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Abstract: The Lie algebra generated by supertranslation and superrotation vector fields

at null infinity, known as the extended Bondi–van der Burg–Metzner–Sachs (eBMS) algebra

is expected to be a symmetry algebra of the quantum gravity S-matrix. However, the

algebra of commutators of the quantized eBMS charges has been a thorny issue in the

literature. On the one hand, recent developments in celestial holography point towards a

symmetry algebra which is a closed Lie algebra with no central extension or anomaly; and

on the other hand, work of Distler, Flauger and Horn has shown that when these charges

are quantized at null infinity, the commutator of a supertranslation and a superrotation

charge does not close into a supertranslation but gets deformed by a 2-cocycle term, which

is consistent with the original proposal of Barnich and Troessaert.

In this paper, we revisit this issue in light of recent developments in the classical un-

derstanding of superrotation charges. We show that, for extended BMS symmetries, a

phase space at null infinity is an extension of hitherto considered phase spaces which also

includes a mode associated to the spin-memory and its conjugate partner. We also show

that for holomorphic vector fields on the celestial plane, quantization of the eBMS charges

in the new phase space leads to an algebra which closes without a 2-cocycle. The degen-

erate vacua are labelled by the soft news and a Schawarzian mode which corresponds to

deformations of the celestial metric by superrotations. The closed eBMS quantum algebra

may also lead to a convergence between two manifestations of asymptotic symmetries, one

via asymptotic quantization at null infinity and the other through celestial holography.
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1 Introduction

The Bondi–van der Burg–Metzner–Sachs (BMS) symmetry algebra of General Relativity

[1, 2] has received renewed attention over the past decade thanks to seminal results by

Strominger et. al. [3–6]. The symmetries of classical as well as perturbative quantum

gravitational scattering (which may include massive scattering particles) includes a univer-

sal BMS symmetry group which acts on all the boundaries of spacetime including time-like

infinity. At quantum level, the existence of BMS symmetries imply a highly intricate

structure of the algebra of boundary observables which can be used to formulate flat space
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holography in terms of such algebra of observables [7], paralleling the conception of (far

more developed) holography in asymptotically AdS spacetimes [8].

In fact, it is by now becoming increasingly clear that the BMS symmetry algebra,

which is a semi-direct product of supertranslations and celestial Lorentz transformations,

gets enlarged into two possible infinite dimensional extensions in which the Lorentz algebra

is embedded, either the algebra of meromorphic vector fields [13] or the algebra of smooth

vector fields [14] on the celestial sphere. These two extensions are known in the literature

as extended BMS (eBMS) and generalised BMS (gBMS) respectively. We will refer to both

classes of celestial vector fields, that are either meromorphic or smooth, as superrotation

vector fields.

At the level of the algebra generated by supertranslation and superrotation vector

fields, both extensions of the BMS algebra form an infinite dimensional Lie algebra. Rep-

resentation of eBMS algebra is an active area of investigation. Coadjoint orbits of (e/g)BMS

algebra have been studied in [10], [11], paving the way for its quantization via the orbit

method [12]. In the seminal work [9], it was shown that gBMS algebra is faithfully rep-

resented in a unitary conformal field theory in Minkowski spacetime as the algebra of so

called light-ray operators on lightlike boundaries of finite regions.

However the situation is more intricate in gravity at null infinity. As remarkably shown

by Barnich and Troessaert (BT) [15], the eBMS charge algebra at null infinity does not

close and the non-closure term is in fact not a central extension but linear in the asymptotic

gravitational field. Technically, the extension is a 2-cocycle [16]. That is, it is a closed 2-

form on the space of eBMS generators.1 This result was confirmed in a beautiful paper

by Distler, Flauger, and Horn (DFH) [17] by evaluating the commutator of the quantum

eBMS charges on the Fock space of asymptotic gravitons. Their result complemented an

earlier analysis in [18] which showed how Ward identities associated to e/gBMS generators

in the so-called shifted vacuum were consistent with double soft graviton theorem. It

was also proved in [17] that the eBMS algebra with the BT extension is consistent with

the so called consecutive double soft graviton theorem for tree-level amplitudes. More in

detail, the authors showed that the right hand side of the commutator of two consecutive

double soft theorems up to sub-sub leading order equals the matrix element of the 2-cocycle

extended eBMS algebra.

However this results appears to be in tension with the following:

• As a consequence of Jacobi identity, we expect the commutators of two symmetries

of the S-matrix to be a symmetry of the S-matrix. A centrally extended algebra is

consistent with this basic fact, but the presence of a 2-cocycle obstructs the interpre-

tation of eBMS algebra as a symmetry algebra of quantum gravity. In other words,

eBMS symmetry appears to be anomalous even for tree-level S matrix!

• Recent developments in celestial holography have led to a novel realization of the

eBMS algebra [19, 23, 24] from conformally soft graviton theorems [20–22]. This

1A standard example of 2-cocycle occurs in anomalous gauge theories. That is, the commutator of two
gauge generators in an anomalous gauge theory is a 2-cocycle.
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realisation provides a strong evidence that in the infrared sector, flat-space hologra-

phy is captured by a conformal field theory (CFT) with a supertranslation current

that generates an abelian ideal and a holographic stress tensor that generates a Witt

algebra with vanishing central charge.

In [19, 24], the celestial eBMS algebra was derived from the operator product expan-

sion (OPE) involving supertranslation current and celestial stress tensor, which are

the supertranslation and superrotation soft charges in the celestial basis. This OPE

is in turn obtained from conformal soft graviton theorems. In particular, the OPE

between the supertranslation current P (z, z̄) and the (shadow of) superrotation soft

mode Tww has a double pole 1
(z−w)2 [19, 23]. From this perspective, the appearance

of the BT cocycle anomaly is rather mysterious since it corresponds to a forth order

pole in the corresponding OPE [17]. In fact, the presence of such a term hints at a

possibility that the supertranslation current is not a primary (we refer to section 5

of [17] for a detailed discussion on this issue).

In this paper we take the first steps in resolving these issues. More in detail, we show

that for a class of superrotation vector fields, the “improved” superrotation charges derived

in [25, 26] lead to a closed eBMS quantum algebra with no cocycle anomaly. In particular,

we consider superrotations generated by holomorphic (or anti-holomorphic) vector fields

on the celestial sphere which only have singularity at the North pole. This is equivalent to

de-compactifying the celestial sphere to a plane and consider superrotations generated by

holomorphic (or anti-holomorphic) as opposed to meromorphic vector fields.

Our starting point is the classical analysis of gBMS charges initiated in [25–27]. In [25]

it was shown how the asymptotic phase space of gravity can be consistently renormalized

in order to obtain canonical gBMS charges at null infinity. This led to several corrections

in the original charge expressions [5, 28], in particular due to their non-trivial dependence

on the Geroch tensor [29]. The charge algebra of [25], however, still displayed a 2-cocycle.

In [26] it was noticed that the 2-cocycle could be eliminated by a total derivative term in

the superrotation charge, and the corresponding correction on the gravitational symplectic

structure was derived. These anomaly-free gBMS charges were then re-derived from other

approaches [30, 31], thus giving confidence on the proposal. Whereas these results were

obtained for generalized BMS charges, they apply equally well to their extended version,

leading to an anomaly-free eBMS charge algebra.

It is not clear, however, if the above classical results carry over to quantum theory, and

if so how they relate to the DFH quantum analysis. A major obstacle arises because the

extended radiative phase of [26] includes soft modes associated to superrotation symme-

try which are not all independent but are subject to certain non-linear constraints. This

complicates the task of isolating the physical degrees of freedom and computing the corre-

sponding Poisson brackets. Without a complete understanding of the physical phase space,

the quantization and the connection with the results of [17] has remained out of reach.

The analysis of [26] also relied on an extension of the radiative phase space of GR

which did not explicitly include the supertranslation modes. Hence this extension remained

disparate from the phase space derived by He, Lysov, Mitra and Strominger (HLMS) [4]
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in which a physical phase space that included supertranslation soft modes was derived.

We start by filling both gaps in the present paper. That is, we derive a phase space

at null infinity which we refer to as Γ and show that it contains supertranslation modes,

superrotation modes and their conjugate partners. However the phase space we obtain

does not contain all superrotation modes. A generic superrotation (either meromorphic or

smooth) deforms the metric on the celestial sphere. Quantizing the celestial metric at I

is subtle and we do not attempt to do so in this paper. Instead, we consider the (infinite

dimensional) algebra of holomorphic (or anti-holomorphic) superrotations which have poles

only at infinity in the celestial plane.

We then show that we can quantize Γ and obtain the quantum version of the su-

pertranslation and the superrotation charges defined in [25, 26]. The quantum algebra

generated by these charges closes without a 2-cocycle and show how eBMS is a symmetry

of tree-level S matrix for holomorphic superrotations. As there is no free lunch, there is a

price to pay. Namely, the superrotation soft charge contains in addition to the linear soft

operator (which is proportional to the spin memory), a quadratic operator that depends

on leading soft news and its conjugate constant shear. This operator has a trivial action

on Fock states defined over the trivial vacuum, but has a non-trivial action on graviton

states defined with respect to supertranslation displaced vacua.

The paper is organised as follows. In section 2, we briefly review the radiative phase

space derived in [4] which contained an explicit parametrization of supertranslation modes.

In section 3 we review and extend the analysis of [26] to obtain a phase space Γ that ex-

plicitly includes supertanslation as well as superrotation modes. In section 4 we construct

an auxiliary “kinematical” phase space Γkin in which these “soft” modes are decoupled

from the “hard” fields such that Γ can be understood as a constrained phase space inside

Γkin. This description is used in section 5 to obtain Poisson brackets in Γ via a Dirac

constraint analysis. In section 6 we quantize the physical phase space and show that the

corresponding quantized charges generate a closed eBMS algebra. We also show how our

results are consistent with earlier results in the literature including those of [17]. We con-

clude in section 7 with a summary of results and open questions and offer some preliminary

comments on the relationship between quantized eBMS algebra derived in this paper and

the eBMS algebra in celestial holography.

