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A B S T R A C T 

We study the secular evolution of a particle in deep mean motion resonance (MMR) with a planet in the planar elliptic restricted 

three body problem. We do not consider any restriction neither in the planet’s eccentricity e p nor in the particle’s eccentricity e . 
The methodology used is based on a semi-analytical model that consists on calculating the averaged resonant disturbing function 

numerically, assuming for this that in the resonant scale of time all the orbital elements of the particle are constant. In order 
to obtain the secular evolution inside the MMR, we make use of the adiabatic invariance principle, assuming a zero-amplitude 
resonant libration. We construct tw o-dimensional surf aces (called H surfaces) in the three-dimensional space ( σ , e , � ) that 
allow us to predict the secular evolution of these three variables. The 2:1 MMR is used as example to show some results. We 
found four apsidal corotation resonance (ACR) f amilies, tw o symmetric and two asymmetric. One of the symmetric families 
exists for almost any e p value. The other one for e p > 0.3 and the asymmetric ones for e p > 0.44. We corroborate the secular 
variations in e and � predicted by the model through numerical inte grations ev en when the initial conditions are displaced from 

those ACR. Some peculiar examples are presented for the 3:1 and 3:2 MMR showing large excursions in eccentricity. As an 

application, the Planet 9 is investigated as a possible responsible of high eccentric distant TNOs. 

Key words: methods: numerical – celestial mechanics – planets and satellites: dynamical evolution and stability. 
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 I N T RO D U C T I O N  

esonant motions, in the celestial mechanics conte xt, hav e been 
bject of intense study for many decades due to the diverse dynamical
volution they can produce. The initial efforts on analytical theories 
evelopments resulted in the first and second fundamental resonant 
odels (Garfinkel 1966 ; Henrard & Lemaitre 1983 ) which were 

pplicable to a particle in mean motion resonance (MMR) with a 
ircular perturber. They had the advantage of being fully integrable 
s they are Hamiltonian systems of one degree of freedom. For
on-zero low eccentricity of the perturber e p and of the particle e ,
ev eral analytical e xpansions in e p , and e for the disturbing function
 exist. Some classical examples of these are in Wisdom ( 1982 ,

985 ). Naturally, these expansions are valid for small eccentricities 
hich constitutes their main limitation. As an alternative, there are 
ther type of expansions called asymmetric expansions (Ferraz- 
ello 1987 ) that are implemented around a general e > 0 value.

f the variation of e is too large, another expansion can be done to
ontinue studying the secular evolution of the particle. There are 
ome other works, for instance Moons & Morbidelli ( 1993 , 1995 ),
hat only expanded in e p , allowing an application to any high value
f e , with the restriction e > e p . Sidorenko ( 2006 ) also used only
 Laplacian expansion in e p but without any restriction for e . That
ethod was based on a double numerical average that allow to study

he secular evolution of asteroids inside the 3:1 MMR with Jupiter. 
n the restricted case there are also works that did not use analytical
xpansions at all, as for example in Yoshikawa ( 1989 ) where
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he long-term changes of asteroid’s eccentricities in several MMR 

ith Jupiter were calculated. There, it was considered all Jupiter’s 
arameters fixed except for its longitude of perihelion, assumed to 
hange linearly with time. With a similar methodology, Beust & 

orbidelli ( 1996 ) presented various phase portraits in the ( e , � )
omain for some MMR. More recently Pichierri, Morbidelli & Lai 
 2017 ) studied the elliptic restricted problem also without analytical
xpansions and developed a similar approach as we will present here.
ur work is in the same line of disregarding analytical expansions in
rder to have a valid method for extreme variations of e and arbitrary
alues of e p . We are also interested in the long-term evolution of the
ibration centre. Variations of the resonant libration centre have been 
lready observed in systems with mutual inclination, for example, in 
allardo ( 2006a ). In this work, we show the same phenomenon can
ccur for coplanar high-eccentricity systems. 

With respect to pure numerical techniques, there are various 
orks with different methodologies, for example, Antoniadou & 

ibert ( 2018 ) analysed several MMRs through stability maps using
 chaos indicator, Haghighipour et al. ( 2003 ) studied the problem via
earching resonant periodic orbits with the differential continuation 
ethod, Celletti et al. ( 2002 ) solved numerically the differential

quations looking for stable mirror configurations, etc. These are in- 
eresting works with the disadvantage that sometimes are computing 
onsuming and could be difficult to reveal global dynamical features. 

All these studies are somehow complementary and contribute to 
he understanding of different dynamical aspects of the MMR. In this
ork, we extend the approach of Gallardo ( 2020 ) studying the secular

volution of the restricted coplanar resonant case for any eccentricity 
f both bodies and find the long-term evolution of the equilibrium
oints in the space ( e , � , σ ). Our model is validated through the

http://orcid.org/0000-0001-6023-1992
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Figure 1. Normalized averaged disturbing function for the 2:1 MMR with 
� = � p = 0 ◦, e = 0.73, and e p = 0.01 (quasi-circular case). 
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omparison with numerical integrations of the full equations of
otion obtaining very good agreement. A similar approach was

eveloped in Li, Huang & Gong ( 2021 ), where they studied the
:1 MMR. The only disadvantage in our method is that the results
an be erroneous for low e and e p in first order MMRs. This occurs
ecause in those cases �̇ is too high and, as we will show, this
nvalidates two hypothesis we will use to develop our model. One
onsequence of this is that we do not reproduce the known law of
tructure (Ferraz-Mello 1988 ) that relates e with a when e → 0. 

Despite no having an immediate innov ati ve application in the Solar
ystem because of the planet’s low eccentricities, it could be applied
o some extrasolar systems with two planets in MMR being one of
hem much more massive than the other or to e xoasteroids/e xocomets
n MMR with an eccentric exoplanet. This last application is too far
way from being able to be contrasted with observations at present
or obvious reasons. In this work, we apply it to the hypothetically
lanet 9 and show that it could be a partial responsible of some orbital
haracteristics in distant TNOs. 

 T H E O R E T I C A L  F R A M E WO R K  A N D  

E T H O D O L O G Y  

.1 Semi-analytical model 

n the rest of the article every orbital element without sub-index refers
o the particle whereas sub-index ‘p’ refers to the perturbing planet
massive body). The ‘s’ index is reserved for the star. The method
e will devise is valid for arbitrary resonances but in this work, we

ocus on internal resonances, i.e. the semi-major axes satisfy a < a p 
l w ays. 

