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Abstract

In this work we study a generic class of two dimensional systems in loop quantum
gravity. It is the most general diffeomorphism invariant action yielding second order
differential equations for the metric and a scalar dilaton field. We introduce a Hamilto-
nian formulation of the generic case in the tetrad variables, and then focus on two spe-
cific cases of this general action, the two dimensional CGHS dilatonic model and the
spherically symmetric reduced 3+1 dimensional model, both coupled to matter. Many
of these two dimensional models, are simpler to analysis compared to the full four di-
mensional systems but they include many of the interesting characteristics of the full
model, like black hole solutions and Hawking radiation and related issues. This makes
these two dimensional models worth studying and there is hope that their analysis will
give us clues and insights on how the full theory behaves and should be handled.

For the 3+1 case, we complete the Hamiltonian formulation and introduce canon-
ical transformations that takes us from our formalism to the common Hamiltonian
derived by others. In the next step, we try to find a vacuum state for this model by
using the variational techniques and by utilizing master constraint program and uni-
form discretization method. In this process, we quantize the gravitational degrees of
freedom using loop quantum gravity techniques but quantize the matter degrees of
freedom using Fock space quantization. This is to allow us to compare our result with
the ordinary quantum field theory. As a result of this analysis we find a ground state in
the form of a direct product of a Fock vacuum for the scalar field and Gaussian states
centered around flat space-time for the gravitational variables.

In the next step, we try to not only quantize the gravitational variables by loop
quantum gravity methods, but also the matter degrees of freedom. Then we show that
the correction terms that represent the difference between two types of quantization
of matter field are small enough for our result to be accurate for our purpose. Then we
proceed to find the propagator of the scalar matter field on the vacuum state that we
derived in previous part. This gives us a modified dispersion relation that signals a kind
of Lorentz invariance violation. We discuss this issue and show that this stems from
both discretization and holonomization, where the part coming from holonomization
can be made as small as needed.

In the last chapter, we apply our Hamiltonian formulation to the two dimensional
CGHS model. This model has been studied in a conformally transformed context but
we try to analyze it directly without such a transformation. One reason is that the pure
gravitational part of the conformally transformed CGHS is trivial and also it is better to
work with the variables that have direct geometric meaning so that we do not need to
transform everything back from the non-physical geometry to the physical one at the
end. This will allow to quantize the gravitational magnitudes in the loop formalism and
study if this quantization would allow to have a singularity free theory. Thus with this
method, we derive Ashtekar variables for the CGHS from our generic formalism and
make a complete classical analysis of the system, including boundary conditions and
asymptotic behavior of the variables. This opens the door for future works in quantiz-
ing this rich model.
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Resumen

En este trabajo se estudia una clase genérica de sistemas de dos dimensiones en gra-
vedad cuántica de lazos. Es la acción más general invariante bajo difeomorfismo que
resultan en ecuaciones diferenciales de segundo orden para la métrica y un campo es-
calar dilatón. Se introduce una formulación Hamiltoniana en el caso genérico de las
variables de tétrada. A continuación, consideramos dos casos específicos de esta ac-
ción general, el modelo de dos dimensiones CGHS dilatonico y el modelo reducido
3+1 dimensional con simetría esférica, ambos acoplados a la materia. Muchos de es-
tos modelos, son más simples de analizar en comparación con los sistemas de cuatro
dimensiones completos, ellos incluyen muchas de las características interesantes del
modelo completo, como las soluciones con agujeros negros y la radiación de Hawking
y otros temas relacionados. Esto hace que estos dos modelos bidimensionales sean im-
portantes de estudiar ya que hay esperanza de que su análisis nos dará pistas y puntos
de vista sobre cómo se comporta la teoría completa y como debe ser manejada.

Para el caso de 3+1, completamos la formulación Hamiltoniana e introducimos
transformaciones canónicas que conducen de nuestro nos lleva desde nuestro forma-
lismo al Hamiltoniano conocido derivado por otros colegas. Luego tratamos de encon-
trar un estado vacío para este modelo mediante el uso de las técnicas variacionales y
utilizando el programa “master constraint” y método de “uniform discretization”. En
este proceso, cuantizamos los grados de libertad gravitatorios utilizando las técnicas
de la gravedad cuántica de lazos, pero cuantizamos los grados de libertad de la mate-
ria usando el motodo de cuantizacion de Fock. Esto es para que podamos comparar
nuestros resultados con la teoría cuántica de campo ordinaria. Como resultado de este
análisis nos encontramos con un estado base en la forma de un producto directo entre
un vacío de Fock para el campo escalar y estados Gaussianos centrados alrededor de
espacio-tiempo plano para las variables gravitatorias.

En el siguiente paso, se intenta no sólo la cuantizacion de las variables gravitatorias
con los métodos de gravedad cuántica de lazos, sino también los grados libertad de la
materia . Se muestra que los términos de corrección, que representan la diferencia en-
tre dos tipos de cuantización del campo de la materia son lo suficientemente peque-
ños para que los resultados sean precisos para nuestro propósito. Despues se procede
a encontrar el propagador del campo escalar de la materia en el estado de vacío que se
deriva en parte anterior. Esto nos da una relación de dispersión modificada que señala
un tipo de violación de la invariancia de Lorentz. Trataremos este tema y demostramos
que esto se deriva debido la discretización y holonomización. Se muestra que la parte
procedente de la holonomización puede ser tan pequeña como sea necesario.

En el último capítulo, aplicamos nuestra formulación Hamiltoniana al modelo de
dos dimensiones CGHS. Este modelo ha sido estudiado en un contexto con trans-
formación conforme, pero tratamos de analizarlo directamente sin necesidad de es-
ta transformación. Una de las razones es que la parte pura gravitatoria de CGHS con
transformación conforme es trivial y es mejor trabajar con las variables que tienen un
significado geométrico directo. De este forma no necesitamos transformar todo de la
geometría no-física a la geometría física al final del proceso. Esto permitirá cuantizar
las magnitudes gravitacionales en el formalismo de lazos y estudiar si esta cuantiza-
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ción permite tener una teoría libre de las singularidades. Así, con este método, se de-
riva las variables de Ashtekar para el CGHS con nuestro formalismo genérico y se hace
un análisis clásico completo del sistema, incluyendo las condiciones de frontera y el
comportamiento asintótico de las variables. Esto abre la puerta para futuros trabajos
en cuantizacion de este interesante modelo.
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1
Introduction

1.1 The unfinished revolution

In the beginning and mid years of the 20th century, two great discoveries happened in
theoretical physics. The formulation of general theory of relativity and the quantum
theory. Although being extremely successful in explaining various phenomena in the
universe, many physicist agree that these two are part of an unfinished revolution. We
will see the reason in a moment.

General relativity (GR) has fundamentally changed our understanding of space-
time. It has wiped out the notion of a unique time and a fixed background space that
affects everything but is not affected (an unphysical and unreal notion). This can be
viewed in two ways [1]: either there is no gravitational field or “force”, just dynamic
“spacetime” that affects and gets affected by all objects, and its dynamic geometry ap-
pears as a gravitational field, or there is no notion of spacetime at all but there is just
gravitational field that couples to everything the same way (interacts with everything
independent of their masses) and because of this property it appears to us as a dy-
namic spacetime. In the latter picture of reality, we don’t have fields on spacetime but
fields on fields [1]. Because of tight interconnection of the notion of spacetime and
gravitational field, this field is (in the latter case) responsible for and contains all the
information about the causal structure of the universe.

On the other hand, quantum theory (QT) has vastly and deeply changed our knowl-
edge about the world of very small objects and has introduced a fundamental uncer-
tainty of nature in physics that can not be avoided. It has shown us how quantum
systems interact and has been successful in explaining the phenomena that happen in
microcosmos.

Despite their astonishing success, these theories have one big problem: It seems
that they are incompatible. This is very important because as long as we use each of
these theories in their own domain of dominance, we will have no problem because
we can practically neglect the effect of the other theory. But when it comes to domains
in which both theories are equally important (such as big bang, singularities, etc.) so
that one can not neglect effects of neither of them, the problem shows itself.

Basically this problem can be seen as following: for the phenomena for which the
effects of both theories are important, one should use a combination of both theories

1



Ch.1. Introduction 1.3

which we call Quantum Gravity (QGR). But as we said these seem to be incompatible
and thus we can not explain those phenomena because we do not have the theory. The
incompatibility can be seen as follows: As we mentioned, the gravitational field is re-
sponsible for the causal structure of the universe. On the other hand, QT introduces
a fundamental uncertainty in the phenomena. Therefore by bringing both theories
together, we are essentially introducing a fundamental uncertainty in the causal struc-
ture of events! This does not really seem to be easy to comprehend or implement, be-
cause causality is the very notion that physics (or any other branch of science for that
matter) is built upon. But physicists have learned that not everything in the physical
world goes by their intuitive expectations and thus we should keep looking and think-
ing. By this attitude, we actually have gone far and there have been a lot of attempt to
quantize gravity and some of them seem to be partly successful, but we are yet far from
a full theory.

Another motivation for this fundamental search is the hope that by combining
these two theories, the famous problems each of those theories (GR and QT) face on
its own, namely singularities in GR and infinities in perturbative expansions in QT, dis-
appear.

1.2 The two main approaches to quantum gravity and their
differences

As mentioned in the last section, there has been several attempts to attack the prob-
lem of combining GR with QT. Two of them are probably more famous: string theory
and loop quantum gravity (LQG). String theory, which has more of its basis on pertur-
bative QT is dealing first and foremost with unification of fields and is not primarily
concerned about the nature of spacetime. It assumes that QT is a fundamental theory
of nature while GR is only an approximation that arises through the quantum inter-
action of the fundamental objects of the theory which are one dimensional entities
called strings. It comes with several new additions to physics such as strings them-
selves, higher dimensions, branes, supersymmetry etc. The theory is able to calculate
the probability amplitude of different phenomena among particles etc. but is not a
background-independent theory.

On the other hand, LQG being a background-independent non-perturbative the-
ory, primarily based on GR, is firstly concerned about the nature of spacetime itself. It
assumes that, at least for the time being, GR and QT themselves without any new ad-
ditional structure should be taken seriously on the same footing and the theory should
be based on them. At least until there is some theoretical or experimental evidence
found, telling us to add some additional structures to the theory. This claim is based
on the lessons that we have learned from development of many parts of classical and
modern physics previously [1, 2].

2



Ch.1. Introduction 1.3

1.3 The motivations and structure of this work

1.3.1 General motivation

The loop quantization of the full four dimensional gravity is currently not complete
and it seems that this is mostly due to mathematical technical issues. For that reason,
we can use at least two workarounds for this problem. The first workaround is to try to
look at some toy models that are mathematically more easier to handle but at the same
time, since they acquire many interesting aspects of the full theory, will give us valuable
clues about the full theory and how to treat it. The second workaround is to use four
dimensional models that posses enough symmetries which makes their analysis easier,
like the famous spherical symmetric model.

1.3.2 The problems we address

In this work we will first study the most general two dimensional model of a gravita-
tional system minimally coupled to a scalar matter field. One of the reasons to do this
is that many of the important models of quantum gravity are included in this general
formalism. Among these models are string-theory inspired dilatonic systems coupled
to matter field such as the two dimensional CGHS model [3], and the four dimensional
spherically symmetric model coupled to matter which looks like a two dimensional
model upon reduction by spherical symmetry.

The CGHS model is interesting because not only, being two dimensional, it is clas-
sically completely solvable and easier to handle in quantization, but also it includes
black hole solutions and Hawking radiation. Thus one can study the quantum gravi-
tational effects in black holes using this model in an easier way. For example it is sug-
gested by Hawking that in the process of its evolution, a black hole loses its mass and
energy through an evaporation process in which it emits a black body radiation called
the Hawking radiation. It is not possible yet to strictly calculate this evaporation pro-
cess in the full theory of quantum gravity because we do not have that theory yet. The
next best thing is to use a semiclassical approximation where the matter field is quan-
tized but the gravitational field (or the spacetime geometry) is treated classically. In
four dimensions, using the semiclassical approximation, one is only able to calculate
the Hawking radiation for a fixed background metric. Little success has been made so
far to include the effect of the back-reaction of black hole emission on the geometry.
One way to get an idea of what back-reaction might look like, is the use of two dimen-
sional models since they are easier to analyze and have the important property that are
conformally flat. Thus by analyzing those two dimensional models like the CGHS, one
can hope for a better understanding of some interesting questions such as the back-
reaction, the unitarity of the quantum evolution, the asymptotic fate of the spacetime
and the information paradox . Our analysis of the CGHS model is meant to open a door
for further more detailed analyses of these subjects.

The 3+1 model is also very interesting. First of all it was the first system for which
the classical solutions to Einstein equations were found. It also shares the same inter-
esting properties mentioned about the CGHS such as having black hole solutions and
Hawking radiation. Especially we are going to study the state of the vacuum of the the-
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Ch.1. Introduction 1.3

ory and the propagator of the matter field. This is important because we can compare
our results with the ordinary quantum field theory results and look into their differ-
ences such as Lorentz invariance etc. Also the method of finding the vacuum state can
be applied to black hole solutions in future to study the Hawking radiation and the
related issues in this model.

1.3.3 The structure of this thesis

We start in chapter 2 by giving a brief overview of LQG and necessary background ma-
terial that we use in the following chapters. The Dirac procedure will be explained in
more detail since it is the basis of our classical analysis.

In chapter 3, we present a partially new work, which is the Hamiltonian formula-
tion of the most general two dimensional model of a gravitational system minimally
coupled to a scalar matter field in tetrad formulation. This generic model includes the
3+1 spherically symmetric and the two dimensional CGHS models, both of which we
will analyze in chapters that come afterward. This chapter is based on [4] and an un-
published work.

Chapter 4 is dedicated to the study of the 3+1 spherically symmetric model coupled
to matter field. It is an example of the second workaround in section 1.3.1. It includes
mostly new work (from section 4.4 on). There we try to quantize the 3+1 model using
LQG techniques. We holonomize the gravitational degrees of freedom while using Fock
representation for the matter field. This is to make contact with the ordinary quantum
field theory. Using variational technique, We find a lowest eigenstate of the master
constraint that has the form of a direct product of a Fock vacuum for the scalar field and
Gaussian states centered around flat space-time for the gravitational variables, which
we will use in the later chapters. This chapter is mostly based on [5].

In chapter 5, which is a completely new work, we derive the propagator of the scalar
field by holonomizing both gravitational and matter degrees of freedom and using the
state we found in chapter 4. We will find out that the propagator in this case implies the
violation of Lorentz invariance by introducing an alternative non-Lorentz-invariant
dispersion relation. The work in this chapter is based on [6] and [7].

Finally, chapter 6, which also includes a completely new work, is on the Hamilto-
nian treatment of the two dimensional CGHS model without conformal transforma-
tion. It is based on [4] and an unpublished work. Here we are actually using the first
workaround we mentioned in section 1.3.1 above. We analyze the system completely
in classical regime. This analysis opens the door for future work on quantization of the
model with matter field included to understand about the semiclassical effects in the
CGHS black hole such as Hawking radiation and related issues.

4



2
An overview of loop quantum gravity

2.1 Constrained systems and their treatment

In this section we are going to review the Dirac treatment of Hamiltonian systems.
Since this is the backbone of our classical analysis, we will give a rather thorough re-
view of this subject.

2.1.1 Lagrangian singular systems

Consider a classical system which is described in terms of N canonical variables qn(t )
where n = 1, . . . , N and t is the evolution parameter which is generally taken to be time.
From the action principle we know that the classical motions of the system are those
that make the action

S =
ˆ t2

t1

L(q, q̇)d t . (2.1)

stationary, i.e. the ones for which δS = 0. This condition leads to the Euler-Lagrange
equations of motion

d

d t

(
∂L

∂q̇n

)
− ∂L

∂qn
= 0. (2.2)

This equation (2.2) can be written as

q̈n ∂2L

∂q̇n∂q̇m
= ∂L

∂qm
− q̇n ∂2L

∂qn∂q̇m
. (2.3)

From this it is clear that in order to be able to find the accelerations q̈n in terms of
positions qn and velocities q̇n , the matrix

∂2L

∂q̇n∂q̇m
. (2.4)

needs to be invertible. This means that we should have

det

(
∂2L

∂q̇n∂q̇m

)
6= 0. (2.5)

5
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Thus if the matrix (2.4) is not invertible, the accelerations will not be uniquely deter-
mined by the positions and velocities and the solution of the equations of motion could
then contain arbitrary functions of time. Such a system is called a singular system.

2.1.2 The Hamiltonian analysis of a constrained system

2.1.2.1 Hamiltonian and primary constraints

Let’s turn to the Hamiltonian. The Hamiltonian is derived from the Lagrangian in two
steps. First we introduce the canonical momenta pn conjugate to the canonical vari-
ables qn

pn = ∂L

∂q̇n
. (2.6)

Then we make a Legendre transformation to get the Hamiltonian

H(q, p) = q̇n pn −L. (2.7)

The important fact about the Hamiltonian is that it is really a function of q ’s and p’s,
and q̇ ’s only enter through the combination p(q, q̇). In order to see this explicitly, we
derive the infinitesimal change δH in the Hamiltonian as follows

δH = q̇nδpn + (
δq̇n)

pn − ∂L

∂qn
δqn − ∂L

∂q̇n
δq̇n . (2.8)

But using equations of motion (2.2) and the definition of momenta (2.6), this can be
rewritten as

δH = q̇nδpn − ṗnδqn . (2.9)

This means that H is a function of just q ’s and p’s.
As a part of the second step, one needs to write (2.7) explicitly in terms of q ’s and p’s.

It is obvious that in order to do this, we need to invert the velocities q̇n in terms of the
momenta pn and the canonical variables qn . This should be done using the definition
of momenta (2.6). Looking at (2.6), we see that the condition to be able to invert it to
get q̇n

(
pn , qn

)
is precisely the same as the condition(2.5), i.e. the matrix (2.4) must be

invertible.
If we can not invert all the velocities in terms of q’s and p’s, then the momenta(2.6)

are not all independent and there are some relations of the form

φm(q, p) = 0, m = 1, . . . , M (2.10)

between q’s and p’s. The conditions (2.10) are called primary constraints. The name
stems from the fact that these constraints are solely the result of introducing the mo-
menta and that the equations of motion are not used to obtain them. A system that has
constraints, is called a constrained or a gauge system.

6
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2.1.2.2 Equations of motion

Now a question arises: in case there are primary constraints, how can we obtain the
equations of motion? Comparing

δH(q, p) = ∂H

∂q
δq + ∂H

∂p
δp, (2.11)

with equation (2.9), one can infer(
∂H

∂qn
+ ṗn

)
δqn +

(
∂H

∂pn
− q̇n

)
δpn = 0. (2.12)

But based on a theorem (see [8] for example), this means we can write

q̇n = ∂H

∂pn
+um ∂φm

∂pn
, (2.13)

ṗn =− ∂H

∂qn
−um ∂φm

∂qn
, (2.14)

for some um . Note the importance of the first equation. It now enables us to find veloc-
ities q̇n in terms of momenta pn and the extra parameters um . We can also derive the
equations of motion of a function F (q, p) of canonical pairs using the above equations
as

Ḟ (q, p) = dF (q, p)

d t

= ∂F

∂qn
q̇n + ∂F

∂pn
ṗn

= ∂F

∂qn

(
∂H

∂pn
+um ∂φm

∂pn

)
− ∂F

∂pn

(
∂H

∂qn
+um ∂φm

∂qn

)
= {F, H }+um{F,φm}, (2.15)

where {, } stands for the Poisson bracket and is defined by

{F,G} = ∂F

∂qn

∂G

∂pn
− ∂G

∂qn

∂F

∂pn
. (2.16)

2.1.2.3 Secondary constraints

Constraints of a system are relations between canonical variables and canonical mo-
menta which hold at all times. This means that the constraints should not change over
time or

φ̇m = 0. (2.17)

These are what we call the consistency conditions. These consistency conditions give
rise to new constraints or to some restrictions on the coefficients um . To see this, we
evaluate these conditions by evaluating the time evolution of the primary constraints
using the formula for equations of motion introduced in (2.15):

{φm , H }+um′
{φm ,φm′} = 0. (2.18)

7
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For a given m, this equation either gives us a restrictions on the Lagrange multipliers
um′

, or it yields a relation between canonical variables and momenta independent of
um′

’s. In the latter case, those relations which are of the form ρ`(q, p) = 0 are new con-
straints called the secondary constraints. The reason for the calling them “secondary”
is that equations of motion (2.18) were used to derive them.

This process of evaluating the consistency conditions should be done for all of the
primary constraints, and at the end this will leave of with a set of restrictions on um ’s
and/or a set of new secondary constraints. After that, since the secondary constraints
ρ`(q, p) = 0 should also obey the consistency conditions, ρ̇` = 0, we need to follow the
same procedure for them as well, which is to evaluate

{ρ`, H }+um{ρ`,φm} = 0. (2.19)

This again will leave us either with new restrictions on um ’s and/or with new con-
straints which are also called secondary constraints for which we should repeat the
consistency conditions. After we go through the consistency conditions for all primary
and secondary constraints and there is no more constraint left for which the consis-
tency condition has not been evaluated, we are left with some restrictions on um ’s and
a total number of M primary constraints φm and K secondary constraints ρk which
together form J = M +K constraints φ j :

φ j (q, p) = 0, j = 1, . . . , M +K . (2.20)

2.1.2.4 Weak and strong equalities

We introduce the weak equality symbol “≈” such that by writing F ≈ G , we mean the
quantity F is restricted to be equal to quantity G “on the constraint surface1”, but this
equality does not hold identically throughout all of the phase space. Equivalently we
could say that F and G are equal if constraints are implemented, or they are equal “on
shell”, or they are weakly equal. On the other hand, the ordinary equality “=” means
an exact equality or strong equality, i.e. the one that holds throughout all of the phase
space.

Specifically if G = 0 (identically) in what we said above, then we have F ≈ 0 or F is
weakly vanishing. This is the case for the constraints and in fact equation (2.20) should
be written in this notation as

φ j (q, p) ≈ 0, j = 1, . . . , M +K . (2.21)

Note that if F ≈ 0, then it can have nonzero Poisson brackets with canonical variables.
If two phase space quantities F and G are weakly equal, F ≈ G , then they can be

written in terms of constraints and vice versa [8]:

F ≈G ⇔F −G = c j (q, p)φ j (q, p). (2.22)

1A constraint surface is a surface in phase space on which the constraints vanish, i.e. a surface on
which Ci = 0 identically, where Ci ’s are the constraints.
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2.1.2.5 The total Hamiltonian

Following what we said above, the restrictions on Lagrange multipliers um are some of
the equations that we derive from the consistency conditions for all the primary and
secondary constraints

φ̇ j ≈ 0 ⇒ {φ j , H }+um{φ j ,φm} ≈ 0, (2.23)

that involve those multipliers (or, that are not constraints). The above set of equations
is a set of J nonhomogeneous linear equations (J being the total number of primary
and secondary constraints) in the M < J unknowns Lagrange multipliers um , with co-
efficients that are functions of the q ’s and the p’s. The general solution to this set of
equations is

um ≈U m + v aVa
m . (2.24)

Here U m is a particular solution of the inhomogeneous equation (2.23) and V m =
v aVa

m is the most general solution of the associated homogeneous system

V m{φ j ,φm} ≈ 0, (2.25)

where v a ’s are totally arbitrary coefficients, a = 1, . . . , A, and A is the number of inde-
pendent solutions of the above homogeneous equation.

Now if we substitute (2.24) for um in (2.15), we get the equations of motion

Ḟ ≈ {F, HT}, (2.26)

where the function

HT = H ′+ v aφa = H +U mφm + v aVa
mφm , (2.27)

is called the total Hamiltonian of the system and

H ′ =U mφm , (2.28)

φa =Va
mφm . (2.29)

Thus HT provides the evolution of the system.

2.1.2.6 First class and second class functions

In previous subsections, we introduced one type of classification of constraints by di-
viding them into primary and secondary ones. This classification is not of much impor-
tance, however there is another classification which is important, namely the property
of being first class or second class. It is a classification of the functions on phase space
in general, but it is especially important when applied to constraints.

A first class function on phase space, F (q, p), is called first class if its Poisson bracket
with every constraint vanishes weakly

{F,φ j } ≈ 0, j = 1, . . . , J . (2.30)

9
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A function of phase space that is not first class is said to be a second class function.
If those functions are constraints, then we call them first class and second class con-
straints. By using (2.22), the above equation is equivalent to

{F,φ j } = c j
`φ`. (2.31)

Using this classification, we see that the HT,H ′ and φa defined in (2.27), (2.28) and
(2.29) respectively, are all first class. This can be seen from (2.23), (2.24) and (2.25). To
show this explicitly for HT, we note that from (2.27) and (2.24) we can write

HT ≈ H +umφm . (2.32)

Thus from this and (2.23) it can be seen that{
HT,φ j

}≈ {
H +umφm ,φ j

}
≈ {

H ,φ j
}+um {

φm ,φ j
}+{

um ,φ j
}
φm︸︷︷︸
≈0

≈ 0, (2.33)

where in the second line we used the fact that primary constraints vanish weakly, and
the remaining terms in the second line are precisely (the negative of) (2.23). To see that
φa is first class, we have

v a{φa ,φ j } = v a {
Va

mφm ,φ j
}

= v aVa
m {

φm ,φ j
}+{

Va
m ,φ j

}
φm︸︷︷︸
≈0

≈V m {
φm ,φ j

}
≈ 0, (2.34)

where in the third line we used (2.25) and the fact that v a are completely arbitrary and
thus the equation holds independent of v a .

Finally to show that H ′ is first class, we can write

{H ′,φ j } = {
HT − v aφa ,φ j

}
= {

HT,φ j
}︸ ︷︷ ︸

≈0

−v a {
φa ,φ j

}︸ ︷︷ ︸
≈0

≈ 0, (2.35)

where we have used (2.33) and (2.34). Thus the evolution is generated by a first class
total Hamiltonian which is the sum of a first class Hamiltonian H ′ and the linear com-
bination of the first class primary constraints.

2.1.3 First class constraints, gauge systems and gauge transforma-
tions

2.1.3.1 The arbitrariness in the evolution and gauge transformations

As can be seen from the equations of motion (2.26), which by using (2.27) can be writ-
ten as

Ḟ ≈ {
F, H ′}+ v a {

F,φa
}

, (2.36)
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Figure 2.1: The evolution of a phase space function F (q, p) under two different arbitrary variables v a

and v̄ a from the same initial state.

the solutions to the equation of motion contain a set of totally arbitrary parameters v a .
As a consequence, with the same initial conditions, i.e. a set of q’s and p’s at say t0, one
can get different solutions in a future time t . This means that although a set of q ’s and
p ’s at some time t1 define a state of the system uniquely, a state of the system does
not uniquely single out a set of q ’s and p ’s. As can be seen from figure (2.1), the reason
is that given a set of (qn(t1), pn(t1)) at a given time t1, we can evolve those variables
by the equations of motion (2.36) to get (qn(t2), pn(t2)) at a time t2. But these values
at t2 not only depend on the H ′ and φa , but also on the totally arbitrary variables v a .
Therefore the same evolution but by two or more different variables v a ’s, takes us to
a same new unique state and thus this state is defined by different sets of (q(t2), p(t2))
(which depend of v a ’s). In other words although the future state is also unique, but
there are more than one set of q’s and p’s that correspond to it.

This can be seen more explicitly as follows. Suppose we have a variable F (q, p) and
we evolve it from an initial condition by v a as

Ḟ ≈ {
F, H ′}+ v a {

F,φa
}

, (2.37)

which by Taylor expansion to first order in δt can be written as

F (t +δt )
∣∣∣

v a
−F (t ) = {

F (t ), H ′}δt + v aδt
{
F (t ),φa

}
. (2.38)

Now suppose that we evolve F again from the same initial condition, but this time with
v̄ a and similar to above we would get

F (t +δt )
∣∣∣

v̄ a
−F (t ) = {

F (t ), H ′}δt + v̄ aδt
{
F (t ),φa

}
. (2.39)

11
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Now the difference between the two future values of F is

δF = F (t +δt )
∣∣∣

v̄ a
−F (t +δt )

∣∣∣
v a

= (
v̄ a − v a)

δt
{
F (t ),φa

}= δv a {
F (t ),φa

}
. (2.40)

This shows that with the same evolution and the same initial condition, future values
of F can be different by choosing different v a ’s. The transformation (2.40) and similar
ones that are generated by first class constraints are called gauge transformations.