As we shall see, our focus on holomorphic rather than meromorphic superrotations

greatly simplifies the analysis. The extension of our work to complete eBMS as well as

gBMS requires further investigation. In both of these cases, the complete radiative phase

space should include modes associated to deformation of the metric on the celestial sphere.

In the conclusion section, we briefly comment on some ideas for extending our results to

the case where superrotations are generated by meromorphic (or smooth) rather than holo-

morphic, vector fields on the celestial sphere.

Conventions:

We work in units such that 32πG = 1. Given a function f on a phase space with symplectic

structure Ω, we define its Hamiltonian vector field (HVF) Xf by the condition δf =

Ω(δ,Xf ). The PB between two functions f and g is then defined by {f, g} := Ω(Xg,Xf ) =
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Xg(f) = −Xf (g).

2 Review of the radiative phase space

In this section, we briefly review the classical definition of gravitational radiative phase

space in General Relativity [32]. We then review one of the proposed extensions [4] in

which the soft news and its conjugate partner are included as part of the phase space

degrees of freedom. Our review is rather brief and the interested reader is encouraged to

consult the cited papers for more details.

The radiative phase space of General Relativity at future null infinity I+ was derived by

Ashtekar and Streubel (AS) in [32]. Although the radiative phase space is gauge invariant

and can be defined in a coordinate-independent manner, it can be most easily motivated

by analysing the space of solutions to Einstein equations in Bondi gauge close to future

null infinity I+,

ds2 = − du2 − 2du dr + r2 (qab +
1

r
σab )dx

adxb + O(
1

r2
) (2.1)

where (a, b) label coordinates on the celestial sphere (we shall later choose them to be

stereographic coordinates), qab is the unit 2-sphere metric and σab = σab(u, x̂) is the shear

field associated to the true degrees of freedom of the radiative gravitational field. We

denote by (u, x̂) points on future null infinity, with u the retarded time and x̂ the direction

on the celestial sphere.

Ashtekar and Streubel showed that the phase space of General Relativity without

matter sources is parametrised by the shear field σab(u, x̂) with the symplectic structure

Ω0(δ, δ
′) =

∫

I+

du d2x̂ [ δ σab δ
′Nab − δ ↔ δ′ ] (2.2)

where Nab = ∂u σab is the news tensor at I+. The finiteness of Ω0 is guaranteed by the

fall-off conditions on the shear as we approach the two boundaries of I+. AS require

minimal fall-offs for this to happen, namely

Nab(u, x̂)
u→±∞
= O(1/|u|1+ǫ) (AS fall-offs) (2.3)

with ǫ > 0. However, in order to be able to define superrotation charges in later sections,

we shall require the stronger fall-offs

Nab(u, x̂)
u→±∞
= O(1/|u|2+ǫ) (Γ0 fall-offs) (2.4)

with ǫ > 0. We will refer to this phase space as Γ0.
2

2The discussion in the remainder of this section is however valid for the weaker fall-offs (2.3). It is
interesting to note that generic radiative fall-offs are of the form Nab = O(1/|u|2) (see e.g. [33, 34]). This is
allowed by (2.3) but forbidden in (2.4). Fall-offs of the type (2.4) are found when computing gravitational
radiation at tree-level and correspond to a O(ω0) subleading soft emission. The Nab = O(1/|u|2) behavior
is associated to the so-called tail to the memory effect and corresponds to a O(ln ω) subleading soft emission
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BMS symmetries, that is supertranslations as well as Lorentz transformations are

represented on Γ0 by their actions on the shear and news tensors. However, only the latter

admits a realization in term Poisson brackets, see e.g. [4, 14]. In order to fully capture the

action of supertranslations via Poisson brackets, one needs an enhancement of the radiative

phase space. Precisely such an extension was proposed by He, Lysov, Mitra and Strominger

(HLMS) in [4], with a phase space of the form

ΓHLMS ⊂ Γ0 × Γs, (2.5)

where Γs is the “soft sector” parametrized by the soft (zero frequency component of) the

news and its conjugate which is simply the u independent mode of σab. More in detail, the

soft sector is a 2 × ∞ dimensional phase space parametrized by,

0

N(x̂) :
0

Nab(x̂) = DaDb

0

N(x̂)

C(x̂) : Cab = DaDb C(x̂).
(2.6)

However as we have not changed the theory, the additional degrees of freedom are not

independent but are related to the fields in Γ0 via,

lim
u→−∞

Cab(u, x̂) = DaDbC(x̂), (2.7)
∫
duNab(u, x̂) = DaDb

0

N(x̂). (2.8)

Following [3], we refer to these conditions as the Christodolou-Klainermann (CK) con-

straints. These are the constraints that define the phase space ΓHLMS in (2.5). Physically

they show that the leading soft news (the displacement memory) is associated to a single

function on the celestial sphere.3 As [4] showed, the CK constraints expressed in this form

are second class constraints and one has to solve them by employing the standard technique

of Dirac brackets. The resulting brackets are such that the soft degrees of freedom Poisson

commute with the finite energy news Nab(u, x̂) but they have non-trivial Poisson brackets

with the shear field σab(u, x̂).

3 Radiative phase space with superrotation modes

In this section we review the phase space defined in [26], which is an extension of Γ0

obtained by adding modes associated to superrotations. The extension in [26] was defined

for Diff(S2) superrotations and so the phase space included smooth deformations of the

sphere metric. In this paper however, we restrict attention to holomorphic vector fields.

They leave the 2d metric invariant but act non-trivially on the space of Geroch tensors

[33, 34]. We leave the generalisation of our work and a completely satisfactory construction of the radiative
phase space that includes tail to the memory modes for future work. For some progress in this direction
we refer the reader to [35, 36].

3They can also be understood in terms of vanishing of the so-called dual supertranslation charges, see
e.g. [37, 38].
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[40]. For simplicity, we will work in a conformal frame where the celestial 2d metric is the

flat one.

We thus start by considering Bondi coordinates (r, u, z, z̄) such that the r → ∞ ex-

pansion of the spacetime metric takes the form

ds2 = −2dudr + 2r2dzdz̄ + r((σzz(u, z, z̄) + uTzz(z, z̄))dzdz + c.c.) + · · · . (3.1)

The metric written above is based on the following conventions and assumptions:

• We choose the metric on null infinity to be the 2d flat metric, qzz̄ = 1, qzz = qz̄z̄ = 0.

Whereas our analysis readily generalizes to non-flat metrics, the underlying plane

topology assumption will play a key simplifying role.4

• σzz is the shear and Tzz is the so called Geroch tensor. The news tensor is defined

as 5

Nzz = ∂uσzz (3.2)

with

Nzz
u→±∞
= O(1/|u|2+ǫ) (3.3)

as in (2.4).

We now analyse the Geroch tensor Tab. For simplicity, we focus on the chiral sector

corresponding to Tzz but it can be readily generalised to include the Tz̄z̄ components as

well.

The Tzz 6= 0 sectors can be generated from the Tzz = 0 one by considering spacetime

diffeomorphisms generated by finite superrotations z → φ(z). Following [40] (see also

[25, 26, 41]) one finds the resulting Tzz is given by minus the Schwarzian derivative of φ

wrt to z,

Tzz =
φ′′′(z)

φ′(z)
−

3

2

(
φ′′(z)

φ′(z)

)2

. (3.4)

An important property of Tzz which will be central to this paper is that it is holomorphic

in the entire complex plane (or in general meromorphic with poles of order 2)

∂z̄Tzz = 0. (3.5)

The presence of a non-trivial T has non-trivial implications for the constraints at I+. In

particular, the CK condition (i.e. the vanishing of the magnetic part of σ±zz = limu→±∞ σzz)

is modified in a sector with Tzz 6= 0 [26]. This modification can be understood as follows.

4Strictly speaking, our analysis is only be valid for the case where the celestial surface is a plane rather
than a sphere. We will however continue to use the term ”celestial sphere” to refer to this surface. See
[11, 39] for recent discussions on the role of the celestial surface topology.

5From this perspective, the role of the Geroch tensor is to substract the non-decaying part of the “naive
news” N ′

ab = ∂uσab + Tab, thus ensuring finiteness of various quantities such as the total radiated energy
flux. Geroch’s original derivation of the “corrected” news tensor (3.2) was motivated by the need to work
with quantities that are covariant under conformal rescalings [29].
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In the presence of T , the sphere derivative ∂z is twisted to a superrotation-covariant

derivative Dz (also referred to as Weyl-covariant derivative [11]) such that the CK con-

straints are implemented by the conditions [26],

σ±zz = −2D2
zσ

± = −2∂2zσ
± + Tzzσ

±, (3.6)

for some scalars σ±. See subsection 4.3 for further details on the superrotation-covariant

derivative.

We will call by Γ the space of all possible fields (σab, Tab), with ab = zz and z̄z̄,

satisfying conditions (3.3), (3.5), (3.6) (and their complex conjugated versions),

Γ = {(σab, Tab) : (3.3), (3.5), (3.6)}. (3.7)

There are two functions on Γ that will play a key role in our analysis. These are the leading

and sub-leading soft modes of the news tensor:

0

N zz(z, z̄) :=

∫ ∞

−∞
Nzz(u, z, z̄)du, (3.8)

1

N zz(z, z̄) :=

∫ ∞

−∞
uNzz(u, z, z̄)du. (3.9)

Let us now discuss the extended BMS symmetries on Γ. The spacetime action of super-

translations and superrotations translates into

δfσzz = f∂uσzz − 2D2
zf, δV σzz = (LV − α+ αu∂u)σzz,

δfTzz = 0, δV Tzz = LV Tzz − 2∂2zα.
(3.10)

where α = 1/2(∂zV
z + c.c). We remind the reader that V a is an entire vector field with

polynomial coefficients. We also note that contrary to earlier representations [5, 28, 42], σzz
transforms homogeneously under superrotations as the inhomogeneous term is absorbed in

Tzz. The supertranslation and superrotation charges are then given by [25, 26]

Pf =

∫
d2z

∫
duN zzδfσzz + c.c. (3.11)

JV =

∫
d2z

(∫
duN zzδV σzz + Π̃zzδV Tzz

)
+ c.c., (3.12)

where

Π̃zz := 2
1

N zz +
1

2
(σ+σ+zz − σ−σ−zz). (3.13)

The quadratic term in (3.13) was introduced in [26] to ensure the consistency condition

δfJV + δV Pf = 0 (3.14)

is satisfied.6 Finally, we can think of Γ as a constrained phase space by treating Π̃ab as the

6This condition only requires the existence of Poisson brackets, but is otherwise insensitive to the presence
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momentum conjugate to Tab, subjected to the constraint equation (3.13).