As we are assuming a coplanar configuration, only three orbital
lements are rele v ant which are a , the eccentricity e , and the longitude
f the pericenter � (formally would be �� = � − � p but we will
ssume � p = 0). Besides these, due to the resonant hypothesis, the
ritical angle σ is also a rele v ant parameter, which is defined as
ollows: 

= kλ − k p λp + ( k p − k) � (1) 

here λ, λp are the mean longitudes and k , k p are positive integers.
he planet’s orbital elements are evidently fixed since we are in the

estricted case. 
F ollowing, for e xample, Nesvorn ́y et al. ( 2002 ) or Saillenfest et al.

 2016 ) the semi-secular Hamiltonian obtained eliminating the short-
eriod terms depending on λ or λp , but no σ , is: 

( a, e, �, σ ) = − μ

2 a 
− n p 

k p 

k 

√ 

μa − R ( a, e, �, σ ) (2) 

here μ = Gm s and n p is the planet’s mean motion. 
The Hamiltonian of equation (2) has three terms, the first one is the

eplerian term, the second one corresponds to the expanded phase
pace term in order to have an autonomous H and the third term is
he averaged disturbing function. To calculate it, we follow the idea
iven by Schubart ( 1968 ) with the approach used by Gallardo ( 2006b ,
019 , 2020 ) where the resonant disturbing function is calculated by
n averaging method in λp , considering that e and � are fixed. This
esults in a great simplification since the problem becomes of one
egree of freedom. 
Using the canonical variables � = 

√ 

μa /k and σ , the equilibrium
oints have to satisfy the following conditions: 

∂H 

∂� 

= 0; 
∂H 

∂σ
= 0 (3) 
NRAS 511, 1153–1166 (2022) 
The first one gives the nominal semi-major axis: 

 = 

a p 

(1 + m p /m s ) 1 / 3 

(
k 

k p 

)2 / 3 

≡ a 0 (4) 

here it was neglected the contribution of ∂R 

∂� 
as it is proportional

o m p < < m s . This simplification does not change significantly the
alue of a 0 . 

We can rewrite the second condition in 3, which gives σ 0 , known
s the equilibrium centre of libration: 

d R 

d σ
= 0 (5) 

Strictly speaking this is correct but we are interested in the stable
quilibrium points. They occur when σ minimizes (at least locally)
he function R . If we consider a constant semi-major axis for the
article, then is totally equi v alent finding R minimums to finding
 maximums. From here on, we will refer to stable equilibrium

oints just as equilibrium points. We are going to disregard those
quilibrium points obtained when an encounter occurs. The criteria
sed to detect an encounter is given by the next inequality: 

 < ηR H 

= ηa p 

(
m p 

3 m s 

)1 / 3 

(6) 

here R H is the Hill’s radius, � is the minimal distance between the
odies and η is a tolerance factor with typical values between 2 and
. We use η = 3 for the examples presented in this work. 
In the Fig. 1 , there is a R ( σ ) example in the 2:1 resonance, where
 = � p = 0 ◦, e = 0.73 and e p = 0.01. Is easy to see that there are

wo equilibrium points, one at σ = 0 ◦ and the other at σ = 180 ◦.
he second one is surrounded by two high spikes due to encounters
etween the bodies. In general, these equilibrium points found with
his method are al w ays stable in relatively short scales of time ( t ∼
0–200 P being P the orbital period) when numerical integrations
re carried out. Ho we ver, if we check their stability at higher scales
f time ( t ∼ 2 × 10 4 – 2 × 10 6 P ) some points remain stable whereas
thers not. 
To o v ercome this issue and find the long-term stable points, we use

he adiabatic invariance principle which has been applied in MMR
ynamics at least since Peale ( 1976 ). In that work, the author applied
t to study the capture process in MMR due to tidal interactions.
 recent example where the principle is applied to study secular

volutions in MMR can be found in Batygin & Morbidelli ( 2017 ).
his principle states that the adiabatic invariant of the dynamics J

emains constant as long as the resonant libration periods are much

art/stac018_f1.eps
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Figure 2. min { R ( e, � ) } versus σ for the 2:1 MMR with e p = 0.01. 
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ore shorter than the secular periods (Henrard 1993 ). The definition 
f this quantity is as follows: 

 = 

∮ 
�d σ (7) 

For the sake of simplicity we are going to work in a negligible
esonant amplitude of libration regime ( J = 0), which means that
 = a 0 and σ = σ 0 are essentially constants in resonant time- 
cales, with zero-amplitude resonant librations. This approximation 
as used for example by Kozai ( 1985 ) and subsequent works. In

ecular time-scales a will continue to be constant (because of the 
ommensurability between orbital periods) but the centre of resonant 
ibration could slowly change. 

In practice this means that some of the orbital elements are slow
arying and could be treated as constants to do the averaging of
 , which is carried out in a shorter time-scale. Therefore, when

he secular evolution of e and � is much slower than the resonant
ibration periods of σ , we can apply the adiabatic invariance principle 
nd do the averaging for all the possible ( e , � ) pairs. This allow us
o construct contour maps of the type R ( σ, e ) = C, R ( σ, � ) = C 

r R ( e, � ) = C being C constant (from now on, C will al w ays refer
o an arbitrary constant) that will help with the understanding of the
ecular evolution. In each one of these maps, the missing variable has
o be at least constant enough so they remain valid when compared
ith long-term numerical integration. The allowed variation to ensure 

his map’s validity will depend on each particular case. 
Another more general way of studying the evolution and very 

seful in more complicated cases is searching for all the equilibrium 

oints in the ( σ , e , � ) space using equation (5). Then, using the fact
hat H is a constant of motion and the adiabatic invariance principle,
 kind of three dimensional contours curves in the mentioned space 
an be constructed that will predict the complete secular evolution 
f σ , e , and � . We will call them Hamiltonian 3D maps or simply
 surfaces. 

.2 Methodology 

or all the cases, is assumed a central star of mass m s = 1 M � and
 unique planet with a p = 5.2 au, i.e. same as Jupiter, but with
0 per cent of its mass. Without losing generality, both, the planet’s
ongitude of the pericenter and the mean anomaly were set to zero,
o, � p = M p = 0. On the other hand, � could vary and the particle’s
ean anomaly M is defined from the critical angle σ through the 

ollowing relation (deduced from equation 1): 

 = 

σ − k p � 

k 
(8) 

This equation seems to tell us that only one mean anomaly could
roduce the deep resonant behaviour. In fact this is true, but only for
 = 1. If k = 2, we could increase σ by 2 π and we would obtain
wo different mean anomalies M 1 and M 2 such that | M 1 − M 2 | = π .
n general, for any arbitrary k value, there will be k different mean
nomalies that will satisfy the resonant condition. 

