the architecture and hyperparameters of the models in use, should also
be conducted. In particular for the LSTM, there are other approaches like seqtoseq classification
and bidirectional evaluation, that were only considered during the analysis of results, and could
lead to better results with relatively little effort.

Another aspect to consider is that the predictive models employed in this research are relatively
basic, lacking for example the utilization of state-of-the-art transformer architectures, Time-Delay
or Convolutional Neural Networks, and end-to-end models that operate on the waveform domain.
It is important to consider that these complex models often require substantial amounts of data for
effective training. However, techiques like transfer-learning, upsampling or data augmentation, and
semi-supervised learning may allow fine-tuning bigger pre-trained models for this particular data.

In order to increase the amount of annotated data, an active learning loop could be imple-
mented to foster continuous improvement of the CAD system. By actively engaging users and
incorporating their feedback, the system can adapt to diverse classroom environments and varia-
tions in speech patterns. This iterative feedback loop will contribute to the system’s performance
enhancement and overall user satisfaction. Although the current models are not showing a great
improvement of the performance as new data is added, this situation would probably change if
much larger models with learnable features are used. In this sense, the current models would be a
starting point to enable further iterations with more data and larger models.

Self-supervised learning techniques offer promising avenues for further investigation. These
approaches do not require manual annotations and could be trained on all available recordings,
in order to learn audio representations particularly fine-tuned for speaker recognition in the do-
main of primary school lessons. This in turn could be used as input to larger models with more
discrimination power.

Efforts should also be made to explore combined approaches that tackle both diarization
and transcription simultaneously. Although challenging -due to the different embeddings required
for each task, as mentioned in the introduction chapter-, the current research trends are focused
towards developing generalistic foundation models trained on vast amounts of data. These pre-
trained models can be then prompt engineered or fine-tuned to solve specific tasks, as has been
the case with natural language and image generation models [43], and even object detection [47].
If such a model reaches human-perception level of audio signals, it should be able to distinguish
and transcribe speaker voices with great accuracy, for different speaker ages, languages and even
in noisy or overlapping conditions. At the moment, models like Whisper by OpenAI [45] -trained
on vast amounts of data and is intended to reach human-level understanding- are intended for
transcription and do not provide speaker diarization or prompting capabilities.

In conclusion, future work in CAD should focus on incorporating advanced audio feature

94

6.5. Personal Reflections

extraction techniques, leveraging more complex predictive models, thoroughly reviewing and refin-
ing annotations, exploring transformer-based and self-supervised learning approaches, investigating
generalistic models for audio, and implementing an active learning loop to ensure continuous system
improvement.

6.5 Personal Reflections
This thesis was part of a larger project that aimed to develop useful tools for Ceibal evaluators.
Thanks to the ANII scholarship, I had the opportunity to dedicate full-time periods to research and
development of one of the components of this toolkit, the Classroom Activity Detection module.
Although it may have taken longer than expected, the journey itself was incredibly enriching.
Aside from all the technical challenges and learning-by-doing, envisioning this work as a real-world
product that could potentially be implemented one day was truly exciting.

Coming from an industry experience background, at certain point of the development process
I had to change gears to “academy mode”. This transition involved stepping away for a bit from
software implementation and model fine-tuning and instead focusing on crafting a coherent nar-
rative with my findings and results. This shift required a different skill set, especially in terms of
academic writing, in which I had very limited experience. Once again, the support and guidance
of my mentors were instrumental during this phase. They provided valuable advice and helped me
navigate the process of transforming my work into an academic article. Additionally, they helped
to find opportunities to present my research, which shifted my focus towards engaging with the
academic community.

Throughout this experience, I had the freedom and time to explore academic research and
experiment with different approaches, taking the time to better understand the underlying princi-
ples, which differs from the fast-paced nature of some industry projects. This self-guided journey
also differed from traditional university courses, as it required me to navigate uncertain territories
where the amount of time and effort required for each task was not always clear and depended to
a great extent on my own interests and judgement.

