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Abstract—This  work  presents  a  novel  learning  algorithm 
for the operation policy of power systems trying to minimize 
the  cost  of  fulfilling  the  energy  demand.  The  algorithm 
improves upon the classical reinforcement learning methods by 
controlling  the  sampling  variance  in  the  estimation  of  the 
future  cost  spatial  differences,  together  with  parameter 
regularization  and  dynamic  exploring  techniques.  The 
proposed strategy was applied to a case of what could be the 
power  system of  Uruguay by 2050 based strongly  in  hydro, 
wind and solar energies, including three lakes, four groups of 
battery banks, and the basin runoff of the two main Uruguayan 
rivers. The generation in the year 2022 in Uruguay was 43% 
hydraulic, 40% wind plus solar, 7% biomass and 10% based 
on  fossil  fuels.  This  composition  prints  a  very  relevant 
stochastic component that makes it difficult to apply machine 
learning techniques without the kind of algorihms proposed in 
this work.

Keywords—Approximate Stochastic Dynamic Programming, 
Reinforcement Machine Learning, Renewable Energies.

I. INTRODUCTION

The optimal operation of electrical energy systems with 
storage  capacity  falls  within  the  category  of  dynamic 
stochastic programming problems. One of the forerunners in 
proposing a solution to the problem was Richard Bellman 
[1].  There  it  was  shown  that  it  is  possible  to  obtain  an 
Optimal Operation Policy based on a recursive estimation of 
what is known as the State Value function, Future Cost (FC) 
function or Cost-To-Go function, a method known today as 
the Bellman Recursion (BR).

The  optimal  operation  of  hydrothermal  systems  is  a 
challenging  task,  especially  in  Latin  American  countries, 
characterized  by  a  high  hydroelectric  component. 
Programming the energy dispatch involves  choosing  which 
resources will be used to guarantee the supply of the system 
load in the following hours, days, months and years, while 
minimizing the overall cost and complying with safety and 
quality  requirements.  In  the  presence  of  energy  storage 
elements (e.g., hydroelectric lakes and batteries), the problem 
becomes a Stochastic Dynamic Programming (SDP) one.

In  [1],  it  was  already  observed  that  the  Bellman 
Recursion algorithm  quickly becomes  impractical when the 

combined dimension of the state and random variable spaces 
increases:  this  is  known  as  the  “Bellman’s  Curse  of 
Dimensionalty”.  Traditionally,  this problem was a concern 
almost  exclusively  when optimizing  hydrothermal  systems 
through the BR method. Today, with the accelerated addition 
of many renewable energy sources in power systems, this has 
become a worldwide issue [2], [3], [4].

One of the seminal works addressing the aforementioned 
problem  is  [5]. There, a method known as Stochastic Dual 
Dynamic Programming (SDDP) was developed and applied 
to  the  Brazilian  system  with  great  success.  This  method 
works  well  in  systems  where  the  operation  is  mostly 
deterministic.  However,  in  systems  where  random  events 
have a strong effect, the SDDP method is not effective as the 
variance in the estimation of future costs (which are obtained 
by  simulating  future  scenarios  up  to  a  certain  horizon) 
becomes too large.  This  problem was addressed in  [6] to 
some extent, but the proposed solution is insufificient in our 
scenario.

Another  strategy  to  solve  the  SDP  problem 
approximately is known as Rolling Horizons (RH) [7]. This 
strategy is effective for handling sources in a relatively short 
time  horizon  where  forecasts  (wind,  solar)  are  reliable. 
However, in systems including reservoirs capable of storing 
energy for months or years, the aforementioned method is far 
from optimal.

In the last decade, the application of automatic learning 
or machine-learning techniques have been applied in almost 
all areas of engineering and the optimal operation of dynamic 
systems is no exception [8],  [9],  [10],  [11],  [2],  [3] entirely 
devoted to this subject.

A. Contributions

In [12], after comparing different Approximate Dynamic 
Programming  based  on  machine-learning  alternatives,  the 
authors  conclude  that  "none  of  these  techniques  works 
reliably  in  a  way  that  would  scale  to  more  complex 
problems". Our work challenges this view by developing an 
algorithm capable of operating a complex electrical energy 
system  in  a  satisfactory  way  by  learning  an  optimal 
Operation  Policy  (OP)  through  a  reinforcement  learning 
loop.  Concretely,  we address the above issues,  mainly the 
large  variance  involved  in  cost  estimation,  and  the 
complexity in modeling the cost function, by the following 
techniques, which will be developed later: a) a novel method 
for choosing the initial states of the simulated trajectories and 
exploring dynamic; b) using of Common Random Numbers 
(CRN) as a variance reduction technique; c) modeling the 
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cost function using spatial differences and d) regularizations 
of parameters over time.