We introduce the angle θ which is defined as follow: 

= kλ − k p λp + ( k p − k) � p (9) 

Since we are supposing � p = 0, then θ = k λ − k p λp , i.e. just
he linear combination of mean longitudes. This angle is simply 
nother resonant argument which could be more rele v ant to analyse
he resonant motion in those cases where e p > e . 

In order to be rather e xhaustiv e, giv en a resonance k p : k , we explore
he ( σ , e , � ) space for e p in the range (0.01, 0.85). We analysed more
n detail the cases with the following specific values: e p = (0.01;
.3; 0.5). Once k , k p , and e p are fixed, the space ( σ , e , � ) can be
xplored in different ways, detailed in the following sections. In the
ection 2.2.1 is described a first method to explore and search for
ecular equilibrium points, i.e. points where all the variables are static
or long periods of time. In fact, these points have been widely studied
n the planetary case (Beaug ́e & Michtchenko 2003 ; Zhou et al. 2004 ;

ichtchenko, Beaug ́e & Ferraz-Mello 2008 ) and are called apsidal
orotation resonances (ACR from here on). In the Section 2.2.2 is
escribed a method to predict the secular behaviour of e and � in
hose cases where the centre of resonant libration is constant, despite
 and � changing in time. Finally, in the Section 2.2.3 is presented
he technique developed to study the secular evolution in the more
eneral case of a variable centre of libration. 

.2.1 R ( σ, e ) and R ( σ, � ) maps 

 ( σ, e ) maps can be made assuming some fixed value for � . Al-
ernatively, if e is assumed fixed, R ( σ, � ) maps can be constructed.
hese plots are just the contour curves of R and are useful to find
CRs as long as a minimum in the ( σ , e ) space matches with a
inimum in the ( σ , � ) space, resulting in a minimum in the entire

 σ , e , � ) space. A faster approach could be to sweep σ from 0 to
60 ◦ obtaining in each step the min { R ( e, � ) } . After this, a curve
s the one in the Fig. 2 can be plotted, revealing for example the
bsolute min { R ( σ, e , � ) } or other local minimums. We will show 

hat if a numerical integration is set in the absolute minimum of R ,
he orbit freezes and does not show any change over time. 

A problem with this first method arises when a variation of e or
 implies a topological change in one of this two-dimensional R

ontour curves. These variations could exist depending if ∂R 

∂� 

�= 0 
nd/or ∂R 

∂e 
�= 0. If both are zero, no variation will exist. But, for

xample, if a variation in e implies that the map R ( σ, � ) changes
opologically, then it means that is no longer al w ays valid, so,
umerical integrations cannot be contrasted with this map in all 
he numerical integration time interval. 

.2.2 R ( e, � ) maps 

f we assume that the centre of libration is fixed in the secular time-
cale for any e and � values, the numerical integrations should
ollow the contour curves of R ( e, � ). To test this hypothesis, a
ouble sweep in e and � can be made, registering the σ equilibrium
alues in each step. This allows to plot something like the graphic
hown in Fig. 3 . As can be seen there, there are al w ays equilibrium
oints very close to σ = 0 ◦. This means that no topological change
or at least near σ = 0 ◦) exists for R . The equilibrium points near
MNRAS 511, 1153–1166 (2022) 
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Figure 3. Equilibrium points calculated with equation (5) for the 2:1 MMR 

with e p = 0.01. 
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= 180 ◦ (coloured in green) are other family of equilibrium points
hich appear at high e values. Thoroughly speaking, the mentioned

weep to check if the centre of libration is fixed, would be required
nly for the range of variation of ( e , � ) that the secular evolution
ould induce. Nevertheless, is important to have in mind if the entire
 ( e, � ) map is valid and describes the correct dynamics or if only

s valid a subregion of it. 
For e → 0 there is a small dispersion from σ = 0 ◦. In that zone,

he model’s validity is compromised for first order MMR, as we
entioned, because �̇ is too high invalidating the calculation of R

ssuming that ( a , e , � ) are fixed during the considered averaging
eriod. Besides, the adiabatic invariant principle cannot be applied
ince � circulates too fast and its frequency could be comparable
ith σ libration frequency. This is associated with the undefined

ntrinsic characteristic of � when e → 0. In those low e equilibrium
oints the resonant strength is usually low (Gallardo 2019 ). 
As in the previous section, we will show that if a numerical

ntegration is set in the absolute minimum of R , every orbital element
ill be constant. The interesting result comes out when the initial

onditions are not in the ACR point, for example, changing the
nitial e value, and finding out that the secular evolution of e ( t ) and
 ( t ) follows almost exactly the contour curves of R ( e, � ). As we
entioned, this would be the case if the asteroid is locked in the

ame resonant libration centre with zero-amplitude libration ( ̇σ ≡ 0
nd J = 0). 

.2.3 H surfaces 

n the most general case that the secular evolution occurs for the
hree variables e , � , and σ , i.e. the libration centre varies, a three-
imensional representation is needed. This representation is a 2D
urface in the 3D space ( σ , e , � ). 

This H surface is conformed by all the resonant equilibrium points
hich can be visualized when they are plot altogether in the ( σ , e ,
NRAS 511, 1153–1166 (2022) 
 ) space. This surface contains the contour curves given by H = C,
hich gives the possible secular dynamic trajectories of the system.
nce the initial ( e , � ) pair is defined and σ satisfies equation (5) (in
rder to be in the surface), the secular evolution of ( σ , e , � ) is given
y one of these curves (the one defined by the initial H). Formally, it
s required not only the verification of equation (5) but also that this
oint is a minimum of R or a maximum of H. 
Being exactly in those resonant equilibrium points guarantees that

e are in a J = 0 framework, i.e. in the zero-amplitude resonant
ibration hypothesis. This will be the reason why the secular evolution
ould be predicted by these three-dimensional contour curves. In
his situation, we could interpret that the secular evolution modifies
he resonant centre of libration and the asteroid ‘follows’ it al w ays

aintaining a zero-amplitude libration, as long as this centre does
ot change too fast. 
If σ changes too fast, the adiabatic invariance principle could

ail and J could increase, causing a non-zero amplitude of resonant
ibration. If this amplitude is positive but small, these maps still
ould represent the evolution good enough where a small deviation

rom the H surface can be observed. If J increases too much, the
omparison between the numerical integration and the map could
ecome rapidly uncorrelated. 