In general, this thesis provided a valuable opportunity for personal growth and development. It
allowed me to delve into academic research, refine my writing skills, and gain a deeper understanding
of various engineering topics. I am deeply thankful to my mentors and project teammates for their
invaluable help and support, and for making this journey possible.

95

Chapter 6. Conclusions

96

Bibliography

[1] H. W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval Research
Logistics Quarterly 2.1 (Mar. 1955), pp. 83–97. issn: 00281441, 19319193. doi: 10.
1002/nav.3800020109. url: https://onlinelibrary.wiley.com/doi/10.1002/
nav.3800020109 (visited on 04/25/2023).

[2] S. Davis and P. Mermelstein. “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”. In: IEEE Transactions
on Acoustics, Speech, and Signal Processing 28.4 (1980), pp. 357–366. doi: 10.1109/
TASSP.1980.1163420.

[3] Leo Breiman. Classification and Regression Trees. (The Wadsworth statistics / proba-
bility series). Wadsworth International Group, 1984. isbn: 9780534980535. url: https:
//books.google.com.uy/books?id=uxPvAAAAMAAJ.

[4] C. Spearman. “The Proof and Measurement of Association between Two Things”. In:
The American Journal of Psychology 100.3/4 (1987), pp. 441–471. issn: 00029556.
url: http://www.jstor.org/stable/1422689 (visited on 05/24/2023).

[5] Spyros Makridakis. “Accuracy measures: theoretical and practical concerns”. In: In-
ternational Journal of Forecasting 9.4 (Dec. 1993), pp. 527–529. issn: 01692070. doi:
10.1016/0169- 2070(93)90079- 3. url: https://linkinghub.elsevier.com/
retrieve/pii/0169207093900793 (visited on 05/14/2023).

[6] Leon Cohen. Time-frequency analysis. Prentice Hall signal processing series. Engle-
wood Cliffs, N.J: Prentice Hall PTR, 1995. isbn: 978-0-13-594532-2.

[7] Alexandra Canavan, David Graff, and George Zipperlen. CALLHOME American En-
glish Speech. Type: dataset. 1997. doi: 10.35111/EXQ3-X930. url: https://catalog.
ldc.upenn.edu/LDC97S42 (visited on 04/20/2023).

[8] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1, 1997), pp. 1735–1780. issn: 0899-7667, 1530-888X. doi:
10.1162/neco.1997.9.8.1735. url: https://direct.mit.edu/neco/article/9/
8/1735-1780/6109 (visited on 04/26/2023).

[9] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to Forget: Contin-
ual Prediction with LSTM”. In: Neural Computation 12.10 (Oct. 1, 2000), pp. 2451–
2471. issn: 0899-7667, 1530-888X. doi: 10.1162/089976600300015015. url: https:
//direct.mit.edu/neco/article/12/10/2451-2471/6415 (visited on 04/26/2023).

[10] Jerome H. Friedman. “Greedy function approximation: A gradient boosting machine.”
In: The Annals of Statistics 29.5 (Oct. 2001), pp. 1189–1232. issn: 0090-5364, 2168-
8966. doi: 10.1214/aos/1013203451. url: https://projecteuclid.org/journals/
annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-

A - gradient - boosting - machine / 10 . 1214 / aos / 1013203451 . full (visited on
04/27/2023).