One can see that the gauge transformation (2.40) is actually generated by linear
combination of constraints φa which from (2.29) is clear that are primary first class
constraints. But the most general physically permissible motion should allow for trans-
formations generated by all first class constraints, being primary or secondary. In fact
there is a conjecture called the Dirac conjecture which states: in general, all first class
constraints generate gauge transformations. Thus to have the most general motion,
one that includes all possible gauge transformations, one should add to HT, the linear
combination of all secondary first class constraints too. The result is which is a first
class function generating the most general evolution is called the extended Hamilto-
nian

HE = H ′+uaγa , (2.41)

where γa are all the primary and secondary first class constraints and ua are arbitrary
Lagrange multipliers. A system possessing first class constraints is called a gauge sys-
tem.

We expect that the physical degrees of freedom, i.e. the observables, be indepen-
dent of ua . This means that for physical observables, δF should vanish, or in other
word, observables, as well as the state of the system should be invariant under gauge
transformations.

There is an important note we should mention. What we have discussed until now
might implicitly suggest that the evolution variable t which we call time, is an observ-
able. However in reality, especially for example in general relativity, there is no such
notion of a universal observable time. In fact in those types of theories which are called
generally covariant theories, the parameter t is just a non-observable parameter which
we choose to write the evolution in terms of it. It could be one of our coordinates, in
which case it is called the coordinate time. It is a variable with which we parametrize
the evolution. It can be transformed to another variable t ′ = f (t ) such that the theory
remains invariant. Thus some part of the gauge arbitrariness of the theory is due to the
freedom of the choice of the parametrization variable t . We will discuss a bit about this
in section 2.1.5.2.

2.1.4 Second class constraints and the Dirac bracket

2.1.4.1 The Dirac bracket

In many cases, including for example the CGHS case we are going to study, we are
dealing with a theory which constrains second class constraints, which we call χα, as
well as the first class ones. Then how should we treat such a system?

It turns out [8] that we can set the second class constraints strongly equal to zero,
χα = 0, provided that instead of using the ordinary Poisson bracket, we use a modified

12
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version called the Dirac bracket

{F,G}D = {F,G}− {F,χα}Cαβ{χβ,G}, (2.42)

where Cαβ are the elements of the matrix C−1 which is the inverse of the matrix C with
elements Cαβ defined by

Cαβ = {χα,χβ}. (2.43)

Thus C is the the matrix of the Poisson brackets of the secondary constraints among
themselves and we have

CC−1 = 1 ⇒CαβCβρ = δαρ. (2.44)

One of the properties of the Dirac bracket [8] is that for an arbitrary F and a first class
G we have

{F,G}D ≈ {F,G}. (2.45)

Thus we can infer that even after switching to the Dirac bracket, the first class extended
Hamiltonian (2.41) still generates the correct equations of motion since

Ḟ ≈ {F, HE } ≈ {F, HE }D . (2.46)

The effect of the gauge transformations will remain unchanged under Dirac bracket
since

{F,γa} ≈ {F,γa}D . (2.47)

Thus after using the Poisson bracket to find the secondary constraints, restrictions on
Lagrange multipliers, and classifying the constraints into first class and second class, if
there is any second class constraints, then the Poisson bracket has served its purpose
and should be replaced by Dirac bracket in all of the analyses that come afterward.
At the same time that we switch to the Dirac bracket, we put all of the second class
constraints strongly equal to zero and use these strong equalities to substitute some
canonical variables and momenta in terms of some other ones. For example if a theory
has a second class constraint p1+p2 ≈ 0, we substitute P2 for p1 in the theory by using
the strong equality p1 +p2 = 0 ⇒ p2 =−p1.

2.1.4.2 Gauge fixing

As we saw, the presence of first class constraints induces arbitrary degrees of freedom
in the theory such that the more than one set of canonical variables correspond to a
given state. Sometime we need to eliminate this arbitrariness and make a one-to-one
correspondence between the canonical variables and states. This is done by gauge fix-
ing which is introduction of gauge conditions, Ca(q, p) = 0, which are ad-hoc relations
between some of the canonical variables brought in from outside to eliminate those
arbitrary freedoms in the theory. After complete gauge fixing there should not be any
first class constraint left. We can also partially gauge-fix the theory to allow for simpler
calculations although this removes some of the arbitrariness of the theory not all of it.
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2.1.5 Classical observables, generally covariant systems

2.1.5.1 Classical observables

From the discussion we have, it is somehow clear that we can define a classical observ-
able as a function F on the constraint surface that is gauge invariant, i.e. has a weakly
vanishing Dirac bracket with first class constraints

{F,γa}D ≈ 0. (2.48)

It should be mentioned that some classical observable functions might not be quan-
tum observables after quantization.

2.1.5.2 Generally covariant systems

As we mentioned above, there are some theories in which time is just a variable in
terms of which the evolution of the theory is parametrized, and its reparametrization
as t ′ = f (t ) will leave the theory invariant. This happens for example in general relativ-
ity where the coordinate time is not an observable variable. Thus in these theories, the
time should be treated on an equal footing as other canonical variables. The theories
that are invariant under reparametrization of time (the evolution parameter) are called
generally covariant theories.

As an example consider the action of a relativistic point particle in Minkowski space

S =−m

ˆ
d t

(
−ηµνd xµ

d t

d xν

d t

) 1
2

. (2.49)

This action is invariant under reparametrization t → t ′(t ):

S′ =−m

ˆ
d t ′

(
−ηµνd xµ

d t ′
d xν

d t ′

) 1
2

=−m

ˆ
d t ′

dτ
dτ

(
−

(
d t

d t ′

)2

ηµν
d xµ

d t

d xν

d t

) 1
2

=−m

ˆ
d t

(
−ηµνd xµ

d t

d xν

d t

) 1
2

= S. (2.50)

In many cases in the generally covariant system, including general relativity, it happens
that the H ′ in the extended Hamiltonian (2.41) is zero. Thus the evolution of the system
is only unfolding of gauge transformation since the generator of the evolution,

HT = uaγa , (2.51)

is just a first class constraint. Such a Hamiltonian for which H ′ = 0 and is just sum of
the first class constraints is called a zero Hamiltonian. The action above can also in-
clude second class constraints but since we use Dirac bracket and use strong vanishing
conditions for the secondary constraints, the evolution remains the same.
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2.2 ADM decomposition

The first step in non-perturbative canonical quantization of general relativity is to de-
velop a Hamiltonian formulation. This has first been done by Arnowitt, Deser and
Misner (ADM) [9]. The idea is that a hyperbolic 2 spacetime manifold M with metric
gab on it, is diffeomorphic to a manifold Σ×Rwith Σ spatial hypersurfaces on which a
function of spacetime say t (X µ) =constant, where X µ is the spacetime coordinate and
t ∈ R [10]. Thus one can foliate the spacetime manifold by spatial hypersurfaces Σt on
which a parameter which we call “the coordinate time t” is constant. On each of these
hypersurfaces we introduce a set of spatial coordinates xi (X ν). Next we introduce a
congruence of curves in spacetime parametrized by t with unit tangent vectors

t a =
(
∂

∂t

)a

. (2.52)

t a is called the time flow vector field. Now we tie these hypersurfaces together by those
integral curves of t a in a way that points of hypersurfaces intersected by the same curve
be given the same spatial coordinate xi . The above procedure introduces a valid four
dimensional coordinate in spacetime manifold which we call xµ(t , xi ) where as we said
before, xi are coordinates on the spatial hypersurfaces.

Next let na be the unit timelike vector field normal to the spatial hypersurfaces, i.e.

gabnanb =−1. (2.53)

This vector field should not be confused with the time flow vector t a which is also
timelike but generally is not normal to the hypersurfaces and obeys

gab t a t b = g00. (2.54)

Now the spacetime metric gab induces a spatial metric qab on each Σt as

qab = gab +nanb . (2.55)

This metric can be considered as a projection operator on Σt

qa
bnb = 0, (2.56)

qa
b qb

c = qa
c . (2.57)

Note that we lower and raise the indices with the spacetime metric gab . The situation
can be seen in figure (2.2). The time flow vector t a can be decomposed as

t a = N na +N a , (2.58)

where N is called the lapse function which measure the component of t a in the di-
rection of na , N a is the shift vector which is the projection of t a into Σt . The “old”
coordinates X µ on spacetime provide four basis vectors at each spacetime point

eµ
a =

(
∂

∂X µ

)a

. (2.59)

2A hyperbolic spacetime manifold is one that has a Cauchy surface. A Cauchy surface is a closed
achronal surface which its domain of dependence is the entire manifold; i.e. from information given on
a Cauchy surface, one can predict what happens throughout all of spacetime manifold.
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Figure 2.2: The decomposition of spacetime into spacelike hypersurfaces Σt . The time flow vector t a ,

lapse function N and shift vector N a are shown.

After the foliation which is given by the function X µ(t , xi ), the coordinates xi provide
three basis vectors on Σt

Ei
a =

(
∂

∂xi

)a

. (2.60)

These are the projections of eµa into Σt

Ea
I = qa

beb
I

=
(
ga

b +nanb
)

eb
I

= eb
I +nan I , (2.61)

where I can be seen as a generic index, for example an index in the Lorentz Lie algebra
su(2) (in which case, the basis vectors are tetrads). Since the shift vector lies in the
tangent space of Σt , it can be written in terms of E a

i basis as

N a = N i E a
i . (2.62)

Then the full metric will take the following form [11, 12]

gµνd xµd xν =
(
−N 2 +qi j N i N j

)
d t 2 +qi j d xi d x j −qi j N j d xi d t −qi j N i d td x j , (2.63)

and hence the components of the spacetime metric will be

g00 =−N 2 +qi j N i N j , (2.64)

gi j = qi j , (2.65)

gi 0 = g0i =−qi j N j . (2.66)

The metric components can be written as

gµν =
(−N 2 +qi j N i N j

[−qi j N j
]

1×3[−qi j N j
]

3×1

[
qi j

]
3×3

)
, (2.67)
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where the terms in [, ] are block matrices of dimensions that are written for them as
subscripts. Using the formula for the determinant of block matrices we have for the
determinant of this matrix

det
(
gµν

)=−N 2 det
(
qi j

)
, (2.68)

which means p−g = N
p

q , (2.69)

where we have used the notation det
(
gµν

)= g and det
(
qi j

)= q .

2.3 Geometrodynamics

The idea here is to write general relativity in the Hamiltonian form by utilizing the ADM
decomposition and using the spatial metric and its canonical conjugate momentum,
which is related to the extrinsic curvature ofΣt , as the degrees of freedom of the theory.

Consider the Einstein-Hilbert action

S =
ˆ

L d 4x, (2.70)

with L , the Lagrangian density
L =p−g R, (2.71)

where g is the determinant of the spacetime metric and R is its curvature. For sim-
plicity of the discussion, we only consider the pure gravitational case without matter
fields. Using the ADM decomposition which we saw in section 2.2, we can write the
Lagrangian density as

L =p
qN

[
3R +KabK ab −K 2

]
, (2.72)

where q is the determinant of the spatial metric, N is the lapse, 3R is the scalar curva-
ture of the spatial metric (or Σt ), Kab is the extrinsic curvature of Σt and K = gabK ab =
qabK ab is the trace of the extrinsic curvature. The extrinsic curvature can be expressed
as the lie derivative of the spatial metric qab along the integral curves of the normal
vector field na

Kab = 1

2
L~n qab . (2.73)

Hence Kab measures the rate of change of the spatial metric (or the change in the
amount of bending of the geometry of Σt ) as one moves along the congruences de-
fined by (or integral curves of) the vector field na .

The canonical variables or the variables whose time derivatives appear in the La-
grangian are qab for which

q̇ab =L~t qab , (2.74)

and its canonically conjugate momentum

pab = ∂L

∂q̇ab
=p

q
(
K ab −K q ab

)
, (2.75)
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and since the time derivative of N and N a does not appear, they are just Lagrange mul-
tiplier, not canonical variables. Making a Legendre transform, we arrive at the Hamil-
tonian density

H = NC +N aCa , (2.76)

where C and Ca are constraints called Hamiltonian constraint

C =−3R +q−1pab pab −
1

2
q−1p2, (2.77)

and diffeomorphism constraint

C b =−2Da

(
q− 1

2 pab
)

. (2.78)

Here p = qab pab and Da is the derivative operator on Σt which is compatible with
qab , i.e. Da qbc = 0. Notice that (2.77) is quadratic in momentum. Such constraints
seem unavoidable in a Hamiltonian formulation of general relativity and this makes
the formulation of a quantum theory rather difficult.

2.4 Introduction of self-dual connection: Ashtekar vari-
ables

In the Geometrodynamics approach to quantum gravity, the canonical variables are
the metric qab on the spatial hypersurface Σt with t =constant and the conjugate mo-
menta are related to the extrinsic curvature of this hypersurface. But in loop quanti-
zation, the canonical variables are the su(2)-valued Ashtekar-Barbero connection Aa

I

and the conjugate momenta are the su(2)-valued densitized triad vector fields E a
I ,

where su(2) is the algebra of SU (2) group. These densitized triads encodes all the in-
formation of the intrinsic geometry of the hypersurface Σt . The spatial 3d metric qab

is constructed from it as

qab = 1

q
Ea

I EbI , (2.79)

where q = det(qab) appears here because as we said Ea
I ’s are densities. Since these

variables are su(2)-valued, we can write them as

Aa = Aa
IτI , (2.80)

E a = E a
Iτ

I , (2.81)

where {τI }I=1,2,3 is a basis of the Lie algebra of the SU (2) group. As a convention, we
take this basis to be

τI = τI =− i

2
σI , I = 1,2,3, (2.82)

and σI are the Pauli matrices. The connection Aa
IτI is related to the extrinsic curva-

ture Ka
I and the triad-compatible spin connection Γa

I by

Aa
I = Γa

I +γKa
I , (2.83)
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where

Ka
I = det

(
Ea

I )− 1
2 KabE bI , (2.84)

and γ is called the Barbero-Immirzi parameter that classically does not play an impor-
tant rule since it can be changed by canonical transformation. On the quantum level,
however, this parameter becomes important since the transformation that can change
γ are not represented in unitary manner.

As it is expected from a generally covariant theory such as gravity, the dynamics of
the system is purely gauge transformation and thus the Hamiltonian becomes the sum
of three constraints

H =
ˆ

d 3x
(
NH +N aDa +λI GI

)
, (2.85)

which are the Hamiltonian constraint

H = 1

16πG

E a
I E b

J√
det

(
Ea

I
) [
εI J

K F K
ab −2

(
1+γ2)K[a

I Kb]
J] , (2.86)

the diffeomorphism constraint

Da = 1

8πGγ

[
2∂[a Ab]

I E b
I − Aa

J∂bE b
J

]
, (2.87)

and the Gauss constraint

GI = 1

8πGγ

[
∂aE a

I +εI J
K Aa

J E a
K
]

, (2.88)

which are seven constraints (three Gauss, three diffeomorphism and one Hamiltonian
constraints) per point of the hypersurface. Here G is the gravitational constant, the
lapse function N , shift vector N a and λI are Lagrange multipliers and we have used
the curvature of the Ashtekar connection

F K
ab = 2∂[a Ab]

K +εI J
K Aa

I Ab
J . (2.89)

The Hamiltonian constraint generates the coordinate time evolution, the three com-
ponents of the diffeomorphism constraint generate spatial diffeomorphisms and the
three components of the Gauss constraint are the generators of the SU (2) transforma-
tion. The symplectic structure is given by the Poisson brackets

{Aa
I (x),E b

J (y)} = 8πGγδb
aδ

J
Iδ(x − y), x, y ∈Σt . (2.90)

The commutator of the smeared version of the constraints above involve structure
functions instead of structure constants and thus form an open algebra instead of a Lie
algebra. This is known as the problem of dynamics.
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2.5 Quantization: connection and loop representations

2.5.1 Connection representation

In order to quantize the theory, one needs to introduce a vector space of states. In
the so called connection representation, these states which are the members of the
kinematical Hilbert space are holomorphic functionsΨ(A) of the connection Aa

I . The
elementary quantum operators in this representation are

Âa
IΨ(A) = Aa

IΨ(A), (2.91)

Ê I
aΨ(A) = i~

δ

δAa
I
Ψ(A). (2.92)

Now to find the physical Hilbert space, one should find the subset of these state func-
tions that are the kernel of constrains. This means that one should write the constraints
in connection representation and find the states such that

ĤΨ(A) = 0, (2.93)

D̂Ψ(A) = 0, (2.94)

ĜΨ(A) = 0. (2.95)

For technical reasons, this representation is not the best suitable representation to
quantize the theory and there is a better representation called the loop representation.

2.5.2 Loop representation

The idea behind this representation is to use functions of holonomy. Given a curve
γa(t ) on hypersurface Σ , we can define a holonomy or parallel transport as

Uγ(t1, t2) = P exp

ˆ γ(t2)

γ(t1)
d s Aa(γ(s))γ̇a(s), (2.96)

where P exp is the path ordered exponential and we have not written the su(2) indices.
Now a loop on Σ is obtained by identifying both ends of the curve γ(t ) and the related
holonomy is

Uγ(t ) ≡Uγ(t , t ) = P exp

˛
t

d s Aa(γ(s))γ̇a(s). (2.97)

This quantity transforms like a local covariant quantity under a gauge transformation.
Its trace

tr
[
Uγ(t )

]= tr

[
P exp

˛
t

d s Aa(γ(s))γ̇a(s)

]
, (2.98)

is a gauge invariant quantity. Remember that in the Dirac sense, gauge invariant quan-
tities were observables. Now the functionals of tr

[
Uγ(t )

]
can be used to construct the

phase space of general relativity. Then in order to quantize, we can introduce opera-
tors that are parametrized by the closed loops on Σ and the states would be functions
on the loop space.
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2.6 Master constraint program

The quantum dynamics is perhaps the hardest problem quantum gravity faces. Al-
though a mathematically well-defined Hamiltonian constraint operator has been pro-
posed for loop quantum gravity (e.g. [13]), there has been questions regarding the al-
gebra of Hamiltonian constraint with itself that should be answered in order to be able
to advance in LQG. The problem roughly is that although the algebra of commutators
among smeared Hamiltonian constraint operators is anomaly free in the mathemat-
ical sense, it does not manifestly reproduce the classical Poisson algebra among the
smeared Hamiltonian constraint functions.

It has been proposed that this and related problems would disappear if instead of
Hamiltonian constraint, we use the master constraint

M =
ˆ
Σ

d 3x
[H (x)]2

p
q

, (2.99)

which is a continuous sum of all of the Hamiltonian constraints at all of the points of
the hypersurface Σ. We will use this quantity to quantize the 3+1 case in the following
chapters.

2.7 Uniform discretization technique

The reason to introduce uniform discretization [14] is to address some of problems in
the dynamics of loop quantum gravity. It consists of discretizing the variables on a lat-
tice such that the discrete theory is unconstrained. Then one can proceed to quantize
the resulting discrete theory. In order to go back to the continuum limit two cases may
happen: One case is that it will be possible to take the continuum limit in the quan-
tum theory and this completes the quantization of the original continuum theory one
started with satisfactorily.

The other case, the continuum limit cannot be taken in the quantum theory. In this
case, because the classical discrete theory approximates the continuum theory well,
one expects that the quantum discrete theory also approximates well the quantum
continuum theory, even in cases where we cannot construct the latter exactly via this
method, at least for certain states. One would therefore end with a quantum theory
that approximates semiclassically the classical theory one started with, plus correc-
tions. We will use this method in quantization of the 3+1 model.
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3
Analysis of the generic 1+1 model: Lagrangian and

Hamiltonian

3.1 Introduction

In this chapter, we are going to develop a general Hamiltonian for the generic two di-
mensional models of gravity coupled to a scalar field. We will write this Hamiltonian
in tetrad formulation because this kind of formulation of the theory is an essential first
step towards further formulation of the theory in Ashtekar variables [15].

To do this, first we write the action of the four dimensional spherically symmet-
ric and the CGHS models in metric formulation in a specific form and show that they
are specific examples of the most general diffeomorphism invariant action in two di-
mensions. Then we will write this action in tetrad form and proceed with the ADM
decomposition and Dirac procedure to arrive at the related Hamiltonian.

3.2 The generic action

It is well known that in two dimensions, the Einstein-Hilbert action,
´

d 2x
√−|g |R

is actually a topological or boundary term and does not provide any field equations.
Therefore one can not use it to study the 1+1 dimensional gravity. On the other hand,
there is a generic class of two dimensional actions that are not just topological terms
and contain useful information about 1+1 gravity and its equations of motion. Among
these models are the CGHS model and the 3+1 spherically symmetric model. Below we
take a look at them in brief and then show that they belong to this generic class of two
dimensional actions.

3.2.1 The 3+1 spherically symmetric model

Consider a system containing gravitational field and matter in four dimensions. The
action will have the form

S = Sg +Sm , (3.1)
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where

Sg = 1

16π

ˆ
d 4x

√−|ḡ |R, (3.2)

is the Einstein-Hilbert action in four dimensions, ḡab the full metric in four dimensions
and Sm is the action of the matter field f which we take to be the minimal coupling
action

Sm =− 1

4π

ˆ
d 4x

√−|ḡ |ḡ ab∂a f ∂b f . (3.3)

The Latin indices are abstract indices. In order to reduce the action to a two dimen-
sional one and get rid of the angular coordinates, we use spherical symmetry. Spherical
symmetry means that we can assume that the spatial hypersurface have the topology
Σ=R+×S2 and thus we can use spherical symmetry ansatz to write the metric ḡab as

d s2 = gµνd xµd xν+Φ2(dθ2 + sin2(θ)dφ2), (µ,ν= 0,1)

where x0, x1, θ andφ are some coordinates adapted to the spherical symmetry and gµν
is the metric on the x0, x1 plane. Substituting (µ,ν= 0,1) into (3.2) and integrating over
angular coordinates θ and φ, yields the reduced two dimensional action

Sg-spher =
ˆ

d 2x
√−|g |

(
1

4
Φ2R(g )+ 1

2
g ab∂aΦ∂bΦ+ 1

2

)
, (3.4)

where R is the Ricci tensor of the two dimensional metric gab and |g | is its determinant.
Using the ansatz (µ,ν= 0,1) for the matter action (3.3) and integrating over angular
variables, gives

Sm-spher =−1

2

ˆ
d 2x

√−|g |Φ2g ab∂a f ∂b f . (3.5)

Thus the full reduced spherically symmetric action is then

Sspher =
ˆ

d 2x
√−|g |

(
1

4
Φ2R(g )+ 1

2
g ab∂aΦ∂bΦ+ 1

2

)
− 1

2

ˆ
d 2x

√−|g |Φ2g ab∂a f ∂b f . (3.6)

3.2.2 The CGHS model

The dilatonic or CGHS model [3] (which we will describe in more detail in chapter 6)
can be thought as a genuine two dimensional model with a dilatonic or gravitational
part,

Sg-CGHS =
ˆ

d 2x
√−|g |e−2φ

(
R +4g ab∂aφ∂bφ+4λ2

)
, (3.7)

where φ (not to be confused with the coordinate φ in 3+1 model) corresponds to the
dilaton field and λ2 is the cosmological constant. The matter action is again the stan-
dard minimal coupling but in two dimensions,

Sm-CGHS =−1

2

ˆ
d 2x

√−|g |g ab∂a f ∂b f . (3.8)
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In order to change the form of the CGHS action into a more similar one to the spheri-
cally symmetric action in 3.4, we redefine the field φ as

Φ= 2
p

2e−φ, (3.9)

4λ2 =−Λ, (3.10)

so that

e−2φ = Φ
2

8
, (3.11)

∂aφ=− 1

Φ
∂aΦ. (3.12)

Then the gravitational and matter parts of CGHS model, (3.7) and (3.8), will become

SCGHS =
ˆ

d 2x
√−|g |

{
1

8
Φ2R + 1

2
g ab∂aΦ∂bΦ− 1

8
Φ2Λ

}
− 1

2

ˆ
d 2x

√−|g |g ab∂a f ∂b f . (3.13)

It can be seen now that the CGHS and spherically symmetric actions, (3.13) and (3.6),
show much similarity.

3.2.3 General 1+1 action

3.2.3.1 General action

One can see that the gravitational part of both of the above actions are special cases of
a general action

Sg -dil =
ˆ

d 2x
√−|g |

(
D(Φ)R(g )+ 1

2
g ab∂aΦ∂bΦ+U (Φ)

)
. (3.14)

This is the most general diffeomorphism invariant action yielding second order dif-
ferential equations for the metric g and a scalar (dilaton) field Φ [16]. It is called the
generalized dilaton action and was first suggested in [17, 18].

For the next step we want to eliminate the kinetic term g ab∂aΦ∂bΦ. For this, we
apply a conformal transformation

g̃ab =Ω2(Φ)gab . (3.15)

Under this conformal transformation, the variables in the action (3.14) transform as

|g | = εabεcd ga
c gb

d =Ω−4(Φ)εabεcd g̃a
c g̃b

d =Ω−4(Φ)|g̃ |, (3.16)

R̃ = Ω−2(Φ)(R −2g ab∂a∂b lnΩ(Φ)), (3.17)

where the second equation implies

R =Ω2(Φ)R̃ +2Ω2(Φ)g̃ ab∂a∂bΩ(Φ). (3.18)
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Substituting these back into the action (3.14) yields the conformal transformed action

Sg -dil =
ˆ

d 2x
√−|g̃ |Ω−2(Φ)

(
D(Φ)Ω2(Φ)R̃(g )+ 1

2
Ω2(Φ)g̃ ab∂aΦ∂bΦ

+2D(Φ)Ω2(Φ)g̃ ab∂a∂b lnΩ(Φ)+U (Φ)

)
=
ˆ

d 2x
√−|g̃ |

(
D(Φ)R̃(g )+ 1

2
g̃ ab∂aΦ∂bΦ

+2D(Φ)g̃ ab∂a∂b lnΩ(Φ)+Ω−2(Φ)U (Φ)

)
. (3.19)

In order to eliminate the kinetic term we need

1

2
g̃ ab∂aΦ∂bΦ+2D(Φ)g̃ ab∂a∂b lnΩ(Φ) = 0, (3.20)

and thus

0 = 1

2
∂aΦ∂bΦ+2D(Φ)∂a∂b lnΩ(Φ)

= 1

2
∂aΦ∂bΦ+2∂a (D(Φ)∂b lnΩ(Φ))−2∂aD(Φ)∂b lnΩ(Φ)

= 1

2
∂aΦ∂bΦ+2∂a (D(Φ)∂b lnΩ(Φ))−2

∂D(Φ)

∂Φ
∂aΦ

∂ lnΩ(Φ)

∂Φ
∂bΦ. (3.21)

The second term in the last line above is a total derivative (that will appear in the ac-
tion) and may be put away. So we get

1

2
−2

dD(Φ)

dΦ

d lnΩ(Φ)

dΦ
= 0, (3.22)

as the condition for eliminating the kinetic term in (3.14). ComputingΩ(Φ) from (3.22),
yields

Ω(Φ) =C exp

(
1

4

ˆ
dΦ

1
dD(Φ)

dΦ

)
, (3.23)

where C is constant to be determined. So now by using the condition (3.20) or equiva-
lently (3.22), the generic dilaton action(3.19) becomes

Sg -dil =
ˆ

d 2x
√−|g̃ |(D(Φ)R̃(g )+Ω−2(Φ)U (Φ)

)
. (3.24)

Looking at this, we see that we can write it in a simpler form by introducing a new field
variable

X 3 ≡ D(Φ). (3.25)

and a new “potential” term

V (X 3) ≡Ω−2U (D−1(X 3)), (3.26)

25



Ch.3. Analysis of the generic 1+1 model: Lagrangian and Hamiltonian 3.2

where it is understood asΩ−2U is a function of D−1(X 3). According to (3.23)-(3.26), we
restrict ourselves to the case that D has an inverse D−1 everywhere on its domain and,
for simplicity, we assume that D , D−1, and U are C∞.