 RESULTS  

.1 The 2:1 MMR 

n this section are presented some examples for k = 1 and k p =
. In the appendix are presented two short examples for the 3:1
nd 3:2 MMR. As we have stated before, in this work we only
onsider internal resonances but this method can be applied to
xterior resonances and even for the 1:1 MMR. From here on, we
re going to use sub-index ‘i’ referring to ‘initial’ and sub-index ‘0”
or the ACR points. 

.1.1 Quasi-circular planet ( e p = 0.01) 

n the Fig. 4 we show the R ( σ, e ) and R ( σ, � ) maps for e p =
.01 compared with a numerical integration of the exact equations
f motion which initial conditions are those of the ACR point, i.e.
 σ i , e i , � i ) = ( σ 0 , e 0 , � 0 ) = (0 ◦, 0.73, 0 ◦). Over the maps is a red
ross indicating the initial condition and in pink is the numerical
ntegration itself, which in this case is barely visible because, as
xpected, no secular variations in the orbital elements occur. The
ighest values of R (from red to white colours) corresponds to the
ncounter zone. The corotational solution for e p 	 0 in this MMR
as been well known since Ferraz-Mello, Tsuchida & Klafke ( 1993 ).

In order to study what happens around the ACR, we are going to
hange e i from e 0 but maintaining � i = � 0 and σ i = σ 0 . The Fig. 5
hows what happens if this is done. We have plotted the numerical
ntegrations in the time domain, the R ( e, � ) maps compared with
he numerical integration in pink and the contour curves of H( a, σ )
alculated from equation (2) for the initial ( e i , � i ) of the numerical
ntegration, which is in black. 

Note how the secular evolution of the eccentricity and the longitude
f the pericenter matches pretty well with the R ( e, � ) map’s contour
urv es. Moreo v er, the change in behaviour of � between oscillating
nd circulating also agrees with the predicted by these contour
urves, occurring in this case for e 	 0.6. From these results, we
an conclude that a small variation in e i from e 0 can produce large-
mplitude oscillations in � . The variations induced in e itself are

art/stac018_f3.eps
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Figure 4. 2:1 MMR with e p = 0.01. 2 Myrs numerical integration and the R ( σ, e) and R ( σ, � ) contour maps are shown. 
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lso significant. Let be � e = e max − e min . In the � libration regime,
t is satisfied � e 	 2( e 0 − e i ). When � circulates, the variations in
 are smaller compared to the example where the particle was in the
dge of the � libration regime (cases c versus d in fig. 5). 

At this point an important remark regarding the Hamiltonian must 
e done. When e and/or � changes, the global topology of the
( a, σ ) contour levels could change. If we compare, for example

he a) map with the d) one, is evident how the σ = 180 ◦ libration
entre disappears. This is in accordance with the graphic in Fig. 3 . In
eneral some new families of equilibrium points could (dis)appear, 
nd also the libration centre value (i.e. σ itself) of some of these
amilies could change, as we will show. But in this case there is
l w ays an equilibrium point in σ = 0 ◦, regardless of e and � values.
herefore, the analysis via the R ( e, � ) contour levels in the Fig. 5 is
 alid and suf ficient, as we are supposing that the adiabatic invariance
rinciple is correct. As we mentioned, there will be some cases that
arge variations of e and/or � would imply great modifications in 
he centre of resonant librations. The next case is an example of this.

.1.2 High-eccentricity planet ( e p = 0.3) 

ollowing the procedure described in 2.2.1, a main ACR in 
 σ0 , e 0 , � 0 ) 1 = (0 ◦, 0.7, 0 ◦) can be found when e p = 0.3. In the
op of Fig. 6 , we present the results of three numerical integrations
here the initial conditions were gradually being put further away 

rom this ACR (al w ays with J = 0). The result is that the centre of
ibration starts to have a long-period oscillation that in the extreme 
ase reaches almost 180 ◦ of amplitude. Besides, e and � also have
n important secular evolution. Therefore, this dynamical behaviour 
annot be completely understood by means of the maps R ( σ, � ),
 ( σ, e ) or R ( e, � ) because in all these maps, one of the three

ariables is considered fixed and besides, the topology of the contour 
urves changes whenever one of this magnitudes has a considerable 
ariation. Hence, in this example we explore the entire ( σ , e , � ) space
t once, plotting all the equilibrium points found with equation (5)
nd assigning different colours according the Hamiltonian’s value 
f each point. The colour assignment is vital to differentiate the 
 = C curves that will predict the secular evolution. This can be

een in the bottom of the Fig. 6 where the comparisons where carried
ut between the numerical integrations (black curve) and the three- 
imensional H surfaces. Some points of the surface’s edges were 
emo v ed in order to have a better visualization. This does not interfere
ith the analysis so far. 
It is remarkable how good is the agreement between the numerical
ntegrations and the model’s surface for all the cases. Contrary to the
 p = 0.01 case, here � e is much bigger when e i is displaced from
 0 . Also � presents large secular variations when � i is far away
rom � 0 . With this method, we can observe which are the pathways
hat could increase greatly the asteroid’s eccentricity when is exactly 
n the 2:1 MMR with an eccentric perturber. An example of this is
recisely the right one in the Fig. 6 where the initial e i = 0.32 but
fter 200 kyrs it reaches values extremely close to 1. The surface
ifurcation at low e and σ = � = 0 ◦ is related to a separatrix we
ill analyse later in this section. 
Another surface exists (in the same panel) with an ACR peeking

ut in ( σ0 , e 0 , � 0 ) 2 = (180 ◦, 0.99, 180 ◦), but due to the high
ccentricity value, all numerical integrations reached e = 1 (as 
he contour curves do) in thousands of years, except if the initial
onditions were exactly in the mentioned triplet. Consequently, is 
ot a really important equilibrium point family from the practical 
oint of view in this case. Nevertheless, we will see in the next
xample that this ACR point comes down in e when e p increases and
n fact, is the beginning of an entire ACR family. 