The symplectic form on Γ implementing the supertranslation and superrotation charges

is given by

Ω =

∫
d2z

(∫
duδN zz ∧ δσzz + δΠ̃zz ∧ δTzz

)
+ c.c. (3.15)

which satisfies

δPf = Ω(δ, δf ), δJV = Ω(δ, δV ). (3.16)

We conclude by noting that, in the present case where δTzz is holomorphic and δTz̄z̄ anti-

holomorphic, we can add to Π̃zz a total ∂z derivative without affecting the expressions

above. We will use this freedom to trade Π̃zz for

Πzz := Π̃zz − ∂z(∂zσ
+σ− − ∂zσ

−σ+)

= 2
1

N zz +
1

2
(σ+ + σ−)

0

N zz. (3.17)

We end this section with three remarks.

• Πzz defined in Eq. (3.17) is a sum of leading and sub-leading soft news terms, such

that the coefficient of the leading soft news in the sum is in fact the constant shear

mode C. Πzz (and Πz̄z̄) thus have a cleaner physical interpretation as compared to

Π̃zz. As we will show this change from Π̃zz to Πzz will play an important role in

simplifying the analysis below, when we determine the reduced phase space.

• We emphasise that this is one possible parametrisation of Πzz indicating one among

many possible extensions of Γ0. This is consistent with the well known fact that con-

sistency of Poisson brackets and requirement of faithful representation of asymptotic

symmetries does not uniquely fix the radiative phase space [4].

• It is important to note that the homogenous change in Tzz induced by infinitesimal

holomorphic superrotations, δV Tzz + ∂3z V
z, is holomorphic if and only if the back-

ground Tzz is holomorphic. Although generically Tab is meromorphic, in this paper

we restrict ourselves to holomorphic Tzz (or anti-holomorphic Tz̄z̄ ) tensors.

• To summarise, we started with the Ashtekar-Streubel radiative phase space Γ0 and

extended it by adding modes associated to superrotation symmetries, namely the

pair (Πab, Tab), where Πab is constrained to be a sum of leading and subleading soft

news (3.17).

• We can thus think of Γ as a subspace in a kinematical phase space

Γ ⊂ {σab(u, x̂),Πab(x̂), Tab(x̂)}. (3.18)

In the same spirit of the HLMS construction, we will use this description in order to

obtain Poisson brackets via the Dirac procedure.

or absence of a 2-cocyle in the charge algebra. In particular, the BT charges satisfy (3.14).
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4 Kinematical phase space

The phase space Γ introduced in the previous section still suffers from the drawback in

the AS phase space Γ0 regarding the Poisson bracket realization of supertranslations. In

addition, the mode conjugate to Tab has not been determined so far as Πab is associated to

the news tensor via a constraint. Following HLMS, our strategy to solve both issues will

be to isolate the supertranslation and superrotation modes from the phase space Γ. This

will lead us to a kinematical phase space Γkin with well defined Poisson brackets that are

consistent with eBMS transformations. The objective of the present section is to introduce

this kinematical phase space and brackets. In the next section we will follow the Dirac

procedure to obtain eBMS-compatible Poisson brackets on Γ ⊂ Γkin.

Our first step will be to isolate the zero mode of the shear σab(u, x̂).
7 We thus start

by rewriting the shear as

σzz(u, z, z̄) = σ̊zz(u, z, z̄) + Czz(z, z̄) (4.1)

with σ̊zz obeying

σ̊+zz + σ̊−zz = 0 , σ̊±zz := lim
u→±∞

σ̊zz(u, z, z̄). (4.2)

Note that the news (3.2) can be entirely written in terms of σ̊zz,

Nzz = ∂uσ̊zz. (4.3)

A simple way to distinguish σ̊ab from σab is that σ̊ab contains soft news but no constant

shear. The asymptotic condition (3.6) can then be written as

Czz = −2D2
z C ,

0

N zz = −2D2
z

0

N (4.4)

for scalars C and
0

N such that

C =
1

2
(σ+ + σ−),

0

N = σ+ − σ−. (4.5)

In the parametrization (4.1), the symplectic form (3.15) now takes the form

Ω =

∫
d2z

(∫
duδN zz ∧ δσ̊zz + δ

0

N zz ∧ δCzz + δΠzz ∧ δTzz

)
+ c.c., (4.6)

with Πzz = 2
1

N zz + C
0

N zz.

The eBMS action on the shear sector becomes

δf σ̊zz = f∂uσ̊zz, δV σ̊zz = (LV − α+ αu∂u) σ̊zz,

δfC = f, δV C = (LV − α)C.
(4.7)

7Our conventions differ from HLMS in two respects: (i) the zero mode is given by the average of the

shear at u = ±∞ and (ii) a multiplicative (−2) factor in the definitions of C and
0

N (4.4). The second
choice implies δfC = f under supertranslations.
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We note that the inhomogeneous part of supertranslations is absorbed in C so that σ̊zz
transforms homogeneously under both supertranslations and superrotations.

We will now use the splitting (4.1) to define auxiliary phase spaces Γhard and Γsoft,

each with its own symplectic structure and eBMS action. The kinematical phase space will

be defined as Γkin = Γhard × Γsoft. The space Γ will then arise as a constrained subspace

on this kinematical space.

4.1 Hard phase space

We define Γhard as the space parametrized by σ̊ab

Γhard := {σ̊ab : Nab(u, z, z̄) ≡ ∂uσ̊zz(u, z, z̄)
u→±∞
= O(1/|u|2+ǫ) } (4.8)

with symplectic structure

Ωhard =

∫
d2zduδN zz ∧ δσ̊zz + c.c. (4.9)

At this stage we do not impose neither the zero mode condition σ̊+zz + σ̊−zz = 0 nor the CK

condition. Both conditions will be imposed in the next section as part of the constraints

that define Γ. Thus, Γhard appears to be identical to the AS phase space Γ0. It however

differs in how supertranslation are represented. Following (4.7), we define the eBMS action

on Γhard by

δf σ̊zz = f∂uσ̊zz, δV σ̊zz = (LV − α+ αu∂u)̊σzz, (4.10)

so that supertranslations (and superrotations) act homogenously on Γhard. It is easy to

verify that this action is symplectic and generated by the charges

P hard
f =

∫
dud2zN zzδf σ̊zz + c.c. (4.11)

Jhard
V =

∫
dud2zN zzδV σ̊zz + c.c. (4.12)

4.2 Poisson brackets in the hard phase space

To obtain Poisson brackets (PBs) involving the news, we start by considering its Hamilto-

nian vector field (HVF),

XNzz(z,u) =
1

2

δ

δσ̊z̄z̄(u, z)
. (4.13)

To simplify expressions, here and in the following we will use z rather than (z, z̄) to denote

points on the celestial sphere. It is well known that the shear does not admit a HVF [4, 14].

We can however define its PB with the news using (4.13) leading to

{Nzz(z, u), σ̊w̄w̄(u
′, w)} = −

1

2
δ(u − u′)δ(2)(z, w), (4.14)
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and {Nzz(z, u), σ̊ww(u
′, w)} = 0. On the other hand, the non-zero PBs between the news

tensor and itself is given by

{Nzz(z, u), Nw̄w̄(u
′, w)} =

1

2
δ′(u− u′)δ(2)(z, w). (4.15)

Other quantities of interest are the leading (3.8) and subleading (3.9) soft modes
0

N zz

and
1

N zz. Their HVFs are given by8

X 0
N zz

=

∫
du

δ

δσ̊z̄z̄(u, z)
, X 1

N zz

=
1

2

∫
duu

δ

δσ̊z̄z̄(u, z)
(4.16)

Strictly speaking, the second HVF is ill defined on Γhard as it does not preserve the fall-

offs in (4.8). We will use it cautiously to define various PBs, often requiring regularization

prescriptions. We shall then verify that these choices lead to a self-consistent set of Poisson

brackets on the physical phase space.

We now discuss the PBs with the soft modes. We only focus on brackets involving

tensor components of different helicities, since those with the same helicity are trivially

vanishing.

The leading soft mode clearly Poisson commutes with the news and with itself,

{Nzz(u, z),
0

N w̄w̄} = 0, {
0

N zz,
0

N w̄w̄} = 0. (4.17)

The bracket between the news and the subleading mode is found to be

{Nzz(u, z),
1

N w̄w̄} =
1

2
δ(2)(z, w). (4.18)

For the brackets involving a leading and a subleading mode, we take the prescription

{
0

N zz,
1

N w̄w̄} := −X 0
N zz

(
1

N w̄w̄) = 0.9 For the brackets involving the subleading mode with

itself, we notice that X 1
N zz

(
1

N w̄w̄) is formally proportional to δ(2)(z, w)
∫∞
−∞ udu. This can

naturally be interpreted as vanishing. Summarizing, our prescription for the subleading

mode is such that it Poisson commutes with the leading mode and with itself,

{
0

N zz,
1

N w̄w̄} = {
1

N zz,
1

N w̄w̄} = 0. (4.19)

We conclude the section by bringing attention to the fact that the HVF operation may

not be continuous with respect to expressions involving u = ±∞ limits. For example, one

has ∫ ∞

−∞
duXNzz(z,u) =

1

2
X∫∞

−∞
duNzz(z,u). (4.20)

8Readers not interested in the rigours of symplectic geometry of radiative phase space are encouraged
to skip these subtleties and focus solely on the Poisson brackets between different modes.