Using (3.24), (3.25), (3.26), one can write the pure gravitational part of the generic
1+1 action as

Sg-gen =
ˆ

d 2x
√−|g̃ |{X 3R̃ +V (X 3)

}
. (3.27)

For the matter parts, one can use (3.5), (3.8), the conformal transformation (3.15) and
equations (3.16) and (3.25) to rewrite the matter part of the spherically symmetric ac-
tion as

Sm-spher =−
ˆ

d 2x
√−|g̃ |1

2

[
D−1(X 3)

]2
g̃ ab∂a f ∂b f , (3.28)

Sm-CGHS =−
ˆ

d 2x
√−|g̃ |1

2
g̃ ab∂a f ∂b f . (3.29)

Using (3.28) and (3.29), one can write a general action for both cases as

Sm-gen =−
ˆ

d 2x
√−|g̃ |W (X 3)g̃ ab∂a f ∂b f . (3.30)

Now by virtue of equations (3.27) and (3.30), we can write the full generic 1+1 action
with minimally coupled matter as

S1+1 =
ˆ

d 2x
√−|g̃ |{X 3R̃ +V (X 3)

}−ˆ d 2x
√−|g̃ |W (X 3)g̃ ab∂a f ∂b f . (3.31)

3.2.3.2 Identifying variables in spherically symmetric action

In order to be able to go back to the specific actions we need to identify V (X 3) and
W (X 3) for both cases. Comparing (3.14) and (3.4) one can see for the spherically sym-
metric case

X 3 ≡ D(Φ) ≡ 1

4
Φ2, U (Φ) ≡ 1

2
. (3.32)

Using (3.23) and (3.32) and putting C = 1, one gets

Ω(Φ) =
p
Φ. (3.33)

Using (3.26), (3.32) and (3.33) yields

V (X 3) = 1

2
Φ−1(X 3) = 1

4
p

X 3
. (3.34)

And finally comparing (3.30) and (3.28) and using (3.32), one will find

W (X 3) = 1

2
Φ2(X 3) = 2X 3. (3.35)
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3.2.3.3 Identifying variables in CGHS action

For the CGHS model one can find, by comparing (3.14) and the gravitational part of
(i.e. the first integral in) the equation (3.13)

X 3 ≡ D(Φ) ≡ 1

8
Φ2, U (Φ) ≡−1

8
Φ2Λ=−D(Φ)Λ. (3.36)

Using (3.23) and (3.36) one gets
Ω(Φ) =CΦ. (3.37)

Using (3.26), (3.36) and (3.37) and choosing C =
√

1
8 yields

V (X 3) =−1

8
C−2Λ=−Λ. (3.38)

And finally comparing (3.30) and (3.29), gives

W (X 3) = 1

2
. (3.39)

3.3 The Lagrangians in tetrad formulation

3.3.1 The choice of the generic action

Before we continue we should make an important note: for the 3+1 case, we will use
the conformally transformed action (3.31) with (3.32), (3.34) and (3.35) since the anal-
ysis will coincide with other independent analyses with Ashtekar variables. But for the
CGHS we will use its non-transformed form in (3.13) because in this case, we think that
it is better to work with the variables that have direct geometric meaning so that we do
not need to transform everything back from the non-physical geometry to the physi-
cal one at the end. Thus we redefine both actions and introduce a new action that (in a
formal way) contains both, the most general action (3.31) and the specific CGHS action
(3.13), in it as

S1+1 =
ˆ

d 2x
√−|g |

{
Y R + 1

2
Z g ab∂aΦ∂bΦ+V

}
−
ˆ

d 2x
√−|g |W g ab∂a f ∂b f , (3.40)

with the Lagrangian densities

Lg =
√−|g |

{
Y R + 1

2
Z g ab∂aΦ∂bΦ+V

}
, (3.41)

Lm =−√−|g |W g ab∂a f ∂b f , (3.42)

where it is understood that

• For the specific physical CGHS case, gab is the physical metric while for the generic
case (including the 3+1 and CGHS conformally transformed cases) it is the con-
formally transformed metric.
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• For the specific physical CGHS case we have

Y = 1

8
Φ2, (3.43)

Z = 1, (3.44)

V =−1

8
Φ2Λ, (3.45)

W = 1

2
. (3.46)

• For the generic case we have

Y = X 3, (3.47)

Z = 0, (3.48)

V =V (X 3), (3.49)

W =W (X 3). (3.50)

• For the spherically symmetric case we have from generic case above and (3.32),
(3.34) and (3.35)

Y = X 3 = 1

4
Φ2, (3.51)

Z = 0, (3.52)

V = 1

2
Φ−1 = 1

4
p

X 3
, (3.53)

W = 1

2
Φ2 = 2X 3. (3.54)

3.4 Tetrad formulation of the generic Lagrangian

The first step towards writing the theory in Ashtekar’s variables is to write the Lagrangian
densities (3.41) and (3.42) in terms of tetrads and the spin connection instead of the
metric. To start, we write the determinant of the metric in terms of the determinant of
the tetrad. For this, we note that

gab = ηI J e I
ae J

b , (3.55)

where I , J are Lorentz or internal indices and a,b are abstract indices. Taking the de-
terminant of both sides yields

g = ηe2

=−e2, (3.56)

where g = det(gab), η= det(ηab) =−1 and e = det
(
ea

I
)
. Thus we have

p−g = e. (3.57)
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The curvature can be written in terms of curvature of the spin connection and ulti-
mately in terms of the spin connection ωa

I J itself as

R = Rab
I J ea

I eb
J

= (
2∂[aωa]

I J + [ωa ,ωb]I J )ea
I eb

J , (3.58)

where [, ] stands for the Lie commutator in the Lorentz Lie algebra and the indices I , J
take value in this algebra. Since the spin connection is antisymmetric in I , J , we can
write it as

ωa
I J =ωaε

I J . (3.59)

This way, the curvature (3.58) becomes

R = (
2∂[aωa]ε

I J +ω[aωb]η
I J )ea

I eb
J

= 2∂[aωa]ε
I J ea

I eb
J , (3.60)

where we have used the following fact about the Lie commutator in this case

[ωa ,ωb]I J =ωaε
I

Kωbε
K J −ωbε

I
Kωaε

K J

=ω[aωb] ε
I

K ε
K J︸ ︷︷ ︸

ηI J

, (3.61)

and also the fact that ηI J ea
I eb

J is symmetric in a,b while ω[aωb] is antisymmetric and
thus

ω[aωb]η
I J ea

I eb
J = 0. (3.62)

So the first term in (3.41) can be written as

eY R = eY
(
2∂[aωa]ε

I J ea
I eb

J

)
= 2Y ∂[aωb]eε

I J ea
I eb

J . (3.63)

The second term in (3.41) can simply be written as

1

2
Z eg ab∂aΦ∂bΦ= 1

2
ZηI J ee I

ae J
b∂aΦ∂bΦ. (3.64)

We also would like to add the torsion free condition (contracted by a Lagrange multi-
plier) to this action. This condition reads

0 = de I +εI
Jω∧e J = 2∂[aeb]

I +2εI
Jω[aeb]

J . (3.65)

Since this is a 2-form, we need to contract it with εab to get an scalar to be able to add it
to the Lagrangian density. Doing so and also contracting it with a Lagrange multiplier
−X I and substituting it in (3.41), together with (3.63) and (3.64), we get

Lg =−2X I ε
ab(∂[aeb]

I +εI
Jω[aeb]

J )+2Y ∂[aωb]eε
I J ea

I eb
J + 1

2
ZηI J ee I

ae J
b∂aΦ∂bΦ+eV.

(3.66)

29



Ch.3. Analysis of the generic 1+1 model: Lagrangian and Hamiltonian 3.5

We can write εab in terms of εI J , ea
I and its determinant det(ea

I ):

e = det
(
ea

I )= 1

2
εabεK Lea

K eb
L . (3.67)

Contracting both sides by e I
ae J

b yields

ee I
ae J

b = 1

2
εabεK Lδ

K
I δ

L
J

ee I
ae J

b = 1

2
εabεI J

ee I
ae J

bεI J = 1

2
εab εI Jε

I J︸ ︷︷ ︸
−2!

ee I
ae J

bεI J =−εab , (3.68)

and thus
εab =−ee I

ae J
bεI J . (3.69)

If we integrate by parts in the first term in Lagrangian density (3.66) to bring the partial
derivative to act on X I and then use the above result for εab in both first two terms of
this Lagrangian, we will get

Lg =−2∂a(X I )eeK
a eL

beb
I︸ ︷︷ ︸

δI
L

εK L +2X I eeK
a eL

beb
J︸ ︷︷ ︸

δJ
L

εK LεI
Jωa +2Y ∂aωbeεI J ea

I eb
J

+ 1

2
ZηI J ee I

ae J
b∂aΦ∂bΦ+eV

=−2∂a(X I )eeK
aεK I +2X I eeK

a εK JεI
J︸ ︷︷ ︸

−ηK I

ωa

+2Y ∂aωbeεI J ea
I eb

J + 1

2
ZηI J ee I

ae J
b∂aΦ∂bΦ+eV. (3.70)

So the pure gravitational Lagrangian density can be written as

Lg =e

(
−2∂a(X I )eK

aεK I −2X I e I aωa +2Y ∂aωbε
I J e I

ae J
b + 1

2
ZηI J e I

ae J
b∂aΦ∂bΦ+V

)
.

(3.71)

From (3.42),the matter Lagrangian density can also simply be written as

Lm =−W ηI J ee I
ae J

b∂a f ∂b f . (3.72)

3.5 The 1+1 ADM decomposition of the generic Lagrangian

3.5.1 The pure gravitational part

We begin by foliating the spacetime manifold into spatial hypersurface Σt on which
t =constant as we have seen in section 2.2. The difference here is that on the hyper-
surface Σt , now use the projection of tetrads on this hypersurface as (non-coordinate)
basis vectors. From (2.69) and (3.57), the determinant of the induced metric qab is

e = N
p

q . (3.73)
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As we have mentioned there, qa
b can be seen as a projection operator which projects

onto the spatial hypersurface Σt and can be used to project tetrads ea
I onto Σt as in

(2.61). Using this and also the the decomposition of the timelike vector t a = (∂/∂t)a as
in (2.58) we can cast ea

I in the following form

ea
I = E a

I −nanI (3.74)

= E a
I −

(
t a −N a

N

)
nI . (3.75)

If we substitute (3.75) and (3.73) into the pure gravitational Lagrangian density (3.71)
we arrive at

Lg =N
p

q
(
−2∂a(X I )εK I E a

K + 2

N
t a∂a(X I )nK ε

K I − 2

N
N a∂a(X I )nK ε

K I

−2X I E aIωa + 2

N
X I n I t aωa − 2

N
X I n I N aωa

+2Y ∂aωbε
I J E a

I E b
J + 1

2
ZηI J E a

I E b
J∂aΦ∂bΦ

+ 2Y

N

[
−t b∂aωb +N b∂aωb + t b∂bωa −N b∂bωa

]
εI J E a

I n J

+
[(

2

N 2
Y ∂aωb t a − 2

N 2
Y ∂aωb N a

)(
t b −N b

)]
εI J nI n J

+ 1

2N

[
−t b∂aΦ∂bΦ+N b∂aΦ∂bΦ− t b∂bΦ∂aΦ+N b∂bΦ∂aΦ

]
ZηI J E a

I n J

+ 1

2N 2

[
t a t b∂aΦ∂bΦ− t a N b∂aΦ∂bΦ−N a t b∂aΦ∂bΦ+N a N b∂aΦ∂bΦ

]
ZηI J nI n J +V

)
.

(3.76)

Using the Lie derivative of ωa in the direction of t a , we have

Ltωa = t b∂bωa +ωb∂a t b

= ∂a

(
t bωb

)
+ t b∂bωa − t b∂aωb . (3.77)

So in the fourth line in (3.76) above, we can substitute

t b∂bωa − t b∂aωb =Ltωa −∂a

(
t bωb

)
. (3.78)

We can also simplify things further by noting that

εI J nI n J = 0, (3.79)

because of the antisymmetry of εI J and symmetry of nI n J . This makes the fifth line of
(3.76) vanish. Furthermore since na is normal to Σt and thus to the basis vectors E J

a
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in the tangent space of Σt , we will have

ηI J nI E J
c = g abea

I eb
J nI E J

c

= g abeb
J naE J

c

= g abeb
J na qc

d ed
J

= g abna qc
dδb

d

= g ab qc
bna

= q ac na

= 0, (3.80)

which implies that the sixth line of (3.76) vanishes too. For the seventh line, we can use

−1 = gabnanb

= ηI J e I
ae J

bnanb

= ηI J n I n J , (3.81)

since na or n I is a unit timelike vector field. Thus until now we have

Lg =N
p

q

(
−2∂a(X I )εK I E a

K + 2

N
t a∂a(X I )nK ε

K I − 2

N
N a∂a(X I )nK ε

K I

−2X I E aIωa + 2

N
X I n I t aωa − 2

N
X I n I N aωa

+2Y ∂aωbε
I J E a

I E b
J + 1

2
ZηI J E a

I E b
J∂aΦ∂bΦ

+ 2Y

N

[
Ltωa −∂a

(
t bωb

)
+N b∂aωb −N b∂bωa

]
εI J E a

I n J

− Z

2N 2

[
t a t b∂aΦ∂bΦ− t a N b∂aΦ∂bΦ−N a t b∂aΦ∂bΦ+N a N b∂aΦ∂bΦ

]
+V

)
.

(3.82)

Since we have adapted the (t , x) coordinate system on spacetime and t a is one of our
coordinate basis vectors, we can write

t a =
(
∂

∂t

)a

=
(
∂

∂x0

)a

= e0
a . (3.83)

On the other hand, we can expand N a in terms of E a
I as in (2.62). The tetrad basis vec-

tor field E a
I itself can be expressed in terms of the spacelike sector of the coordinate

basis vectors eµa which would be only e1
a . This is because our theory is two dimen-

sional and we have only one timelike and one spacelike coordinate basis vectors i.e.
eµa = {e0

a ,e1
a}. This means that we can write

E a
I = E 1

I ea
1, (3.84)

N a = N I E a
I = N I E 1

I ea
1. (3.85)
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Considering the above simplifications, the Lagrangian density (3.82) takes the form

Lg =N
p

q

(
−2∂1(X I )εJ I E 1

J + 2

N
∂0(X I )n Jε

J I − 2

N
N J E 1

J∂1(X I )nK ε
K I

−2X I E 1Iω1 + 2

N
X I n Iω0 − 2

N
X I n I N J E 1

Jω1

+2Y ∂1ω1ε
I J E 1

I E 1
J + 1

2
ZηI J E 1

I E 1
J∂1Φ∂1Φ

+ 2Y

N
[ω̇1 −∂1ω0]εI J E 1

I n J

− Z

2N 2

[
∂0Φ∂0Φ−N I E 1

I∂0Φ∂1Φ−N I E 1
I∂1Φ∂0Φ+N I N J E 1

I E 1
J∂1Φ∂1Φ

]+V

)
.

(3.86)

The term with εI J E 1
I E 1

J will vanish due to the symmetry of E 1
I E 1

J and antisymmetry
of εI J . One can also identify the Hodge dual of X I as

X I = εI J
∗X J , (3.87)

and its Lie derivative

Lt
∗X I = t a∂a

∗X I = ea
0∂a

∗X I = ∂0
∗X I = ∗Ẋ I . (3.88)

Another thing we note is that the spin connection ωaI
J = ωaεI

J defines a covariant
derivative on the spatial hypersurface which acts on internal (Lorentz) indices as for
example

D1
∗X I = ∂1

∗X I +ω1ε
I J∗X J = ∂1

∗X I +ω1X I . (3.89)

Using all the above substitutions in the Lagrangian density (3.86) yields

Lg =N
p

q

(
−2E 1

K D1
∗X K − 2

N
N 1nK D1

∗X K + 2

N
nK

∗Ẋ K + 2

N
εI J

∗X J n Iω0

+ 1

2
ZηI J E 1

I E 1
JΦ

′2 + 2Y

N

[
ω̇1 −ω′

0

]
εI J E 1

I n J

− Z

2N 2

[
Φ̇2 −2N 1Φ′Φ̇+ (

N 1)2
Φ

′2
]
+V

)
, (3.90)

where we have used (3.85) to write N I E 1
I = N 1 and also used prime to denote the

partial derivative with respect to x1 = x and dot to denote the partial derivative with
respect to x0 = t . There is one important step remaining which is about the tetrad
basis vectors in Σt . We know that by use of (3.74) and (2.56), we can write

q ab = ηI J ea
I eb

J

= ηI J (
E a

I −nanI
)(

E b
J −nbn J

)
= ηI J E a

I E b
J . (3.91)

This means that

ηI J E 1
I E 1

J = q11 = 1

q11
= 1

q
, (3.92)
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where q is the determinant of the spatial metric qab and we have used the fact that
the spatial hypersurface is one dimensional and thus its only independent component
q11 = 1

q11 is at the same time its determinant. This shows that E 1
I is a density of weight

−1 because (based on conventions in canonical quantum gravity), determinant of the
metric is a scalar of density +2. We can use an alternative set of non-coordinate basis
vectors which are absolute tensors (of weight 0) by noting from (3.92) that

ηI JpqE 1
I
p

qE 1
J = ηI J Ẽ 1

I Ẽ 1
J = 1, (3.93)

where
Ẽ 1

I =p
qE 1

I , (3.94)

is now an absolute vector since it is the product of a vector density of weight −1 and
the square of determinant of spatial metric (a scalar density of weight +1). We can
write the basis vector field Ẽ 1

I in terms of a spacelike unit vector field. The dual field
of ∗nI = εI J n J serves the purpose since

ηI J∗nI
∗n J = ηI JεI K nK εJLnL

= εI K ε
I L︸ ︷︷ ︸

−δK
L

nK nL

=−nK nK

= 1, (3.95)

where we have used the fact that nI is timelike unit vector. Thus we have

Ẽ 1
I = Ẽ 1||∗nI , (3.96)

where Ẽ 1|| are the components of Ẽ 1
I . Using (3.93) we can find the value of the com-

ponents

1 = ηI J Ẽ 1
I Ẽ 1

J

= ηI J (
Ẽ 1||

)2 ∗nI
∗n J

= (
Ẽ 1||

)2
, (3.97)

where we have used the fact that ∗nI is spacelike unit vector field. Thus we find out
that Ẽ 1|| =±1 and we choose

Ẽ 1|| =+1. (3.98)

Putting this back into (3.96) leads to

Ẽ 1
I = ∗nI , (3.99)

and using this and (3.94) yields

E 1
I =

∗nIp
q

. (3.100)

From this and (3.95) we find

ηI J E 1
I E 1

J = ηI J
∗nIp

q

∗nIp
q
= 1

q
, (3.101)
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which is precisely (3.92). Substituting (3.100) and(3.92) in the Lagrangian density (3.90)
leads to

Lg =−2N∗nI D1
∗X I −2

p
qN 1nI D1

∗X I +2
p

qnI
∗Ẋ I

−2
p

q∗nI
∗X Iω0 + N Z

2
p

q
Φ

′2 +2Y
[
ω̇1 −ω′

0

]
εI J∗nI n J

− Z
p

q

2N

[
Φ̇2 −2N 1Φ′Φ̇+ (

N 1)2
Φ

′2
]
+N

p
qV , (3.102)

where we have used
εI J

∗X J n I =−εJ I n I ∗X J =−∗n J
∗X J . (3.103)

Finally substituting

εI J∗nI n J = εI JεI K nK n J

=−δJ
K nK n J

=−nK nK

= 1, (3.104)

into (3.102) yields

Lg =−2N∗nI D1
∗X I −2

p
qN 1nI D1

∗X I +2
p

qnI
∗Ẋ I

−2
p

q∗nI
∗X Iω0 +2Y ω̇1 −2Y ω′

0

+ Z

2

[
Np

q
Φ

′2 −
p

q

N
Φ̇2 +

p
q

N
2N 1Φ′Φ̇−

p
q

N

(
N 1)2

Φ
′2
]

+N
p

qV. (3.105)

This is the tetrad formulations of the most generic form of a pure gravitational La-
grangian density in two dimensions. We can see that by putting Z = 0, we get the 3+1
or other generic cases and by Z = 1, we get the Lagrangian of the physical geometry of
the CGHS model (in both cases with appropriate Y and V ).

3.5.2 The matter part

Following the same steps as above for the matter Lagrangian (3.72) leads to

Lm =−N
p

qW ηI J
[

E a
I −

(
t a −N a

N

)
nI

][
E b

J −
(

t b −N b

N

)]
n J∂a f ∂b f

=−N
p

qW

[
ηI J E a

I E b
J∂a f ∂b f −

(
t b −N b

N

)
ηI J n J E a

I︸ ︷︷ ︸
0

∂a f ∂b f

−
(

t a −N a

N

)
ηI J nI E b

J︸ ︷︷ ︸
0

∂a f ∂b f +
(

t a −N a

N

)(
t b −N b

N

)
ηI J nI n J∂a f ∂b f

]

=−N
p

qW

[
1

q
∂1 f ∂1 f − 1

N 2

(
t a t b − t a N b −N a t b +N a N b

)
∂a f ∂b f

]
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=−N
p

qW

[
1

q
f ′2 − 1

N 2

(
ḟ 2 −2N 1 ḟ f ′+ (

N 1)2
f ′2

)]

=−W

(
N f ′2
p

q
+ −pq ḟ 2 +2

p
qN 1 ḟ f ′−p

q
(
N 1

)2
f ′2

N

)
. (3.106)

So we can write the full Lagrangian density of the most general form of a two dimen-
sional model as

L =−2N∗nI D1
∗X I −2

p
qN 1nI D1

∗X I +2
p

qnI
∗Ẋ I

−2
p

q∗nI
∗X Iω0 +2Y ω̇1 −2Y ω′

0

+ Z

2

[
Np

q
Φ

′2 −
p

q

N
Φ̇2 + 2

p
q

N
N 1Φ′Φ̇−

p
q

N

(
N 1)2

Φ
′2
]

+N
p

qV −W

(
N f ′2
p

q
+ −pq ḟ 2 +2

p
qN 1 ḟ f ′−p

q
(
N 1

)2
f ′2

N

)
. (3.107)

3.6 Canonical variables and momenta and general Hamil-
tonian for the conformally transformed and the non-
transformed versions

Looking at the full Lagrangian density (3.107), we notice a few things:

• For non-transformed theory (Z 6= 0) (physical CGHS for example):

– The canonical variables of the theory, i.e. those for which their time deriva-
tive is present in the Lagrangian density, are

∗X I ,ω1,Φ, f . (3.108)

– The canonical momenta corresponding to these variables are

PI = ∂L

∂∗Ẋ I
= 2

p
qnI , (3.109)

Pω = ∂L

∂ω̇1
= 2Y , (3.110)

PΦ = ∂L

∂Φ̇
= Z

p
q

N

(
N 1Φ′− Φ̇)

, (3.111)

P f =
∂L

∂ ḟ
=−2W

p
q

N

(
N 1 f ′− ḟ

)
. (3.112)

– If Y involves one of the canonical variables, the second equation (3.110) will
be a new primary constraint. This happens in physical CGHS where Z = 1
and Y = 1/8Φ2. The equation (3.110) is a primary constraint in the physi-
cal CGHS case which we should later on, add to the general Hamiltonian
(3.124) below, to get the total Hamiltonian for that model.
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• For conformally transformed theory (Z = 0) (generic case including 3+1 spher-
ically symmetric):

– The canonical variables are
∗X I ,ω1, f (3.113)

thus the dilation fieldΦ is not a canonical variable and so its conjugate mo-
mentum will not appear in the theory as can be seen by vanishing of Z in
(3.107) and (3.111). Therefore the canonical momenta are just

PI ,Pω,P f (3.114)

and although there is a relation between Pω andΦ through (3.110) and Y =
1/4Φ2 in the 3+1 case, equation (3.110) does not define a constraint since Φ
is not a canonical variable.

So we continue to work with the Lagrangian (3.107), the variables (3.108) and the mo-
menta (3.109)-(3.112), but bearing in mind that at the end, the general Hamiltonian
can be cast into the one suitable for the physical CGHS by using Z = 1 and for other
theories by Z = 0 and PΦ = 0 or equivalently noΦ canonical variable.

Solving (3.111) and (3.112) for Φ̇ and ḟ , yields

Φ̇=N 1Φ′− N

Z
p

q
PΦ, (3.115)

ḟ =N 1 f ′+ N

2W
p

q
P f . (3.116)

Applying a Legendre transformation to the Lagrangian (3.107) and using equations
(3.109) to (3.116), yields

H =N

[
2∗nI D1

∗X I − Z

2
p

q
Φ

′2 − P 2
Φ

2Z
p

q
+ W f ′2

p
q

+
P 2

f

4W
p

q
−p

qV

]
+N 1 [

PΦΦ
′+P f f ′+PI D1

∗X I ]
+ω0

[
εI J P J∗X I − (2Y )′

]
, (3.117)

where we have integrated by parts over the term 1
4Φ

2ω′
0 to make the derivative act on

Φ and used (3.109) to substitute for 2
p

qnI . Now using the definition of the covariant
derivative (3.89), we can rewrite the above Hamiltonian as

H =N

[
2εI J n J∂1

∗X I −2nIω1
∗X I − Z

2
p

q
Φ

′2 − P 2
Φ

2Z
p

q
+ W f ′2

p
q

+
P 2

f

4W
p

q
−p

qV

]
+N 1 [

PΦΦ
′+P f f ′+PI∂1

∗X I +εI J PIω1
∗X J

]
+ω0

[
εI J P J∗X I − (2Y )′

]
. (3.118)
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Substituting for nI from (3.109) yields

H =N

[
εI J

P J

p
q
∂1

∗X I − PIp
q
ω1

∗X I − Z

2
p

q
Φ

′2 − P 2
Φ

2Z
p

q
+ W f ′2

p
q

+
P 2

f

4W
p

q
−p

qV

]
+N 1 [

PΦΦ
′+P f f ′+PI∂1

∗X I +εI J P Iω1
∗X J]

+ω0
[
εI J P J∗X I − (2Y )′

]
. (3.119)

We can also infer from (3.109) that

−ηI J PI P J =−4qηI J nI n J , (3.120)

|P |2 = 4q, (3.121)

|P |
2

=p
q . (3.122)

where we have used −ηI J PI P J = |P |2 since PI is a timelike vector by virtue of (3.109).
Substituting

p
q from above into (3.119) yields

H =N

[
2εI J

P J

|P |∂1
∗X I −2

PI

|P |ω1
∗X I − Z

|P |Φ
′2 − P 2

Φ

Z |P | +
2W f ′2

|P | +
P 2

f

2W |P | −
|P |
2

V

]
+N 1 [

PΦΦ
′+P f f ′+PI∂1

∗X I +εI J P Iω1
∗X J]

+ω0
[
εI J P J∗X I − (2Y )′

]
. (3.123)

Expanding the above total Hamiltonian in its components in tetrad basis yields

H =N

[
2

P2

|P |∂1
∗X 1 +2

P1

|P |∂1
∗X 2 −2

P1

|P |ω1
∗X 1 −2

P2

|P |ω1
∗X 2

− Z

|P |Φ
′2 − P 2

Φ

Z |P | +
2W f ′2

|P | +
P 2

f

2W |P | −
|P |
2

V

]
+N 1 [

PΦΦ
′+P f f ′+P1∂1

∗X 1 +P2∂1
∗X 2 −P1ω1

∗X 2 −P2ω1
∗X 1]

+ω0
[
P1

∗X 2 +P2
∗X 1 − (2Y )′

]
, (3.124)

where we used the fact that P1 = −P 1 and P2 = P 2 and used the convention εI J = +1.
From this point on, which we are going to study the Hamiltonian formulation of the
theory in Ashtekar variables, we will need the specific form of the functions Y , Z ,V
and W to proceed. Thus we study each of the two systems in a separate chapter.
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4
Hamiltonian analysis of the 3+1 spherically symmetric

model

4.1 Reduction using spherical symmetry

Spherically symmetric manifold are the ones that can be foliated by 2-spheres or have
the symmetries of S2. More technically, in the language of group theory, it means that
if the rotation group SO(3) acts on points of the spatial hypersurface Σt , the symmetry
orbits or the integral curves of the Killing vectors of the symmetry group, are 2-spheres.
Furthermore, the spatial manifold Σt has three metric Killing vector fields that in a
coordinate dependent way, in coordinates (θ,φ), read [19]

Ra = (
∂φ

)a , (4.1)

Sa = cos(φ) (∂θ)a −cot(θ)sin(φ)
(
∂φ

)a , (4.2)

T a =−sin(φ) (∂θ)a −cot(θ)cos(φ)
(
∂φ

)a . (4.3)

or in coordinate independent way have the algebra

[R,S]a = T a , (4.4)

[S,T ]a = Ra , (4.5)

[T,R]a = Sa . (4.6)

In addition, the Killing vectors of the symmetry group SO(3) are also the Killing vec-
tors of the (spatial) metric qab and thus the metric is invariant under the action of the
rotation group SO(3). In other words, we have a diffeomorphism [20]

ΥC (s) :Σt →Σt , (4.7)

which is generated by the orbits in SO(3)

C (s) :R→ SO(3), (4.8)

such thatΥC (s) is an isometry, i.e.