This  work  is  an  extension  of  [13],  where  the  authors 
presented a success case of learning the optimal operation of 
a simplified version the energy system of Uruguay. In the 
present work, we scale the problem to the likely scenario of 
what the Uruguayan system will look like in 2050 with the 
the same hydroelectric subsystem, the addition of more solar 
and  wind  sources  and  battery  banks,  and  all  petroleum-
derived fuel-fired generators removed.

II. PRELIMINARIES

A. Problem setting

The dynamic of the power system is modeled as in (1), 
where k  is an integer that identifies the time-step, Xk  is the 
state-vector of the system at the beginning of the step k , rk  
is the vector of non-controlled inputs (rainfall, wind, etc.) and 
uk  is the vector of controllable inputs (typically the power to 

be delivered to each generation unit, or power line).

Xk +1=f (Xk , rk , uk , k) (1)

The function  sc  in (2) represents the  cost of operation 
during the step k , typically computed as the sum of the fuel 
consumed by the thermal generators, the imports minus the 
exports, and any other operation cost including the cost of 
rationing,  in  the  event  that  not  all  the  energy  demand  is 
fulfilled,

sck= sc(X k , rk ,uk , k) (2)

The operation policy OP (3) is a mapping that assigns a 
control vector  uk  to different values of the system state 
and the non-controlled variables at step k ,

uk=OP(Xk , rk , k) (3)

Below we define the state-value or Future Cost function 
FC ( X , k ). This function represents the  expected cost of the 
future operation,  beginning at state X  in the time step k , for 
a given OP. The Optimal Operation Policy, at the step k  is 
the one that minimizes the expected value of the sum of (2) 
and   FC (X s , k+1 ) and  corresponds  to  the  solution  of  the 
optimization problem:

FC ( X , k )=⟨min
u

{sc ( Xk , uk ,r k , k )+FC ( Xs , k+1) }

         @|u∈ Ω ( Xk , rk , k )
X s= f (X k , uk ,rk , k ) ⟩

r k

, (4)

where Ω  is the space of possible actions to be taken at step 
k.  Notice  that  equations  (1)-(3)  assume  that  the  non-
controlled inputs are known at the beginning of each time-
step, but nothing is assumed about the future of them.

The  non-controlled  inputs  are  modeled  as  random 
processes  without  memory  (white  noise)  with  given 
distributions.  If  the random processes need to be modeled 
with memory, a corresponding model with its state variables 
is incorporated in (1) and fed with corresponding memory-
less random variables included in the vector rk . Notice that 
whether or not to consider memory in the random processes 
involved  may depend on  the  time scale  of  the  steps.  For 

example, for a time-step of one hour, the wind power must be 
represented as a process with memory because the wind does 
not significantly change at the same time in all wind farms of 
the  country  during  one  hour.  Moreover,  there  is  a  strong 
correlation of  the wind power between consecutive hours. 
However, if the time-step is a week or more, representing the 
wind power as a process with memory does not make sense.

B. The learning loop

Knowing  (1)  and  (2),  having  an  initial  estimation  of 
FC (X , k) ,  and  a  given  OP,  a  number  of  possible 

realizations  of  the  operation  are  simulated;  each  such 
realization is called a trajectory and depends on the pseudo-
random  sequence of numbers used to simulate the random 
inputs. In our case, these simulations are generated using the 
SimSEE  platform  (https://simsee.org).  Then,  a new 
FC (X , k)  is  estimated from the information collected by 

the different simulated trajectories. This recursive estimation 
is depicted in Fig. 1.

More precisely: at the end of the each exploration stage 
the information collected by trajectories can be represented 
by:  (Xki , scki , FC ki

h )  where  k=1.. NSteps  denotes time step 
and i=1... NTrajectories  is the indicates a particular trajectory. 
Each trajectory is  determined  by an initial state  X1 i  and a 
random seed. From the collected information, new values of 
FC ki

h  are estimated follows:

  FC ki
h = ∑

p=k

p=k+nTD

q( p−k) sc ki+qnTD+1 FCh−1 (X(k+nTD+1, i)
s ,k+nTD+1) , (5)

where q  is a  money discount factor,  scki  is the stage cost 
defined in (2), and X (k+ nTD+1 , i)

s = f (X (k+nTD ,i) , rki , uki , k )  is next 
state as defined in (1) and  nTD  (number of time-difference 
steps) determines the numbers of  scki  added in the sum of 
the (5).