9Notice that X 1

Nzz

(
0

N w̄w̄) is formally proportional to δ(2)(z, w)
∫∞

−∞
du. Our prescription may be thought

of as a regularization of this divergence.
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However, as we will see in subsequent sections, this technicality has no effect on the final

symplectic structure defined on Γ.

4.3 Soft phase space

We now define what we call the soft phase space which is co-ordinatized by soft modes and

their conjugate fields,

Γsoft := {(C,
0

N,
1

Nab, Tab)}, (4.21)

where C and
0

N capture, respectively, the zero mode of the shear and the leading soft

news.
1

Nab represents the sub-leading soft mode of the news. We note that the vanishing

of super-translation magnetic charge implies that the leading soft news is parametrized by

a single scalar mode on the celestial sphere. However as the superrotation magnetic and

electric charge coincide [37],
1
Nab has two independent modes.

At this stage we treat these fields as independent from Γhard. Their relation with the

fields in the hard sector will be imposed later in terms of the constraints

0

N ab = −2DaDb

0

N, (4.22)
1

N ab =
1

Nab. (4.23)

Similarly, we do not yet require Tzz to be holomorphic (and Tz̄z̄ antiholomorphic); this

condition will also be part of the constraints to be imposed later.

The action of eBMS on Γsoft is given by

δfC = f, δV C = (LV − α)C

δf
0

N = 0, δV
0

N = (LV − α)
0

N

δf
1

N zz = 2fD2
z

0

N, δV
1

N zz = (LV − 2α)
1

N zz

δfTzz = 0, δV Tzz = LV Tzz − 2∂2zα.

(4.24)

The expressions for C and Tab were already described in (4.7) and (3.10), and those for
0

N

and
1

Nab can be obtained from the action on the news [26].

From the splitting of Ω in (4.6) and the analgous splitting for the charges, we define

Ωsoft =

∫
d2z(δ

0

N zz ∧ δCzz + δΠzz ∧ δTzz) + c.c. (4.25)

P soft
f =

∫
d2z

0

N zzδfCzz + c.c. (4.26)

J soft
V =

∫
d2z(

0

N zzδV Czz +ΠzzδV Tzz) + c.c. (4.27)

where

Czz = −2D2
zC,

0

N zz = −2D2
z

0

N, (4.28)
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Πzz = 2
1

N zz + C
0

Nzz. (4.29)

We shall see below that (4.26), (4.27) generate the eBMS action (4.24) on Γsoft.

In order to facilitate computations, in particular to verify that the above symplec-

tic form and charges lead to a closed eBMS algebra, it will be useful to isolate C,
0

N

from
1

Nab, Tcd. This will be achieved through the use of certain identities involving the

superrotation-covariant derivative and the Geroch tensor that we now review.

The superrotation-covariant derivative Da is constructed with the help of a “potential”

ψ for the Geroch tensor (also referred to as Liouville field [25]) satisfying10

Tzz = 2((∂zψ)
2 + ∂2zψ). (4.30)

Da acts as the ordinary derivative ∂a plus two contributions: (i) A multiplicative term of

the form k∂aψ with k dictated by the α factor in the action of δV (for C and
0

N , k = −1)

and (ii) Christoffel-like symbols
ψ

Γc
ab that take into account the tensorial structure of the

field being acted upon. In the present setting the only non-zero symbols are
ψ

Γz
zz = −2∂zψ

and
ψ

Γz̄
z̄z̄ = −2∂z̄ψ. For example,

DzC = ∂zC − ∂zψC (4.31)

D2
zC = ∂zDzC − ∂zDzC −

ψ

Γz
zzDzC (4.32)

= ∂2zC −
1

2
TzzC. (4.33)

With these rules one can compute superrotation-covariant derivatives of arbitrary order.

Of particular interest for our purposes is the 4-th order differential operator

DC := 4(D2
zD

2
z̄ +D2

z̄D
2
z)C (4.34)

= (8∂2z∂
2
z̄ − 4(Tz̄z̄∂

2
z + Tzz∂

2
z̄ ) + 2TzzTz̄z̄)C. (4.35)

Note that these operators have the same form when acting on
0

N . From these expressions,

one can verify the identities,

δ(DC) = DδC − 4(D2
zCδTz̄z̄ + c.c.), (4.36)

δ(D2
zC) = D2

zδC −
1

2
CδTzz, (4.37)

and identical identities involving
0

N instead of C.

Using the above definitions and identities, one can rewrite the symplectic form (4.25)

10In the parametrization of (3.4) one has ψ(z, z̄) = −1/2 ln(φ′(z)φ̄′(z̄)). There is change in notation
with respect to [26]: There, Da denotes the sphere covariant derivative and D̄a the superrotation-covariant
derivative. The formulas of [26] can be translated to the ones here by the substitutions Da → ∂a, D̄a → Da
and R → 0, where R is the scalar curvature of the 2d metric.

– 14 –



in the following alternative forms

Ωsoft =

∫
d2z
(
δ(D

0

N ) ∧ δC + 2(δ(
1

N zz − 2CD2
z

0

N) ∧ δTz̄z̄) + c.c.)
)

(4.38)

=

∫
d2z
(
δ

0

N ∧ δ(DC) + 2(δ
1

N zz ∧ δTz̄z̄ + c.c.).
)

(4.39)

Similarly, the soft charges can be rewritten in various ways. For instance

P soft
f =

∫
d2zfD

0

N, (4.40)

J soft
V =

∫
d2z
(
−DCδV

0

N + 2(
1

N zzδV Tz̄z̄ + c.c.)
)
. (4.41)

We end this section with a few remarks.

• Ωsoft as written in Eq. (4.39) makes it explicit that (prior to imposing the constraints),

DC is conjugate to
0

N and Tzz is conjugate to
1

N z̄z̄. This will simplify the constraint

imposition enormously.

• The first form of Ωsoft in Eq. (4.38) is specially suited for analyzing supertranslations

since

δf (
1

N zz − 2CD2
z

0

N) = 0. (4.42)

Together with δfTzz = 0, and using the form (4.40) for P soft
f it immediately follows

that

δP soft
f = Ωsoft(δ, δf ). (4.43)

• Finally, using (4.39) and (4.41) it can be shown after a rather lengthy but straight-

forward computation that

δJ soft
V = Ωsoft(δ, δV ). (4.44)

4.4 Poisson brackets in the soft phase space

In this section we analyse the Poisson brackets of “elementary” fields in Γsoft. We need the

Green’s function G(z, w) of the differential operator D defined in (4.34) for this purpose,

DG(z, w) = δ(2)(z, w). (4.45)

Although we will not need the explicit form of G(z, w), we know its leading term in the

Tab expansion [4]:

G(z, w) =
1

16π
|z −w|2 ln |z − w|2 +O(T ). (4.46)
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From the symplectic structure Ωsoft, the HVFs of the elementary variables are found to be

XC(z) = −

∫
d2wG(z, w)

( δ

δ
0

N(w)
+ 2D2

wC(w)
δ

δ
1

Nww(w)
+ c.c.

)
, (4.47)

X 0
N(z)

=

∫
d2wG(z, w)

δ

δC(w)
, (4.48)

X 1
Nzz(z)

=
1

2

δ

δTz̄z̄(z)
+ 2D2

zC(z)

∫
d2wG(w, z)

δ

δC(w)
, (4.49)

XTzz(z) = −
1

2

δ

δ
1

N z̄z̄(z)
, (4.50)

The HVFs for X 1
N z̄z̄

and XTz̄z̄ can be written similarly. We can now compute elementary

Poisson brackets on Γsoft,

{C(z),
0

N(w)} = G(z, w), (4.51)

{C(z),
1

Nww(w)} = 2D2
wC(w)G(z, w), (4.52)

{
1

N zz(z), Tw̄w̄(w)} = −
1

2
δ(2)(z, w), (4.53)

together with their complex conjugated versions. All remaining brackets vanish. This

completes the characterization of the soft phase space.

5 Poisson brackets on Γ

We now derive the physical phase space at I+ which includes supertranslations as well as

superrotation modes. Our strategy is the same as the one employed by HLMS [4], which is

to impose certain constraints on the extended phase space which express the soft radiative

modes as “averages” of finite energy radiative data. However we now have more constraints

thanks to the sub-leading soft sector parametrized by (
1

Nab, Tab ). For the benefit of the

reader, we summarize the 4× (2×∞) constraints once again:

F 0
ab(z, z̄) :=

0

N ab(z, z̄) + 2DaDb

0

N(z, z̄)

F 1
ab(z, z̄) :=

1

N ab(z, z̄) −
1

Nab(z, z̄)

F 2
a (z, z̄) := ∂bTab(z, z̄)

F 3
ab(z, z̄) := σ̊+ab(z, z̄) + σ̊−ab(z, z̄)

(5.1)

where we recall that ab = zz or z̄z̄. We regard (5.1) as functions on the kinematical phase

space

Γkin = Γhard × Γsoft , Ωkin = Ωhard +Ωsoft. (5.2)

By construction, the constraint surface {F I = 0, I = 0, 1, 2, 3} defines the embedding of

the phase space (Γ,Ω) of section 3 inside Γkin, namely,

Γ = Γkin|{F I=0} , Ω = Ωkin|{F I=0}. (5.3)
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Since the Poisson brackets on Γkin are known, we can follow Dirac’s procedure to obtain

Poisson brackets on Γ. We do so in appendix A. There, we show that the constraints are

indeed second class so that we can apply Dirac’s formula. It is found that from all possible

brackets among elementary variables, only three get modified, namely

{Nz̄z̄(u),
1

Nww }⋆ = Ow̄ δ
(2)(z, w)

{C(w),
1

N zz }⋆ = 2(1 − Oz)D
2
zC(z)G(w, z)

{
1

N zz, Tw̄w̄ }⋆ = − 1
2(1−Ow)δ

(2)(z, w),

(5.4)

where Ow = ∂w ∂
−2
w ∂w and Ow̄ = ∂w ∂

−2
w̄ ∂w̄.

Together with their complex conjugated versions. All remaining Dirac brackets coincide

with the kinematical ones, as presented in section 4.

Operators such as (1 − Ow ) ensure that the constraint ∂w Tw̄w̄ = 0 is satisfied.

