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Abstract

The ancestry of each locus of the genome can be estimated (local ancestry) based on

sequencing or genotyping information together with reference panels of ancestral source

populations. The length of those ancestry-specific genomic segments are commonly used

to understand migration waves and admixture events. In short time scales, it is often of inter-

est to determine the existence of the most recent unadmixed ancestor from a specific popu-

lation t generations ago. We built a hypothesis test to determine if an individual has an

ancestor belonging to a target ancestral population t generations ago based on these

lengths of the ancestry-specific segments at an individual level. We applied this test on a

data set that includes 20 Uruguayan admixed individuals to estimate for each one how

many generations ago the most recent indigenous ancestor lived. As this method tests each

individual separately, it is particularly suited to small sample sizes, such as our study or

ancient genome samples.

1 Introduction

The information that we have about our ancestors and their origins comes mostly from our

families’ stories and in best cases from reconstructed genealogies. With genomic information

we can build more precise and reliable genealogies and even calculate the proportions of our

ancestries. For instance, there can be a discordance between the self-declared ancestry and the

ancestry estimated from a genome study, as shown in [1]. Even if the exact genealogy of an

individual is known, it is very difficult to estimate the proportion of a particular ethnic group,

since the amount of genetic material that is yielded from one generation to the next one is

highly variable [2, 3]. As an example, according to Coop’s calculations using simulations, with

a high probability (close to 1) one inherits almost zero genomic material from at least an ances-

tor that lived only 7 generations ago.
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Genomic data has been used to study a great variety of human population characteristics,

such as population structure [4], admixture events [5–7] and the estimation of ancestry pro-

portions from an individual’s genome [8]. In particular, the challenge of estimating the local

ancestry (ancestry-specific genomic segments) of an admixed individual, which means to

determine the tracts in the genome corresponding to different ancestral populations (eg. Euro-

pean, African and Native American), has been successfully addressed with different

approaches [9–11]. The possibility of representing the genome by a disjoint series of tracts

with different ancestries enables the application of mathematical modeling tools to retrieve

interesting information regarding the history of an individual. For instance, given a particular

pedigree one can model admixture events by stochastic processes, allowing the study of infer-

ence methods for admixture deconvolution and segregation of tracts in the pedigree. Assum-

ing that the target tracts are rare, hence they are unlikely to recombine, an admixture tract-

length distribution was derived in [5]. Furthermore, some model assumptions were relaxed in

[7], modeling tracts that descended from multiple migrant ancestors under a simplified model

(Markovian Wright–Fisher). Additionally, a dyadic interval-based stochastic process for gen-

erating admixture tracts was developed by [6].

Here, we have developed a hypothesis test to assess whether it is likely that one of the indi-

vidual’s ancestors t generations ago was an unadmixed ancestor (e.g. complete individuals

genome with only one ancestry), given a fixed number t of generations and the length of the

ancestry-specific tracts for every autosome.

We applied this test on a data set that includes the genomes of 20 Uruguayan individuals

(ten descendants of the past local indigenous groups [1] and ten afro-descendants). According

to historical records, most Uruguayan Amerindian were exterminated in 1831 [12]. Only

some of them survived, and several women and children were taken as prisoners. As far as we

know, no unadmixed indigenous individuals are living nowadays among the Uruguayan pop-

ulation. Our previous study has shown that there is non-negligible indigenous ancestry in this

particular data set, indigenous percentages range from 7% to almost 40%. Also, mitochondrial

DNA haplogroups show indigenous haplogroups such as B or C. Admixture results together

with admixture graphs show a genomic affinity with Amazonian and one Andean indigenous

group [1].

In the current study we want to find a new hypothesis test that brings deeper information

about each individual’s history. In this sense, our motivation relies on knowing whether

descendants of the indigenous groups had ancestors that survived the genocide, i.e. had an

unadmixed (“complete”) indigenous ancestor about just 3 or 4 generations ago; or that the

admixture events occurred before the genocide, meaning that those few survivors were

admixed with the general population.

2 Methods

2.1 Definitions and notations

Let a0 be an individual, and at ¼ fat
1
; . . . ; at

2tg the individual’s ancestors t generations ago. The

individuals at
2i� 1
; at

2i mate, with offspring at� 1
i 2 at� 1, for all i and t. We will assume that a0 and

all their ancestors up to generation t are admixed with respect to a family of ancestral popula-

tions fPlgl2L. Furthermore, for a given individual a0, let ci, i = 1, . . ., 22 denote their auto-

somes. Each ci consists of a chromosome pair ðc1
i ; c

2
i Þ.

In this work, we will use the terms “segment” and “tract” of a chromosome in the following

way.
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Definition 2.1 (Segment of a chromosome). We will refer to a haplotype of a chromosome
½x1; x2� � cji as a “segment” (it can contain genetic information related to different ancestral
populations).

Definition 2.2 (Tract of a chromosome). We will refer to a segment with all its genetic infor-
mation related to the same ancestral population Pl as a “Pl ancestral tract”, or just “Pl-tract”.