Υ∗
C (s)qab = qab , (4.9)
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whereΥ∗
C (s)qab is the pullback of the metric byΥC (s).

It can be shown that from the spherical symmetry ansatz (µ,ν= 0,1) and purely ge-
ometrical arguments that the metric in a spherically symmetric manifold can be writ-
ten as [19]

d s2 = T (x, t )d t 2 +L(x, t )2d x2 +R(x, t )2 (
dθ2 + sin2(θ)dφ2) , (4.10)

with coordinates (t , x,θ,φ), and T,R,L functions of the coordinates t and x, which
should not to be confused with the Killing vectors Ra ,Sa ,T a . Under action of the gauge
group of SU (2)-valued functions h onΣt , the metric gab and the phase space variables,
the connection Aa = Aµd xµa and the triad E a = Eµ∂µ

a , transform as usual as [21, 22]

g → g , (4.11)

A → h−1 Ah +h−1dh, (4.12)

E → h−1Eh, (4.13)

and all the pairs related together by gauge transformations are equivalent. Thus A and
E need not to be exactly invariant under the action of the rotation group like the metric
and can be invariant up to a gauge transformation. Using these properties it can be
shown that the connection can be written in (x,θ,φ) coordinates as

A = Ax(x)τ3d x + (A1(x)τ1 + A2(x)τ2)dθ+ ((A1(x)τ2 − A2(x)τ1)sinθ+τ3 cosθ)dφ,
(4.14)

where Ax , A1 and A2 are real arbitrary functions on R+, the τI are generators of su(2),
which as we said before, can be conventionally taken to be τI = τI =−iσI /2 where σI

are the Pauli matrices. The invariant triad takes the form

E = E x(x)τ3 sinθ
∂

∂x
+ (

E 1(x)τ1 +E 2(x)τ2
)

sinθ
∂

∂θ
+ (

E 1(x)τ2 −E 2(x)τ1
) ∂

∂φ
, (4.15)

where again, E x ,E 1 and E 2 are functions onR+. In terms of these quantities, the spatial
part of the (4.10) reads [23]

d s2
q = Eϕ2

|E x |d x2 +|E x |(dθ2 + sin2(θ)dφ2) , (4.16)

where Eϕ =
√(

E 1
)2 + (

E 2
)2 is a canonical momenta conjugate to the canonical variable

Kϕ which is the angular part of the extrinsic curvature K = Kµ
IτI d xµ = det(E)−1/2 KµνEνIτI d xµ.

In terms of these variables the diffeomorphism and Hamiltonian constraints for gravity
minimally coupled to a massless scalar field are[21, 22]

D =(|E x |)′Kx −Eϕ(Kϕ)′−P f f ′, (4.17)

H =− Eϕ

2
p|E x | −2Kϕ

√
|E x |Kx −

EϕK 2
ϕ

2
p|E x | +

(
(|E x |)′)2

8
p|E x |Eϕ

−
p|E x |(|E x |)′(Eϕ)′

2(Eϕ)2
+
p|E x |(E x)′′sgn(E x)

2Eϕ

+
P 2

f

2
p|E x |Eϕ

+ (|E x |)3/2( f ′)2

2Eϕ
, (4.18)
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where Kx is the radial component of the extrinsic curvature of the spatial hypersurface
which is also related to the radial component of the Ashtekar connection Ax .

This is the work that has been done before. Now in the coming section we would
like to show that our generic formalism leads to the same result provided that we use
suitable canonical transformations on our generic Hamiltonian (3.124).

4.2 The Hamiltonian density

Since we we mentioned in (3.6), Φ is not a canonical variable in the 3+1 case, and also
looking at the form of (3.31), we would like to substitute Φ for X 3 in the theory. Thus
our canonical variable in this case will be

∗X I ,ω1, f (4.19)

and using (3.51)-(3.54) and (3.109)-(3.112), we will have for Φ and for canonical mo-
menta

Φ=2
√

X 3, (4.20)

Φ′ = X 3′
p

X 3
, (4.21)

PI = ∂L

∂∗Ẋ I
= 2

p
qnI , (4.22)

Pω =P3 = ∂L

∂ω̇1
= 2X 3, (4.23)

P f =
∂L

∂ ḟ
=−4X 3pq

N

(
N 1 f ′− ḟ

)
. (4.24)

There is no further constraint to add to the general Hamiltonian (3.124) and by sub-
stituting (3.51)-(3.54), the above values together with (3.116) and Z = PΦ = 0 in that
Hamiltonian we get

H =N

[
2

P2

|P |∂1
∗X 1 +2

P1

|P |∂1
∗X 2 −2

P1

|P |ω1
∗X 1

−2
P2

|P |ω1
∗X 2 + 4X 3 f ′2

|P | +
P 2

f

4X 3|P | −
|P |

8
p

X 3

]
+N 1 [

P f f ′+P1∂1
∗X 1 +P2∂1

∗X 2 −P1ω1
∗X 2 −P2ω1

∗X 1]
+ω0

[
P1

∗X 2 +P2
∗X 1 − (

2X 3)′] . (4.25)

Now we would like to make a suitable canonical transformation to go from the present
canonical pairs to the one used in the literature for the 3+1 case, namely the pairs
(Kx ,E x) and (Kϕ,Eϕ).

We begin by observing from (µ,ν= 0,1) and (4.16) that

Φ2 = |E x |. (4.26)
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This means by using the above and (3.51) we can write

X 3 = 1

4
Φ2 = E x

4
. (4.27)

Now note that we are currently working with the conformally transformed metric(3.15)
in the 3+1 case. This means that if we want to find the determinant of the spatial metric
qab (remember that our spatial hypersurface in our method is one dimensional), we
can write it as p

q =√
g̃xx =Ωpgxx =Ω Eϕ

p|E x | , (4.28)

where gxx is the xx-component of the original physical metric and we have substituted
its value from (4.16), i.e.

gxx = Eϕ2

|E x | . (4.29)

But from (3.33) and (4.27) we can see that

Ω=
p
Φ= (

E x)1/4 , (4.30)

and this together with (4.28) and (3.122) gives

p
q = Eϕ

(E x)
1
4

= |P |
2

, (4.31)

or

|P | = 2Eϕ

(E x)
1
4

. (4.32)

On the other hand, since nI is unit timelike vector field we can write

n1 = cosh(η), (4.33)

n2 = sinh(η), (4.34)

for some gauge angle η. Using these together with (4.22) and (4.31) one can write

P1 = n1|P | = 2Eϕ

(E x)
1
4

cosh(η), (4.35)

P2 = n1|P | = 2Eϕ

(E x)
1
4

sinh(η). (4.36)

Substituting (4.27), (4.32), (4.35) and (4.36) in the Hamiltonian (4.25) yields

H =N

[
2sinh(η)∂1

∗X 1 +2cosh(η)∂1
∗X 2 −2cosh(η)ω1

∗X 1

−2sinh(η)ω1
∗X 2 + (E x)

5
4 f ′2

2Eϕ
+

P 2
f

2(E x)
3
4 Eϕ

− 2Eϕ

4(E x)
3
4

]
+N 1

[
P f f ′+ 2Eϕ

(E x)
1
4

cosh(η)∂1
∗X 1 + 2Eϕ

(E x)
1
4

sinh(η)∂1
∗X 2

− 2Eϕ

(E x)
1
4

cosh(η)ω1
∗X 2 − 2Eϕ

(E x)
1
4

sinh(η)ω1
∗X 1

]

+ω0

[
2Eϕ

(E x)
1
4

cosh(η)∗X 2 + 2Eϕ

(E x)
1
4

sinh(η)∗X 1 −
(

E x

2

)′]
. (4.37)
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At this stage, we see that we have the new momenta E x and Eϕ but are working with
the “old” canonical variables X 1 and X 2 and the “old” connection ω1 as a conjugate to
E x . So we can set up a generating function of a canonical transformation of the form

F (q,P ) = ∗X 1 2Eϕ

(E x)
1
4

cosh(η)+∗X 2 2Eϕ

(E x)
1
4

sinh(η)+ω1
E x

2
, (4.38)

and derive the new canonical variables as follows

Qη = ∂F

∂η
= 2Eϕ

(E x)
1
4

(∗X 1 sinh(η)+∗X 2 cosh(η)) = ∗X 1P2 +∗X 2P1, (4.39)

Kϕ = ∂F

∂Eϕ
= 2∗X 1 cosh(η)+2∗X 2 sinh(η)

(E x)
1
4

=
∗X 1P1 +∗X 2P2

Eϕ
, (4.40)

Ax = ∂F

∂E x
=− Eϕ

2(E x)
5
4

(∗X 1 cosh(η)+∗X 2 sinh(η))+ ω1

2

= −∗X 1P1 −∗X 2P2

4E x
+ ω1

2
(4.41)

=−EϕKϕ

4E x
+ ω1

2
. (4.42)

From the last equation above we get

ω1 = 2Ax +
EϕKϕ

2E x
. (4.43)

In order to express everything in terms of the new variables, we need to find ∗X 1 and
∗X 2 in terms of these new variables. One can see from (4.39) and (4.40) that

EϕKϕP1 −QηP2 = ∗X 1 (
P 2

1 −P 2
2

)
, (4.44)

which upon using (4.35) and (4.36) becomes

∗X 1 = Kϕ(E x)
1
4 cosh(η)

2
− Qη(E x)

1
4 sinh(η)

2Eϕ
. (4.45)

Also it can be seen from the same two equation (4.39) and (4.40) that

EϕKϕP2 −QηP1 = ∗X 2 (
P 2

2 −P 2
1

)
, (4.46)

which again by using (4.35) and (4.36) gives

∗X 2 = Qη(E x)
1
4 cosh(η)

2Eϕ
− Kϕ(E x)

1
4 sinh(η)

2
. (4.47)
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Substituting ∗X1,∗X2 and ω1 from (4.43), (4.45) and (4.47) into (4.37) leads to

H =N

[Q ′
η(E x)

1
4

Eϕ
+ Qη(E x)−

3
4 E x′

4Eϕ
− Qη(E x)

1
4 Eϕ′

Eϕ2
−2Kϕ(E x)

1
4 Kx

− Eϕ

2
K 2
ϕ(E x)−

3
4 + (E x)

5
4 f ′2

2Eϕ
+

P 2
f

2(E x)−
3
4 Eϕ

− 2Eϕ

4(E x)
3
4

]
+N 1

[
P f f ′−2QηKx +EϕK ′

ϕ+
EϕKϕE x′

4E x
− EϕKϕ

2E x
Qη

]
+ω0

[
Qη−

(
E x

2

)′]
, (4.48)

where we have defined a new variable Kx = 1
2η

′+ Ax . Solving the Gauss constraint for
Qη

Qη = 1

2
E x′, (4.49)

and substituting this back into the Hamiltonian yields

H =N

[
E x′′(E x)

1
4

2Eϕ
+

1
2 E x′(E x)−

3
4 E x′

4Eϕ
−

1
2 E x′(E x)

1
4 Eϕ′

Eϕ2
−2Kϕ(E x)

1
4 Kx

− Eϕ

2
K 2
ϕ(E x)−

3
4 + (E x)

5
4 f ′2

2Eϕ
+

P 2
f

2(E x)
3
4 Eϕ

− 2Eϕ

4(E x)
3
4

]
+N 1

[
P f f ′−E x′Kx +EϕK ′

ϕ

]
, (4.50)

where it is clearly seen that the Hamiltonian just consists of a Hamiltonian constraint
and a diffeomorphism constraint. Rescaling the Hamiltonian constraint by multiplying
it by a factor of (E x)1/4 and the diffeomorphism constraint by multiplying it by −1, and
noting that we only work with strictly positive values of E x , yields

H =N

[
E x′′pE x

2Eϕ
+ E x′E x′

8Eϕ
p

E x
−

1
2 E x′pE xEϕ′

Eϕ2
−2Kϕ

p
E xKx

−
EϕK 2

ϕ

2
p

E x
+ (E x)

3
2 f ′2

2Eϕ
+

P 2
f

2
p

E xEϕ
− Eϕ

2
p

E x

]
+N 1

[
E x′Kx −EϕK ′

ϕ−P f f ′
]

. (4.51)

This Hamiltonian which we derived by our new generic method, is precisely the Hamil-
tonian of the spherically symmetric case which had been introduced before by other
methods.

4.3 Partially gauge fixing the theory and the boundary term

Loop quantum gravity is being explored in model situations of increasing complexity.
There has been steady advance in treating homogeneous cosmologies [24], an area of
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activity that has come to be known as loop quantum cosmology. There has also been
progress in spherical symmetry in vacuum [25]. However, in all these cases one did not
have to face the “problem of dynamics”, i.e. dealing with the non-Lie algebra of con-
straints of general relativity. In homogeneous cosmologies there is only one constraint
and it therefore has a trivial algebra. In spherical symmetry, special gauges were chosen
that resulted in an Abelian algebra. In this chapter we would like to study spherically
symmetric gravity coupled to a spherically symmetric scalar field using loop quantum
gravity techniques. It is not known in this situation how to formulate the problem in a
way that one ends up with a Lie algebra of constraints. A total gauge fixing was intro-
duced by Unruh [26], but it leads to a non-local expression for the Hamiltonian. Here
we will fix partially the gauge to eliminate the diffeomorphism constraint in order to
simplify things. This still leads to a Hamiltonian constraint that has a non-Lie Pois-
son bracket with itself, involving structure functions instead of structure constants. To
treat this problem we will use the “uniform discretization” technique [14]. We will in-
troduce a variational technique adapted to the minimization of the master constraint
(in the context of uniform discretizations one should probably refer to it as “master
operator” since it only vanishes in the continuum limit). In the case that zero is in the
kernel of the master constraint the technique yields the correct physical state in model
situations.

The inclusion of scalar fields in spherical symmetry opens a rich set of possibilities
to be studied including the formation of black holes, critical collapse, the emergence of
Hawking radiation, among others. Here we will have much more modest goals: to see
how the complete theory approximates the vacuum state of the scalar field living on a
flat space-time. An outstanding problem in a full quantum gravity treatment involving
matter fields is the emergence of a vacuum state for the fields and what relation it may
have to the ordinary Fock vacuum of quantum field theory in curved space-time. We
will apply the variational technique in the case of spherically symmetric gravity cou-
pled to a scalar field and show that it yields a vacuum state that is closely related to the
Fock one.

As we mentioned above in 4.17 and 4.18, the diffeomorphism and Hamiltonian
constraints for gravity minimally coupled to a massless scalar field are

D = (|E x |)′Kx −Eϕ(Kϕ)′−P f f ′, (4.52)

H =− Eϕ

2
p|E x | −2Kϕ

√
|E x |Kx −

EϕK 2
ϕ

2
p|E x | +

(
(|E x |)′)2

8
p|E x |Eϕ

−
p|E x |(|E x |)′(Eϕ)′

2(Eϕ)2
+
p|E x |(E x)′′sgn(E x)

2Eϕ

+
P 2

f

2
p|E x |Eϕ

+ (|E x |)3/2( f ′)2

2Eϕ
, (4.53)

and since the variables are gauge invariant there is no Gauss law and we have been
able to solve it. We have taken the Immirzi parameter equal to one. We now proceed to
partially fix the gauge by choosing E x = x2 (the motivation can be seen from µ,ν= 0,1
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and 4.26). One can solve the diffeomorphism constraint for Kx ,

Kx = Eϕ(Kϕ)′+P f f ′

2x
, (4.54)

which yields the Hamiltonian constraint for the partially gauge fixed model as,

H = 1

G

[
−Eϕ

2x
−

EϕK 2
ϕ

2x
+ 3x

2Eϕ
− x2(Eϕ)′

(Eϕ)2
−EϕKϕ(Kϕ)′

]

+
P 2

f

2xEϕ
+ x3( f ′)2

2Eϕ
−KϕP f f ′. (4.55)

We now rescale the Lagrange multiplier Nold = NnewGE x′/Eϕ, the rescaled Hamiltonian
constraint is,

H = Hvac +2G Hmatt, (4.56)

where

Hvac =
(
−x −xK 2

ϕ+
x3

(Eϕ)2

)′
= ∂Hv (x)

∂x
, (4.57)

Hmatt =
P 2

f

2(Eϕ)2
+ x4( f ′)2

2(Eϕ)2
− xKϕP f f ′

Eϕ
. (4.58)

This form of the Hamiltonian constraint allows an easy identification of the required
boundary term if one assumes asymptotically flat conditions. The total Hamiltonian is
given by,

HT =
ˆ x+

0
d xN (x)(Hvac(x)+2G Hmatt(x))+HB , (4.59)

where N (x) is the rescaled lapse Nnew and HB is the boundary term at the asymptotic
region x+. Integrating by parts we get

HT =−
ˆ x+

0
d x

d N (x)

d x

(
Hv (x)+2G

ˆ x

0
d y Hmatt(y)

)
+N (x+)

(
−2GM +2G

ˆ x+

0
d y Hmatt(y)

)
+HB

=−
ˆ x+

0
d x

d N (x)

d x

(
Hv (x)−2G

ˆ x+

x
d y Hmatt(y)+2GM

)
−2GM τ̇. (4.60)

The boundary term HB = −2GM τ̇ has been introduced in order to ensure that M is a
constant and τ the proper time in the asymptotic region. This is the standard boundary
term in the spherically symmetric case. M is the spacetime mass while the Schwarzschild

radius is given by RS = 2G(M−´ x+
0 d y Hmatt(y))). In the case of a spacetime with a black

hole the radial coordinate is given by R = x+RS . M is a Dirac observable. In the case of
weak fields therefore, so is the integral from 0 to ∞ of Hmatt that we shall call HM . Even
in presence of black holes HM is an observable if the black hole is isolated. We will treat
HM as an energy in order to define the vacuum and the excited states of the theory.

46



Ch.4. Hamiltonian analysis of the 3+1 spherically symmetric model 4.4

4.4 Quantization of the matter field on a fixed flat back-
ground

Since we wish to understand in which way loop quantum gravity recovers results from
ordinary quantum field theory in curved spacetime, we would like to outline some of
those results for later comparison. If the space-time is flat, it is convenient to fix the
gauge Kϕ = 0 to obtain explicitly the background metric in the usual spherical coor-
dinates. In this case one solves Hvac = 0 one gets that Eϕ = x. Solving the evolution
equation yields the Lagrange multiplier and one recovers the full flat space-time met-
ric. With this choice of Kϕ and Eϕ, the matter portion of the Hamiltonian constraint
4.58 becomes,

Hmatt =
P 2

f

2x2
+ x2( f ′)2

2
. (4.61)

The evolution equation obtained from this Hamiltonian

ḟ = { f , Hmatt} =
P f

x2
, (4.62)

Ṗ f = {P f , Hmatt} = 2x f ′+x2 f ′′, (4.63)

corresponds to spherical waves,

f ′′− f̈ +2
f ′

x
= 0. (4.64)

This can be solved by Fourier decomposition,

f (x, t ) =
ˆ ∞

0
dω

(
C (ω)exp(−iωt )+ C̄ (ω)exp(iωt )

)
sin(ωx)p

πωx
, (4.65)

which corresponds to spherical waves that are regular at the origin. From Hamilton’s
equation 4.63 we can get an expression for Pφ,

P f (x, t ) =
ˆ ∞

0
dω

(−iC (ω)ωexp(−iωt )+ iC̄ (ω)ωexp(iωt )
)

x sin(ωx)p
πω

. (4.66)

Finding the coefficients C (ω) and C̄ (ω) from the two equations above and using the

standard commutation relations, [ f̂ (x, t ), P̂ f (y, t )] = iδ(x−y), one gets the [Ĉ (ω), ˆ̄C (ω′)] =
δ(ω−ω′). One can proceed to define a vacuum state |0〉 as the state that is annihilated
by Ĉ . If one evaluates the expectation value of Hmatt on the vacuum state one finds
that it has an ultraviolet divergence. The usual resolution of this problem is to intro-
duce a cutoff. It should be noted that when one treats this problem in loop quantum
gravity this type of divergence does not appear because the well defined objects are
holonomies associated with finite paths. In our treatment this aspect is lost since we
have gauge fixed the radial variable which therefore becomes a c-number. As we usu-
ally proceed when we use the uniform discretization technique, we regularize the ex-
pression by placing it on a lattice. We will discuss later on the issue of taking the lattice
spacing to zero.
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We will assume that the radial direction is bounded with a spatial extent L and con-
sists of discrete points xi separated by a coordinate distance ε, and in particular we take
xi as ε times an integer. We reinterpret the integrals as sums, Dirac deltas as Kronecker
deltas, functional derivatives as partial derivatives, and partial derivatives in the radial
directions as finite differences. Specifically [27]

ˆ
d x → ε

∑
x

, (4.67)

δ(x − y) → δx,y

ε
, (4.68)

δ

δ f (x)
→ 1

ε

∂

∂ f
, (4.69)

f (x)′ → f (xi+1)− f (xi )

ε
, (4.70)

(ω)2 →
∑

i (2−2cos(εωi ))

ε2
. (4.71)

If the spatial direction is discrete, the associated momentum space is bounded with
extent 2π/ε. To the first nontrivial order in epsilon, all formulae involving momenta
ω are unchanged except that momentum integrals are now sums over a momentum
space of finite extent.

The expectation value of Ĥmatt can be computed replacing the quantum version of
the expressions given above in 4.65 and 4.66 for f (x, t ) and P f (x, t ) in Ĥmatt equation
4.61. Computing the expectation value on the vacuum state, one is only left with con-

tributions proportional to Ĉ ˆ̄C . On the lattice the result may be approximated in the
limit of large L by the integral,

〈0|Ĥmatt(x)|0〉 =
ˆ 2π/ε

0
dω

ω2x2 −2xωcos(ωx)sin(ωx)+ sin2(ωx)

2x2πω
. (4.72)

The integral can be computed in closed form in terms of integrals of cosine functions.
It is more useful to give an approximation for its value as an expansion in ε,

〈0|Ĥmatt(x)|0〉 = π

ε2
− sin2(2πx/ε)

πx2
+ ln(x/ε)

4x2π
+O(ε0). (4.73)

The leading order in the energy density expansion isπ/ε2 which has the correct dimen-
sions for an energy density in one spatial dimension, since we are only considering the
radial mode of the scalar field.

As in four dimensions, the energy of the vacuum gives rise to a cosmological con-
stant if one allows the field to back-react on gravity. The nature of this constant is dif-
ferent, however in two dimensions [28]. First of all, notice that if one had started from
four dimensional gravity with a cosmological constant and imposed spherical symme-
try, one can view the model as a 1+1 dimensional theory with a dilaton with a mass
given by the four dimensional cosmological constant (as we showed in chapter 3 but
without a cosmological constant). That is, it does not produce a term that behaves
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like a cosmological constant in 1+1 dimensions. The vacuum energy, by contrast pro-
duces a constant term in the Hamiltonian constraint. Second, notice that even in vac-
uum, Hvac already has a constant term in it. So the energy of the vacuum essentially
operates as a rescaling of that constant term, which in turn can be absorbed by a rescal-
ing of the radial coordinate. In four dimensions, if one chooses a Planck scale cutoff
it implies that the radius of curvature of space-time becomes of the order of Planck
length, which is clearly unphysical. In spherical symmetry the presence of the con-
stant can be reabsorbed in a redefinition of the coordinates. This redefinition however,
has consequences when one wishes to reinterpret the model as an approximation to
a four dimensional space-time. The redefinition of the radial coordinate implies that
the spheres do not have 4πr 2 area anymore. The four dimensional universe modeled
contains a topological defect, a “global texture” [29]. Notice that this immediately pre-
cludes taking the lattice spacing to zero, since already when the lattice spacing is of the
order of `Planck one will have a solid deficit angle that exceeds 4π and does not allow to
interpret the model as a four dimensional space-time.

There are two avenues to handle the situation: either one rescales the radial vari-
able and accepts that the model approximates four dimensional space-times with (large)
topological defects, or one can modify the two dimensional model by adding a con-
stant to the Hamiltonian constraint (a cosmological constant in 1+1 dimensional grav-
ity). Such a model will not stem from a dimensional reduction of four dimensional
gravity, but upon quantization will turn out to approximate four dimensional spheri-
cal gravity around a flat background without a topological defect.

We will take the first point of view and write the Hamiltonian constraint, equations
4.57 and 4.58 as, H = Hvac +G Hmatt, with

Hvac =
(
−x(1−2Λ)−xK 2

ϕ+
x3

(Eϕ)2

)′
, (4.74)

Hmatt =
P 2

f

(Eϕ)2
+ x4( f ′)2

(Eϕ)2
−2

xKϕP f f ′

Eϕ
−ρvac, (4.75)

whereΛ= G
2 ρvac and ρvac is the vacuum energy density. We choose ~= c = 1 units. This

rewriting of the constraint has the property that the expectation value of Hmatt will be
zero in the vacuum.

4.5 Full quantization of the model

We would like to write the master constraint based on the Hamiltonian constraint of
the model we introduced in the last section. Although the discrete Hamiltonian con-
straint fails to close a first class algebra, it has been shown in [30] that with the uni-
form discretization technique, one can consistently treat the problem by minimizing
the resulting master constraint. To write the master constraint at a quantum level we
will polymerize [31] the expression of the gravitational part of the constraint. We will
not use a polymer representation in the scalar sector in this chapter for simplicity and
because we want to make contact with the usual treatments based on a Fock quan-
tization. It is known that the Fock quantization for fields can be recovered from the
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polymer quantization [31, 32]. In the next chapter we will polymerize the scalar matter
field as well as the gravitational degrees of freedom.

4.5.1 Variational technique to study the expectation value of the mas-
ter constraint

Here we will introduce a variational technique to minimize the master constraint. The
technique is general and is not restricted to the model we study in this paper. We start
by considering a fiducial Hilbert space Haux in which the master constraint is a well
defined self-adjoint operator. We will then use a variational technique to find approxi-
mations to the minimum value of the expectation value of the master constraint within
this space. In many cases of interest, the minimum expectation value will not be zero,
but will be small (the master constraint has units of action squared, so normally one
would require it to be much smaller than ~2, in order to have a good approximation of
the physical space, and in our units that translates into much smaller than one). As we
will see in the examples, the resulting quantum theory will therefore not reproduce ex-
actly the symmetries of the continuum theory but it will approximate them, even at the
quantum level. We will see that if zero is in the spectrum of the master constraint op-
erator, the corresponding eigenstates in many cases will be distributional with respect
to the fiducial space we are considering.

To implement the variational method, we consider trial states in Haux that are
Gaussians centered around the classical solution of the model of interest in phase
space. That means that as functions of Haux, these will generically be Gaussians times
phase factors such that the resulting state is centered around the classical solution in
both configuration variables and momenta. The states are parametrized by the val-
ues of the standard deviations of the Gaussians in either configuration or momentum
space. A caveat is that in gauge theories one may choose to work with a classical solu-
tion that is not in a completely determined gauge. Such a solution will be a trajectory
in phase space. Such a trajectory will determine some of the canonical variables as
functions of others, which will remain free. In that case one has to allow such variables
to be free in the trial solution by considering Gaussians centered around a value that is
a free parameter. If one chooses to work with a classical solution in a completely spec-
ified gauge one just considers Gaussians around the point in phase space represented
by the classical solution of interest and extremizes the expectation value of the mas-
ter constraint with respect to the standard deviations of the Gaussians. It can happen
that the extremum occurs as a limit in the parameter space, in which case the resulting
state does not belong in Haux but in its dual (after a suitable rescaling, it becomes a
distribution).