Ow, Ow̄ are symmetric operators and have the same kernel and co-kernel. Ow = ∂w∂
−2
w ∂w

is the operator whose kernel and co-kernel is the space of anti-holomorphic functions on the

complex plane, and such that it reduces to the identity on the space of smooth functions

(modulo the anti-holomorphic kernel).

In particular, this implies that if Tw̄w̄ is smeared with a function which is entire anti-

holomorphic, than its bracket with
1

N zz vanishes.

For completeness we present the remaining non-zero Dirac brackets

{Nzz(z, u), Nw̄w̄(u
′, w)}⋆ = 1

2δ
′(u− u′)δ(2)(z, w),

{C(z),
0

N(w)}⋆ = G(z, w),
(5.5)

whose expression coincide with the kinematical ones.

Eqs. (5.4), (5.5) provide the non-vanishing Poisson brackets on Γ. They can be thought

of as an extension of the HLMS brackets that incorporates the subleading soft modes Tab

and
1

N cd. We observe a crucial structural difference with the HLMS space: The hard modes

Nab(u, z, z̄) do not Poisson commute with
1

Nab, whereas in ΓHLMS these hard degrees of

freedom have vanishing Poisson brackets with the soft modes C(z, z̄) and
0

N(z, z̄). As

we will see below, this has rather non-trivial consequences in the quantum theory. The

existence of the sub-leading soft modes imply that the soft Hilbert space and finite energy

graviton Fock space do not factorise.

6 Quantization of Γ

In order to quantize the space Γ, we start by choosing a family of elementary phase space

functions to be promoted to operators. We consider the Fourier transform of the news

tensor

Nzz(ω) :=

∫ ∞

−∞
dueiωuNzz(u, z, z̄), (6.1)
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together with the soft sector variables. That is, we seek a Hilbert space realization of

operators N̂zz(ω), Ĉ(z), N̂0(z), T̂zz , N̂
1
zz with commutators dictated by the Dirac brackets

(5.4), (5.5):

[N̂zz(ω), N̂w̄w̄(ω
′)] = ~π ωδ(ω + ω′)δ(2)(z, w), (6.2)

[N̂zz(ω), N̂
1
w̄w̄] = i~πδ(ω)Ow δ

(2)(z, w) (6.3)

[Ĉ(z), N̂0(w)] = i~Ĝ(z, w) (6.4)

[Ĉ(z), N̂1
ww] = 2i~(1 − Ow )D̂2

wĈ(w)Ĝ(z, w), (6.5)

[N̂1
zz, T̂w̄w̄] = −

i~

2
(1−Ow )δ(2)(z, w), (6.6)

with the corresponding hermitian conjugated versions and with all remaining commutators

being zero. Both the Green’s function and the superrotation-covariant derivative become

operators due to their dependence on the Geroch tensor. The RHS of (6.5), however, does

not present operator order ambiguities since Ĉ and T̂zz commute.

We start by constructing a Hilbert space based on the following set of maximally

commuting operators:

{N̂zz(ω), N̂z̄z̄(ω), ω > 0}, N̂0(z), T̂zz, T̂z̄z̄ (6.7)

This choice is motivated by the fact that News tensors and the displacement memory are

physical observables in the theory. We then consider a Hilbert space of the form

H = Hhard ⊗Hsoft, (6.8)

with Hhard the graviton Fock space associated to the positive frequency news operators

and Hsoft the space of wavefunctionals Ψ(N,T ) where N ≡
0

N(z) and T ≡ (Tzz, Tz̄z̄) label

the eigenvalues of the corresponding soft operators,

N̂0(z)Ψ(N,T ) = N(z)Ψ(N,T ) (6.9)

T̂zzΨ(N,T ) = TzzΨ(N,T ) (6.10)

T̂z̄z̄Ψ(N,T ) = Tz̄z̄Ψ(N,T ). (6.11)

Thus, a basis for H is given by states of the form

|(p1, h1), . . . , (pn, hn);N,T 〉, (6.12)

where the (pi, hi), i = 1, . . . , n label momenta and helicity of the Fock-space gravitons and

N,T are eigenvalues of the operatos N̂0(z), T̂zz and T̂z̄z̄.

We will occasionally find it convenient to work with states that are smeared over the

soft variables, for which we shall use the notation

|{pi, hi}〉Ψ(N,T ) :=

∫
dNdTΨ(N,T )|{pi, hi};N,T 〉. (6.13)

– 18 –



These states can be interpreted as graviton Fock states “dressed” by soft wavefunctionals

Ψ(N,T ), similar to the fiber-bundle structure advocated in [43].

We now describe the remaining operators. The zero-mode shear Ĉ(z) is naturally

defined as an operator that is trivial on Hhard and that on Hsoft acts according to

Ĉ(z)Ψ(N,T ) = i~

∫
d2wGT (z, w)

δ

δN(z)
Ψ(N,T ), (6.14)

thus ensuring the commutator (6.4). We use the notation GT for the Green’s function in

order to make explicit its dependence on the Geroch tensor label T . The subleading news

operator is more subtle, as it is sensitive to both soft and hard sectors. The commutators

(6.3) and (6.6) suggest the definition

N̂1
zz|{(pi, hi)}〉Ψ(N,T ) =

(
− iOz lim

ω→0
∂ωN̂zz(ω)−

i~

2
(1−Oz)

δ

δTz̄z̄

)
|{(pi, hi)}〉Ψ(N,T ). (6.15)

By construction, this expression satisfies (6.3) and (6.6). One can further check that (6.15)

and (6.14) satisfy (6.5). It is also easy to see that the above operators reproduce the

vanishing commutator relations dictated by the Dirac brackets.

6.1 eBMS quantum charges

Promoting the classical expressions to operators we have

P̂f = P̂ hard
f + P̂ soft

f (6.16)

ĴV = Ĵhard
V + Ĵ soft

V (6.17)

We define the hard charges as the standard Fock-space hard charges used in the literature

(see e.g. [4, 5, 17]). These act non-trivially on the hard Hilbert space factor according to:

P̂ hard
f |{(pi, hi)};N,T 〉 =

∑

i

Eif(zi, z̄i)|{pi, hi};N,T 〉 (6.18)

Ĵhard
V |{(pi, hi)};N,T 〉 = −i~

∑

i

δiV |{pi, hi};N,T 〉 (6.19)

where (Ei, zi, z̄i) parametrize the momenta of the i-th graviton and δiV = V zi∂zi+V
z̄i∂z̄i±

(∂ziV
zi − ∂z̄iV

z̄i)− 1/2(∂ziV
zi − ∂z̄iV

z̄i)Ei∂Ei .

For the soft charges we consider

P̂ soft
f =

∫
d2zf(z)D̂N̂0(z), (6.20)

Ĵ soft
V =

∫
d2z
(
− δV N̂

0(z)D̂Ĉ(z) + 2(δV T̂zzN̂
1
z̄z̄ + h.c.)

)
. (6.21)

P̂ soft
f is purely multiplicative and so it does not present operator order ambiguities (the

differential operator D becomes a multiplicative Hilbert-space operator D̂ due to its de-

pendence on the Geroch tensor). For Ĵ soft
V we choose an operator ordering such that
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multiplicative operators are on the left and derivative operators on the right. This order-

ing choice will be justified a posteriori, as we will show that the eBMS algebra closes for

Ĵ soft
V defined as in (6.20).

6.2 Ward identities of eBMS charges

Before proving that the quantized eBMS algebra closes, we first analyse the Ward identity

associated to P̂f , ĴV for tree-level S matrix. The equivalence of Ward identities for su-

pertranslations and superrotations with leading and sub-leading soft graviton theorem has

been extensively analysed in the literature, where the quantized soft charges are defined

via soft limits of finite energy insertions, with the seminal references being [4, 5]. However,

in the last few years, the quantization of P̂f in the extended phase space ΓHLMS [44–48]

has led to a novel implication of the supertranslation Ward identity. That the vacuum

transition from incoming to outgoing scattering state in a generic gravitational scattering

is non-trivial and is constrained by the infinity of conservation laws. These constraints are

of course consistent with Weinberg soft theorem, but can be interpreted as a statement in

a “dual basis” in which the scattering states are eigen-states of soft news operator rather

than being displaced by it (via a soft graviton insertion).

We review the basic idea of [44–46] below and then show that the quantization of ĴV
on Γ leads to an analogous implication for the superrotation Ward identity.

For the purpose of this section, we adopt the following notation for basis states. We

will denote the generic outgoing scattering state as | out, N, T 〉. Here out denotes an

outgoing multi-graviton state where gravitons have arbitrary helicity and hard momenta,11

as in (6.12). As discussed earlier, these states are eigenstates of hard graviton momentum

operators as well as leading soft news and Geroch tensor. We will also denote a state with

trivial soft modes, namely | in, N = 0, T = 0 〉 as | in 〉. In particular, we will consider all

the in-coming states to have trivial soft modes.

The Ward identity associated to P̂f can finally be written as,

〈 out, N, T | [P̂ soft
f , S ] | in 〉 = −〈 out, N, T | [P̂ hard

f , S ] | in 〉 , (6.22)

where the soft charge is defined in Eq. (6.20). The LHS of the Ward identity in Eq. (6.22)

can thus be evaluated as,

〈 out, N, T | [P̂ soft
f , S ] | in 〉 =

∫
d2zDf(z)N(z) 〈 out, N, T |S | in 〉 (6.23)

Thus, the supertranslation Ward identity can be written as,

∫
d2zDf(z)N(z) 〈out, N, T |S | in 〉 = −〈out, N, T | [P̂ hard

f , S ] | in 〉 . (6.24)

As was shown in [44–46], this identity thus constrains N in terms of the eigenvalue of the

hard supertranslation charge which is effectively the Weinberg soft factor.

11Hard momenta graviton states simply corresponds to states created by a†ω,p̂ where ω > 0.
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The Ward identity associated to ĴV presents two challenges. Since the contribution

to the soft charge that is linear in
1

Nab exponentiates to a “translation operator” in the

space of Geroch tensors, the relationship of this Ward identity with Cachazo-Strominger

soft theorem is not immediately clear.12 Furthermore, Ĵ soft
V contains quadratic operators

involving the leading soft modes and it is not a priori clear whether the corresponding

Ward identity is affected by the inclusion of these new terms.