III. MODIFICATIONS TO THE FORWARD METHOD

So far, the learning process described above is known as 
the standard forward iteration method. The main challenge in 
this  method is  in estimating  FC  when the variance of the 
stochastic elements in the simulation is large, as the number 
of  possible  scenarios  grows  exponentially  and  deviates 
wildly, especially if very different future random outcomes 
are considered. Below we describe the different techniques 
that we propose for addressing these issues.

A. Initialization of the trajectories

During the exploration stage, simulations are carried out 
on  trajectories  starting  from  a  set  of  initial  states  of  the 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
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system.  A set  of  ns  initial  states  is  obtained  by  random 
draws with a distribution that regulates the concentration of 
the set of states around the true initial state of the system.

At the start of each exploration stage, the sets of initial 
states  and  random  seeds  are  randomly  chosen  and  the 
trajectories,  one  per  each  combination  of  both  sets,  are 
initialized.

B. Representation of the future cost spatial differences

The information of FC  that induces the OP is found in 
the  directional  derivatives  ∂

∂ X FC ,  note  that  when 
determining the control vector in (4) the solution is the same 
if we add a constant value to FC  .Thus, instead of learning 
FC  the  proposed  algorithm  try  to  learn  the  differences 
FC ki−FC kj  for  each  set  of  new  information  instead  of 

representing  FC (X ki , k) . In  our  scenario,  the variance of 
FC ki  is  orders  of  magnitude higher  than the  variance  of 
FC ki−FC kj ,  not  having  to  adjust  the  model  to  the  FC  

value allows us to focus the scarce representation resources 
(model parameters) to represent the relevant information for 
the OP.

C. Common Random Numbers (CRN)

As  described  before,  a  key  issue  is  to  represent  the 
differences of the state value function when the state changes 
as a consequence of the control action. Thus, in order for the 
OP estimation to be reliable, the estimation variance needs to 
be  significantly  reduced.  The  Common Random Numbers 
(CRN) is a well known variance reduction technique [14] to 
the  estimation  of  the  expected  value  of  the  difference  of 
random variable by Montecarlo simulations. We implement 
the CRN by reusing the same sequence of random inputs, 
identified  by  a seed  for  simulating  trajectories  starting  at 
different initial states described in Section II.A. The different 
trajectories  associated  with  the  same  random  seed  are 
differentiated  by  their  initial  state  and  the  information 
collected for the groups of trajectories associated with each 
random seed is treated separately.

D. State evolution mode

In order to balance the control of the variance and the 
exploring capability of the algorithm, the simulation of the 
trajectories  is  performed  in  sections  of  nTD  time-steps 
following the dynamic of the system (1) chained by steps that 
we call of Random Explosion of the State (RES)  where the 
state of the system is randomly perturbed not following the 
dynamic  restriction  (1).  The  perturbation  of  the  state  is 
carried out with a distribution based on the previous states 
and their FC  estimations that tends to uniformly sample the 
range of FC  values, thus concentrating more samples in the 
regions of the state space where the directional derivatives 

∂
∂ X FC  have greater modulus.

Clearly, at each iteration of the learning loop, (5) carries 
information  nTD  steps from the future to the present;  the 
longer the time horizon considered, the more iterations will 
be  necessary  for  FCh(X , k)  to  reflect  the  future 
consequences of present actions. In this sense, increasing the 
nTD  parameter would seem convenient. In the example case 

presented, with multi-annual reservoirs, the consequences of 
the decisions are observed for at least the following 3 years. 

With  an  hourly  time  step  simulation,  if  nTD=1 ,  at  least 
26280 (= 24x365x3) iterations of the learning loop would be 
necessary  for  the  relevant  future  information  to  reach  the 
present at least once. On the other hand, if nTD=26280  was 
set, in one iteration there would already be information on 
the possible future consequences within 3 years. However, 
depending  on  the  time constants  associated  with  the  state 
variables, the trajectories associated with the same random 
seed,  although  associated  with  different  initial  states, 
converge  to  a  single  trajectory,  thus  losing  the  ability  to 
collect  information  on  the  spatial  differences  of  the  state 
value function. This is why it is important that the nTD  value 
be lower than the smallest time constant associated with the 
state variables.  (e.g.:  lower than the emptying time of the 
lakes for which an operation policy is to be formed).