Before attacking the problem of interest, it is useful to see the technique we just
described in action in a couple of simple examples. The first example we choose is a
system with two degrees of freedom q1, p1 and q2, p2, and two constraints p1 = 0 and
p2 = 0. The total Hamiltonian for the system is HT = N1p1 +N2p2 with N1,2 Lagrange
multipliers. The states annihilated by the constraints are trivial and given by the dis-
tribution δ(p1)δ(p2). We fix a gauge q1 − q2 = 0. Fixing the gauge is not needed in a
simple model like this, but may be a necessity to simplify things in more complicated
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models. So we will choose a gauge fixing here to show that in the end, the process loses
all information about the gauge fixing and recovers the correct physical state. This re-
quires fixing the Lagrange multipliers so there is only one (N ) is left at the end and
the total Hamiltonian becomes HT = N (p1 +p2). The conjugate variable to the gauge
fixing, p1 −p2 is strongly zero. We start with a two parameter family of states in Haux

choosing as configuration variables q1 −q2 and p1 +p2,

ψσ±,β =
1√

π
p
σ+σ−

exp

(
−

(
q1 −q2

)2

2σ−

)
exp

(
−

(
p1 +p2

)2

2σ+

)
exp

(
iβ

(
p1 +p2

))
, (4.76)

with β an arbitrary parameter associated with the fact that the variable q1+q2 is a pure
gauge. One could choose to work in a completely gauge fixed solution in which q1+q2

is zero, in that case there is no need to introduce the parameter β. The choice of this
family of states is based on the fact that they describe wave-packets centered around
the classical solutions of the constraints, q1 − q2 = 0, p1 − p2 = 0 and p1 + p2 = 0. We
now define the master constraint

H= p2
1 +p2

2, (4.77)

and act on this space of states. The expectation value is,

〈ψσ±,β|H|ψσ±,β〉 =
1

4σ−
+ 1

4
σ+, (4.78)

where
p
σ± are the standard deviations of the Gaussians,σ± is taken to be positive. One

therefore sees that the expectation value cannot be zero for any finite value of the σ’s.
However, if one takes σ− = 1

2ε2 and σ+ = 2ε2, then in the limit ε→ 0 we get 〈H〉 =O(ε2).
The states |ψε〉 become

〈q1 −q2, p1 +p2|ψε〉 = 1p
π

exp
(
−(

q1 −q2
)2
ε2

)
exp

(
−

(
p1 +p2

)2

4ε2

)
exp

(
iβ

(
p1 +p2

))
,

(4.79)
And their Fourier transform becomes

〈p1 −p2, p1 +p2|ψε〉 = 1

ε
p

2π
exp

(
−

(
p1 −p2

)2

4ε2

)
exp

(
−

(
p1 +p2

)2

4ε2

)
exp

(
iβ

(
p1 +p2

))
.

(4.80)
These states are normalized in Haux but they vanish (in the sense of distributions)

in the limit ε→ 0. They need to be rescaled in order to end up with well defined distri-
bution on some suitable subspace of Haux.

So the physical states would be

〈p1 −p2, p1 +p2|ψ〉ph ≡ lim
ε→0

1p
2πε

〈p1 −p2, p1 +p2|ψε〉

= 2δ(p1 +p2)δ(p1 −p2)

= δ(p1)δ(p2). (4.81)
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Notice that the parameter β is free at the end of the process since it corresponds to the
value of a variable that is pure gauge in this model.

There is an additional element that the above example does not capture and we
would like to discuss. When we apply this technique in situations of interest, we will
be discretizing the theories we analyze. Usually, discretization turns first class con-
straints into second class ones. The uniform discretization procedure tells us that we
do not need to concern ourselves with the second class nature of the constraints (for
a discussion see [30]). We can still consider the master constraint and seek the mini-
mization of its eigenvalues, but the presence of second class constraints in the discrete
theory usually implies that the minimum eigenvalue of the master constraint will not
be zero. The best one can hope for, is that it will be small and the resulting quantum
theory will approximate the symmetries of the theory one started with. This is a point
of view that has been held as natural for some time in the context of quantum grav-
ity, where one expects that some level of fundamental discreteness will emerge. We
would like to illustrate this with a modification of the previous example. Instead of
taking p1 = 0 and p2 = 0 as the constraints we will take p1 +αq2 = 0 and p2 = 0 with
α a small parameter (in realistic theories the small parameter is related to the lattice
spacing in the discretization). We will still take the same set of ψσ±,β as before, that is,
for the trial solution we have chosen, Gaussians centered around classical solutions of
the gauge theory where the anomalous term vanishes. We do this because one usually
knows solutions to the continuum theory one wishes to approximate (e.g. flat space
or the Schwarzschild solution in the case of gravity) whereas the discrete theories have
complicated solutions that usually cannot be treated in analytic form. The master con-
straint now becomes,

H= p2
1 +p2

2 +2αp1q2 +α2q2
2 , (4.82)

and using the same ansatz (4.76) for the states, one finds that

〈ψσ±,β|H|ψσ±,β〉 =α2β2 + 1

4σ−
+ 1

4
σ++ α2

2σ+
+ α2σ−

2
. (4.83)

We would like to identify a limit in the variablesσ± such that this quantity vanishes. As
was to be expected, this is not possible. We can attempt to find values of the parameters
σ± and β that minimize this expression. The result is β = 0, σ+ =p

2α and σ− = 1p
2α

.

which yields 〈ψmin|H|ψmin〉 =
p

2α. The state is,

〈p1, p2|ψmin〉 = exp

(
−

(
p2

1 +p2
2

)p
2

α

)√p
2

απ
. (4.84)

It is interesting to compare this state and the corresponding expectation value of
H obtained from our variational technique with the exact minimum of this model. A
naive analysis would tell us that the minimum corresponds to an exact eigenstate with
zero eigenvalue for H. However, that solution is not well behaved. It is known that
one can find solutions of the master constraint that do not solve the constraints if one
does not impose regularity in the solutions found [33]. The master constraint is an op-
erator in the Hilbert space and one can analyze its spectral resolution. The spurious
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solutions do not belong in the spectral resolution of the master constraint. In this case
one can solve exactly the eigenvalue problem H|ψ〉 = E |ψ〉. The solutions with min-
imum eigenvalue are of the form δ(p1)ψ0(p2) where ψ0(p2) is the fundamental state
of the Hamiltonian of a harmonic oscillator in the momentum representation. The
minimum eigenvalue for such exact solution is α (compare with the variational one,
in which the eigenvalue was slightly higher

p
2α). It is also interesting to note that if

instead of choosing the gauge q1 − q2 = 0 we had chosen q1 = 0 and proceeded with
the variational technique, we would have obtained the exact state directly. This illus-
trates that the method approximates well the state of interest in situations where zero
is not in the kernel of the master constraint. The solution that minimizes the master
constraint admits a very simple interpretation that shows the uniform discretization
of the theory with the anomalous term α, small but non-vanishing, approximately re-
produces the invariances of the theory with first class constraints p1 = p2 = 0. In fact
q1 and q2 are gauge variables and the physical space is independent of these variables.
The physical state is constant in q1 and q2. For a small but non vanishing α, the phys-
ical states are independent of q1 and weakly dependent on q2. A final comment is
that in this case the parameter β, which was not determined in the case with first class
constraints, gets determined here. That is, in the case where β was associated with an
exact gauge symmetry, the minimization of the master constraint was insensitive to the
value of β. In the case where the constraints are second class and we do not get zero
as minimum of the master constraint, there is some dependence on β, but it is weak,
since the term in the master constraint is β2α2 and α is small (in the quantum state
one has approximately δ(p)exp(i pβ)). The theory where one does not exactly annihi-
late the master constraint only has approximate gauge symmetries and therefore has
slightly “preferred” gauges from the point of view of minimizing the master constraint.

4.5.2 The discrete master constraint

Let us now consider the complete Hamiltonian constraint. We wish to discretize it and
to polymerize the gravitational variables. The Hamiltonian gets rescaled in the dis-
cretization H(xi ) → H(i )/ε. We also rescale the expression multiplying the continuum
Hamiltonian constraint times G . The resulting discrete expression is,

H(i ) =−(1−2Λ)ε−x(i +1)
sin2

(
ρKϕ(i +1)

)
ρ2

+x(i )
sin2

(
ρKϕ(i )

)
ρ2

+ x(i +1)3ε2

(Eϕ(i +1))2
− x(i )3ε2

(Eϕ(i ))2

+G

(
ε

(P f (i ))2

(Eϕ(i ))2
+εx(i )4

[
f (i +1)− f (i )

]2

(Eϕ(i ))2

−2x(i )
sin

(
ρKϕ(i )

)
Eϕ(i )ρ

[
f (i +1)− f (i )

]
P f (i )−ρvacε

)
. (4.85)

We need to construct the master constraint. Since the Hamiltonian is a density
of weight one, we define the master constraint associated with the Hamiltonian con-
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straint in the full theory as,

H= 1

2

ˆ
d x

H(x)2

p
g

`P, (4.86)

or, in terms of the variables of the model, (4.16), up to a constant factor,

H= 1

2

ˆ
d x

H(x)2

(Eϕ)
p

E x
`P, (4.87)

and in the discretized theory
Hε =∑

i
H(i ), (4.88)

with

H(i ) = 1

2

H(i )2`Pp
E x(i )Eϕ(i )

. (4.89)

The constant `P must be introduced so that H is dimensionless with ~ = c = 1, one
could use

p
G instead of it. It is convenient to rescale the Hamiltonian constraint byp

Eϕ/(E x)′. This does not change the density weight. If one does not rescale things it
turns outH is proportional to 1/Eϕ. In the polymer representation this implies that the
vacuum is the “zero loop” state, which is degenerate (it corresponds to zero volume
space-times). To eliminate this unphysical possibility one exploits the fact that the
Hamiltonian constraint is defined up to a factor given by a scalar function of the canon-
ical variables without changing the first class nature of the classical constraint algebra.
The rescaling factor in the discrete theory after the gauge fixing is

p
Eϕ(i )/(2x(i )ε). So

(4.85) has to be multiplied times that factor when constructing the master constraint
(4.89).

Let us focus on the matter portion of the Hamiltonian, we will write it as,

Hmatt(i ) = H (1)
matt(i )

(Eϕ)2(i )
+ H (2)

matt(i )sin
(
ρKϕ(i )

)
ρEϕ(i )

−H (3)
matt(i ). (4.90)

The master constraint can be written as,

H(i ) = `P

[
c11(i )

(
H (1)

matt(i )
)2 + c22(i )

(
H (2)

matt(i )
)2 + c33(i )

(
H (3)

matt(i )
)2

+ c1(i )H (1)
matt(i )+ c2(i )H (2)

matt(i )+ c3(i )H (1)
matt(i )+ c00(i )

+c12(i )H (1)
matt(i )H (2)

matt(i )+ c13(i )H (1)
matt(i )H (3)

matt(i )+ c23(i )H (2)
matt(i )H (3)

matt(i )
]

, (4.91)

where

H (1)
matt(i ) =

(
ε
(
P f (i )

)2 +εx(i )4 (
f (i +1)− f (i )

)2
)
`2

P , (4.92)

H (2)
matt(i ) = (−2x(i )

(
f (i +1)− f (i )

)
P f (i )

)
`2

P , (4.93)

H (3)
matt(i ) = 2ρvacε`

2
P . (4.94)

We will not give the classical expressions for the coefficients, since they can be readily
obtained from the quantum expressions below.
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In order to quantize the master constraint we need to choose a factor ordering.
The expression of the master constraint is a sum of symmetric operators consisting of
polynomials in Êϕ and sin(ρK̂ϕ), P̂ f and f̂ . We choose a factor ordering with the factors
of Êϕ are distributed symmetrically to the right and the left of the factors of sin(ρK̂ϕ).
For the factors P̂ f and f̂ we follow a similar strategy, putting the P̂ f symmetrically to

the left and to the right of f̂ ’s. The coefficients in the above expression of the master
constraint with this factor ordering are,

ĉ11(i ) = 1

4x(i )2εÊϕ(i )4
, (4.95)

ĉ12(i ) = 1

2x(i )2ρε

1

Êϕ(i )3/2
sin(ρKϕ(i ))

1

Êϕ(i )3/2
, (4.96)

ĉ13(i ) =− 1

2x(i )2ε

1

Êϕ(i )2
, (4.97)

ĉ22(i ) = 1

8x(i )2ρ2ε

(
1

Êϕ(i )2
− 1

Êϕ(i )
cos(2ρKϕ(i ))

1

Êϕ(i )

)
, (4.98)

ĉ23(i ) =− 1

2x(i )2ρε

1√
Êϕ(i )

sin(ρKϕ(i ))
1√

Êϕ(i )
, (4.99)

ĉ33(i ) = 1

4x(i )2ε
, (4.100)

ĉ1(i ) =− x(i )ε

2Êϕ(i )4
+ 1

4εx(i )2Êϕ(i )

(
−2ε(1−2Λ)+ x(i +1)cos(2ρKϕ(i ))

ρ2
− x(i +1)

ρ2

)
1

Êϕ(i )

− 1

Êϕ(i )

cos(2ρKϕ(i ))

4x(i )ρ2ε

1

Êϕ(i )
+ 1

4x(i )ρ2εÊϕ(i )2
+ εx(i +1)3

2x(i )2

1(
Êϕ(i )Êϕ(i +1)

)2 ,

(4.101)

ĉ2(i ) =
[
− 1

2ρx(i )2 (1−2Λ)+ x(i +1)

4ρ3x(i )2ε

(
cos(2ρKϕ(i +1))−1

)+ 3

8ρ3x(i )ε

+ εx(i +1)3

2ρx(i )2Êϕ(i +1)2

]
× 1√

Êϕ(i )
sin(ρKϕ(i ))

1√
Êϕ(i )

− 1

8ρ3x(i )ε

1√
Êϕ(i )

sin(3ρKϕ(i ))
1√

Êϕ(i )

− x(i )ε

2ρ

1

Êϕ(i )3/2
sin(ρKϕ(i ))

1

Êϕ(i )3/2
, (4.102)

ĉ3(i ) = 1

2x(i )2
(1−2Λ)+ x(i +1)

4x(i )2ερ2

[
1−cos(2ρKϕ(i +1))

]
− 1

4x(i )ερ2

[
1−cos(2ρKϕ(i ))

]+ x(i )ε

2Êϕ(i )2
− εx(i +1)3

2x(i )2Êϕ(i +1)2
, (4.103)

ĉ00(i ) = 1

32ερ4

(
3−4cos(2ρKϕ(i ))+cos(4ρKϕ(i ))

)
+ ε

4x(i )2
+ x(i +1)

4x(i )2ρ2

[
1−cos(2ρKϕ(i +1))

]
− x(i +1)

8x(i )ερ4

(
1−cos(2ρKϕ(i ))−cos(2ρKϕ(i +1))+cos(2ρKϕ(i ))cos(2ρKϕ(i +1))

)
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+ x(i +1)2

32ερ4x(i )2

(
3+cos(4ρKϕ(i +1))−4cos(2ρKϕ(i +1))

)
− Λx(i +1)

2x(i )2ρ2

(
1−cos(2ρKϕ(i +1))

)
− 1

4x(i )ρ2
(1−2Λ)

[
1−cos(2ρKϕ(i ))

]− εΛ

x(i )2
(1−Λ)

+ εx(i +1)3

4x(i )ρ2

(
1

Êϕ(i +1)2
− 1

Êϕ(i +1)
cos(2ρKϕ(i ))

1

Êϕ(i +1)

)
− x(i )ε

4ρ2

(
x(i )

(
1

Êϕ(i )2
− 1

Êϕ(i )
cos(2ρKϕ(i ))

1

Êϕ(i )

)
−x(i +1)

(
1

Êϕ(i )2
− 1

Êϕ(i )
cos(2ρKϕ(i +1))

1

Êϕ(i )

))
− εx(i +1)4

4x(i )2ρ2

(
1

Êϕ(i +1)2
− 1

Êϕ(i +1)
cos(2ρKϕ(i +1))

1

Êϕ(i +1)

)
+ x(i )ε2

2Êϕ(i )2
(1−2Λ)− ε2x(i +1)3

2x(i )2Êϕ(i +1)2
(1−2Λ)+ ε3x(i +1)6

4x(i )2Êϕ(i +1)4

− x(i )ε3x(i +1)3

2
(
Êϕ(i +1)Êϕ(i )

)2 + x(i )4ε3

4Êϕ(i )4
, (4.104)

and it should be noted that the coefficients commute with H (1)
matt, H (2)

matt and H (3)
matt so

there are no ordering issues with them.

4.5.3 Construction of the trial states

Since we are interested in the vacuum solution, that classically corresponds to vanish-
ing scalar fields, f = P f = 0, we will therefore ignore Hmatt (4.75) and only consider the
gravitational part (4.74) in order to construct the classical solution used to build the
ansatz states for the variational technique,

Hvac =
(
−x(1−2Λ)−xK 2

ϕ+
x3

(Eϕ)2

)′
. (4.105)

As we discussed in (4.5.1), we will choose a definite gauge to work in. Our choice is
Kϕ = 0, and this implies

Eϕ = xp
1−2Λ

(4.106)

from above (4.105). As we claimed before, the presence of the cosmological constant
rescales the radial variable (recall that without the constant the solution was Eϕ = x).
The resulting four dimensional space-time will be locally flat with a solid deficit angle
and described in spherical coordinates.

We construct a polymer representation. As it has been described in [23], one sets
up a lattice of points j = 0. . . N in the radial direction and writes a “point holonomy”
for the Kϕ variable at each lattice site,

T~µ = exp

(
i
∑

j
µ j Kϕ( j )

)
= 〈Kϕ|~µ〉. (4.107)
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In this expression, the quantities µi play the role of the “loop” in this one dimensional
context. They are also proportional to the eigenvalues of the triad operator Êϕ(i ). The
quantum state we will choose for the variational method will be centered around the
classical solution and therefore we will choose to have the variable µi centered at the
classical value of Eϕ(i ) = εx1(i ) ≡ εx(i )/

p
1−2Λ,

〈~µ|ψ~σ〉 =
∏

i

4

√
2

πσ(i )
exp

(
− 1

σ(i )

(
µi − x1(i )ε

`2
P

)2)
. (4.108)

On this state 〈Eϕ(i )〉 = εx1(i ) and 〈Kϕ(i )〉 = 0. Notice that this type of ansatz in general
will be too restrictive: we have ignored possible correlations among neighboring points
by assuming a Gaussian at each point. This could potentially be problematic when
studying excited states and computing propagators. We will study those problems in
the following chapters, so we will continue with the restrictive ansatz for the moment
being.

We will now compute the expectation value of the matter portion of the Hamilto-
nian constraint in (4.90) on the above state. The result will be an operator acting on
the matter fields. We will then construct the vacuum for the resulting operator. What
we are doing is to construct a quantum field theory living on the geometry given by the
expectation values of the triad and extrinsic curvature on the above state. We proceed
in this way for expediency since this is our first approach to the problem. In the next
chapters, we revisit the problem treating all the variables in a polymerized representa-
tion, both gravitational and material ones, with the variational technique.

For the matter field one would start by considering a coherent state centered at zero
values for the field and then will obtain the vacuum as a limit. This would yield valuable
insights into the relation of the usual Fock quantization with the loop quantum gravity
techniques, especially when one gets to discuss physical elements like the propagators
of fields.

In order to take the expectation value of the matter portion of the Hamiltonian con-
straint, (4.90) on the state (4.108), we need to realize two quantum operators. The first
one is,

1(
Êϕ(i )

)2 〈µ(i )|ψσ(i )〉 =
(

2

3

)12 ∣∣µ(i )
∣∣((∣∣µ(i )+ρ∣∣)3/4 − (∣∣µ(i )−ρ∣∣)3/4

)12

× 4

√
2

πσ(i )
exp

−
(
µ(i )− εx1(i )

`2
P

)2

σ(i )

 , (4.109)

where we have considered the action on one of the factors of (4.108). To derive this
expression we consider

(
Êϕ

)−3/2
Êϕ

(
Êϕ

)−3/2
and use the realization of

(
Êϕ

)−3/2
that

was discussed in the context of loop quantum cosmology in [34]. The reason we can
use the loop quantum cosmology results is that our Hilbert space is a direct product
of loop quantum cosmology Hilbert spaces each at one of the lattice sites in the radial

57



Ch.4. Hamiltonian analysis of the 3+1 spherically symmetric model 4.5

direction. With the above result one can compute the expectation value,

〈ψ~σ|
1(

Êϕ(i )
)2 |ψ~σ〉 =

1−2Λ

ε2x(i )2
+ 5

8

`4
P (1−2Λ)2ρ2

ε4x(i )4
+ 3

4

σ`4
P (1−2Λ)2

ε4x(i )4
. (4.110)

The calculation is done by integrating in~µ and the result is lengthy, here we just show it
in the approximation ε> `P. The first term is the classical value. The rest are quantum
corrections in which the first one comes from the polymerization, the second from
fluctuations in ~µ. The second operator we need is the one arising in the second term
of the Hamiltonian (4.90), i.e.

〈ψ~σ|
1√

Êϕ(i )

sin(ρK̂ϕ(i ))

ρ

1√
Êϕ(i )

|ψ~σ〉 = 0. (4.111)

To quickly see why this is zero keep in mind that the state is a Gaussian centered at
Kϕ = 0 and the sine is an odd function. With these results the expectation value of the
Hamiltonian (4.90) (the “effective Hamiltonian”) is,

Ĥ eff
matt = 〈ψ~σ|Ĥmatt(x, t )|ψ~σ〉 =

(1−2Λ)
(
P̂ f (x, t )

)2

x2g (x)2
+x2 (1−2Λ)

(
f̂ ′(x, t )

)2

g (x)2
−ρvac. (4.112)

In this equation we have pursued the unusual approach of taking the continuum limit
in the terms that involve derivatives and the terms that involve the momenta of the
scalar field. This simplifies calculations since we will be dealing with differential equa-
tions rather than difference equations. The idea is that the solutions to the differential
equations, suitably discretized, will be a good approximation (at least to O (ε) correc-
tions) to the solutions of the difference equations. In the above expression the quantity
g (x) is given by,

g (x) = 1− 5

16

`4
Pρ

2(1−2Λ)

x2ε2
− 3

8

σ(x)`4
P(1−2Λ)

x2ε2
. (4.113)

By finding ḟ and Ṗ f from the effective Hamiltonian, we get the “wave equation” for
the fields living on the curved semiclassical background,

2

x

∂ f (x, t )

∂x
− 2

g (x)

∂ f (x, t )

∂x

∂g (x)

∂x
+ ∂2 f (x, t )

∂x2
− 1

4

g (x)4

(1−2Λ)2

∂2 f (x, t )

∂t 2
= 0. (4.114)

Since the background is time-independent, positive and negative frequency modes
can be introduced by going to Fourier space in t . The resulting equation can be cast in
Sturm–Liouville form as,

(
2B(x) f ′(x,ω)

)′+ ω2

2
f (x,ω)A(x) = 0, (4.115)

where

A(x) = x2

1−2Λ
− 5

8

`4
Pρ

2

ε2
− 3

4

σ`P

ε2
, (4.116)

B(x) = x2 (1−2Λ)+ 5

8

`4
Pρ

2

ε2
+ 3

4

σ`4
P

ε2
(4.117)
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The solution to this Sturm–Liouville problem is

f (x,ω) =1

x
sin

(
ωx

2(1−2Λ)

)
− 1

3x3

[
x2ω2 cos

(ωx

2

)
Si(ωx)− x

2
ωcos

(ωx

2

)
−x2ω2 sin

(ωx

2

)
Ci(ωx)+ sin

(ωx

2

)]
× `4

P

4ε2

[
5ρ2

2
+3σ

]
, (4.118)

where Si(x) ≡ ´ x
0 d t sin(t )/t , and Ci(x) ≡ γ+ ln(x)+´ x

0 d t (cos(t )−1)/t are the sine in-
tegral and cosine integral functions respectively and Euler’s Gamma is given by γ =
0.5772156649. This solution neglects terms with higher powers than `4

P/(εx)2. The first
term in the bracket in (4.118) corresponds to the standard spherical mode decompo-
sition in (locally) flat space-time. The next parenthesis includes two terms that are
corrections, the first, involving ρ, due to polymerization and the next, involving σ, is
a quantum correction. These terms would not be present in a treatment of quantum
field theory on a classical space-time. Using the Hamilton equations from (4.112) we
can compute P f ,

P f (x, t ) = x2g (x)2

2
p
ω(1−2Λ)

∂ f (x, t )

∂t
, (4.119)

and use it back to compute the effective Hamiltonian (4.112),

Ĥ eff
matt = (1−2Λ)

ˆ 2π/ε

0
dωω ˆ̄C (ω)Ĉ (ω). (4.120)

To obtain this expression we note that the solution (4.118) can be written as f (x, t ) =´∞
0 dωu(x,ω)h(ω, t ) where h(ω, t ) is the last parenthesis in (4.118). Notice that we have

introduced a lattice cutoff for the frequency 2π/ε. Then one uses the lattice version
of the closure relation

´∞
0 dωu(x,ω)u(x ′,ω) = 2δ(x − x ′)/A(x) and the orthogonality

relation
´∞

0 d x A(x)u(x,ω)u(x,ω′)/2 = δ(ω−ω′).
We have therefore concluded the computation of the state that we will use as a trial

in the variational method. It will be given by a direct product of the vacuum of the
matter part of the Hamiltonian (4.120) and the Gaussian (4.108) on the gravitational
variables.

|ψtrial
~σ 〉 = |ψ~σ〉⊗ |0〉. (4.121)

The parameters ~σ will be varied to minimize the master constraint. Notice that the
state is a direct product because we are considering the vacuum. If we were to consider
excitations then there might be entanglement between the matter and gravitational
variables [35].