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://books.google.com.uy/books?id=uxPvAAAAMAAJ
https://books.google.com.uy/books?id=uxPvAAAAMAAJ
http://www.jstor.org/stable/1422689
https://doi.org/10.1016/0169-2070(93)90079-3
https://linkinghub.elsevier.com/retrieve/pii/0169207093900793
https://linkinghub.elsevier.com/retrieve/pii/0169207093900793
https://doi.org/10.35111/EXQ3-X930
https://catalog.ldc.upenn.edu/LDC97S42
https://catalog.ldc.upenn.edu/LDC97S42
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://doi.org/10.1162/089976600300015015
https://direct.mit.edu/neco/article/12/10/2451-2471/6415
https://direct.mit.edu/neco/article/12/10/2451-2471/6415
https://doi.org/10.1214/aos/1013203451
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full

Bibliography

[11] S. Dubnov. “Generalization of Spectral Flatness Measure for Non-Gaussian Linear
Processes”. In: IEEE Signal Processing Letters 11.8 (Aug. 2004), pp. 698–701. issn:
1070-9908. doi: 10.1109/LSP.2004.831663. url: http://ieeexplore.ieee.org/
document/1316889/ (visited on 04/26/2023).

[12] Ulrike von Luxburg. A Tutorial on Spectral Clustering. arXiv.org. Nov. 1, 2007. url:
https://arxiv.org/abs/0711.0189v1 (visited on 04/25/2023).

[13] Lawrence R. Rabiner and Ronald W. Schafer. Theory and applications of digital speech
processing. 1st ed. Pearson, 2011. isbn: 9780136034285.

[14] Hao Tang et al. “Partially Supervised Speaker Clustering”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 34.5 (May 2012), pp. 959–971. issn:
0162-8828, 2160-9292. doi: 10.1109/TPAMI.2011.174. url: http://ieeexplore.
ieee.org/document/5989833/ (visited on 07/15/2022).

[15] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term Memory Based
Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition.
Feb. 5, 2014. doi: 10.48550/arXiv.1402.1128. arXiv: 1402.1128[cs,stat]. url:
http://arxiv.org/abs/1402.1128 (visited on 04/27/2023).

[16] Zuowei Wang et al. “Automatic classification of activities in classroom discourse”.
en. In: Computers & Education 78 (Sept. 2014), pp. 115–123. issn: 0360-1315. doi:
10.1016/j.compedu.2014.05.010. url: https://www.sciencedirect.com/
science/article/pii/S0360131514001328 (visited on 06/16/2023).

[17] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical exploration
of recurrent network architectures”. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37. ICML’15. Lille,
France: JMLR.org, July 6, 2015, pp. 2342–2350. (Visited on 04/26/2023).

[18] Christopher Olah. Understanding LSTM Networks – colah’s blog. Aug. 2015. url:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (visited on
04/27/2023).

[19] Etto Salomons and Paul Havinga. “A Survey on the Feasibility of Sound Classification
on Wireless Sensor Nodes”. In: Sensors 15 (Apr. 2015), pp. 7462–7498. doi: 10.3390/
s150407462.

[20] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,
pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:
//doi.acm.org/10.1145/2939672.2939785.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive Computation
and Machine Learning series. MIT Press, 2016. isbn: 9780262035613. url: https:
//books.google.com.uy/books?id=Np9SDQAAQBAJ.

[22] Sungil Kim and Heeyoung Kim. “A new metric of absolute percentage error for in-
termittent demand forecasts”. In: International Journal of Forecasting 32.3 (2016),
pp. 669–679. issn: 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.
2015.12.003. url: https://www.sciencedirect.com/science/article/pii/
S0169207016000121.

[23] Frank Nielsen. “Hierarchical Clustering”. In: Introduction to HPC with MPI for Data
Science. Cham: Springer International Publishing, 2016, pp. 195–211. isbn: 9783319219028
9783319219035. doi: 10 . 1007 / 978 - 3 - 319 - 21903 - 5 _ 8. url: http : / / link .

springer.com/10.1007/978-3-319-21903-5_8 (visited on 06/19/2023).
[24] Hervé Bredin. “pyannote.metrics: a toolkit for reproducible evaluation, diagnostic, and

error analysis of speaker diarization systems”. In: Interspeech 2017, 18th Annual Con-