There is another zone that is worth of being analysed. It is
opologically in the same surface as the main ACR in ( σ0 , e 0 , � 0 ) 1 
 (0 ◦, 0.7, 0 ◦) b ut is beyond of a separatrix, so the beha viour is

uite different. In the Fig. 7 , we show three different numerical
ntegrations in green and the separatrix in black together with the
 surfaces. In the first numerical integration the initial condition 

yellow marker) is such that the contour curve still closes on itself
nd surrounds ( σ0 , e 0 , � 0 ) 1 (i.e. is still the first zone studied in fig.
). The second initial condition is on the separatrix. The third one
s beyond the separatrix, laying on a contour curve that suddenly
anishes for a higher e value, therefore, is not a closed curve but an
pen one. In both last cases the amplitude of resonant libration is not
ero anymore, being more pronounced in the third one. In this case,
he numerical integration is more uncorrelated with the H surface, 
ehaving more chaotically than the other two. Let’s call this family
f contour curv es be yond the separatrix by open curve family. In
rder to explain this beha viour, we ha ve selected three points in the
pen curve family and plot R ( σ ) for each of them. The idea is to
nspect what happens when e increases in a single contour curve,
pproaching to the edge of this family (or surface’s edge). This can
e seen in the Fig. 8 where the points are coloured differently. At the
ight of that figure are the R ( σ ) functions for each ( e , � ) pair, where
n arrow with the same point’s colour indicates where is the resonant
MNRAS 511, 1153–1166 (2022) 
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Figure 5. 2:1 MMR with e p = 0.01 LEFT : a ( t ), e ( t ), σ ( t ) (black), and � ( t ) (blue) from the numerical integrations. CENTRE : R ( e, � ) map for σ = 0 ◦
Vs. numerical integration in pink. The white-dashed curve corresponds to the separatrix. RIGHT : H( a, σ ) contour curves for the ( e i , � i ) pair Vs. numerical 
integration in black. From top to bottom the difference is in the e i : a) 0.73. b) 0.68. c) 0.61. d) 0.60. 
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Secular evolution of MMRs in the PER3BP 1159 

Figure 6. 2:1 MMR with e p = 0.3. TOP: Three examples of numerical integrations. In blue are a , e , and � . In black is σ whereas in red is θ . BOTTOM: 
Comparison between the H surfaces and each of the numerical integrations (black curves). The ( σ i , e i , � i ) are the following → LEFT: (0 ◦, 0.7, 0 ◦). CENTRE: 
(29 ◦, 0.44, 90 ◦). RIGHT: (95 ◦, 0.32, 180 ◦). 
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quilibrium point drawn in the H surface. Note how the resonant 
quilibrium point disappears ( R σσ seems to decrease) as we mo v e
owards the edge. This happens when e = 0.75 in this example. In that
oint, the system came from evolving adiabatically with J = 0, but
uddenly there is no more resonant equilibrium point, so, the ‘initial’
ondition in the green point is of J > 0 because the particle now will
ibrate around the nearest equilibrium point which is marked with a 
lue circle in that figure. This phenomenon of disappearing libration 
entres was already observed by Saillenfest et al. ( 2016 ) where some
onveniently fragmented maps were presented to understand the 
ecular evolution of a particle in the 1:11 MMR with Neptune. 

Finally, we show in the Fig. 9 how the evolution is greatly modified
f we mo v e the particle from being in the e xact MMR (in the closed
urve family). We achieve this by just considering three numerical 
ntegrations with the same initial conditions except for a , which 
s displaced from the nominal value in two of them. The initial
onditions for the particle are e i = 0.21, � i = 180 ◦, and σ i = 102 ◦

ith the following three a i : 3.275 (nominal value), 3.26, and 3.24 au.
n the mentioned figure it can be observed the resonant structure in
he ( a , e ) plane, where the resonant width was calculated using the
ormula derived in Gallardo ( 2020 ). In the same plane, there are three
ymbols indicating the initial values for the numerical integrations. 
e also show the temporal evolution of e , a , and σ . In the first case

he particle is in exact MMR with a similar evolution of the third
ase shown in Fig. 6 , where the eccentricity is excited almost to
. The centre of libration evolves in the secular time-scale but the
esonant libration amplitude is zero. In the second case, there is a
if ferent e volution for e with higher frequency and a lower secular
mplitude. As expected, a is centred in the nominal value but with
 non-zero resonant amplitude of libration. σ has also a non-zero 
mplitude of libration with higher secular frequency (as e ). In the
hird case, a enters in a stickiness behaviour proper of being at the
dge of the resonance, σ alternates between circulating and librating 
hereas e has a completely different evolution with much lower 

ecular amplitude. 
In this example (2:1 MMR with e p = 0.3), we notice how different

ould be the secular evolution between being in deeply resonant 
otion and in the edge of the resonance or in non-resonant motion.

n particular, this mechanism (of being in deep MMR) could be
esponsible for generating extremely high eccentricity orbits. As a 
nal observation, we should emphasize the importance of the J =
 hypothesis in order to the model predict reliably the dynamical
volution. 

.1.3 Very high-eccentricity planet ( e p = 0.5) 

he third example we present for this resonance is with e p = 0.5.
n the Fig. 10 (a) can be seen the min { R ( e, � ) } ( σ ) where this time
here are two minimums, one in σ = 0 ◦ and the other in σ = 180 ◦.
he first one occurs for ( e , � ) = (0.8, 0 ◦) whereas the second one

or ( e , � ) = (0.88, 180 ◦), as can be observed in the same Fig. 10 (b)
nd (c). The red star in these R ( e, � ) maps marks the minimum. If
e compare numerical integrations with these R ( e, � ) maps when

he initial conditions are in the � libration zone, we have good
greement. In these zones, e presents moderate variations whereas 
 presents low variations. 
MNRAS 511, 1153–1166 (2022) 
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Figure 7. 2:1 MMR with e p = 0.3. Three numerical integrations (in green) are compared with the H surfaces to illustrate the breakdown of J = 0 hypothesis. 
The black curve is the separatrix. ( σ i , e i , � i ) = LEFT : (106 ◦, 0.35, 195 ◦). CENTRE : (123 ◦, 0.35, 215 ◦). RIGHT : (140 ◦, 0.35, 235 ◦). No filtration of equilibrium 

points has been done here to construct the H surface. 