4.5.4 Minimizing the master constraint

The realization of the master constraint (4.91) as a quantum operator depends on the
realization of six key operators as can be seen from the coefficients (4.95) to (4.104). We
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proceed to present their expectation values here. We start by the operators involving
the cosine of K̂ϕ,

〈ψtrial
~σ |cos

(
2ρK̂ϕ(i )

) |ψtrial
~σ 〉 = exp

(
− 2ρ2

σ(i )

)
, (4.122)

〈ψtrial
~σ |cos

(
4ρK̂ϕ(i )

) |ψtrial
~σ 〉 = exp

(
− 8ρ2

σ(i )

)
. (4.123)

We then consider the powers of the inverse of Êϕ. We already computed the expec-
tation value of the square in (4.110). Here we list the other needed powers,

〈ψtrial
~σ | 1(

Êϕ(i )
)4 |ψtrial

~σ 〉 = (1−2Λ)2

ε4x(i )4
+ 5

4

`4
P (1−2Λ)3ρ2

ε6x(i )6
+ 5

2

σ`4
P (1−2Λ)3

ε6x(i )6
,

(4.124)

〈ψtrial
~σ | 1

Êϕ(i )
cos

(
2ρK̂ϕ(i )

) 1

Êϕ(i )
|ψtrial
~σ 〉 = 1−2Λ

ε2x(i )2 exp( 2ρ2

σ )

(
1+ 5

2

ρ2l 4
p

ε2x(i )2
+ 3

4

σl 4
p

ε2x(i )2

)
,

(4.125)

and

〈ψtrial
~σ | 1(

Êϕ(i )
)3/2

sin
(
ρK̂ϕ(i )

) 1(
Êϕ(i )

)3/2
|ψtrial
~σ 〉 =0, (4.126)

〈ψtrial
~σ | 1√

Êϕ(i )
sin

(
ρK̂ϕ(i )

) 1√
Êϕ(i )

|ψtrial
~σ 〉 =0, (4.127)

〈ψtrial
~σ | 1√

Êϕ(i )
sin

(
3ρK̂ϕ(i )

) 1√
Êϕ(i )

|ψtrial
~σ 〉 =0. (4.128)

With these results we can proceed to compute the expectation value of the mas-
ter constraint on the gravitational state. The result will be an operator acting on the
matter part. The calculation of the expectation values of the coefficients ĉi and ĉi j

(4.95)-(4.104) is straightforward, but lengthy. We will not list the results here. What is
more challenging is the computation of the expectation value of the matter part of the
expansion of (4.91). It helps that some of the coefficients vanish. The non-vanishing
contributions are,

〈ψ~σ|Ĥ(i )|ψ~σ〉 =`P

[
〈ĉ11(i )〉

( áH (1)
matt(i )

)2
+〈ĉ22(i )〉

( áH (2)
matt(i )

)2

+〈ĉ33(i )〉
( áH (3)

matt(i )
)2
+〈ĉ13(i )〉áH (1)

matt(i ) áH (3)
matt(i )

+〈ĉ1(i )〉áH (1)
matt(i )+〈ĉ3(i )〉áH (1)

matt(i )+〈ĉ00(i )〉
]

. (4.129)

We now need to compute the expectation value of this operator on the matter vac-
uum. To do this we again use the procedure of going to the continuum limit in the
matter terms involving derivatives and momenta and integrating in the frequencies
with an ultraviolet cutoff. Let us start with H (1)

matt(i ). The continuum limit expression is

H (1)
matt(x, t ) = `2

P

((
P f (x, t )

)2 +x4 (
f ′(x, t )

)2
)

. (4.130)
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We now substitute P f and f by their mode decomposition and get a quadratic expres-

sion in the Ĉ ’s and u′s. The expectation value only gets contributions from the Ĉ ˆ̄C
terms. The result is,

〈0|Ĥ (1)
matt|0〉 = l 2

p

ˆ 2π
ε

0
dω

1

8ω(1−2Λ)
[A(x)2u2(x,ω)ω2(1−2Λ)2 +4x4(∂xu(x,ω))2],

(4.131)
and substituting u(ω, x) and A(x) we obtain,

〈0|Ĥ (1)
matt(x)|0〉 = l 2

p (1−2Λ)A(x)2

(
π2

8x2ε2
+ 1

8x4
− cos2

(
πx
ε

)
8x4

− πsin
(
πx
ε

)
cos

(
πx
ε

)
4x3ε

)

+
l 2

p

(1−2Λ)

(
π2x2

8ε2
+ ln(2)

4
+ xπcos

(
πx
ε

)
sin

(
πx
ε

)
4ε

− 5

8
sin2

(πx

ε

)
+ 1

4
Cin

(πx

ε

))
,

(4.132)

where Cin(x) = γ+ ln x −Ci(x). One can get a more manageable expression, which we
will use in the rest of the paper by ignoring corrections of `4

P and neglecting the highly
oscillating terms that involve sin(πx/ε) or cosines and the integral cosines. The result
is,

〈0|Ĥ (1)
matt(x)|0〉 =

l 2
p

4(1−2Λ)

(
−2+ π2x2

ε2
+ ln(2)+γ+ ln

(πx

ε

))
, (4.133)

and the dominant term is π2x2/ε2. Reverting to the discrete theory, it reads,

〈0|Ĥ (1)
matt(i )|0〉 =

l 2
pε

3

4(1−2Λ)

(
−2+ π2x(i )2

ε2
+ ln(2)+γ+ ln

(πx

ε

))
. (4.134)

The procedure to compute the expectation value of the other terms in (4.129) is exactly
the same, but the size of the expressions involved is quite larger so we will not write
them down here.

The result for the expectation value of the integrand of the master constraint is,

〈Ĥ(x)〉 =σ0`
3
P

εx2
+

(
8
π2

ε3x2
+ 32

εx4
ln

(
L

ε

)
−

(
γ−2+ ln

(2πx
ε

))
π

εx4(1−2Λ)

+ 1

96

π3

ε5x2σ0(1−2Λ)2
− 1

48

Λπ3

ε5x2σ0(1−2Λ)2
− 43

128

Λπ

ε3x4σ0(1−2Λ)2

+ ε(γ−2+ ln
(2πx

ε

)
)π

x4(1−2Λ)L2
+8

επ2

x2L4
− 2π

εx4(1−2Λ)
ln

(
L

ε

)
−16

π2

εx2L2

+ 1

32

π

εx4(1−2Λ)2
+ 1

48

π3

ε3x2(1−2Λ)2
+ 32ε

x6π2

(
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(
L

ε

))2

− π3
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π

σ0ε3x2
− 32

x4L2
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L
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)
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σ0π

x3L2
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π

ε3x4σ0(1−2Λ)2
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σ0εx4π
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(
L

ε

)
− 1
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4x2εσ0 +4xσ3

0ε
2 +4σ0ε

2x +7σ3
0ε
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)

(x +ε)σ2
0x5ε4
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(

1

4
π2x2 + 1

4
ε2

(
γ−2+ ln

(
2πx

ε
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σ0π

(x +ε) x2ε2
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+3
σ0π

(x +ε) x2L2
− 6σ0

(x +ε)x4π
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(
L

ε

)
−4

π

x2εσ0L2
+ π3

εx2(1−2Λ)L2

−2
ε

x6(1−2Λ)π

(
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(
2πx

ε
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(
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+3
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σ0

x5π
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(
L
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− 1
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ε

x6(1−2Λ)2π
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`5

P. (4.135)

We have assumed
σ=σ0ε

2/`2
P, (4.136)

with σ0 of order unity and we have neglected the terms of order O (`7
P) and higher. Also

we have assumed σ to be independent of x in order to simplify the above expression,
which otherwise becomes too large. Experiments we have carried out suggest that al-
lowing variations in x leads to the same minimum value of σ approximately indepen-
dent of x.

We would like to study the minimum of the master constraint as a function of σ0

for different choices of ε/`P. Notice that we have assumed σ0 to be of order one. One
can change that by varying the ansatz for σ above, including other powers ε/`P differ-
ent than 2. We have carried out such experiments. The results can be summarized as
follows.

e
5#10 - 33 1#10 - 32 1.5#10 - 32 2#10 - 32 2.5#10 - 32 3#10 - 32

H

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.1: The expectation value of the master constraint as a function of the lattice spacing. We see

that the value of the master constraint is small unless one chooses lattice separations of the order of the

Planck length, 10−33 cm. The figure does not show it, but for separations of the order of 10−23cm the

master constraint is very small, of the order of 10−20 (we are using units in which ~ is one and therefore

the master constraint is dimensionless).

In figure (4.1) we show the value of the master constraint as a function of ε (in cen-
timeters) and for σ0 = 10 and σ = σ0ε

3/`3
P. Varying σ0 while keeping it of order one

changes little the shape of the curve. We see that in the approximation studied the the-
ory does not appear to have a continuum limit, but we see that the master constraint
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quickly drops to zero for lattice spacings larger than the Planck scale. Although the fig-
ure suggests that the master constraint drops even further for larger lattice spacings,
the approximation in which we have handled expressions (in which we have neglected
higher powers of ε/`P) is inadequate for large values of ε and the master constraint very
likely will increase its value for large values of ε. So there exists a genuine preferred
value of ε that minimizes the master constraint. Even so, the approximation should be
reliable up to values of ε∼ 10−23cm and for such values the master constraint is of the
order of 10−20, so one sees that this is a regime where one approximates the continuum
theory very well.

We have explored other ranges of σ’s (with different powers of ε/`P). The obser-
vation is the following. For lower powers than three we get a curve that looks similar
to the one shown in the figure, but that grows faster as one approaches smaller lattice
spacings and therefore the minimum occurs farther away from the Planck scale. For
powers higher than 10/3 one violates the approximation that `P/ε is small and the ex-
pressions we derived are not valid. From these considerations and an analysis of the
powers involved, we conclude that the minimum for the master constraint is achieved
for a power of ε/`P in σ close to two and ε∼ 1013`P.

An interesting speculation is that if the minimum of the master constraint happens
in the range mentioned, the cosmological constant, which goes asΛ∼ `2

P/ε2 would not
be of Planck scale but several orders of magnitude smaller.

Another observation of interest is to note what would have happened if instead of
choosing the state peaked around the flat metric (with a topological defect) one would
have chosen the “loop quantum gravity vacuum”, i.e. a state with zero loops which cor-
responds to a degenerate metric |µ(i ) = 0〉. Such a state annihilates the matter Hamil-
tonian in the loop representation and has zero volume. It would be disturbing if this
state yielded a lower value for the master constraint than the state we constructed,
since it would imply that degenerate geometries dominate. This is not the case, as can
be easily seen. For such a state all expectation values (4.122)-(4.128) vanish. One can
check that the expectation value of the master constraint is,

〈Ĥ〉 = 1

8

L`P

ε2ρ
. (4.137)

That is, the result is very large. For ε ∼ `P it goes as L/`P, the size of the universe in
Planck lengths. Therefore these degenerate states are heavily suppressed.

4.6 Summary and discussion

We have studied spherically symmetric gravity coupled to a spherically symmetric scalar
field using loop quantum gravity techniques. The problem has a non-Lie algebra of
constraints and we used the “uniform discretization” technique to treat the dynam-
ics. We used a variational technique to minimize the discrete master constraint. With
the trial states proposed, we were not able to reach a zero eigenvalue for the master
constraint, that is, the theory does not seem to have a quantum continuum limit. The
lowest eigenstate of the master constraint has the form of a direct product of a Fock
vacuum for the scalar field and Gaussian states centered around flat space-time for
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the gravitational variables. Although the theory does not have a continuum limit, it
approximates general relativity well for small values of the lattice separation, which in
turn regularizes the cosmological constant. The lattice treatment we have performed
diverges when one takes the continuum limit. The reader may wonder why loop quan-
tum gravity has failed to act as the “natural regulator of matter quantum field theo-
ries” as claimed, for instance in [13]. The problem arises with the gauge fixing of the
diffeomorphism constraint that we performed at the classical level. This leads us to
variables that have the structure of a Bohr compactification in the “transverse”ϕ direc-
tion, but the variable in the radial direction is a c-number and therefore is not dynam-
ical and has continuous character. There is no chance therefore that loop quantum
gravity based on this gauge fixing could regulate the short distance behavior, which is
responsible for the emergence of the cosmological constant. To tackle this issue one
would have to allow both the diffeomorphism and Hamiltonian constraint to remain in
the theory. The computational complexity would increase importantly, since one will
have to regulate the master constraint in such a way that the resulting states have rem-
nants of diffeomorphism invariance in the discrete theory. This has been successfully
accomplished with uniform discretizations in the Husain–Kuchař model [30], but the
complexity there was considerably reduced by the lack of a Hamiltonian constraint. It
is worthwhile noticing that even if one allowed loop quantum gravity to regulate mat-
ter in the proposed way, the resulting cosmological constant is likely to be finite but
still very large with respect to the current observed value.

In this chapter we made a first exploration of a difficult problem, carried out with
several assumptions and limitations that we have outlined in the text. In the next chap-
ter, we will relax the assumption that one has a Fock vacuum for the scalar field and
will treat both the gravitational and scalar variables on the same footing with the vari-
ational technique for the master constraint. We will study the excited states of mat-
ter and study the modifications in dispersion relations for the matter fields due to the
quantum geometry. One should also relax the gauge fixing of diffeomorphisms to see
if the cosmological constant problem becomes better under control. Other future di-
rections would be to consider solutions centered around non-flat geometries, for in-
stance, including a black hole with the aim of studying if the scalar field states involve
Hawking radiation.
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5
The propagator in the 3+1 model

5.1 Introduction

In previous chapter, in order to study the spherically symmetric case in loop quantum
gravity, we used a “polymer” representation for the gravitational variables but followed
a regular Fock quantization for the scalar field, both for simplicity and to make con-
nections with the ordinary field theory. We found that the state has the form of a direct
product of Gaussians for the gravitational variables at each lattice site times a modi-
fied Fock vacuum for the scalar field variables (the modification is due to the fact that
the background is not globally flat, in 1+1 dimensions the zero point energy of the vac-
uum generates a deficit angle, and also that we incorporate quantum corrections to
the background geometry).

In this chapter we will study the following: First we will verify that the vacuum state
we derived in the last chapter discussed is a good vacuum for the polymerized theory,
at least in the case in which the polymerization parameter is small. We will compute
the expectation value of the master constraint for the fully polymerized theory (both
gravitational and matter degrees of freedom) in the vacuum state to leading order in
the polymerization parameter, and show that the resulting terms are very small. Sec-
ond, we will study the low energy propagator for the scalar field on the above discussed
quantum state. We will see that one has different options for polymerizing the scalar
field and this will lead to different types of propagators. Generically they fall within the
class of propagators considered by Hořava [36]. We will again work in the limit in which
the polymerization parameter is small. The resulting propagators are not Lorentz in-
variant.

It is worthwhile mentioning related recent work. Husain and Kreienbuehl [37] con-
sider the polymerization of a scalar field without assuming spherical symmetry and
proceed to define creation and annihilation operators for the polymerized theory. More
recently, Hossain, Husein and Seahra [38] have analyzed the propagator in that context
and have found Lorentz violations. Their work cannot be directly compared to ours for
reasons we will discuss in section 5.3.2. Laddha and Varadarajan [39] consider a scalar
field in 1+1 dimensions but parametrized, including the embedding variables in their
treatment. They are apparently able to recover Lorentz invariance exactly so the con-
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nection to our work is at the moment unclear.

5.2 Appropriateness of using the Fock vacuum for the scalar
field

To get the state that we derived in the last chapter, we used a Fock vacuum for the
scalar field. The use of the Fock vacuum appeared compelling in part due to the fact
that we were not polymerizing the scalar field in our treatment. Since in this chapter
we will be polymerizing the scalar field, it begs the question of the appropriateness of
continuing to use the Fock vacuum. In this section we would like to show that the Fock
vacuum still yields a very small value for the master constraint even if one polymerizes
the scalar field variables. In other words, the corrections to the Fock representation
due to polymerization are small enough for our purpose.

We start by considering the Hamiltonian of gravity coupled to a scalar field in spher-
ical symmetry we considered in (4.56), (4.57) and (4.58). We will now rescale the vari-
ables,

P orig
f = xP new

f , (5.1)

f orig = f new/x, (5.2)

and will drop the “new” superscript from now on to economize in the notation. The
matter Hamiltonian then becomes,

Hmatt = H (1)

(Eϕ)2 + H (2)Kϕ

Eϕ
, (5.3)

where

H (1) = 1

2
P 2

f x2 + 1

2
f 2 −x f ′ f + 1

2
x2( f ′)2, (5.4)

H (2) = f P f −x f ′P f . (5.5)

We now proceed to discretize and polymerize the matter Hamiltonian,

Hmatt(i ) = H (1)(i )

(Eϕ(i ))2 + H (2)(i )sin
(
ρKϕ(i )

)
ρEϕ(i )

, (5.6)

where,

H (1)(i ) = ε

2
P 2

f (i )x(i )2 + ε3 sin2
(
β f (i )

)
2β2

− ε2x(i )

β2
sin

(
β f (i )

)
sin

(
β

(
f (i +1)− f (i )

))
+ εx(i )2

2β2
sin2 (

β
(

f (i +1)− f (i )
))

, (5.7)

H (2)(i ) = P f (i )

β

(
εsin

(
β f (i )

)−x(i )sin
(
β

(
f (i +1)− f (i )

)))
. (5.8)
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We now write the complete Hamiltonian but expand the trigonometric functions in β

and keep the two lowest orders, e.g. sin(β f )/β ∼ f −β2 f 3/6, we do this so it is clear
that to leading order one will have the same results as in last chapter, and the next
order will be the corrections introduced by the polymerization and we can analyze
their influence. We get for (5.7) and (5.8),

H (1)(i ) = H (1)
lead(i )+H (1)

corr(i ), (5.9)

H (2)(i ) = H (2)
lead(i )+H (2)

corr(i ), (5.10)

for which “lead” refers to leading order and “corr” refers to the correction terms based
on the above expansion of matter Hamiltonian in β and

H (1)
lead(i ) = ε

2
P f (i )2x(i )2 + 1

2
ε3 f (i )2

+ 1

2
εx(i )2 (

f (i +1)− f (i )
)2 −ε2x(i ) f (i )

(
f (i +1)− f (i )

)
, (5.11)

H (1)
corr(i ) =ε

3β2

6

(
−x(i )2

(
f (i +1)− f (i )

)4

ε2
+ x(i )

(
f (i +1)− f (i )

)
f (i )3

ε

+ x(i )
(

f (i +1)− f (i )
)3 f (i )

ε
− f (i )4

)
, (5.12)

H (2)
lead(i ) =ε

(
−x(i )P f (i )

(
f (i +1)− f (i )

)
ε

+P f (i ) f (i )

)
, (5.13)

H (2)
corr(i ) =εβ

2

6

(
x(i )P f (i )

(
f (i +1)− f (i )

)3

ε
−P f (i ) f (i )3

)
. (5.14)

These should be substituted into (5.6) to give the matter Hamiltonian expanded in β.
We are now going to focus on the master constraint. It can be written as,

H(i ) =c11(i )
(
H (1)(i )

)2 + c1(i )H (1)(i )+ c12(i )H (1)(i )H (2)(i )

+ c22(i )
(
H (2)(i )

)2 + c2(i )H (2)(i ), (5.15)

where the c coefficients depend only on the gravitational variables. Substituting the
leading order terms of (5.11) and (5.13) into (5.15), yields the results of last chapter
(taking into account the re-scalings (5.1) and (5.2)). What we want to show now is that
substituting the correction terms into the master constraint (5.15) and taking its ex-
pectation value with respect to the trial vacuum state of the previous paper, yields cor-
rective terms which are very small.

For this, we observe that the contribution of the correction terms to the master
constraint can be written as,

Hcorr(i ) =c11(i )
(
H (1)

lead(i )H (1)
corr(i )

)
+ c1(i )H (1)

corr(i )

+ c12(i )
(
H (1)

lead(i )H (2)
corr(i )+H (2)

lead(i )H (1)
corr(i )

)
+ c22(i )

(
H (2)

lead(i )H (2)
corr(i )

)
+ c2(i )H (2)

corr(i )+ c00(i ), (5.16)

67



Ch.5. The propagator in the 3+1 model 5.2

and we want to show that 〈ψtrial
~σ

|Hcorr(i )|ψtrial
~σ

〉 is very small.
Our strategy is the following: We compute the dominant terms by first going to the

continuum limit and writing (5.11)-(5.14) in their continuum limit form by using,

P f (i ) = εP f (x), (5.17)

Eϕ(i ) = εEϕ(x), (5.18)

f (i ) = f (x), (5.19)

f (i +1)− f (i )

ε
= ∂ f (x)

∂x
. (5.20)

We then substitute in the result the continuum form of (5.11)-(5.14) that we just calcu-
lated and also the Fourier expansions of the f (x) and its conjugate momentum P f (x)
fields, which are,

f (x, t ) = 1

2

ˆ ∞

−∞
dω

(
C (ω)e−iωt + C̄ (ω)e iωt

)
sin(ωx)p

πω
, (5.21)

and

P f (x, t ) = 1

2

ˆ ∞

−∞
dω

−iω
(
C (ω)e−iωt − C̄ (ω)e iωt

)
sin(ωx)p

πω
. (5.22)

Next, using the expanded version of the terms (5.11)-(5.14) resulting from the substi-
tution of the Fourier expansion of the fields, we find the individual terms that con-
stitute (5.16), meaning the terms that appear multiplied by cm and ckl ’s in (5.16) (i.e.
H (1)

lead(x)H (1)
corr(x) etc).

From here on, let us focus on one of the individual terms that build up (5.16) (an
arbitrary one). We can then repeat the process for all the other terms. We proceed to
find the portions of the individual terms that do not have vanishing expectation values,
taking into account that C (ω) and C̄ (ω) are annihilation and creation operators. It turns
out that we encounter terms with four C (ω) and/or C̄ (ω) operators for non-cross terms
like for example H (1)

corr(x) and six of them in cross terms like H (1)
lead(x)H (1)

corr(x). Then
the parts of the non-cross terms with four operators with non-vanishing expectation
values just include the terms with

C4C̄3C2C̄1, (5.23)

C4C3C̄2C̄1, (5.24)

where we wrote C (ω1) as C1, etc. for the sake of brevity. Also the parts of the cross terms
with six operators with non-vanishing expectation values turn out to include only the
terms with

C6C5C4C̄3C̄2C̄1, (5.25)

C6C5C̄4C3C̄2C̄1, (5.26)

C6C̄5C4C3C̄2C̄1, (5.27)

C6C5C̄4C̄3C2C̄1, (5.28)

C6C̄5C4C̄3C2C̄1. (5.29)
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Using the commutation relation[
Ĉ (ω1), ˆ̄C (ω2)

]
= δ(ω1 −ω2), (5.30)

we evaluate the expectation values of the relevant parts (of the individual term) we are
working with. We will have

〈C4C̄3C2C̄1〉 = δ(ω4 −ω3)δ(ω2 −ω1), (5.31)

〈C4C3C̄2C̄1〉 = δ(ω4 −ω2)δ(ω3 −ω1)+δ(ω4 −ω1)δ(ω3 −ω2), (5.32)

〈C6C5C4C̄3C̄2C̄1〉 = δ(ω6 −ω3)[δ(ω5 −ω2)δ(ω4 −ω1)+δ(ω5 −ω1)δ(ω4 −ω2)]

+δ(ω6 −ω2)[δ(ω5 −ω3)δ(ω4 −ω1)+δ(ω5 −ω1)δ(ω4 −ω3)]

+δ(ω6 −ω1)[δ(ω5 −ω3)δ(ω4 −ω2)+δ(ω5 −ω2)δ(ω4 −ω3)], (5.33)

〈C6C5C̄4C3C̄2C̄1〉 = δ(ω6 −ω4)[δ(ω5 −ω2)δ(ω3 −ω1)+δ(ω5 −ω1)δ(ω3 −ω2)]

+δ(ω5 −ω4)[δ(ω6 −ω2)δ(ω3 −ω1)+δ(ω6 −ω1)δ(ω3 −ω2)], (5.34)

〈C6C̄5C4C3C̄2C̄1〉 = δ(ω6 −ω5)[δ(ω4 −ω2)δ(ω3 −ω1)+δ(ω4 −ω1)δ(ω3 −ω2)], (5.35)

〈C6C5C̄4C̄3C2C̄1〉 = δ(ω2 −ω1)[δ(ω6 −ω4)δ(ω5 −ω3)+δ(ω6 −ω3)δ(ω5 −ω4)], (5.36)

〈C6C̄5C4C̄3C2C̄1〉 = δ(ω6 −ω5)δ(ω4 −ω3)δ(ω2 −ω1). (5.37)

Finally, we add up the expectation values of the relevant parts resulting from the
previous step (these results are the non-vanishing expectation-values parts of the in-
dividual term), to get the complete expectation value of the individual term we chose.
We now repeat the procedure to get the complete expectation value of all the other
individual terms that build up (5.16) and after that, add up all the results to get the
expectation value ofHcorr(x).

Next we convert the resulting expectation value 〈Hcorr(x)〉 back to its discrete form,
〈Hcorr(i )〉, by reversing the continuum limit and neglecting highly oscillating terms like
sin( nπx

ε
) and the similar cosine and Ci terms. Expanding the result in `p , collecting the

terms of the order of β2, and expanding it in ε, yields the leading term of corrections
that are of order

〈Hcorr(x)〉 ∼
`5

p ln
(
πx
ε

)2

επx4
β2. (5.38)

This leading term is actually the expectation value of a master constraint density. In
order to get the expectation value of the master constraint itself, we need to integrate
the above term with respect to x which will yield relevant terms of order

ˆ L

ε

〈Hcorr(x)〉d x ∼
`5

p

ε4
β2. (5.39)

But in the previous chapter, in equation (4.135), for the master constraint density we
had the leading order result of the form

〈Hlead(x)〉 ∼
`3

p

εx2
, (5.40)

where here “lead” means not the leading term of the corrections but the leading term
of the expectation value of the master constraint density. Thus integrating the above
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term with respect to x will give us the master constraint relevant terms of the order

ˆ L

ε

〈Hlead(x)〉d x ∼
`3

p

ε2
. (5.41)

Thus we see that the corrections to the master constraint are indeed considerably smaller
than the leading contributions, provided that the lattice spacing ε is large compared to
the Planck length (but still small compared to particle physics scales, as we discussed
in more detail in previous chapter).

5.3 Low energy propagators for the scalar field

5.3.1 The standard treatment

In the previous section we showed that the vacuum of the theory is well approximated
by the tensor product state obtained variationally in chapter 4. For such a state the
space-time metric is locally flat with a global deficit angle. We would like to study the
propagator of the polymerized scalar field in such a metric and determine possible cor-
rections to the usual propagator introduced by the polymerization. We will study the
propagator perturbatively in β, the polymerization coefficient, assuming this parame-
ter is small.

As we have seen before, the Hamiltonian for a scalar field in spherical symmetry on
a locally flat background is given by,

H =
P 2

f

2x2
+ x2

(
f ′)2

2
, (5.42)

where x is the radial coordinate. For convenient we rescale the matter field and its
conjugate momentum as in(5.1) and (5.2) in the above Hamiltonian and then drop the
“new” superscript to simplify the notation. The Hamiltonian then becomes (ignoring
boundary terms),

H =
P 2

f

2
+

(
f ′)2

2
. (5.43)

The resulting wave equation can be solved in Fourier space,

f (x, t ) = 1

2

ˆ ∞

−∞
dk

(
C (ω(k))e−iω(k)t + C̄ (ω(k))e iω(k)t

)
sin(|k|x)p

πω
, (5.44)

and in this case the dispersion relation is very simple ω = |k|, and with this, one can
easily reconstruct the solution to the original form of the wave equation before the
rescaling.

Let us now consider the discretized version of the Hamiltonian,

H(i ) = P f (i )2

2ε
+

(
f (i +1)− f (i )

)2

2ε
, (5.45)
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where the ε in the first term is a result of the fact that the momentum is a density. The
resulting discrete wave equation can be solved in modes,

f ( j ) =
N∑

n=−N

1p
2Nω(n)

(
C (ω(n))e−iω(n)t + C̄ (ω(n))e iω(n)t

)
sgn(n)sin

(
jπn

N

)
, (5.46)

where all the sums from −N to N exclude zero since there is a minimum value for the
momentum in a box. The frequencies are given by

ω(n) =
∣∣∣2sin

(
πn
2N

)
ε

∣∣∣. (5.47)

For further computations it is useful to define

p(n) ≡πn/L, (5.48)

L = Nε, (5.49)

and

f (n, t ) ≡ 1p
ω(n)

(
C (ω(n))e−iω(n)t + C̄ (ω(n))e iω(n)t

)
sgn(n). (5.50)

Using the equations of motion from the Hamiltonian (5.43), the momentum is given
by,

P f ( j ) =
N∑

n=−N

ip
2Nω(n)

(
−ω(n)C (ω(n))e−iω(n)t +ω(n)C̄ (ω(n))e iω(n)t

)
sgn(n)

× sin

(
jπn

N

)
ε, (5.51)

and we define,

P f (n, t ) = ip
ω(n)

(
−ω(n)C (ω(n))e−iω(n)t +ω(n)C̄ (ω(n))e iω(n)t

)
sgn(n)ε, (5.52)

One can quantize the fields, with discrete commutation relations,[
f̂ (i ), P̂ f ( j )

]= iδi , j , (5.53)

which naturally lead to the introduction of the creation and annihilation operators,[
Ĉ (ω(n)), ˆ̄C (ω(m))

]
= 1

2ε
(δn,m +δn,−m). (5.54)

With this one can compute the free propagators. The Feynman propagator is given by,

G (0)(n, t ,n′, t ′) = 〈0|T (
f (n, t ), f (n′, t ′)

) |0〉 = D(n, t , t ′)
(
δn,n′ −δ−n,n′

)
, (5.55)

where T is the time ordered product and

D(n, t , t ′) =
[
Θ(t − t ′)exp

(−iω(n)(t − t ′)
)

εω(n)
+ Θ(t ′− t )exp

(−iω(n)(t ′− t )
)

εω(n)

]
, (5.56)
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or, using the residue theorem,

D(n, t , t ′) = i

π

ˆ ∞

−∞

dω

ε

1

ω2 −ω(n)2 + iσ
exp

(−iω(t ′− t )
)

. (5.57)

We can write the previous expressions, which were in Fourier space, in direct space as
following,

G (0)( j , t ,k, t ′) =
N∑

n=−N

N∑
n′=−N

1

N
sin

(
jπn

N

)
sin

(
kπn′

N

)
G (0)(n, t ,n′, t ′). (5.58)

which is free propagator we are going to polymerize.