In fact, the superrotation soft charge appears to mix the hard and soft Hilbert space

factors due to the subleading soft news operator (6.15). However, when one studies the

action of Ĵ soft
V (4.27) on a state (6.13), one finds only one of the two terms in N̂1

zz is

non-trivial.

• If δV T is holomorphic, then one finds the hard-sector part of N̂1
zz drops out due to

the holomorphicity of δV Tzz. The action is then found to be given by

Ĵ soft
V |{(pi, hi)}〉Ψ(N,T ) =

−i~
∫
d2z
(
δVN(z) δ

δN(z) + (δV Tzz
δ

δTzz
+ c.c.)

)
|{(pi, hi)}〉Ψ(N,T ),

(6.25)

where we recall that δVN = (LV − α)N and δV Tzz = LV Tzz − 2∂2zα.

• Even though ĴV is strictly speaking only defined for holomorphic δTab, we now con-

sider an extension of its domain of validity to meromorphic vector fields.13 It can be

immediately be verfied that if δV T has poles at finite z, then the second term in N̂1
zz

drops out and the soft charge can be written as,

Ĵ soft
V |{(pi, hi)}〉Ψ(N,T ) =

−i~
∫
d2z
(
δVN(z) δ

δN(z) − Oz δV Tzz limω→0 ∂ωN̂zz(ω) + c.c.)
)
|{(pi, hi)}〉Ψ(N,T )

(6.26)

In the second case, the Ward identity of ĴV implies the Cachazo-Strominger soft theorem.

Hence in the rest of the section, we analyse the first case in which the soft superrota-

tion charge has a non-trivial action on Tab. We now evaluate the Ward identity between

out-states of the form | out, N, T = 0 〉 and in-states | in 〉 as before. The computation

presented here can be easily generalised to generic scattering states. The action of the soft

12This subtlety parallels the subtlety in relating the two versions of supertranslation Ward identities,
namely the one which constrains the soft vacuum transitions (reviewed above) with the one leading to
Weinberg’s soft theorem. That is, in the standard Fock-space formulation of the Ward identity, one defines
the superrotation soft charge in terms of limω→ 0 ∂ω ω〈 out | aω,p̂ S | in 〉. But in the new quantization of

Ĵsoft
V , the term linear in N̂1

ab is defined as a sum of the zero frequency operator and δ
δTzz

which may be
interpreted as 〈 out | limω→ 0 ∂ω ω aω,p̂ S | in 〉. Depending on the poles of V , only one of the two terms
contribute to the soft charge.

13The reason we expect our charges to give the correct Ward identity for all V a is simply that we do
not expect the subtlety of the change in the sphere metric to affect the single Ward identity associated to
infinitesimal superrotations. The added subtlety would show up when we consider ‘higher order” structures
such as commutators of two charges.
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superrotation charge on the in and the out states is given by

Ĵ soft
V |in 〉 = −i~

∫
d2z(δV Tzz

δ
δTzz

+ c.c.)| in, N = 0T = 0 〉

Ĵ soft
V |out, N, T = 0 〉 = −i~

∫
d2z(δV Tzz

δ
δTzz

+ c.c.)| out, N, T = 0 〉

−i~
∫
δVN(z) δ

δN(z) | out, N, T = 0〉

(6.27)

As δV N(z) = (LV − α )N(z), the action of
∫
δVN(z) δ

δN(z) on the | in 〉 state vanishes.

In fact we note that the state obtained by action of δ
δN(z) on the out state will not

contribute to the Ward identity since N is already constrained by the leading soft theorem.

More in detail as,

〈 out, N + λ δVN,T = 0 |S | in, λ δV 〉 = 0∀λ

=⇒ limλ→ 0
d
dλ

〈 out, N + λN, T = 0 |S | in 〉 = 0
(6.28)

By combining Eqs. (6.27), (6.18) and (6.28) we get,

∫
d2z δV Tzz 〈 outN,T = 0| [

δ

δTzz
, S ] | in, N = 0, T = 0 〉 = (6.29)

− 〈 out, N, T = 0 | [ Ĵhard
V , S ] | in 〉 (6.30)

The LHS of (6.29) can be understood as

lim
λ→ 0

d

dλ
[ 〈 outN,λ δV T |S | in 〉 − 〈 outN,T = 0|S | in, N = 0, λ δV T 〉 ] (6.31)

The Ward identity thus implies that the infinitesimal change δV T in the Geroch tensor is

equivalent to the action of sub-leading soft graviton operator on hard scattering states.

As we saw above, Cachazo-Strominger soft graviton theorem is realised as a Ward

identity of the superrotation charge in the case δV T is meromorphic. But if δV T is holo-

morphic (except pole at infinity) then the relationship between the superrotation Ward

identity and the Cachazo-Strominger soft theorem deserves further scrutiny.

We end this section with some comments.

• The operator action of N̂1
zz is a sum of two operators which act respectively on the

hard and soft Hilbert space factors (6.15). One is the “familiar” sub-leading soft

graviton insertion of the type limω→ 0 ∂ω N̂zz(ω, x̂) and the other one is the soft op-

erator which is linear in δ
δTzz

. We see that for the case rigorously analysed in this

paper, N̂1
zz acts as the latter but our preliminary analysis suggests that for a generic

superrotation, it is precisely one of these two operators that contribute to the soft

superrotation charge. This may offer a new perspective on the relationship between

sub-leading soft graviton theorem and Ward identities, akin to the relationship be-

tween dressed vacua, Weinberg soft theorem and supertranslation symmetries. We

leave a more thorough analysis of this aspect and its impact on the dressed states for

future work.

• The second class constraint F 1
ab =

1

N ab −
1

Nab = 0 was strongly imposed classically
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by using Dirac brackets. On the other hand, had we first quantized the extended

phase space and imposed F 1
ab at quantum level, it would imply (at least formally)

that we identify N̂1
ab with N̂ 1

ab = −i limω→0 ∂ωN̂zz(ω). This could bring the Ward

identity in the more “traditional form” of a sub-leading soft graviton theorem for all

superrotations.

• We chose the scattering states to be eigenstates of N̂0 and T̂ab since N̂1
ab does not

commute with the news tensor N̂ab(ω, x̂). However this commutator has support only

at ω = 0 and hence it may be possible to work with eigenstates of N̂0 and N̂1
ab instead.

In such case, the superrotation Ward identity would take a form analogous to (6.24),

equating a vacuum transition parametrized by the difference of N1
ab(x̂) between in

and out states with an amplitude with no vacuum transition but with hard states

“super-rotated” by the angular momentum operators.

6.3 eBMS quantum algebra

We now evaluate the commutator of the quantum eBMS charges. We start by noticing

that the hard part of the operators satisfy the extended BMS algebra (see e.g. [17]):

[P̂ hard
f , P̂ hard

f ′ ] = 0 (6.32)

[P̂ hard
f , Ĵhard

V ] = −i~P̂ hard
V (f) (6.33)

[Ĵhard
V , Ĵhard

V ′ ] = i~Ĵhard
[V,V ′]. (6.34)

where V (f) = (LV − α)f .

We now discuss the commutators involving the soft part the operators. The only miss-

ing operator action to complete this computation is that of P̂ soft
f . The soft supermomentum

has a simple multiplicative action that is only sensitive to the soft Hilbert space,

P̂ soft
f |{(pi, hi)}〉Ψ(N,T ) = P soft

f (N,T )|{(pi, hi)}〉Ψ(N,T ) (6.35)

where

P soft
f (N,T ) =

∫
d2xfDTN (6.36)

is the value of the classical soft supermomentum associated with leading newsN and Geroch

tensor T . We use the notation DT to make explicit the T -dependence of the differential

operator D (4.34).

Eqs. (6.35), (6.25) imply that the hard and soft charges commute with each other.14

To complete the computation of the charge algebra we need to evaluate the commutator

of the soft charges. Since P̂ soft
f acts multiplicatively it follows that

[P̂ soft
f , P̂ soft

f ′ ] = 0. (6.37)

14Notice this is technically different from the individual terms that contribute to the commutator in [17].
This is related to the fact that our definition of soft superrotation charge includes a contribution from the
zero mode of the shear that is usually considered as part of the hard charge.
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Given the expression (6.25) for the action of Ĵ soft it easy to show that

[Ĵ soft
V , Ĵ soft

V ′ ] = i~Ĵ soft
[V,V ′] (6.38)

and

[P̂ soft
f , Ĵ soft

V ]Ψ[N,T ] = i~δV (P
soft
f (N,T ))Ψ[N,T ], (6.39)

where δV acts on the N and T labels of Pf (N,T ). Thus, to prove the algebra closure we

need to show that

δV Pf (N,T ) = −PV (f)(N,T ). (6.40)

This identity follows in fact due to the superrotation-covariance of the classical charge [26]:

δV Pf (N,T ) = δV

∫
d2xfDTN =

∫
d2xfδV (DTN) = −

∫
d2xV (f)DTN, (6.41)

where

δV (DTN) = (LV + 3α)DTN. (6.42)

Notice that the T -dependence of the supermomentum, appearing through the use of the

superrotation-covariant differential operator DT , is what ensures the transformation prop-

erty (6.42) that underlies (6.40). It is interesting to compare with the situation where one

works in the T = 0 sector and does not include δV T terms. Denoting such action by δ′V ,

one finds

δ′V Pf (N,T = 0) :=

∫
d2xfD0δVN (6.43)

=

∫
d2xfδV (DTN)|T=0 −

∫
d2xfδV (DT )N |T=0 (6.44)

= −PV (f)(N,T = 0)−K(f,V )(N,T = 0) (6.45)

where we used (6.41) and defined

K(f,V )(N,T ) :=

∫
d2xfδV (DT )N. (6.46)

From (4.36) and (3.10) one finds the non-closure term is given by

K(f,V )(N,T ) = −4

∫
d2xf(LV Tz̄z̄ − ∂3z̄V

z̄)D2
zN + c.c.. (6.47)

By setting T = 0, one obtains a 2-cocycle term of the type found in [15].15

15The relation of (6.47) with the BT cocycle is K(f,V ) = −4K(f,V ). The different multiplicative factor is

due to the extra dependence on the Geroch tensor when using
0

Nab = −2DaDb
0

N . The analogue of (6.47)

for the BT case is K(f,V ) = −2
∫
d2xfδV (D

aDb)
0

Nab|T=0.
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6.4 Consistency with consecutive double soft graviton theorems

In [17], Distler, Flauger and Horn gave an explicit proof of the non-closure of eBMS al-

gebra in quantum theory. Their main result can be summarized as follows. Given the

consecutive double soft graviton theorem in tree-level scattering amplitudes at sub-leading

(and sub-sub leading) order, one can compute the commutator of two such soft limits. The

resulting factorisation theorem is equivalent to the algebra generated by the (quantized)

supertranslation and superrotation charges.