Figure 8. 2:1 MMR with e p = 0.3. LEFT: H surface with three points in the open curve zone marked with different colours but laying in the same curve. 
RIGHT: The 3 functions R ( σ ) for the 3 coloured points. ( e , � ) black = (0.35, 235); ( e , � ) yellow = (0.55, 226); ( e , � ) green = (0.75, 220). 
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In the σ = 0 ◦ case, if the initial condition is ( e i , � i ) = (0.61,0 ◦), it
eans that the particle is on the separatrix. In that situation, the centre

f resonant libration starts to circulate after approximately 30 kyrs
nd the map loses validity. To explain this behaviour, we should make
se of the H surfaces described in the Section 2.2.3. Nevertheless,
ue to the complexity of this e xample, sev eral snapshots of the H
urface were taken from different view angles which can be observed
n the appendix (Fig. A1 ) together with the numerical integration.
his is another example of high eccentricity variations. Note how a
article with e i ∼ 0.2 could reach values close to 1, if � i and σ i are
roperly selected. Observe how despite the intricate behaviour of the
NRAS 511, 1153–1166 (2022) 
volution, the numerical integration follows this three-dimensional
ontour curves in the H surface. In practice is convenient to use
n interactive 3D graphic manipulator (for example ipyvolume from
ython library) to inspect the dynamical structure more easily. 

Finally, in the top of the Fig. 11 is shown a case where σ is librating
n the asymmetric angle of 227 ◦, which is very interesting because
or this interior resonance, it was thought that these asymmetric
ibrations did not exist or exists but for m p / m ∼ 1 (Beaug ́e, Ferraz-

ello & Michtchenko 2003 ). In Beaug ́e, Michtchenko & Ferraz-
ello ( 2006 ) they extended the search of corotational solutions for

igher eccentricities values but did not appear asymmetric points for

art/stac018_f7.eps
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Secular evolution of MMRs in the PER3BP 1161 

Figure 9. 2:1 MMR with e p = 0.3. LEFT : ( e , a ) plane showing the width for � = 180 ◦. The three coloured symbols shows the initial conditions for three 
numerical integrations. CENTRE : e ( t ) of the numerical integrations. RIGHT : a ( t ) and σ ( t ) of the numerical integrations. 

Figure 10. 2:1 MMR with e p = 0.5. (a) min { R ( e, � ) } versus σ . (b) R ( e , � ) for σ = 0 ◦ (c) R ( e , � ) for σ = 180 ◦. 
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 p > m in the masses range they explored. Despite this, in the fig.
 of their work there is a zone near e p = 0.5 and e = 0.1 where
his point could asymptotically exist. In the Fig. 11 is also shown
he R ( σ, � ) map and the 3D H surface, both with the numerical
nte gration o v erlapped. Both maps predict this asymmetric ACR as
an be seen. Moreo v er, the y predict another asymmetric ACR point
ocated symmetrically opposite with respect to the origin in the ( σ ,
 ) plane. Despite this interesting feature disco v ered in the dynamics,

t is noteworthy that this ACR seems to be pretty weak because of
ts limited extension in the space (contrary to the main ACR point
ound in the e p = 0.3 case) which can be pro v ed if we see the bottom
art of the Fig. 11 . Here the initial conditions are slightly changed,
esulting in a completely different behaviour of both, σ and � .
hey circulate, as the contour curves on the H surface predicts, 
hereas θ is approximately fixed. Note how in both numerical 

ntegrations e does not change considerably, so, with the R ( σ, � )
ap would have been enough for explaining the encountered 

ehaviour. 
If we compare the H surface’s topology between this case and the

 p = 0.3 case, we can point out for example that in the e p = 0.5 case,
he bifurcation occurs for a higher e value, making it bigger. Secondly, 
he surface has a more complicated topology than in the e p = 0.3
ase. This implies that in the former case, σ secular variations 
ill be bigger when the initial conditions are displaced from the 
CRs. Finally, a more eccentric perturber produced a second main 
quilibrium point in σ = � = 180 ◦ with more dynamical rele v ance
recall the ‘instability’ surrounding this point when e p = 0.3). In the
able 1 are summarized all the ACRs found in the 2:1 MMR for the
articular e p values studied. 
t
.1.4 ACR families 

n order to be aware of the entire families where the ACR points of
he Table 1 belongs, we explore the space for any e p value up to 0.85.
he result can be seen in Fig. 12 . For e p < 0.3 only exist the σ =
 = 0 ◦ symmetric ACR family. From that point, appears another

ymmetric family at σ = � = 180 ◦. At e p 	 0.44 starts the third
nd fourth families, which are asymmetric. In this family, not only e
hanges for different e p values, but also � and σ . 

.2 Application: the Planet 9 

n this section, we apply the method to the hypothetical Planet 9,
sing for this its canonical orbital elements values and a mass of
 p = 5 m ⊕ (Batygin et al. 2019 ), but taking, without losing generality,
 p = 0 ◦ and i p = 0 ◦, since we are not considering the Solar system

lanets. The objective here is to confirm that low-to-high eccentricity 
athways can exists and could be a partial explanation of those high-
ccentric distant TNO observed nowadays, assuming that they are 
n MMR with the Planet 9. First of all, we select the 2:1 MMR and
onstruct the 3D H surface for the Planet 9. Then we do a projection
f it in the ( e , � ) plane which can be seen in the Fig. 13 (observe
he similarity with the map of Fig. 6 , due to the e p values are pretty
imilar). To do this, we had to filter some of the equilibrium points to
ave a more complete visualization of the region of interest. Observe
ow this projection could be very tricky if not impossible when the H
urface become more complicated, as in the e p = 0.5 case. There, the
rojection would deprive of the necessary information to understand 
he secular behaviour of σ . 
MNRAS 511, 1153–1166 (2022) 
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Figure 11. 2:1 MMR with e p = 0.5. Two numerical integrations compared with R ( �, σ ) maps and H surfaces. Two asymmetric ACRs are found at ( σ 0 , e 0 , 
� 0 ) = ( ∓133 ◦, 0.08, ±155 ◦). TOP : ( σ i , e i , � i ) = (-144 ◦, 0.10, 142 ◦). BOTTOM : ( σ i , e i , � i ) = (-148 ◦, 0.20, 136 ◦). 

Table 1. Summary of ACRs in the 2:1 MMR for the three cases investigated. 