5.3.2 Polymerizing the scalar field

Having computed the free propagator we now turn to study the polymerized propaga-
tor. We start by noticing that the Hamiltonian (5.45) can be rewritten (again ignoring
boundary terms) as,

H =∑
i

H(i )

=∑
i

P f (i )2

2ε
+

(
f (i +1)− f (i )

)2

2ε

=∑
i

P f (i )2

2ε
−

(
f (i +1)+ f (i −1)−2 f (i )

)
f (i )

2ε
, (5.59)

and the rearrangement makes the expression appear more readily symmetric in i +1
and i −1. We proceed to polymerize as

H =∑
i

(
P f (i )2

2ε
− sin

(
β

(
f (i +1)+ f (i −1)−2 f (i )

))
sin(β f (i ))

2εβ2

)
. (5.60)

At this point some comments are in order. There are many possible choices at the
time of polymerizing the theory. For instance, we could have chosen to polymerize
f (i +1)+ f (i −1)−2 f (i ) as we did or we could have polymerized each term in the sum
individually. In the lattice one can also choose to polymerize the momentum P f (i ) (in
the continuum this may be more difficult since P is a density)1. Suppose we polymer-
ize P f (i ). In this case since the continuum momentum is P f (i )/ε, taking the contin-
uum limit yields sin2(βεP f )/β2ε for the first term in the Hamiltonian. Thus in the limit
ε→ 0 we would recover a non-polymerized theory and therefore we would not be mak-
ing contact with usual loop quantum gravity results. Polymerizing the fields as we have
chosen yields in the continuum limit a term f ′′(x)sin(β f (x))/β showing that the con-
tinuum theory is polymerized. It is interesting to notice that spatial derivatives of fields

1This is the reason our work is not easily compared with that of Hossain, Husain and Seahra [38].
They polymerize the momentum in the continuum. The density nature of the momentum leads them
to a polymerization parameter that is dimensionful, unlike our case.
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are well defined in the Bohr compactification even if the field operators themselves are
not. In this section we will work with a polymerization of the field rather than of the
momentum. In a discrete theory, polymerizing either fields or momenta is possible,
but it does not lead to equivalent theories. For completeness, in the next section we
will discuss the theory that results from polymerizing the momenta. In previous treat-
ments in the continuum [40], the scalar field has been polymerized, although in the
case of the harmonic oscillator, which one can consider closely related to a scalar field,
a polymerization of the momentum has been preferred [31].

We are going to work perturbatively, expanding in β. The Hamiltonian we will con-
sider is H = H0 +Hint with

H0 =
∑

i

(
P f (i )2

2ε
− f (i )

(
f (i +1)+ f (i −1)−2 f (i )

)
2ε

)
, (5.61)

and

Hint =
∑

i

1

2ε

(
1

6
f (i )

(
f (i +1)+ f (i −1)−2 f (i )

)3 + 1

6
f (i )3 (

f (i +1)+ f (i −1)−2 f (i )
))
β2.

(5.62)
This interaction Hamiltonian above comes from expansion in beta and keeping the
first two leading terms. With it, we compute the interacting propagator to leading or-
der,

G (2)( j , t ,k, t ′) =G (0)( j , t ,k, t ′)+ i 2

2!

ˆ ∞

−∞
d t1

ˆ ∞

−∞
d t2

×
N∑

j ′=−N

N∑
k ′=−N

〈0|T (
f ( j , t ) f (k, t ′)Hint( j ′, t1)Hint(k ′, t2)

) |0〉. (5.63)

To compute this expression it is convenient to rewrite the interaction Hamiltonian in
momentum space (we use letters up to k for the field representation and letters starting
with m for the momentum representation)

Hint( j ′, t1) =
N∑

n,m,p,q=−N

{
1

48N 2
β2ε5 sin

(
π j ′n

N

)
f (n, t1)ω(m)2 sin

(
π j ′m

N

)
f (m, t1)

×ω(p)2 sin

(
π j ′p

N

)
f (p, t1)ω(q)2 sin

(
π j ′q

N

)
f (q, t1)

+ 1

48N 2
β2εsin

(
π j ′n

N

)
f (n, t1)sin

(
π j ′m

N

)
f (m, t1)

× sin

(
π j ′p

N

)
f (p, t1)ω(q)2 sin

(
π j ′q

N

)
f (q, t )

}
. (5.64)

We can use the identity,

∆(n,m, p, q) ≡
N∑

j ′=−N

4

N 2
sin

(
π j ′n

N

)
sin

(
π j ′m

N

)
sin

(
π j ′p

N

)
sin

(
π j ′q

N

)
= 1

N

[
δn+m,p+q +δn+p,m+q +δn+q,m+p +δn+m+p+q

−δn,m+p+q −δm,n+p+q −δp,n+m+q −δq,n+m+p

]
, (5.65)
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in the above expression. Using this identity one can write,

N∑
j ′=−N

Hint( j ′, t1) = 1

192

N∑
n,m,p,q=−N

f (n, t1) f (m, t1) f (p, t1) f (q, t1)

× [(
ω(m)2ω(p)2ε4 +1

)
εω(q)2]β2∆(n,m, p, q), (5.66)

where the definition

ζ(m, p, q) = [(
ω(m)2ω(p)2ε4 +1

)
εω(q)2] , (5.67)

is introduced. Putting everything together we get,

G (2)(n1, t1,n2, t2) =G (0)(n1, t1,n2, t2)+ i 2

2!
〈0|T (

f (n1, t1) f (n2, t2)

× 1

192

ˆ ∞

−∞
d t ′

N∑
n,m,p,q=−N

: f (n, t ′) f (m, t ′) f (p, t ′) f (q, t ′) :

×ζ(n,m, p)β2∆(n,m, p, q)

× 1

192

ˆ ∞

−∞
d t ′′

N∑
n′,m′,p ′,q ′=−N

: f (n′, t ′′) f (m′, t ′′) f (p ′, t ′′) f (q ′, t ′′) :

×ζ(n′,m′, p ′)β2∆(n′,m′, p ′, q ′)
)|0〉. (5.68)

Using Wick’s theorem, the above expression can be rewritten as a sum of diagrams of
the form,

G (2)(n1, t1,n2, t2) =G (0)(n1, t1,n2, t2)− 32

3N 2

N∑
m,p=−N

ˆ ∞

−∞
d t ′d t ′′

[
D(n1, t1, t ′)D(m, t ′, t ′′)

× D(p, t ′, t ′′)D(n +m −p, t ′, t ′′)D(n2, t ′′, t2)
]

×ζ2(m, p,n +m −p)β4 (
δn1,n2 −δn1,−n2

)
, (5.69)

or, graphically,
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It is now convenient to Fourier transform the propagator in time,

G (2)(n1,ω1,n2,ω2) =4πi

ε

1

ω2
1 −ω(n1)2 + iσ

δ(ω1 −ω2)
(
δn1,n2 −δn1,−n2

)
− 32

3

1

2

4πi

ε
(
ω2

1 −ω(n1)2 + iσ
) N∑

m,p=−N

ˆ ∞

−∞
dω′dω′′

× 4πi

ε
(
(ω′)2 −ω(m)2 + iσ

) 4πi

ε
(
(ω′′)2 −ω(p)2 + iσ

)
× 4πi(

(ω1 −ω′−ω′′)2 −ω(n1 −m −p)2 + iσ
)ζ2(m, p,n1 −m −p)β4

× 4πi(
ω2

2 −ω(n2)2 + iσ
)δ(ω1 −ω2)

(
δn1,n2 −δn1,−n2

)
, (5.70)

and the sums can be converted to integrals. Care should be taken not to allow the
denominators to vanish, since in the original discrete expression the denominators
did not vanish. Recalling (5.47),(5.48) and (5.49), we get

ω(n) =
2
∣∣∣sin

(
εp(n)

2

)∣∣∣
ε

∼ p(n). (5.71)

One then approximates,
N∑

m=1
→ L

π

ˆ π/ε

π/L
d p, (5.72)

and the sum from −N to 1 takes an analogous form. The expression for the Green
function up to second order is,

G (2)(n1,ω1,n2,ω2) = 4πi

ε

1

ω2
1 −p(n1)2 + iσ

δ(ω1 −ω2)
(
δn1,n2 −δn1,−n2

)
− 32

3

1

2

4πi

ε
(
ω2

1 −p(n1)2 + iσ
) 1

π2

×
ˆ ∞

−∞
dω′dω′′

[ˆ −π/L

−π/ε
+
ˆ π/ε

π/L

]
d p1d p2

× 4πi

ε
(
(ω′)2 −p1

2 + iσ
) 4πi

ε
(
(ω′′)2 −p2

2 + iσ
)

× 4πi(
(ω1 −ω′−ω′′)2 −p(n1 −p1 −p2)2 + iσ

)
× ζ̃2(p1, p2, p(n1)−p1 −p2)β4

× 4πi(
ω2

2 −ω(n2)2 + iσ
)δ(ω1 −ω2)

(
δn1,n2 −δn1,−n2

)
, (5.73)

where we have introduced

ζ̃(p1, p2, p(n1)+p1 −p2) = (
ε4 (

p1
2p2

2)+1
)(

p(n1)+p1 −p2
)2
ε2. (5.74)
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The integrals can be computed by an analytic extension to the Euclidean theory and
by carrying out an expansion in pε. The next expression is correct up to order O (ε4p4).
That is, we are assuming the wavelength of the scalar field is much larger than the
lattice spacing. If one takes into account powers higher than pε one has higher correc-
tions in powers of p. The result, not including those terms, is,

G (2)(n1,ω1,n2,ω2) =G (0)(n1,ω1,n2,ω2)

+
[
α1β

4

ε2
+β4α2p(n1)2

]
4πi

ε

δ(ω1 −ω2)
(
δn1,n2 −δn1,−n2

)(
ω2

1 −p(n1)2 + iσ
)2

=4πi

ε

1

ω2
1 −p(n1)2

(
1+α2β4

)− α1β4

ε2 + iσ

(
δn1,n2 −δn1,−n2

)
δ(ω1 −ω2),

(5.75)

where α1 and α2 are constants of order one, and the third line above has been derived
from the first and second lines by expanding the right hand side of the first and the
second lines, assuming β4 is small.

5.3.3 Polymerizing the momentum of the field

We now discuss the choice of polymerizing the momentum. As before, we write the
Hamiltonian as,

H =∑
i

P f (i )2

2ε
−

(
f (i +1)+ f (i −1)−2 f (i )

)
f (i )

2ε
, (5.76)

and proceed to polymerize,

H =∑
i

sin2
(
βP f (i )

)
2β2ε

−
(

f (i +1)+ f (i −1)−2 f (i )
)

f (i )

2ε
. (5.77)

As before, we work perturbatively, expanding in β. The Hamiltonian we will consider
is H = H0 +Hint with

Hint(i ) =− 1

6ε
β2P f (i )4. (5.78)

We can now write the Green function up to the second order,

G (2)( j , t ,k, t ′) =G (0)( j , t ,k, t ′)

+ i 2

2!

ˆ ∞

−∞
d t1

ˆ ∞

−∞
d t2

N∑
j ′=−N

N∑
k ′=−N

〈0|T (
f ( j , t ) f (k, t ′)Hint( j ′, t1)Hint(k ′, t2)

) |0〉.
(5.79)

Similar to the computation methods of the previous subsection, one can write,

N∑
j ′=−N

Hint( j ′, t1) =− 1

96ε

N∑
n,m,p,q=−N

P f (n, t ′)P f (m, t ′)P f (p, t ′)P f (q, t ′)∆(n,m, p, q)β2.

(5.80)
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Putting everything together we get,

G (2)(n1, t1,n2, t2) =G (0)(n1, t1,n2, t2)+ i 2

2!
〈0|T (

f (n1, t1) f (n2, t2)

× 1

96

ˆ ∞

−∞

d t ′

ε

N∑
n,m,p,q=−N

: P f (n, t ′)P f (m, t ′)P f (p, t ′)P f (q, t ′) :

×β2∆(n,m, p, q)

× 1

96

ˆ ∞

−∞

d t ′′

ε

N∑
n′,m′,p ′,q ′=−N

: P f (n′, t ′′)P f (m′, t ′′)P f (p ′, t ′′)P f (q ′, t ′′) :

×β2∆(n′,m′, p ′, q ′)
)|0〉. (5.81)

If we now use Wick’s theorem as we did before, there will appear contractions not
only of f with itself, but also between f and P f . Taking into account that the momen-
tum is related to the derivative of the field by P f = ε ḟ , one can compute the expectation
values of products of the field and momentum or products of the momenta by taking
derivatives of (5.57) with respect to time.

G (2)(n1, t1,n2, t2) =G (0)(n1, t1,n2, t2)

−128
β4

3N 2ε2

N∑
m,p,q,m′,p ′,q ′=−N

ˆ ∞

−∞
d t ′d t ′′D f P f (n1, t1,m, t ′)

×DP f P f (p, t ′, p ′, t ′′)DP f P f (q, t ′, q ′, t ′′)

×DP f P f (m +p −q, t ′,m′+p ′−q ′, t ′′)DP f f (m′, t ′′,n2, t2), (5.82)

where

D f f (n1, t1,n2, t2) = i L2

πε

ˆ ∞

−∞

dω

ω2 −ω(n1)2 + iσ
exp(−iω(t2 − t1))

(
δn1,n2 −δn1,−n2

)
,

(5.83)

DP f f (n1, t1,n2, t2) =−L2

π

ˆ ∞

−∞

ω(n1)dω

ω2 −ω(n)2 + iσ
exp(−iω(t2 − t1))

(
δn1,n2 −δn1,−n2

)
,

(5.84)

D f P f (n1, t1,n2, t2) = L2

π

ˆ ∞

−∞

ω(n1)dω

ω2 −ω(n)2 + iσ
exp(−iω(t2 − t1))

(
δn1,n2 −δn1,−n2

)
,

(5.85)

DP f P f (n1, t1,n2, t2) =− i L2ε

π

ˆ ∞

−∞

ω(n1)2dω

ω2 −ω(n1)2 + iσ
exp(−iω(t2 − t1))

(
δn1,n2 −δn1,−n2

)
,

(5.86)

or, graphically,
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where the direction of the arrows depend on the order of appearance of f and P f

in their product, meaning an arrow to the right is f P f , an arrow to the left P f f , two
arrows mean P f P f , and no arrow means f f .

We now Fourier transform in time and take the continuum approximation for the
sums in p and q ,

G (2)(n1,ω1,n2,ω2) =4πi

ε

1

ω2
1 −p(n1)2 + iσ

δ(ω1 −ω2)
(
δn1,n2 −δn1,−n2

)+
+ 128

3

1

2π2

1(
ω2

1 −p(n1)2 + iσ
)

× 1

π2

ˆ ∞

−∞
dω′dω′′

[ˆ −π/L

−π/ε
+
ˆ π/ε

π/L

]
d p1d p2

(
i

2π3

)3

× εp2
1(

(ω′)2 −p1
2 + iσ

) εp2
2(

(ω′′)2 −p2
2 + iσ

)
×

(
p(n1)−p1 −p2

)2(
(ω1 −ω′−ω′′)2 − (p(n1)−p1 −p2)2 + iσ

)β4

× 4πiω(n1)2(
ω2

2 −ω(n2)2 + iσ
)δ(ω1 −ω2)

(
δn1,n2 −δn1,−n2

)
. (5.87)

The integrals can be computed as before, expanding in pε and analytically continuing
to the Euclidean theory,

G (2)(n1,ω1,n2,ω2) =G (0)(n1,ω1,n2,ω2)+β4α2p(n1)2 4πi

ε

δ(ω1 −ω2)
(
δn1,n2 −δn1,−n2

)(
ω2

1 −p(n1)2 + iσ
)2

= 4πi

ε

1

ω2
1 −p(n1)2

(
1+α2β4

)+ iσ

(
δn1,n2 −δn1,−n2

)
δ(ω1 −ω2),

(5.88)

where again the second line above has been derived from the first line by expanding
the right hand side of the first line, assuming β4 is small.

5.3.4 Lorentz invariance violation

Both of the propagators we derived in (5.75) and (5.88) violate the Lorentz invariance
by modifying the dispersion relation. One can see that there are two distinct origins for
the modifications of dispersion relation in (5.75) and (5.88). One is stemming from the
polymerization and the other from the discreteness that is remnant from the uniform
discretization procedure, since the state that minimizes the expectation value of the
master constraint does so for a finite lattice spacing. This could be a temporary limita-
tion until a better state is found, or it could well be that such a state actually does not
exist.

The Lorentz violation due to polymerization can be made arbitrarily small by a suit-
able choice of the polymerization parameter β. This can be seen in terms like the dis-
persion relation implied by the denominator of (5.88),

ω2
1 −p(n1)2 (

1+α2β
4) . (5.89)
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It should be noted that these terms depend on the value of the polymerization param-
eter β. The order in β at which these terms appear depends on choices made at the
time of polymerization. To see this, let us write the polymerized momentum term in
Hamiltonian (5.76) as

c sin(βP f (i ))p
2εβ

+ (1− c)sin(3βP f (i )

3
p

2εβ
, (5.90)

and try to find c such that we are left only with the non-perturbative term in P f (i ) and
a perturbative term in β4, thus neglecting the β2 term. This way we can analyze just
the effects of β4 order term in the propagator. Expanding (5.90) in β we get

P f (i )2

2ε
+

(
4

3

cP f (i )4

ε
− 3

2

P f (i )4

ε

)
β2 +

(
8

9

c2P f (i )6

ε
− 8

3

cP f (i )6

ε
+ 9

5

P f (i )6

ε

)
β4. (5.91)

From the coefficient of β2 we see that by setting c = 9
8 , the β2 order term cancels and

we are left only with a non-perturbative term and a perturbative term in β4 which is

Hint(i ) =− 3

40ε
P f (i )6β4. (5.92)

This would lead to corrections of order β8 instead of β4 in (5.88). We therefore see that
the order in β at which corrections appear can be shifted arbitrarily by choosing suit-
able polymerizations of the theory and therefore, assuming that the polymerization
parameter is small, one can make the corrections as small as desired.

This is because in the case of a scalar field this parameter is not obviously associ-
ated with an area and therefore not limited by the minimum area eigenvalue as is the
case for gravitational variables. The order of the violation in the parameter can also be
changed by choices in polymerization.
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6
Hamiltonian analysis of the CGHS model

6.1 Introduction: the original CGHS formulation

As we mentioned before, there are interesting questions about black holes and their
evolutions, Hawking radiation and related issues that are really hard to analyze in full
four dimensions, even using semiclassical approximation in which the gravitational
field is treated as a classical entity and only the matter field is quantized. Thus it is
useful to use toy models that have many of those interesting properties but in which
greater analytical control is possible.

The CGHS model [3] is such a theory. It is a renormalizable theory of quantum
gravity coupled to matter in two dimensions having black hole solutions and Hawking
radiation. It is classically completely solvable and because of this and its simplicity,
one may hope for an exact quantum treatment of it, allowing to test the semiclassical
considerations leading to the Hawking effect.

The action of CGHS is an effective action arising from the radial modes of the ex-
tremal dilatonic black holes in higher dimensions and is related to an specific action in
noncritical strings [3]. Although the origin of this model is higher dimensional, it can
be considered in its own right for the study of black hole formation and subsequent
evaporation in a simplified way.

The original theory has the gravitational action (3.7) and the minimally coupled
matter (3.8). The classical theory can be described in the conformal gauge where

g+− =−1

2
e2ρ, (6.1)

g−− = g++ = 0, (6.2)

where we are using the null coordinates

x± = x0 ±x1. (6.3)
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The equations of motion for the variation of metric are

T++ = e−2φ(4∂+ρ∂+φ−2∂2
+φ)+ 1

2
(∂+ f )2 = 0, (6.4)

T−− = e−2φ(4∂−ρ∂−φ−2∂2
−φ)+ 1

2
(∂− f )2 = 0, (6.5)

T+− = e−2φ(2∂+∂−φ−4∂+φ∂−φ−λ2e2ρ) = 0, (6.6)

where T is the energy-momentum tensor,φ is the dilaton field andλ2 the cosmological
constant. The matter equation of motion is

∂+∂− f = 0, (6.7)

and the dilaton equation of motion reads

−4∂+∂−φ+4∂+φ∂−φ+2∂+∂−ρ+λ2e2ρ = 0. (6.8)

If there is no matter in the theory, f = 0, the solution is

e−2ρ = e−2φ = M

λ
−λ2x+x−. (6.9)

where M is a constant which is the mass of the black hole solution of the model (see
below). Since in this case the scalar curvature is [41]

R = 4Mλ
M
λ
−λ2x+x− , (6.10)

the solution (6.9) corresponds to a black hole of mass

M =λ3x+x−. (6.11)

The spacetime diagram of this black hole is shown in figure (6.1).
If we include matter, for example a shockwave of magnitude a of the form

1

2
∂+ f ∂+ f = aδ

(
x+−x+

0

)
, (6.12)

where x+
0 is the position of the shockwave, the solution is [3]

e−2ρ = e−2φ =−a
(
x+−x+

0

)
Θ

(
x+−x+

0

)−λ2x+x−, (6.13)

where Θ is the Heaviside step function. This shows that for x+ < x+
0 , the solution is the

linear dilaton vacuum
e−2ρ =−λ2x+x−. (6.14)

But for x+ > x+
0 and by shifting x− → x−−a/λ2, the solution (6.13) becomes

e−2ρ = e−2φ = ax+
0 −λ2x+x−, (6.15)

which by comparing to (6.9) is evident that corresponds to a black hole of mass

M = ax+
0 λ. (6.16)

The conformal diagram of this case can be seen in figure (6.2).
In the following sections, we are going to analyze the Hamiltonian formulation of

this model.
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Figure 6.1: The spacetime diagram of the CGHS model without matter field.
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Figure 6.2: The conformal diagram of the CGHS spacetime with a shockwave matter field.
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6.2 The Hamiltonian density in Ashtekar variables

The Hamiltonian analysis of the CGHS have been done in conformally transformed
regime before (see for example [16]). Here we would like to analyze the CGHS model
without conformal transformation. One reason is that the pure gravitational part of the
conformally transformed CGHS is trivial and also as we mentioned before, it is better
to work with the variables that have direct geometric meaning so that we do not need
to transform everything back from the non-physical geometry to the physical one at
the end. This will allow to quantize the gravitational magnitudes in the loop formalism
and study if this quantization would allow to have a singularity free theory.

As we mentioned in section 3.6, in the physical CGHS case where the dilation field
Φ is a canonical variable, the equation (3.110) is a primary constraint which should
be added to the general Hamiltonian (3.124). Doing this and substituting the suitable
parameters (3.43)-(3.46) in the resultant Hamiltonian yields

H =N

(
2P2

|P | ∂1
∗X 1 + 2P1

|P | ∂1
∗X 2 − 2P1

|P | ω1
∗X 1 − 2P2

|P | ω1
∗X 2 + |P |

16
ΛΦ2

− Φ
′2

|P | −
P 2
Φ

|P | +
( f ′)2

|P | +
P 2

f

|P |
)

(6.17)

+N 1 (
P1∂1

∗X 1 +P2∂1
∗X 2 −P2

∗X 1ω1 −P1
∗X 2ω1 +Φ′PΦ+ f ′P f

)
+ω0

(
P1

∗X 2 +P2
∗X 1 −

(
1

4
Φ2

)′)
+M

(
Pω− 1

4
Φ2

)
, (6.18)

where M is a Lagrange multiplier (not to be confused with the mass of the black hole).
In order to transform to the Ashtekar variables and following a similar pattern the form
of Ashtekar variables in the 3+1 model, we introduce the following new momenta with
a canonical transformation:

Pω =E x , (6.19)

|P | =2Eϕ, (6.20)

P1 =2cosh(η)Eϕ, (6.21)

P2 =2sinh(η)Eϕ, (6.22)

where E x , Eϕ and η are the new momenta. This gives us the generating function

F (q,P ) = 2∗X 1 cosh(η)Eϕ+2∗X 2 sinh(η)Eϕ+ω1E x +ΦPΦ+ f P f . (6.23)

Using F (q,P ), we can find the new canonical variables as

Qη =∂F

∂η
= 2∗X 1 sinh(η)Eϕ+2∗X 2 cosh(η)Eϕ, (6.24)

Kϕ = ∂F

∂Eϕ
= 2∗X 1 cosh(η)+2∗X 2 sinh(η), (6.25)

Ax = ∂F

∂E x
=ω1, (6.26)
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where Qη, Kϕ and Ax correspond to E x , Eϕ and η respectively. From the above equa-
tions, we can find ∗X 1, ∗X 2 and ω1 as

∗X 1 =1

2

(
Kϕ cosh(η)− Qη sinh(η)

Eϕ

)
, (6.27)

∗X 2 =− 1

2

(
Kϕ sinh(η)− Qη cosh(η)

Eϕ

)
, (6.28)

ω1 =Ax . (6.29)

In order to write the Hamiltonian density 6.18 in these new variables, we substitute
(6.19)-(6.22) and (6.27)-(6.28) in the total Hamiltonian (6.18), and then make a field
redefinition

Ax = Kx −η′,
to get rid of η in the Hamiltonian and get

H =N

(
Q ′
η

Eϕ
− QηEϕ′

Eϕ2
+ 1

8
EϕΛΦ2 −KϕKx − Φ′2

2Eϕ
− P 2

Φ

2Eϕ
+ ( f ′)2

2Eϕ
+

P 2
f

2Eϕ

)
+N 1

(
EϕK ′

ϕ−QηKx +Φ′PΦ+ f ′P f

)
+ω0

(
Qη−

(
1

4
Φ2

)′)
+M

(
E x − 1

4
Φ2

)
. (6.30)

We can see from here that the total Hamiltonian is just the sum of four constraints as is
expected for a totally constrained system. The first constraint multiplied by the lapse
function N is the Hamiltonian constraint. The one that is multiplied by the shift vec-
tor N 1 is the diffeomorphism constraint. The constraint that is multiplied by ω0 is the
Gauss constraint and the last one is the one we got from the definition of the momen-
tum Pω. Solving the Gauss constraint in the above Hamiltonian and substituting the
resultant Qη from it into the Hamiltonian yields

H =N

(
ΦΦ′′

2Eϕ
− ΦΦ

′Eϕ′

2Eϕ2
+ 1

8
EϕΛΦ2 −KϕKx −

P 2
Φ

2Eϕ
+ ( f ′)2

2Eϕ
+

P 2
f

2Eϕ

)

+N 1
(
EϕK ′

ϕ−
1

2
ΦΦ′Kx +Φ′PΦ+ f ′P f

)
+M

(
E x − 1

4
Φ2

)
. (6.31)

Since we now know our canonical variables and momenta, we can write their Poisson
brackets as

{Kx(x),E x(y)} = δ(x − y), (6.32)

{Kϕ(x),Eϕ(y)} = δ(x − y), (6.33)

{Φ(x),PΦ(y)} = δ(x − y), (6.34)

{ f (x),P f (y)} = δ(x − y), (6.35)

and we have not written the Poisson bracket of (Qη,η) pair because they no longer
appear in the Hamiltonian. The rest of the Poisson brackets are strongly zero.
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6.3 The consistency conditions on constraints

Following the Dirac procedure, we should check the preservation of the constraints to
see if there are any new secondary constraints and/or to find the value of the Lagrange
multipliers in terms of canonical variables. This means that the constraints C , being
the constants of motion, should remain weakly vanishing during the evolution

Ċ = {C , H } ≈ 0. (6.36)

This condition can also be seen from a different viewpoint: the Hamiltonian or the
energy of the system should not change along the orbits produced by constraints in the
phase space. The Poisson bracket of the Hamiltonian and diffeomorphism constraints
with H vanishes weakly. Let’s check the consistency of the constraint

µ= E x − 1

4
Φ2. (6.37)

For this, we need (6.32) and (6.34). The preservation condition of µ constraint leads to
a new, and by definition secondary, constraint which we call α:

µ̇= {µ, H } ≈ 0 ⇒α= Kϕ+ 1

2

PΦΦ

Eϕ
≈ 0. (6.38)

We also need to check the preservation of the newα constraint. This leads to a relation
between the Lagrange multipliers N , N 1 and M (and canonical variables). Finding M
from this relation and substituting it into the total Hamiltonian (6.31) yields

H = N
(−KϕKx − 2Φ′Eϕ′E x

ΦEϕ2
+ 2E xΦ′′

ΦEϕ
− P 2

Φ

2Eϕ
+ 1

8
EϕΛΦ2 − 1

2

ΦPΦKx

Eϕ
+ 2PΦKxE x

ΦEϕ

+
2E xP 2

f

Φ2Eϕ
− 2Φ′2E x

Φ2Eϕ
+ Φ′2

2Eϕ
+ 2E x f ′2

Φ2Eϕ

)
+N 1(− 1

2
ΦΦ′Kx +Φ′PΦ+ f ′P f +E xK ′

x +EϕK ′
ϕ−

1

4
Φ2K ′

x

)
. (6.39)

Next step is to check if the constraints are first class or second class. Calculating the
Poisson brackets of constraints among themselves shows that µ andα are second class
and do not commute with each other. In other words, their Poisson bracket with each
other does not vanish weakly. Now we can abandon the Poisson bracket and move on
to the Dirac brackets. Also we should put the second class constraint strongly equal to
zero and eliminate some of the variables in term of others. By doing this as you will see
as following, we can get rid of the (Φ,PΦ) pair in the Hamiltonian. Equating both the µ
and α constraints strongly to zero yields

µ= 0 ⇒Φ= 2
p

E x , (6.40)

α= 0 ⇒ PΦ =−KϕEϕ

p
E x

. (6.41)
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Substituting these in the total Hamiltonian (6.39) will yield

H =N

(
−KϕKx − Eϕ′E x′

Eϕ2
− 1

2

E x′2

EϕE x
+ E x′′

Eϕ
− 1

2

K 2
ϕEϕ

E x
+ 1

2
EϕE xΛ+ 1

2

P 2
f

Eϕ
+ 1

2

f ′2

Eϕ

)

+N 1
(
−KxE x′+ f ′P f −

KϕEϕE x′

E x
+EϕK ′

ϕ

)
. (6.42)

where now we are only left with one Hamiltonian constraint and one diffeomorphism
constraint.