More in detail, the authors in [17] considered the following commutators obtained from

double soft theorems.

[limω1 → 0 ω1, limω2 → 0 ∂ω2 ω2 ] 〈out, k1, k2 |S | in 〉 = S(k1, k2) 〈out |S | in 〉

[limω1 → 0 ∂ω1 ω1, limω2 → 0 ∂ω2 ω2 ] 〈out, k1, k2 |S | in 〉 = S′(k1, k2) 〈out |S | in 〉 (6.48)

Here ki = (ωi, k̂i) and we have supressed the helicity information of all the gravitons for the

sake of brevity. The two commutators are associated to consecutive double soft theorems

at sub-leading and sub-subleading orders respectively.

The authors then analysed S(k1, k2), S
′(k1, k2) in complete detail for all possible he-

licity configurations of the soft gravitons and showed that it consists of terms which have

(1) “soft” poles consistent with single soft theorem or

(2) colinear poles arising when k1, k2 become colinear.

The RHS of (6.48) was shown to equal the following matrix elements

S(k1, k2) 〈out |S | in 〉 = 〈out | [ [P̂f , Q̂V ], S ] | in 〉

S′(k1, k2) 〈out |S | in 〉 = 〈out | [ [Q̂V1 , Q̂V2 ], S ] | in 〉 (6.49)

for specific choices of parameters f, V, V1 and V2 that are dictated by the helicity and

direction of the soft gravitons. In the above equations out/in are outgoing or incoming

graviton states in the “trivial sector” defined by N = Tab = 0. We have denoted the

superrotation charge as Q̂V instead of ĴV in Eq. (6.49). This is because in the
0

N = T = 0

sector, Q̂soft
V differs from Ĵ soft

V by

Q̂soft
V = Ĵ soft

V + i~

∫
d2z δVN(z)

δ

δN(z)
(6.50)

Eq. (6.49) is already a rather surprising result. As the LHS is simply the soft factor

multiplied by the scattering amplitude and the RHS is the Ward identities associated to

commutators of the symmetry generators. This is structurally different than the identifi-

cation between a single soft theorem and Ward identities.16 In fact in [17], the striking

nature of the above result was made more manifest as it was shown that this identity

16We have written the equality in (6.49) slightly differently than in [17]. This is simply for the sake
of pedagogy and does not affect the final result which is our primary concern. The interested reader is
encouraged to consult the original reference for more details.
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implies non-closure of eBMS algebra as,

〈out | [ [P̂f , Q̂V ], S ] | in 〉 = −i~〈 in | [ P̂V (f) + K̂(f,V ), S ] | out 〉

〈out | [ [Q̂V1 , Q̂V2 ], S ] | in 〉 = i~〈 in | [ Q̂[V1,V2] , S ] | out 〉
(6.51)

The analysis by Distler, Flauger and Horn was for the entire eBMS algebra including holo-

morphic superrotations. Hence we can compare the result stated above with our analysis.

Using the modified superrotation charge derived in this paper the above identities can

be rewritten as,

[ P̂f , ĴV ] = −i~P̂V (f)

[ ĴV1 , ĴV2 ] = i~Ĵ[V1,V2]
(6.52)

We thus observe that first equation in (6.49) implies that

S(k1, k2) 〈out |S | in 〉 = 〈out | [ [P̂f , ĴV ] + K̂(f, V ), S ] | in 〉 (6.53)

With the new superrotation charge which generates closed eBMS algebra (albeit only for

entire vector fields), the right hand side of (the commutator) of sub-leading double soft

theorem can be realised as matrix element of commutator of S matrix with [ P̂f , ĴV ] +

K̂(f, V ).

7 Conclusions and outlook

Our main goal in this paper has been to analyse the quantum charge algebra associated

to extended BMS symmetries in light of recent progress in the understanding of superro-

tation charges in classical gravity. In this section, we briefly summarize our results and

highlight some of the open issues which have emerged out of our analysis and require further

investigation.

7.1 Summary of results

Throughout this paper, we considered the eBMS algebra generated by supertranslations

and holomorphic (anti-holomorphic) superrotations. Although we expect our analysis to

generalise to the complete eBMS and gBMS algebra (for which the superrotations are

generated by meromorphic or smooth vector fields respectively) we did not attempt to do

so in this paper and offer a few comments in 7.3 below regarding the possible complications

we are likely to encounter in attempting such an extension.

The main ideas in this paper can be summarized as follows: Based on the analysis in

[26], we considered an extension of the radiative phase space of shear modes which contains

the leading and sub-leading soft news and their conjugate partners. This extended phase

space is not physical in the sense that the new variables are constrained in terms of the

shear and news fields.17

17These constraints assumed an invariant complex structure on the celestial sphere which is only preserved
by meromorphic vector fields.
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We showed that these constraints are second class and can be solved explicitly to obtain a

physical radiative phase space Γ on which both the supertranslation as well as superrota-

tion charges have a well defined action.

We then quantized the phase space and showed that the quantized charges form a closed

algebra which is simply a faithful (as opposed to projective) representation of the eBMS

Lie algebra at I.

A natural off-shoot of our analysis is an explicit parametrization of the space of all vacua

which generates (via finite energy excitations) a representation space for the eBMS alge-

bra. These vacua are labelled by the soft news
0

N and the Geroch tensor Tab which is a

Schwarzian. This result should thus be viewed as a synthesis of the structure of vacua

analysed in [4] and [41].

7.2 Comparison with the eBMS algebra in celestial holography

We now offer some brief and rather speculative comments on the implication of our results

for the eBMS algebra in celestial holography which has been derived and analysed in a

number of recent papers (see [19–24])18. Our comments are rather preliminary and only

serve to highlight a possible way in which the quantized eBMS algebra at null infinity in

this paper can be reconciled with the eBMS algebra in celestial CFT.

To be more specific, we consider only positive helicity soft insertions. The holomorphic

supertranslation current and the boundary stress tensor are defined as,

P (z) = P (f)|f = z−w
z̄−w

Tz̄z̄ = Qsoft
Y |Y z̄ = 1

z̄−w
,Y z =0

(7.1)

We have denoted the stress tensor as Tab to distinguish it from Tab which in this paper

denotes the conjugate partner to the sub-leading soft news.

In the celestial basis, P (z) is a conformal primary with △ = 1 and Tz̄z̄ is the shadow

transform of a △ = 0 primary operator.

In the above equation, w is being integrated over. We also emphasize that the soft charge

Qsoft
Y used to define the celestial stress tensor is the “old” soft superrotation charge given

in Eq. (6.50). However in order to make contact with the results derived in this paper, we

need to consider the following tensor on the celestial sphere

tz̄z̄ = J soft
Y |Y z̄ = 1

z̄−w
,Y z =0 (7.2)

Once again, we have assumed that our definition of JY is valid for a meromorphic vector

field, as we believe that this has no bearing on the main point raised in this section.

With this tensor, we now know that the commutator between [P (z), tz̄z̄ ] closes in a super-

translation.19

18We thank Dileep Jatkar for extensive discussions on eBMS algebra in celestial CFT.
19This result can be re-written in the so-called celestial basis which is obtained by Mellin transforming

Pz, tzz to conformal operators.
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But as,

tz̄z̄ = Tz̄z̄ + Oz̄z̄ (7.3)

The algebra generated by P (z),Tz̄z̄ does not close and has a 2 co-cycle extension consistent

with [17].

We expect that in the celestial basis, the OPE of tab with conformal primaries (with

△ = 1 + iλ, λ 6= 0) is the same as that of Tab. This is because this OPE follows

from sub-leading soft graviton theorem which as a Ward identity is insensitive to the

distinction between the old and new superrotation charges. In other words, we expect that

the following OPE has no singular terms.

OabO△,±2(z, z̄) = regular (7.4)

where O△,±2 is the hard graviton in the celestial basis with conformal dimension △ =

1 + iλ. Thus both Tab, tab appear to be possible candidates for a stress tensor on the

celestial sphere.

However as the algebra of tab with P (z) is isomorphic to the eBMS algebra in [19], we

also expect that the OPE of tab with the supertranslation current is precisely as expected

of an OPE between a CFT stress tensor and a Kac-Moody current. That is, with tab as

the celestial stress tensor, P (z) is a level-1 descendent primary field. But we note that in

the celestial basis Oab is the Mellin transform of,

∫
−DC δY

0

N (7.5)

where Y z = 0, Y z̄ = 1
z̄−w

. Hence although Oab has a trivial OPE with hard graviton

modes, it must have non-trivial OPE with respect to P (z)/P (z̄) = O△=1,±2.

That P (z) is not a descendent primary with respect to Tab was observed in [17]. We refer

the reader to section five in [17] for details.20

Thus we expect that in the celestial CFT, our results may be equivalent to choosing

tab as the stress tensor which is obtained by deforming Tab by Oab.

7.3 Towards gBMS algebra

Our analysis so far has been restricted to the extended BMS algebra in which superrotations

are generated by (local) conformal Killing vector fields on the celestial sphere. In this

section, we offer a few remarks about the possibility of generalising the analysis to quantize

the gBMS algebra.