98

https://doi.org/10.1109/LSP.2004.831663
http://ieeexplore.ieee.org/document/1316889/
http://ieeexplore.ieee.org/document/1316889/
https://arxiv.org/abs/0711.0189v1
https://doi.org/10.1109/TPAMI.2011.174
http://ieeexplore.ieee.org/document/5989833/
http://ieeexplore.ieee.org/document/5989833/
https://doi.org/10.48550/arXiv.1402.1128
https://arxiv.org/abs/1402.1128 [cs, stat]
http://arxiv.org/abs/1402.1128
https://doi.org/10.1016/j.compedu.2014.05.010
https://www.sciencedirect.com/science/article/pii/S0360131514001328
https://www.sciencedirect.com/science/article/pii/S0360131514001328
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.3390/s150407462
https://doi.org/10.3390/s150407462
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://books.google.com.uy/books?id=Np9SDQAAQBAJ
https://books.google.com.uy/books?id=Np9SDQAAQBAJ
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://doi.org/10.1007/978-3-319-21903-5_8
http://link.springer.com/10.1007/978-3-319-21903-5_8
http://link.springer.com/10.1007/978-3-319-21903-5_8

Bibliography

ference of the International Speech Communication Association. Stockholm, Sweden,
Aug. 2017. url: http://pyannote.github.io/pyannote-metrics.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs]. Jan. 2017. doi: 10.48550/arXiv.1412.6980. url: http://
arxiv.org/abs/1412.6980 (visited on 05/09/2023).

[26] Melinda T. Owens et al. “Classroom sound can be used to classify teaching practices in
college science courses”. In: Proceedings of the National Academy of Sciences 114.12
(Mar. 21, 2017), pp. 3085–3090. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.
1618693114. url: https : / / pnas . org / doi / full / 10 . 1073 / pnas . 1618693114
(visited on 06/15/2023).

[27] Church et al. DIHARD Challenge. 2018. url: https://dihardchallenge.github.
io/dihard1/overview.html (visited on 07/19/2022).

[28] Quan Wang. Google’s Diarization System: Speaker Diarization with LSTM. ICASSP
2018, 2018. url: https://www.youtube.com/watch?v=pjxGPZQeeO4.

[29] Robin Cosbey, Allison Wusterbarth, and Brian Hutchinson. “Deep Learning for Class-
room Activity Detection from Audio”. In: ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, United
Kingdom: IEEE, May 2019, pp. 3727–3731. isbn: 9781479981311. doi: 10.1109/
ICASSP.2019.8683365. url: https://ieeexplore.ieee.org/document/8683365/
(visited on 06/16/2023).

[30] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Version 1.4.
Mar. 2019. doi: 10.5281/zenodo.3828935. url: https://github.com/Lightning-
AI/lightning.

[31] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.
[32] Neville Ryant et al. The Second DIHARD Diarization Challenge: Dataset, task, and

baselines. arXiv.org. June 18, 2019. url: https://arxiv.org/abs/1906.07839v1
(visited on 04/20/2023).

[33] Hervé Bredin et al. “pyannote.audio: neural building blocks for speaker diarization”.
In: ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal
Processing. 2020.

[34] Joon Son Chung et al. Spot the conversation: speaker diarisation in the wild. arXiv.org.
July 2, 2020. doi: 10.21437/Interspeech.2020-2337. url: https://arxiv.org/
abs/2007.01216v3 (visited on 04/20/2023).

[35] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. “ECAPA-TDNN: Em-
phasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker
Verification”. In: Interspeech 2020. Oct. 25, 2020, pp. 3830–3834. doi: 10.21437/
Interspeech.2020-2650. arXiv: 2005.07143[cs,eess]. url: http://arxiv.org/
abs/2005.07143 (visited on 04/25/2023).

[36] Hang Li et al. Siamese Neural Networks for Class Activity Detection. May 15, 2020.
doi: 10.48550/arXiv.2005.07549. arXiv: 2005.07549[cs, eess]. url: http:
//arxiv.org/abs/2005.07549 (visited on 06/15/2023).