( σ 0 , e 0 , � 0 ) 1 2 3, 4 

e p = 0.01 (0 ◦, 0.73, 0 ◦) – –
e p = 0.3 (0 ◦, 0.7, 0 ◦) (180 ◦, 0.99, 180 ◦) –
e p = 0.5 (0 ◦, 0.79, 0 ◦) (180 ◦, 0.88, 180 ◦) ( ∓133 ◦, 0.08, ±155 ◦) 
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In the same Fig. 13 , we compare with a numerical integration
f 5 Gyrs, where a particle suffer extreme changes in eccentricity.
his confirms that low-to-high eccentricities pathways exists with

eally stable orbits, assuming no inclination respect Planet 9’s orbit,
hich for TNOs could be a bit restrictive hypothesis given the
ifferent inclinations and longitudes of nodes these objects have.
his application study does not pretend to explain exhaustively

he high eccentric orbits present in these distant ( a > 250 au) TNO
opulation but just illustrate that at least a secular evolution inside
his MMR could be partially responsible for some of the orbital
haracteristics. In our example, the particle has a = 314.98 au (in
rder to be in the exact MMR), a value close to the semi-major axis
f the high-eccentricity objects 2015 GT50, 2004 VN112, and 2014
R349. 
NRAS 511, 1153–1166 (2022) 
Historically was proposed that there should exist an anti-alignment
etween distant TNO and Planet 9 peri-centres (Batygin & Brown
016 ). Ho we ver, we found that a peri-centre alignment could be
nother option, as the ACR is in � = 0. Furthermore, the H = C 

urves shrinks toward � = 0 when e → 1, which could result in the
ollowing scenario: a set of fictitious initial low-eccentric particles
ith non-aligned pericenter (the lack of equilibrium points there is
ue to some filtering that was done in order to a v oid bifurcation zone,
ee Fig. 6 ) could increase e and converge to approximately the same
 , producing the known perihelion clustering (Trujillo & Sheppard

014 ). 
As we mentioned, this example does not pretend to be an

 xhaustiv e and deep study of the Planet 9 hypothesis. It is just to
llustrate that, in case of more distant TNO being disco v ered, it
ould be expected a peri-apsis alignment in those objects locked

n the 2:1 MMR. Naturally, other MMR should be considered to
ake a more complete analysis. Nevertheless, no enough distant
NO have been observed to obtain a clear signature, in the semi-
ajor distribution, that suggest that the resonant mechanisms are

ominant in this population. Some extra analysis is required to
nderstand up to what extent is important the secular mechanisms
nside MMR in relation with these mechanisms outside MMR. This
s not fully understood as both mechanisms are capable of producing

art/stac018_f11.eps
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Figure 12. ACR families for the 2:1 MMR. Families 1 and 2 are the symmetric ones whereas families 3 and 4 are the asymmetric ones. In the right-hand panel, 
� has the same colour code as e and σ is in black. The stars indicate the ACRs found in the cases studied in detail in previous sections (see Table 1 ). 
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imilar orbital excitations. In Beust ( 2016 ), there is an interesting
iscussion about this issue where the different (dis)advantages of 
oth mechanisms are commented. 

 DISCUSSION  A N D  C O N C L U S I O N S  

e have developed a simple but useful technique, based on Gallardo 
 2020 ), that allow us to obtain the secular evolution of any zero-
mplitude resonant asteroid being perturbed by a coplanar massive 
ody for arbitrary values of e and e p . In particular predicts the secular
volution of e , � , and σ , i.e. the resonant libration centre. Some of
he advantages of this method are listed below: 

(i) Allows to find every ACR in the entire ( σ , e , � ) space. 
(ii) Predicts correctly the secular evolution of e , � , and σ in the

ero-amplitude libration regime, for any initial condition, including 
hose far away from ACRs. 

(iii) Allows to seek for dynamical paths which could increase 
reatly e (see Fig. 6 for example). 
(iv) Allows to find the separatrixes that trigger a behavioural 

hange in � between librating and circulating when the centre of
ibration is fixed [see (c) and (d) examples in Fig. 5 ]. 

(v) Allows to find separatrixes in the ( σ , e , � ) space, that could
elimit open contour curves (unstable) from closed contour curves 
amilies (stable). 

(vi) There are no limitations for k , k p , e , and e p . 

In general the complexity of the dynamical behaviour increased 
or larger e p values, requiring the utilization of the 3D H surfaces.
asically, on one hand, if the centre of libration has negligible 
ariations, with the contour curves in the ( e sin � , e cos � ) plane
s possible to analyse the secular evolution. On the other hand, when
 p is large enough, σ could start to vary considerably in the secular
ime-scale, requiring a more sophisticated way of representing the 
hase space. 
With respect to the examples examined here, there are some 

mportant remarks to be done. First of all, for the 2:1 MMR quasi-
ircular case, it was found an ACR point in ( σ 0 , e 0 , � 0 ) = (0 ◦,
.73, 0 ◦) which is a similar result as the obtained in Pichierri et al.
 2017 ) (see fig. 3a in their work). In this case, the secular evolution
f e and � was correctly predicted by our model as long as the
 librating/circularizing regime limit. In particular, we note that the 
aximum e variation in the � libration regime is � e = 0.22 whereas

n the � circulation regime, e variations are at most of � e 	 0.1, in
greement with the model. 

In the high eccentricity case ( e p = 0.3) things get more interesting.
he centre of resonant libration starts to evolve in secular time-scale,

ollowing the contour curves of the H surface. As in the previous
ase, there is one main ACR, almost in the same place but with the
lightly different eccentricity of e = 0.7. There is also another ACR
t e = 0.99 and due to this e xtreme value, an y minimal displacement
rom that point results in a short evolution because the particle reaches 
 = 1 (as the contour curves predict) rapidly. Both ACR points also
eems to be present in the results of Pichierri et al. ( 2017 ) (see fig. 6
 in their work). 
In the very high eccentricity case ( e p = 0.5) of this MMR, there

re two main ACR points. The first one at ( σ , e , � ) = (0 ◦, 0.8,
 

◦) whereas the second one at ( σ , e , � ) = (180 ◦, 0.88, 180 ◦).
here are also tw o weak er asymmetric ACR points which are at ( σ ,
 , � ) = (227 ◦, 0.08, 155 ◦) and ( σ , e , � ) = (155 ◦, 0.08, 227 ◦).
umerical integrations are contrasted with this asymmetric point 

nd we conclude that they exists but with a really narrow secular
ibration width because separatrixes are too close. Therefore, they 
re less rele v ant than the others. 

ACRs complete families were determined with a full exploration 
arying continuously e p up to 0.85. The higher e p is, the more families
oexists. In addition to the location of all the ACRs, some pathways
hat increase e greatly have been found and tested, in the specific
ases of moderate and high eccentric perturber ( e p = 0.3 and e p =
.5). 
We made a detailed analysis to understand the bifurcation at low

 (present almost in all the MMR for e p � 0) in the H surface.
his bifurcation coincides with a separatrix that divides two different 
ontour curve families, one with closed contour curves that surrounds 
he main ACR and other with open contour curves. The last one is
elated to the J = 0 hypothesis breakdown, due to the discontinuity
n the contour curves formed by the resonant equilibrium points. 