20In [49] Barnich has put forward a different perspective on the non-centrally extended eBMS algebra.
Namely to view it as a “centrally extended algebroid” instead of an algebra with a 2-cocycle anomaly.
However the implications of the Lie-algebroid ideas in quantum theory are not clear to the authors. More
in detail, the presence of the 2-cocycle appears to be in tension with the fact that quantized supertranslation
and superrotation charges are symmetries of the S-matrix. It is not clear to us, how reinterpreting eBMS
algebra as a Lie algebroid alleviates this tension.
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• In a seminal paper [50], the soft charge associated to smooth superrotations Diff(S2)

was shown to be a shadow transform of the celestial stress tensor (this stress tensor is

the soft charge for eBMS superrotations in the conformal primary basis). However a

crucial ingredient in this analysis was to consider generic configurations of Tab which

are meromorphic on the celestial sphere. Our constraint analysis assumed that Tab
has poles only at infinity and hence to use the ideas of [50], we need to generalise our

analysis to ensure that all meromorphic Geroch tensors are included in the radiative

phase space.

• To allow for smooth superrotations, we need to reincorporate the celestial metric qab
as part of the kinematical phase space, as originally presented in [26]. In such case,

the analogue of the constraints (5.1) are more involved. In particular, the constraint

F 2
a becomes

Db Tab = 0 (7.6)

where Da is the covariant derivative of the celestial metric, Daqbc = 0. Thus, the

2d metric and Geroch tensor are no longer decoupled but are related through the

non-linear constraint (7.6).

• Once the sphere metric is included in the radiative phase space, it also contains a

mode pab conjugate to qab that is constrained to be certain combination of soft news

modes (we refer the reader to [26] for details). This is likely to make the constraint

analysis far more intricate.

An investigation of these constraints and the resulting Dirac brackets will be pursued

elsewhere.
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A Derivation of Dirac brackets

In this section, we present a derivation of the “physical” radiative phase space Poisson

brackets presented in section 5. The first step (see e.g. [51]) is to study the matrix with

entries given by the Poisson brackets between constraints. In our case we have 4× 2 ×∞

constraints given in Eq. (5.1). We write the corresponding matrix as

(
{F I(z), F J (w)} {F I(z), F J̄(w)}

{F Ī(z), F J (w)} {F Ī(z), F J̄(w)}

)
(A.1)

where I, J, I, J = 0, 1, 2, 3 are constraint indices that distinguish holomorphic and anti-

holomorphic components of the constraint functions. For instance, F 0(z) ≡ F 0
zz and

F 0(z) ≡ F 0
z̄z̄. We can evaluate the various entries of this matrix by using the kinematical

PBs presented in section 4. It is immediate to see that brackets of the same helicity type

vanish,

{F I(z), F J (w)} = {F Ī(z), F J̄(w)} = 0. (A.2)

Evaluating the PBs between constraints with opposite helicity, we find the only non-

vanishing ones are21

{F 0
zz , F

1
w̄w̄} =

1

2

0

N(z)δ(2)(z, w), {F 0
zz, F

3
w̄w̄} = −2δ(2)(z, w), {F 1

zz , F
2
w̄} = −

1

2
∂zδ

(2)(z, w),

(A.3)

together with their complex conjugates. In the notation of (A.1), we write them as the 4

by 4 matrix

{F I(z), F J̄(w)} = FIJ̄(z)δ(2)(z, w) (A.4)

where

FIJ̄ (z) = −
1

2




0 −
0

N(z) 0 4
0

N(z) 0 ∂z 0

0 ∂z̄ 0 0

−4 0 0 0



. (A.5)

Similarly {F I(z), F J (w)} = FIJδ(2)(z, w) with FIJ the complex conjugate of (A.5).

Provided we can invert the differential operator ∂z, the matrices (A.5) and (A.1), are

invertible, implying the constraints are second-class. We shall now proceed under this

assumption and discuss later the subtleties that arise in situations where ∂z cannot be

inverted.

The inverse of (A.1) can be written as

(
{F I(z), F J (w)} {F I(z), F J̄(w)}

{F Ī(z), F J (w)} {F Ī(z), F J̄(w)}

)−1

=

(
0 KIJ(z)

KIJ(z) 0

)
δ(2)(z, w), (A.6)

21The function F 3
zz suffers from the type of ambiguities discussed in section 4.2 when evaluating PBs.

We take the prescription {F 0
zz, F

3
w̄w̄} = −XF0

zz

(F 3
w̄w̄) = −2δ(2)(z, w) and {F 1

zz, F
3
w̄w̄} = {F 3

zz, F
3
w̄w̄} = 0.
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where KIJ is the operator-inverse of (A.5)

FIJKJK = δIK , (A.7)

given by

KIJ(z) = −
1

2




0 0 0 −1

0 0 4∂−1
z̄ 0

0 4∂−1
z 0 ∂−1

z

0

N(z)

1 0
0

N(z)∂−1
z̄ 0



, (A.8)

where ∂−1
z

0

N(z) and
0

N(z)∂−1
z̄ should be understood as compositions of integral and multi-

plicative operators. Similarly KIJ is given by the complex conjugate of (A.8).

The Dirac bracket between two functions f and g is then given by

{f, g}⋆ = {f, g}+ {f, g}extra (A.9)

where

{f, g}extra =

∫
d2w{f, F I(w)}KIJ (w){g, F

J (w)} + (I ↔ I, J ↔ J) (A.10)

We would like to compute the Dirac brackets between the elementary variables

Nab(u, x̂),
0

N(x̂), C(x̂),
1

Nab(x̂), Tab(x̂) . (A.11)

We start by displaying the PBs of elementary variables with the constraints. Given the

kinematical PBs of section 4, one finds

{C(z), F 0
ww} = 2D2

wG(z, w), {C(z), F 1
ww} = −2D2

wC(w)G(z, w), (A.12)

{
1

N zz, F
0
w̄w̄} =

1

2

0

N(z)δ(2)(z, w), {
1

N zz, F
2
w̄} = −

1

2
∂wδ

(2)(z, w), (A.13)

{Tzz, F
1
w̄w̄} = −

1

2
δ(2)(z, w), {Nzz(u, z), F

1
w̄w̄} =

1

2
δ(2)(z, w), (A.14)

(together with their complex conjugates) with all remaining brackets being zero. We can

now evaluate the extra contribution (A.10) and hence the Dirac bracket (A.9) for all pairs

of elementary variables (A.11). We start by noticing that since
0

N Poisson commutes with

all constraints, its Dirac bracket with other functions will coincide with the kinematical

one. In particular, the only non-zero Dirac bracket involving
0

N is

{C(z),
0

N(w)}⋆ = G(z, w). (A.15)

Another pair of brackets which is left unchanged is that of the news tensor with itself.

The reason being that the news tensor has non-trivial brackets only with F 1, but the
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corresponding components of KIJ vanish. Thus,

{Nzz(z, u), Nw̄w̄(u
′, w)}⋆ =

1

2
δ′(u− u′)δ(2)(z, w). (A.16)

For the remaining variables, one finds the non-trivial brackets involve the composition of

derivative and inverse-derivative operators. As we explain below, we will deal with such

terms through the use of projection operators defined on the space of functions,

Ow = ∂w ∂
−2
w ∂w

Ow̄ = ∂w̄ ∂
−2
w̄ ∂w̄

(A.17)

The remaining non-trivial brackets are then written as

{C(z),
1

Nww}⋆ = 2(1−Ow)D
2
wC(w)G(z, w), (A.18)

{
1

N zz, Tw̄w̄}⋆ = −
1

2
(1 − Ow )δ(2)(z, w), (A.19)

{Nzz(z, u),
1

N w̄w̄}⋆ =
1

2
Ow δ

(2)(z, w) (A.20)

The reason we get Ow or its orthogonal complement is the following.

Up to this stage, we had assumed ∂w was invertible and hence Ow = ∂w∂
−2
w ∂w = 1.

We however note that if we work with smeared variables, the nature of the smearing

function would alter this conclusion. In particular, for an anti-holomorphic smearing, the

∂w derivatives would vanish. To allow for this possibility, we work with the expressions

above interpreting ∂w∂
−2
w ∂w as a symmetric operator that annihilates anti-holomorphic

functions and such that is the identity on the space of smooth functions modulo anti-

holomorphic kernel. We note that our choice of Ow = ∂w∂
−2
w ∂w instead of an operator

such as ∂−1
w ∂w ensures that it is symmetric with respect to its action on smearing of either

functions. The latter however has orthogonal kernel and co-kernel. Its kernel is the space

of anti-holomorphic functions of C and it has a trivial cokernel.

Since the computation of Dirac brackets is subtle, We conclude the appendix by verify-

ing the Dirac brackets satisfy the Jacobi identity. It is easy to see that the only non-trivial

condition comes from

{ {
1

N zz,
0

N(w) }, C(x) }⋆ + { {C(x),
1

N zz },
0

N(w) }⋆ + { {
0

N(w), C(x) },
1

N zz }⋆ = 0

(A.21)

Since {
1

N zz,
0

N(w) }⋆ vanishes, the Jacobi identity will be satisfied if,

{ {C(x),
1

N zz }⋆,
0

N(w) }⋆ = −{{
0

N(w), C(x) }⋆,
1

N zz }⋆. (A.22)
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Computing each side of (A.22) we find

{ {C(x),
1

N zz }⋆,
0

N(w) }⋆ = 2(1 −Oz){D
2
zC(z)G(x, z),

0

N(w) }⋆ (A.23)

= 2(1 −Oz)D
2
zG(z, w)G(x, z) (A.24)

−{{
0

N(w), C(x) }⋆,
1

N zz }⋆ = {G(x,w),
1

N zz }⋆ (A.25)

=
1

2
(1−Oz)

δG(x,w)

δTz̄z̄
. (A.26)

The last derivative can be evaluated from the condition δ(DG) = δDG+DδG = 0, together

with the equation (4.36) for δD. One finds

δG(x,w)

δTz̄z̄
= 4D2

zG(z, w)G(x, z), (A.27)

from which (A.22) immediately follows.
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