[37] Hervé Bredin and Antoine Laurent. “End-to-end speaker segmentation for overlap-
aware resegmentation”. In: Proc. Interspeech 2021. 2021.

99

http://pyannote.github.io/pyannote-metrics
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1618693114
https://doi.org/10.1073/pnas.1618693114
https://pnas.org/doi/full/10.1073/pnas.1618693114
https://dihardchallenge.github.io/dihard1/overview.html
https://dihardchallenge.github.io/dihard1/overview.html
https://www.youtube.com/watch?v=pjxGPZQeeO4
https://doi.org/10.1109/ICASSP.2019.8683365
https://doi.org/10.1109/ICASSP.2019.8683365
https://ieeexplore.ieee.org/document/8683365/
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1906.07839v1
https://doi.org/10.21437/Interspeech.2020-2337
https://arxiv.org/abs/2007.01216v3
https://arxiv.org/abs/2007.01216v3
https://doi.org/10.21437/Interspeech.2020-2650
https://doi.org/10.21437/Interspeech.2020-2650
https://arxiv.org/abs/2005.07143 [cs, eess]
http://arxiv.org/abs/2005.07143
http://arxiv.org/abs/2005.07143
https://doi.org/10.48550/arXiv.2005.07549
https://arxiv.org/abs/2005.07549 [cs, eess]
http://arxiv.org/abs/2005.07549
http://arxiv.org/abs/2005.07549

Bibliography

[38] Brown et al. VoxCeleb Speaker Recognition Challenge. 2021. url: https://www.
robots . ox . ac . uk / ~vgg / data / voxceleb / competition2021 . html (visited on
07/19/2022).

[39] James Gareth et al. An Introduction to Statistical Learning. 2nd ed. Springer, 2021.
url: https://www.statlearning.com (visited on 04/27/2023).

[40] Mirco Ravanelli et al. SpeechBrain: A General-Purpose Speech Toolkit. Tech. rep.
arXiv:2106.04624. arXiv:2106.04624 [cs, eess] type: article. arXiv, June 2021. url:
http://arxiv.org/abs/2106.04624 (visited on 07/15/2022).

[41] Eric Slyman et al. Fine-Grained Classroom Activity Detection from Audio with Neural
Networks. Nov. 9, 2021. doi: 10.48550/arXiv.2107.14369. arXiv: 2107.14369[cs,
eess]. url: http://arxiv.org/abs/2107.14369 (visited on 06/15/2023).

[42] Neil Zeghidour et al. LEAF: A Learnable Frontend for Audio Classification. Jan. 21,
2021. doi: 10.48550/arXiv.2101.08596. arXiv: 2101.08596[cs,eess]. url: http:
//arxiv.org/abs/2101.08596 (visited on 04/26/2023).

[43] Rishi Bommasani et al. On the Opportunities and Risks of Foundation Models. July 12,
2022. doi: 10 . 48550/ arXiv . 2108 .07258. arXiv: 2108 . 07258[cs]. url: http :
//arxiv.org/abs/2108.07258 (visited on 06/23/2023).

[44] Andrew Brown et al. VoxSRC 2021: The Third VoxCeleb Speaker Recognition Chal-
lenge. arXiv:2201.04583 [cs, eess]. Nov. 2022. doi: 10.48550/arXiv.2201.04583.
url: http://arxiv.org/abs/2201.04583 (visited on 06/19/2023).

[45] Alec Radford et al. Robust Speech Recognition via Large-Scale Weak Supervision.
Dec. 6, 2022. doi: 10.48550/arXiv.2212.04356. arXiv: 2212.04356[cs, eess].
url: http://arxiv.org/abs/2212.04356 (visited on 04/20/2023).