6.4 Dirac bracket and the algebra of canonical variables

In order to switch to the Dirac bracket, we need to find the general form of the Dirac
bracket for our theory. As we saw in chapter 2, for a field theory (where the variables
have continuous indices) the Dirac bracket is

{A(x),B(y)}D = {A(x),B(y)}−
ˆ

d w

ˆ
d z

(
{A(x),χρ(w)}Cρσ(w, z){χσ(z),B(y)}

)
, (6.43)

where the {, }D refers to the Dirac bracket. Here χ’s are the second class constraints and
we define the the Poisson bracket between the ρ’th and σ’th second class constraint as

Cρσ(w, z) = {χρ(w),χσ(z)}. (6.44)

As we mentioned in chapter 2, these Poisson brackets define an invertible matrix C.
The inverse of this matrix is C−1 whose elements Cρσ(w, z)’s are the ones that appear
in (6.43). In our model, there are only two second class constraints, µ and α. Thus the
matrix of the Poisson bracket of the second class constraints will be

C =Cρσ(x, y) =
(

{µ(x),µ(y)} {µ(x),α(y)}
{α(x),µ(y)} {α(x),α(y)}

)
=

(
0 {µ(x),α(y)}

{α(x),µ(y)} 0

)
. (6.45)

To compute the elements of this matrix we use (6.37) and (6.38) along with (6.34) to get

{µ(x),α(y)} =
{

E x(x)− 1

4
Φ(x)2,Kϕ(y)+ 1

2

PΦ(y)Φ(y)

Eϕ(y)

}
=−1

8

Φ(y)

Eϕ(y)

{
Φ(x)2,PΦ(y)

}
=−1

4

Φ(y)2

Eϕ(y)
δ(x − y). (6.46)

The same method of computations gives

{µ(x),α(y)} = 1

4

Φ(x)2

Eϕ(x)
δ(x − y). (6.47)
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To calculate the elements of C−1, we use the property CC−1 = 1, or in terms of their
elements ˆ

Cρσ(x, z)Cσβ(z, y)d z = δρβδ(x − y), (6.48)

which yields

C−1 =Cρσ(x, y) =
(

0 4Eϕ(x)
Φ2(x)

−4Eϕ(x)
Φ2(x)

0

)
δ(x − y). (6.49)

Using this and (6.43), the general form of the Dirac bracket for our theory will become

{A(x),B(y)}D ={A(x),B(y)}+
ˆ

d w

ˆ
d z

(
{A(x),µ(w)}

4Eϕ(w)

Φ2(w)
δ(w − z){α(z),B(y)}

)
−
ˆ

d w

ˆ
d z

(
{A(x),α(w)}

4Eϕ(w)

Φ2(w)
δ(w − z){µ(z),B(y)}

)
. (6.50)

If we use this formula and the Poisson brackets (6.32)-(6.35), we can find the Dirac
brackets of the canonical variables between each other as

{Kx(x),E x(y)}D = {Kϕ(x),Eϕ(y)}D = { f (x),P f (y)}D = δ(x − y), (6.51)

{Kx(x),Kϕ(y)}D = Kϕ

E x
δ(x − y), (6.52)

{Kx ,Eϕ}D =−Eϕ

E x
δ(x − y), (6.53)

{E x ,Kϕ}D = {E x ,Eϕ}D = { f ,�}D = {P f ,•}D = 0, (6.54)

where�means everything except P f and the •means everything except f . Using these
brackets we can evaluate the equations of motion as

K̇x ={Kx , HT}D

=N

(
− KxKϕ

E x
+ 1

2

f ′2

E xEϕ
+ 1

2

P 2
f

E xEϕ
+ E x′′

E xEϕ
− E x′Eϕ′

E xEϕ2
− E x′2

E x2Eϕ

)
+N 1K ′

x +Kx N 1′+ N ′′

Eϕ
− Eϕ′N ′

Eϕ2
, (6.55)

Ėx ={Ex , HT}D = N Kϕ+N 1E x′, (6.56)

K̇ϕ ={Kϕ, HT}D

=N

(
− 1

2

f ′2

Eϕ2
− 1

2

P 2
f

Eϕ2
+ 1

2
E xΛ+ 1

2

K 2
ϕ

E x
+ 1

2

E x′2

E xEϕ2

)
+ N ′E x′

Eϕ2
+N 1K ′

ϕ, (6.57)

Ėϕ ={Eϕ, HT}D = N Kx +N 1′Eϕ+N 1Eϕ′, (6.58)

ḟ ={ f , HT}D = N P f

Eϕ
+N 1 f ′, (6.59)

Ṗ f ={P f , HT}D = N

(
f ′′

Eϕ
− f ′Eϕ′

Eϕ2

)
+ N ′ f ′

Eϕ
+N 1′P f +N 1P ′

f , (6.60)
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where HT here is not the density but the Hamiltonian itself, i.e. the spatial integral of
(6.42)

HT =
ˆ

d xH . (6.61)

6.5 Comparing with the original theory

We would like to get a better understanding of the model in our formulation by get-
ting a more clear picture of the connection between the two formulations, the original
CGHS Lagrangian formulation which we saw in section 6.1 and our Hamiltonian for-
malism. This is also a way of checking the consistency of our formulation. For these
reasons we are going to transform our equations of motion into the null coordinates
(6.3) and use the conformal gauge, (6.1) and (6.2), to make a connection between the
two formalisms.

6.5.1 Metric and other variables in null coordinates

The first step to make a connection between two formulations is finding the relations
between the form of the metric and other canonical variables in both models. As we
mentioned before, the coordinates used in the original CGHS formulation are the null
coordinates

x+ =x0 +x1, (6.62)

x− =x0 −x1, (6.63)

where x0 = t and x1 = x are the coordinates used in our model up to now. We can
find the relation between the components of the null and non-null metrics using the
general transformation

gab = ∂xa′

∂xa

∂xb′

∂xb
ḡa′b′ . (6.64)

In the CGHS model, the metric components in the conformal gauge are

ḡ+− =−1

2
e2ρ, (6.65)

ḡ−− = ḡ++ = 0. (6.66)

Thus the relations between the components in two coordinate systems are

g00 =2ḡ+− =−e2ρ. (6.67)

g11 =−2ḡ+− = e2ρ. (6.68)

g01 =g10 = g++− g−− = 0. (6.69)
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The relations between the partial derivatives in the two coordinates become

∂

∂x0
=∂++∂−, (6.70)

∂

∂x1
=∂+−∂−, (6.71)

∂

∂x0

∂

∂x0
=∂+∂++∂−∂−+2∂+∂−, (6.72)

∂

∂x1

∂

∂x1
=∂+∂++∂−∂−−2∂+∂−, (6.73)

∂

∂x0

∂

∂x1
=∂+∂+−∂−∂−. (6.74)

We can also write E x in terms of dilaton field. Using the relation (3.9) betweenΦ and φ
(the dilaton field in original CGHS paper) we get

Φ= 2
p

2e−φ. (6.75)

Substituting this into the µ constraint (6.37) and equating this second class constraint
strongly to zero yields

E x = 1

4
Φ2 = 2e−2φ. (6.76)

The variable Eϕ can also be written as

Eϕ =|P |
2

=p
q =p

q11 =p
g11 =

√−2g+− =
√

e2ρ = eρ, (6.77)

where we have used the canonical transformation (6.20), (3.122), the fact that qab has
only one independent component so that q = q11 and (2.65). We can also find the lapse
function and shift vector in a generic form from (2.64) and (2.66) as

g00 =−N 2 +q11(N 1)2, (6.78)

g11 =q11, (6.79)

g01 =−q11N 1. (6.80)

From this, one can find N and N 1 in terms of metric components as

N 1 =− g01

q11
=−g01

g11
, (6.81)

N =
√

q11(N 1)2 − g00 =
√

g 2
01

q11
− g00 =

√
g 2

01

g11
− g00. (6.82)

Substituting (6.67)-(6.69) in the above two equations and using (6.77) yields

N 1 = 0, (6.83)

N =p−g00 = eρ = Eϕ. (6.84)

Now we are ready to compare the equations of motion.
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6.5.2 The equations of motion in null coordinates

In order to compare our equations of motion with the original ones in the CGHS paper,
we need to transform ours to second order form and then bring them into the null
coordinates. Starting from the equations for matter field and its conjugates, if we find
P f from (6.59), substitute it into (6.60) and then use (6.70)-(6.74), (6.77), (6.83) and
(6.84) we get

∂+∂− f = 0. (6.85)

Next if we find Kϕ from (6.56) and substitute it in (6.57) and again use (6.70)-(6.74),
(6.76), (6.77), (6.83) and (6.84) we get

V1 = e−ρe−2φ(
e2φ[(∂+ f )2 + (∂− f )2]+4e2ρλ2 −4∂2

+φ−4∂2
−φ

−8∂+∂−φ+16∂+φ∂−φ+8∂+ρ∂+φ+8∂−ρ∂−φ
)= 0, (6.86)

where we have substituted Λ = −4λ2. For the next second order equation, we find
Kx from (6.58) and substitute it in (6.55). Then upon using (6.70)-(6.74), (6.76), (6.77),
(6.83), (6.84) and the values of P f and Kϕ from (6.59) and (6.56) respectively, we get

V2 =− 1

2
e2φ[(∂+ f )2 + (∂− f )2]+2∂2

+φ+2∂2
−φ−4∂+∂−φ

+4∂+∂−ρ−4∂+ρ∂+φ−4∂−ρ∂−φ= 0. (6.87)

We can follow the same procedure and find the Hamiltonian and diffeomorphism con-
straints in (6.42) in the null coordinate as

H = e−ρe−2φ(
e2φ[(∂+ f )2 + (∂− f )2]−4e2ρλ2 −4∂2

+φ−4∂2
−φ

+8∂+∂−φ−16∂+φ∂−φ+8∂+ρ∂+φ+8∂−ρ∂−φ
)= 0, (6.88)

D = e−2φ(
8∂+ρ∂+φ−8∂−ρ∂−φ−4∂2

+φ+4∂2
−φ

)+ (∂+ f )2 − (∂− f )2 = 0. (6.89)

6.5.3 Identifying our equations of motion with those of the CGHS pa-
per

If we compare the above equations with the equations of motion of the original CGHS
model, (6.4)-(6.8), we can note the following:

The matter field equation (6.7) is identically the same in both methods and is given
by (6.85). The T++ = 0 and T−− = 0 equations in the CGHS paper, (6.4) and (6.5), are
combined in the diffeomorphism equation (6.89) as

T++−T−− =1

2
D

=
[

e−2φ(4∂+ρ∂+φ−2∂2
+φ)+ 1

2
(∂+ f )2

]
−

[
e−2φ(4∂−ρ∂−φ−2∂2

−φ)+ 1

2
(∂− f )2

]
=0. (6.90)

90



Ch.6. Hamiltonian analysis of the CGHS model 6.6

The T+− = 0 equation in the CGHS paper, (6.6), can be obtained by combining the
Hamiltonian constraint equation (6.88) and equation (6.86) as following:

T+− =−eρ

8
(V1 −H ) = e−2φ(2∂+∂−φ−4∂+φ∂−φ−λ2e2ρ) = 0, (6.91)

and finally the dilaton field equation of motion in CGHS paper, (6.8), is obtained by
combining V1 and V2 i.e. equation (6.87) and (6.86) as

eρe2φ

4
V1 + 1

2
V2 =−4∂+∂−φ+4∂+φ∂−φ+2∂+∂−ρ+λ2e2ρ = 0. (6.92)

So we have a clear insight into the relation between the variables and equations of
motion in both of the formulations.

6.6 Boundary conditions

It is important to be aware and take care of the boundary conditions in our theory
[42]. One important reason is that energy in general relativity is related to the surface
integral or boundary term at infinity1.

We consider the variations of the action to see what surface terms are needed to be
added to the action. After varying the action we get a term

δS =
ˆ

d td x
(
Ξqδq +Ξpδp

)+δSsurface, (6.93)

where q (not to be confused with the determinant of the spatial metric) and p are
shorthand notations for canonical variables and momenta and Ξq and Ξp are expres-
sions involving the canonical variables and momenta and lapse and shift and their
derivatives. The integral term gives the equations of motion. We use the solutions and
conditions of [3] which is

e−2ρ = e−2φ, (6.94)

and thus
ρ =φ. (6.95)

This way we get

E x(x, t ) =2(Eϕ(x, t ))−2, (6.96)

E x′(x, t ) =−4(Eϕ(x, t ))−3Eϕ′(x, t ). (6.97)

1More precisely it is identified as the conserved quantity associated to the invariance of the action
under time translations at infinity.
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Using (6.42) and (6.83) and comparing it to (6.93), the surface term turns out to be

δSsurface =
ˆ

d td x

(
− d

d x

[
N
δEϕE x′

Eϕ2

]
− d

d x

[
N

Eϕ′δE x

Eϕ2

]
− d

d x

[
N

E x′δE x

EϕE x

]
+ d

d x

[
N
δE x′

Eϕ

]
− d

d x

[
d

d x

[
N

Eϕ

]
δE x

]
+ d

d x

[
f ′

Eϕ
δ f

])
=
ˆ

d t

[
−N

E x′δEϕ

Eϕ2
−N

Eϕ′δE x

Eϕ2
−N

E x′δE x

EϕE x
+N

δE x′

Eϕ
− d

d x

[
N

Eϕ

]
δE x

+ f ′

Eϕ
δ f

]x=∞

x=0
. (6.98)

Using the usual prescription at infinity for canonical variables (not the momenta) as

δ f (x, t )
∣∣

x=∞ = δ f (x, t )
∣∣

x=0 = 0, (6.99)

yields

δSsurface =
ˆ

d t

[
−N

E x′δEϕ

Eϕ2
−N

Eϕ′δE x

Eϕ2
−N

E x′δE x

EϕE x

+N
δE x′

Eϕ
−N ′δE x

Eϕ
+N

Eϕ′δE x

Eϕ2

]x=∞

x=0

=
ˆ

d t

[
−N

E x′δEϕ

Eϕ2
−N

E x′δE x

EϕE x
+N

δE x′

Eϕ
−N ′δE x

Eϕ

]x=∞

x=0
. (6.100)

Considering (6.84), (6.96) and (6.97), the above equation can be written as

δSsurface =
ˆ

d t

[
−E x′δEϕ

Eϕ
− E x′δE x

E x
+δE x′− Eϕ′δE x

Eϕ

]x=∞

x=0

=
ˆ

d t

[
− δEϕ(−4(Eϕ)−3Eϕ′)

Eϕ
− (−4(Eϕ)−3Eϕ′)δ(2(Eϕ)−2)

2(Eϕ)−2

+δ(−4(Eϕ)−3Eϕ′)− Eϕ′δ(2(Eϕ)−2)

Eϕ

]x=∞

x=0

=
ˆ

d t

[
4

Eϕ′δEϕ

Eϕ4
+4

Eϕ′δEϕ

Eϕ4
−8

Eϕ′δEϕ

(Eϕ)4
−4(Eϕ)−3δ(Eϕ′)−4Eϕ′δ((Eϕ)−3)︸ ︷︷ ︸

−4δ
(

Eϕ′
Eϕ3

)
]x=∞

x=0

=
ˆ

d t

[
−4δ

(
Eϕ′

Eϕ3

)]x=∞

x=0
. (6.101)

The solution without mass of the black hole and without matter field is the linear dila-
ton vacuum

e−2ρ = e−2φ = (Eϕ)−2 =−λ2x+x− =−λ2(t 2 −x2), (6.102)

and the solution without matter field but with mass of the black hole (a preexisting
black hole) is

e−2ρ = e−2φ = (Eϕ)−2 = M

λ
−λ2x+x− = M

λ
−λ2(t 2 −x2). (6.103)

92



Ch.6. Hamiltonian analysis of the CGHS model 6.7

Substituting either of these into (6.101) gives

δSsurface =
ˆ

d t

[
−4δ

(
Eϕ′

Eϕ3

)]x=∞

x=0

=−4

ˆ
d t

[
δ

(
λ2x

)]x=∞
x=0 , (6.104)

which does not include any dynamical variable and just consists of coordinates and
cosmological constant. Hence there will be no surface terms in this case. On the other
hand, if we use the solution

e−2ρ = e−2φ =−a(x+−x+
0 )Θ(x+−x+

0 )−λ2x+x−

=−a(t +x − t0 −x0)Θ(t +x − t0 −x0)−λ2(t 2 −x2), (6.105)

which corresponds to the situation where there is a matter field but no black hole mass
initially, the scenario in which there is no black hole at first but matter field creates one
with mass

M = ax+
0 λ, (6.106)

we get

δSsurface =−4

ˆ
d tδ

(
Eϕ′

Eϕ3

)
, (6.107)

where again we have used (6.77)i.e. Eϕ = eρ. The term inside the integral inside the
variation can be written in null coordinates as

(∂++∂−)Eϕ

Eϕ3
=1

2

[
aΘ(x+−x+

0 )+a(x+−x+
0 )δ(x+−x+

0 )−λ2(x+−x−)
]

(6.108)

=
{
−1

2λ
2(x+−x−) , x+ < x+

0
a
2 − 1

2λ
2(x+−x−) , x+ > x+

0

, (6.109)

or in ordinary coordinates as

Eϕ′

Eϕ3
=1

2

[
aΘ(t +x − t0 −x0)+a(t +x − t0 −x0)δ(t +x − t0 −x0)−2λ2x

]
(6.110)

=
{
−λ2x , t +x < t0 +x0
a
2 −λ2x , t +x > t0 +x0

, (6.111)

Now we can see that because from (6.106), we have

a = M

λx+
0

= M

λ(t0 +x0)
, (6.112)

there is a surface term in this case which is

δSsurface =−4

ˆ
d tδ

(
M

2λ(t0 +x0)
−λ2x

)
For t +x > t0 +x0, (6.113)

so we should add the term

Ssurface = 2

ˆ
d t

M

λ(t0 +x0)
For t +x > t0 +x0, (6.114)

to the action to cancel the offending surface term.
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6.7 Behavior of phase space variables at the singularity
and at infinity

6.7.1 The general form of the variables

In order to study the behavior of the phase space variables in Hamiltonian formulation
at infinity and singularity, we first need to write those variables explicitly in terms of
coordinates. for this, we substitute the definition of x+ and x−, (6.62), (6.63) into the
CGHS solution (6.105) to get

e−2ρ = e−2φ =−a(t +x − t0 −x0)Θ(t +x − t0 −x0)−λ2(t 2 −x2). (6.115)

Using this and considering the relations (6.76), (6.77), the equations of motion (6.55)-
(6.60) and the value of the shift and lapse from (6.83) and (6.84), we can write phase
space variables in terms of Eϕ and E x and then in terms of ordinary coordinates as
follows

Eϕ =eρ = 1√
−a(t +x − t0 −x0)Θ(t +x − t0 −x0)−λ2(t 2 −x2)

, (6.116)

E x =2e−2φ =−2a(t +x − t0 −x0)Θ(t +x − t0 −x0)−2λ2(t 2 −x2), (6.117)

Kϕ = Ė x

N
= Ė x

Eϕ

=
[√

−a(t +x − t0 −x0)−λ2(t 2 −x2)
[
a +2λ2t

]−2λ2t
√
−λ2(t 2 −x2)

]
×Θ(t0 +x0 − t −x)

−
√
−a(t +x − t0 −x0)−λ2(t 2 −x2)

[
a +2λ2t

]
, (6.118)

Kx = Ėϕ

N
= Ėϕ

Eϕ

=−a
2 [(t +x)2 −2t (t0 +x0)]Θ(t0 +x0 − t −x)− (a −2λ2t )(t 2 −x2)[

a(t +x − t0 −x0)+λ2(t 2 −x2)
]

(t 2 −x2)
. (6.119)

We also introduce a transformation from Kx to a new canonical variable Ux and we
need its behavior too,

Ux =Kx +
EϕKϕ

E x

=
a
2 [(t +x)2 −2t (t0 +x0)]Θ(t0 +x0 − t −x)−+(a −2λ2t )(t 2 −x2)[

a(t +x − t0 −x0)+λ2(t 2 −x2)
]

(t 2 −x2)
. (6.120)

6.7.2 The behavior of variables at the singularity

To understand the behavior of these variables at the singularity, we need to find the
coordinates of the singularity in our coordinate system. The singularity happens when
the curvature blows up and in the CGHS case it is equivalent to the case when the
metric blows up. This corresponds to the condition that for x+ > x+

0 , or equivalently at
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t + x > t0 + x0, the inverse of the metric component (6.65) vanishes. From (6.105), we
can see that this condition means

−a(t +x − t0 −x0)−λ2(t 2 −x2) = 0, (6.121)

and using this, one can find the x coordinate of the singularity for any given time as

xs = a +
√

a2 +4λ2[a(t − t0 −x0)+λ2t 2]

2λ2
. (6.122)

So for t +x > t0 +x0 and x = xs , we get from (6.116)-(6.120)

Kϕ

∣∣∣
sing

→0, (6.123)

Eϕ
∣∣∣
sing

→∞, (6.124)

Kx

∣∣∣
sing

→∞, (6.125)

Ux

∣∣∣
sing

→−∞, (6.126)

E x
∣∣∣
sing

→0. (6.127)

6.7.3 The behavior of variables at infinity

Using the general form of the variables (6.116)-(6.120), we can find their value at infin-
ity by taking the limit x →∞. This leads to

Kϕ

∣∣∣
∞
→−∞, (6.128)

Eϕ
∣∣∣
∞
→0, (6.129)

Kx

∣∣∣
∞
→0, (6.130)

Ux

∣∣∣
∞
→0, (6.131)

E x
∣∣∣
∞
→∞. (6.132)

6.8 Behavior of terms of the Hamiltonian and diffeomor-
phism constraints at the singularity and at infinity

6.8.1 The terms of the Hamiltonian constraint

6.8.1.1 The behavior at the singularity

If we rescale N →p
E x N , resulting in multiplication of all of the terms of Hamiltonian

constraint in (6.42) by
p

E x , and then substitute (6.116)-(6.120) in the terms and con-
sider the singularity conditions with an approximation, meaning that evaluating the
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terms for t +x > t0 +x0 and for

xs = x(t +ε)

= 1

2

a +
√

4λ2
(
a [t − t0 −x0]+ t 2

)+a2

λ2
+ a +2λ2t√

4λ2
(
a [t − t0 −x0]+ t 2

)+a2
+O (ε2),

(6.133)

which is an expansion of x around t for t + ε when ε→ 0, then all of the terms remain
finite or turn out to be zero. The terms that are finite then are seen to cancel each other
as expected.

6.8.1.2 The behavior at infinity

Using the same method as above but without rescaling N → p
E x N and using x = 1

l
and expand for l → 0 instead of singularity conditions, and also noting that at infinity
f (x, t ) = P f (x, t ) = 0, then some of the terms remain finite and some others become
zero. Again the terms that have a non-vanishing expansion cancel each other.

6.8.2 The terms of diffeomorphism constraint

6.8.2.1 The behavior at the singularity

If we rescale N 1 → E x N 1, resulting in multiplication of all of the terms of the diffeo-
morphism constraint in (6.42) by E x , and then substitute (6.116)-(6.120) in the terms
and consider the singularity conditions with an approximation just like the case of the
Hamiltonian constraint, i.e. evaluating the terms for t + x > t0 + x0 and xs = x(t + ε)
from (6.133), then all of the terms of the diffeomorphism constraint remain finite and
cancel each other except for the term containing f ′(x, t ) which will be zero.

6.8.2.2 The behavior at infinity

Using the same method as above but without rescaling N 1 → E x N 1 and using x →∞
instead of singularity conditions and again noting that at infinity f (x, t ) = P f (x, t ) = 0,
all the terms of the diffeomorphism constraint turn out to be zero at infinity.
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7
Conclusion

7.1 Summary of the work

During this work we have studied the Hamiltonian formulation of a generic class of
two dimensional gravitational systems coupled to matter containing local degrees of
freedom. We have specifically studied two members of this class, the 3+1 spherically
symmetric and the CGHS models. Both of them are rich models containing black hole
solutions and Hawking radiation.

For the 3+1 case we have studied the holonomized and discretized master con-
straint and have tried to find a trial state for the system by using variational meth-
ods. We have assumed that the vacuum is a product of Gaussians for gravitational field
around the classical flat solution and the Fock vacuum for the matter field. Then by
minimizing the expectation value of the master constraint using this state, we showed
that although the theory seems to has no continuum limit (corresponding to zero for
the expectation value), but the expectation value of master constraint is very close to
zero for the lattice spacing being very large compared to the Planck scale. It is also
worth noting that our model regularizes the cosmological constant and gives a value
several orders of magnitude smaller than the Planck scale.

Using the mentioned trial state, we calculated the propagator of the scalar field in
two ways: one by polymerizing the matter field itself and the other by polymerizing the
momentum of the matter field. It turns out that they do not lead to equivalent theories
but both of them indicate violation of Lorentz invariance by introducing corrections
to the dispersion relation. There are two sources for this violation: discretization and
polymerization. We showed that the corrections due to polymerization can be shifted
arbitrarily by changing the order of the polymerization variable that appears in the
dispersion relation. So if this variable is small, the violations due to polymerization
can be made as small as needed.

The other specific subsystem of the generic case we studied is the CGHS model.
This is a dilatonic two dimensional model and comes from string theory. We have
shown that the system is a second class one, derived the Hamiltonian of the system in
terms of Ashtekar variables and have made a complete classical analysis of this model,
including the form of the Dirac bracket, equations of motion, the asymptotic limits etc.
By introducing a new variable we have brought the algebra of canonical pairs into the
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standard form such that the theory looks like a first class system. This classical study
opens a way into the quantization of the theory by loop quantum gravity methods.

7.2 Future directions

In both cases the future aim of the work is to study the quantum effects in black hole
solutions and the Hawking radiation. For example in 3+1 case, one can study solutions
centered around non-flat geometries including a black hole solution and study several
relevant quantum effects. Also in the CGHS case, the theory can be quantized and one
in principle is able to study the back-reaction of the radiation on geometry, the unitar-
ity of the evolution, the information paradox and the asymptotic fate of spacetime.
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