At the beginning of each iteration of the learning loop, for 
each of the trajectories associated with a given seed, the first 
time step where the RES takes place is randomly set in order 
to blur the effects caused by the partitioning into sections of 
nTD  steps.

IV. PARAMETRIC NETWORK SERIES

The signals and processes involved in the planning of 
energy dispatch usually exhibit smooth regular patterns, and 
so does the cost  function.  This can be exploited by  using 
parsimonious  cost  function  approximations  that  can  be 
extrapolated reliably to unseen states. Our proposed method 
combines the flexibility of Neural Networks (NNs) with prior 
information  about  the  problem.  In  a  nutshell,  the  value 
function,  which  is  a  function  of  state  and  time,  is 
approximated  by  a  time-step  neural  network.  The 
architecture of the network is the same for all time steps, as 
depicted in Fig. 2, reflecting the fact that the structure of the 
system itself does not change abruptly. The parameters vary 
across  the  networks,  although  in  a  controlled  way:  the 
variation of each parameter is penalized during the training 
process. The estimate of the value function of iteration h  is 
represented as:

FCh(X , k)=M ( X , k ,θk ) , (6) 

where θk  are vectors of fitting parameters for our model that 
are trained by minimizing the following loss function:

L=∑
k , g

Lkg+λ∑
k
‖θk‖

p+β∑
k=2

‖θk−θk−1‖
2 , (7) 
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Fig. 2: Parametric network series.



where the elements of the first sum have the expression:

  Lkg=
1

4 N2 ∑
i≠ j∈g

((M (Xkj ,θk)−M (X ki, θk))−(FCkj−FCki))
2 , (8) 

where  g  is the set of indexes that identify the trajectories 
associated with each random seed. As already mentioned, the 
information collected during the simulation is used to adjust 
the  model  based  on  the  spatial  differences  of  the  value 
function associated with the same random seed.

The second summation in (7) adds regularization to the 
model  parameters,  with  a  strength  controlled  by  an 
hyperparameter λ .

Finally, the third summation limits the abrupt variation of 
the  model  parameters  with  the  passage  of  time;  this  is 
controlled by an hyperparameter β .

The  learning  starts  with  a  Null  Policy  (NP), 
FC1(X , k)=0  for all values of state and time. This would 

be the Operation Policy with zero derivatives in all directions 
of the state space. The NP is not as naïve as it may seem at 
first  glance:  the  operating  restrictions  of  the  hydroelectric 
lakes are represented in the dispatch problem as restrictions 
with penalties for going below certain levels, which put at 
risk the availability of power from hydroelectric plants, and 
by restrictions that penalize the operation at high levels due 
to  the  effects  of  flooding  of  the  lake  on  the  surrounding 
lands. The penalties are established in MUS$/(m.day) which 
leads  to  the  fact  that  even  with  the  NP,  the  operation  is 
generally within the reasonable operation zones.

The  β  parameter is useful tool for system operators to 
soften the control actions indicated by the operation policy . 
As an example, we do not expect the value of water in a 
reservoir to change radically from one hour to the next. This 
type of regularization on the parameters can be introduced by 
the model structure organized in a time-step model.

V. EXAMPLE CASE

As a case study, the Uruguayan electrical system 
projected to the year 2050 was used. Uruguay is one of the 
countries with the highest integration of renewable energies 
[15] and this is expected to increase, as Uruguay does not 
have oil or natural gas deposits. Concretely,  the model was 
adapted to this scenario by increasing the energy demand to 
18.92 GWh,  deleting  the  fuel  fired  generator,  installing 
2400 MW  and  3200 MW  of  wind  and  solar  capacity 
respectively, 400 MW of biomass-based generation, and  32 
battery  banks  of  20 MWx4h  each.  The  Demand  and  the 
generation  was distributed in five nodes  interconnected by 
240 MW lines as shown in Fig.3. The 32 battery banks were 
considered independent operable units, 8 installed in each of 
the  nodes  N1-4.  Batteries  were  not  installed  in  node  N0. 
Simulations were generated using the SimSEE platform [13], 
which is used by the system operator  ADME to decide the 
hourly units commitment of the system.