We also numerically compared the evolutions between being in 
he exact MMR and displaced from it. The results (Fig. 9 ) allow
MNRAS 511, 1153–1166 (2022) 
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Figure 13. 2:1 MMR with e p = 0.25, which is the Planet 9 canonical 
eccentricity. TOP: Numerical integration which initial conditions are: ( σ i , 
e i , � i ) = (0 ◦, 0.81, 90 ◦). BOTTOM: H surface projection on to the ( e , � ) 
plane with the numerical integration in black. The red cross indicates the 
initial conditions. 
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o conclude that the secular evolution could be very different when
eing in a deep MMR than when not. In particular, in deep MMR
an exist dynamical paths that could lead to extremely large changes
n some orbital elements, for example in e . 

Finally, an application was presented regarding the hypothetical
lanet 9 and a mass-less object in 2:1 MMR with it. This could help
ith the explanation of those high-eccentric distant TNO observed

n the last decades. If any of them was ef fecti vely excited through
his mechanism, they should have remained in MMR with the Planet
 during the Gyr time-scale. Provided of this, its � should be pretty
imilar to the Planet 9’s one because of the particular shapes of the
 = C curves on the H surface. 
NRAS 511, 1153–1166 (2022) 
In the future some applications of this method could be used
or understanding the secular evolution of resonant exocomets and
xoasteroids perturbed by eccentric exoplanets. It could be useful
lso in the understanding of high eccentric exoplanetary systems
here one of the planets has negligible mass compared to the other. 
An extension of this method to the spatial problem could be done

ithout an y e xtra theoretical limitations. The unique drawback is
he impossibility of having all the dynamical features in one single
lot, as we have in the planar case with the H surfaces. A possible
pproach to o v ercome this issue could be generate sev eral H surfaces
or different ( i , �) pairs and obtain results from there. Another option
ould be to implement an algorithm to extract rele v ant information
without doing a single plot) as for instance the location of the ACRs,
he number of equilibrium points families, separatrixes information,
ther libration islands, etc. 
Some extra examples in the 3:1 and 3:2 MMRs where documented

n the appendixes just to illustrate interesting secular evolutions
hich can also be explained with this technique. 
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igure A1. 2:1 MMR with e p = 0.5. LEFT : a 1 ( t ), e ( t ), σ ( t ) (black), � ( t ) (blue), an
IGHT : H surfaces from different angles. In green is the numerical integration. 
PPENDI X  A :  2 :1  MMR  -  e p = 0 . 5  COMPLEX  

ASE  

n this appendix section, we show a complex evolution case when
 p = 0.5. The comparison with the numerical integration is shown
n A1 where some snapshots of the H surface can be seen. Note
he really intricated secular evolution which occurs when the initial 
ondition is ( σ i , e i , � i ) = (0 ◦, 0.61, 0 ◦). This point turns out to be
ust out the � libration zone, i.e. is beyond the separatrix over the
orizontal axis, as can be seen in the map R ( e, � ) for σ = 0 ◦ in the
ig. 10 . 

PPENDI X  B:  3 :1  MMR  EXAMPLE  

n this appendix section, we present an example just to illustrate
n interesting behaviour found around two asymmetric ACR points. 
his behaviour can be observed in the Fig. B1 . In this example

he perturber has e p = 0.3 and the ACR are located at ( σ , e ,
 ) = (135 ◦, 0.65, 101 ◦) and ( σ , e , � ) = (225 ◦, 0.65, 259 ◦),

eing both points symmetrical to each other with respect to the
rigin in the ( σ , � ) plane, as happened in the 2:1 MMR with
 p = 0.5. In this case, the initial conditions are such that the secular
ehaviour corresponds to an alternation between circumnavigating 
ne ACR and the other. This result in a very complicated temporal
volution for e , � , and specially for σ . The adequate way to
ully explain this is with the H surface, because just with the
ther maps or inspecting σ ( t ), e ( t ), and � ( t ), there is no enough
nformation to understand the behaviour. Note how for low e ,
here is a bifurcation and also some open family curves can be
bserved. 
d θ ( t ) (red) from the numerical integration with ( σ i , e i , � i ) = (0 ◦, 0.61, 0 ◦). 
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igure B1. 3:1 MMR with e p = 0.3. TOP: Numerical integration which
nitial conditions are: ( σ i , e i , � i ) = (143 ◦, 0.40, 104 ◦). BOTTOM: H surface
ith the integration in green. 

PPENDIX  C :  3 :2  MMR  EXAMPLE  

n this appendix section, we also present an example just to illustrate
n interesting behaviour found in σ . This behaviour can be observed
n the Fig. C1 . In this example, the perturber has e p = 0.1 and in this
ituation exists a main ACR point in ( σ , e , � ) = (0 ◦, 0.38, 180 ◦).
n this case, the initial conditions are such that the secular behaviour
f σ results in a rectangular wave in time. This could be interpreted
s a bi-stable situation because for the most of the time, σ seems
o librate in ∼25 ◦ and then changes rather fast to librate in ∼−25 ◦,
NRAS 511, 1153–1166 (2022) 
igure C1. 3:2 MMR with e p = 0.1. TOP: Numerical integration which
nitial conditions are: ( σ i , e i , � i ) = (0 ◦, 0.15, 180 ◦). BOTTOM: H surface
ith the numerical integration in green. 

imilar to the behaviours found by Gallardo ( 2006a ). Ho we ver, there
re not asymmetric libration points here but the behaviour is due to
he H surface’s shape in the ( σ , e , � ) space and the particular initial
onditions chosen. Once more we can see the bifurcation for low e
nd other two ACR at σ = � = 180 ◦, one for e 	 0.35 and the
ther in e 	 0.95, both being pretty close to the edge of this second
urface. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

art/stac018_fb1.eps
art/stac018_fc1.eps

	1 INTRODUCTION
	2 THEORETICAL FRAMEWORK AND METHODOLOGY
	3 RESULTS
	4 DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A: 2:1 MMR - 0.5 COMPLEX CASE
	APPENDIX B: 3:1 MMR EXAMPLE
	APPENDIX C: 3:2 MMR EXAMPLE