[46] Yao-Yuan Yang et al. TorchAudio: Building Blocks for Audio and Speech Processing.
Tech. rep. arXiv:2110.15018. arXiv:2110.15018 [cs, eess] type: article. arXiv, Feb. 2022.
url: http://arxiv.org/abs/2110.15018 (visited on 07/15/2022).

[47] Alexander Kirillov et al. Segment Anything. Apr. 5, 2023. doi: 10.48550/arXiv.
2304.02643. arXiv: 2304.02643[cs]. url: http://arxiv.org/abs/2304.02643
(visited on 06/23/2023).

[48] McFee, Brian et al. librosa/librosa: 0.10.0.post2. Version 0.10.0.post2. Mar. 17, 2023.
doi: 10.5281/ZENODO.7746972. url: https://zenodo.org/record/7746972 (visited
on 04/26/2023).

100

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition2021.html
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition2021.html
https://www.statlearning.com
http://arxiv.org/abs/2106.04624
https://doi.org/10.48550/arXiv.2107.14369
https://arxiv.org/abs/2107.14369 [cs, eess]
https://arxiv.org/abs/2107.14369 [cs, eess]
http://arxiv.org/abs/2107.14369
https://doi.org/10.48550/arXiv.2101.08596
https://arxiv.org/abs/2101.08596 [cs, eess]
http://arxiv.org/abs/2101.08596
http://arxiv.org/abs/2101.08596
https://doi.org/10.48550/arXiv.2108.07258
https://arxiv.org/abs/2108.07258 [cs]
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://doi.org/10.48550/arXiv.2201.04583
http://arxiv.org/abs/2201.04583
https://doi.org/10.48550/arXiv.2212.04356
https://arxiv.org/abs/2212.04356 [cs, eess]
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2110.15018
https://doi.org/10.48550/arXiv.2304.02643
https://doi.org/10.48550/arXiv.2304.02643
https://arxiv.org/abs/2304.02643 [cs]
http://arxiv.org/abs/2304.02643
https://doi.org/10.5281/ZENODO.7746972
https://zenodo.org/record/7746972

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Challenges and particularities

	Objectives
	Summary of Results
	Considered approaches
	Why Diarization?
	Supervised Classification Models

	Related Work

	Methodological Foundations
	Audio Features for Speech Processing
	STFT for speech signals
	Mel-filterbanks
	MFCC: Mel-filterbank Cepstral Coefficients
	Other audio features

	Recurrent Neural Networks and the LSTM
	How LSTMs work
	Using LSTMs for audio classification

	XGBoost: Gradient Boosted Trees
	Gradient Boosting and CART
	How XGBoost works
	XGBoost for Audio Classification

	Diarization Overview
	Applications, similar problems, and challenges
	Diarization metrics: DER, JER, EER
	Diarization pipeline

	Chapter summary

	Experimental Setup
	Data and labeling
	Manual annotation protocol
	Simplifying labels: remapping
	Data splitting

	Evaluation metrics
	Label density estimation
	Confusion, Precision and Recall Metrics

	Evaluation metrics over different human annotators
	Redundant human annotations
	Human performance metrics

	Implementation
	Implementation of Audio Classifiers
	Audio Features
	LSTM based classifier
	XGBoost based classifier

	Diarization based pipeline
	Voice, Segmentation and Overlap Detection
	Speaker Embeddings, Clustering and Resegmentation
	Using Diarization for Classroom Activity Detection

	Analysis and comparison of results
	Analysis of the LSTM Classifier
	Comparing LSTM vs. XGBoost
	Teacher Talking Time with Classification Models
	Benchmark of execution times
	Summary: LSTM vs. XGBoost

	LSTM vs. Diarization
	Teacher Talking Time with Diarization vs. Classification

	Impact of Data on a Supervised Model
	Adding more lessons
	Adding more time per lesson

	Chapter Summary

	Conclusions
	Main Findings
	Review of Research Questions
	Contributions
	Future Work
	Personal Reflections