Table  I  summarizes  the  Peak-Demand  and  installed 
capacities  and  their  distribution  in  the  system  nodes  and 
Table II the corresponding storage capacity.
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TABLE I. INSTALLED CADPACITY

N0 N1 N2 N3 N4 Total

Peak-Demand [MW] 1492 373 373 373 373 2984

Wind [MW] 1200 200 200 400 400 2400

Solar [MW] 160 700 700 100 100 1760

Biomass [MW] 400 400

Battery - Banks [MW] 640 640 640 640 2560

Hydro-Baygorria [MW] 108 108

Hydro-Bonete [MW] 155.2 155.2

Hydro-Palmar [MW] 333 333

Hydro-Salto Grande [MW] 945 945
TABLE II. INSTALLED STORAGE CAPACITY 

N0 N1 N2 N3 N4 Total
Battery - 

Banks [GWh] 2.56 2.56 2.56 2.56 10.24
Hydro-

Baygorria [GWh] 6.18 6.18

Hydro-Bonete [GWh] 1101.56 1101.56

Hydro-Palmar [GWh] 84.67 84.67
Hydro-Salto 

Grande [GWh] 62.96 62.96
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Fig. 3: Diagram of the system of 5 interconnected nodes



The dimension of the state space of the system is 9; three 
dams for  water  storage,  four  battery banks,  and two river 
runoffs. To fix ideas, if each dimension  was discretized into 
10 values and the Bellman Recursion was used to resolve the 
above  system  over  1.5  years, 
109×365×1.5×24=1.31×1013  energy  dispatch  problems 

would need to be solved.

The  chosen  neural  network  architecture  is  depicted  in 
Fig.2 and consists of a hidden layer of 16 neurons followed 
by  an  output  layer  of  one  neuron,  both  with  hyperbolic 
tangent  as  saturation  function.  Lasso  regularization  [16] (
p=1  in  (7))  was  used  on  the  parameters  with  weight 
λ=1E-8 .

VI. RESULTS AND DISCUSSION

Fig. 4 shows the future cost of the operation evaluated on 
the same 100 realizations of the stochastic processes starting 
from  a  known  state  of  the  system.  Each  value  in  the 
horizontal axis corresponds to an iteration in the algorithm, 
and  the  corresponding  vertical  coordinate  shows  the  total 
cost  incurred  in  operating  the  system  using  the  policy 
obtained at that iteration. The value x=1 corresponds to the 
initial null policy. As can be seen, the performance decreases 
after the first iteration, but consistently improves afterwards. 
This behavior is to be expected and is consistent with what 
was  mentioned  in  the  previous  section,  as  propagating 
information to the present takes some time.

The 4000 iterations of the learning loop shown in Fig.4 
took 73 hours on a 48 threads computer. This computational 
cost is necessary only for initial learning. In the continuous-
time application on the real system, every hour elapsed the 

neural networks shown in Fig. 2 are shifted to the left, 
eliminating the first one and duplicating the last one, and 1 
hour  (54  iterations)  is  available  to  improve  the  FC 
representation. If it is necessary to carry out more iterations, 
the algorithm is easily parallelizable since the simulations of 
the exploration stage are totally independent processes.

VII.  CONCLUSIONS

A successful case was presented in the determination of 
an  Operation  Policy  of  a  generation  system  with  9  state 
variables and very different time constants. In this system, 
the application of the Bellman Recursion is not applicable. 
Given  the  need  to  adequately  represent  the  correlations 
between stochastic processes,  which involve very different 

time constants, strategies such as SDDP or Rolling Horizons 
techniques are not directly applicable either.

The success achieved is based substantially on two keys: 
a) The use of CRN to control the variance of the differences 
of the value function and b) On the controlled exploration 
based on trajectories formed by sequences of steps in which 
it allows the system to follow its natural evolution interrupted 
by random jumps in  the  state  that  rebuild  the  exploration 
capacity.

One line of research to improve the learning speed could 
be to measure the variance in each of the state directions as 
the system evolves, as a way of estimating the exploration 
capacity  of  the  set  of  trajectories  associated  with  each 
random seed. With this measure, when the reduction of the 
exploratory capacity  is  greater  than a  given threshold,  the 
random explosion of the states would be applied to that set of 
trajectories, thus recovering the exploration capacity.

VIII.DISCLAIMER

The content of this article is entirely the responsibility of 
its authors, and does not necessarily reflect the position of the 
institutions of which they are part of.
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