This distinction is arbitrary, but it is important to note if a given segment has all its genetic

information related to the same ancestral population or not.

In this work, we will measure lengths of segments and tracts in Morgans, which is a usual

measure unit to consider, and very suited for this work.

Definition 2.3 (Morgan). A “Morgan” is defined as the distance between chromosome posi-
tions for which the expected number of recombinations between homologous chromosomes in a
single generation is 1.

In this work, we will assume that, for a given individual, every chromosome can be consid-

ered as a concatenation of tracts:

cji ¼ hi;j
1 . . . hi;j

n

where each hi;j
k is a Pl-tract, for some λ 2 Λ. We will also assume that, for a given individual

a0, we know the length (in Morgans) and ancestral population related to every tract hi;j
k , for

every chromosome of a0.

Definition 2.4 (Pl-complete individual). For a given λ 2 Λ, we say that an individual a is
Pl-complete if all their chromosomes are Pl-tracts.

2.2 The hypothesis test

The objective of this work is, for a fixed generation t, develop a hypothesis test to assess if at

least one of the ancestors at
1
; . . . ; at

2t is Pl-complete, for a given λ 2 Λ.

Without loss of generality, let us focus on the two population case, P1 and P2. For a given t,
we are interested in doing the following test,

H0: a0 has; at least; one P1� complete ancestor; t generations ago:

H1: a0 has no P1� complete ancestors; t generations ago:
ð1Þ

One of our major problems is not having information about an individual’s ancestors t gen-

erations ago. If we would like to sample the 2t ancestors of a0, t generations ago, we would not

have enough information about a0, or about their ancestors, that we can use to fix a realistic

distribution function on the space of all possibilities. Our strategy, then, is to focus on a case of

H0, where we can fix the ancestors’ pedigree.

�H 0: a0 has exactly one P1� complete ancestor; t generations ago:

The other ancestors are P2� complete:

H1: a0 has no P1� complete ancestors; t generations ago:

ð2Þ

Without loss of generality, if at 2 H0 or if at 2 �H 0, we assume that at
1

is the P1-complete

ancestor of a0 (if not, reorder the family tree to make it so). While there are several distribution

functions supported in H0 which could be used to sample at, there is only one possibility in �X0;

that is, at
1

is a P1-complete ancestor, and at
2
; . . . ; at

2t are all P2-complete ancestors. The test 1 is

a composite hypothesis test, whereas the test 2 is a simple hypothesis test. In the S1 File, we
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show that we can build statistics such that their p-value under H0 is always stochastically

smaller than their p-value under �H0.

2.3 Mathematical model

We assume that chromosomes can be thought as real intervals, instead of a sequence of bases.

This assumption aims to ease some computational burden (we will explore the need for simu-

lations in subsection 2.5). If this assumption is not made, we have to consider a large amount

of very long vectors during the simulations, which would consume a lot of computational

resources. When this assumption is made, we model each chromosome as an interval, and

simulate the Poisson process in the interval using the exponential distribution. This assump-

tion is not a strong one, because the number of recombination points introduced during the

meiosis is much smaller than the the total number of bases on each chromosome.

For a given ancestor at
k and chromosome i, we consider the chromosome pair ðc1

i ; c
2
i Þ. Dur-

ing the meiosis, those chromosomes recombine to create an offspring chromosome as follows:

1. Recombination points are introduced using a Poisson process with parameter Li (length of

the chromosome in Morgans). Including the borders of the interval [0, Li], we obtain {x0 =

0, x1, . . ., xn, xn+1 = Li}.

2. A parent chromosome is selected randomly. The segment tr1 = [0, x1] in the selected chro-

mosome will be the first segment of the offspring chromosome.

3. At the point x1, switch to the other chromosome, and concatenate the segment tr2 = [x1,

x2].

4. The process is repeated until the length of the offspring chromosome is Li.

This process is illustrated in Fig 1 (meiosis for complete chromosomes and meiosis for

admixed chromosomes).

Fig 1. Top: recombination of two Pl-complete chromosomes during meiosis to create an admixed offspring. The first

one is P1-complete (red) and the second one is P2-complete (blue). Bottom: Two admixed chromosomes consisting of

P1-tracts (red) and P2-tracts (blue) recombine during meiosis to create an offspring chromosome.

https://doi.org/10.1371/journal.pone.0271097.g001
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Alternatively, we could have chosen a Wright-Fisher model [5, 7] as our model. As it pos-

sess the Markov property, it is easier to develop mathematical models and tests; however, it

fails to capture some structures when we work at an individual level, with small values of t.
One such example is when a P1-complete mates with a P2-complete individual: under the

Diploid Wright-Fisher model, one of the offspring chromosomes will be P1-complete and the

other one will be P2-complete; whereas in a Markovian Wright-Fisher model, both offspring

chromosomes can be admixed, or even lose the genetic information of one of the parents. We

conclude that Markovian Wright-Fisher models are only suitable when working with whole

populations and large values for t.

2.4 Definition of the test statistic

Let us fix the parameter t of our hypothesis test; the objects we define in this section depend on

t, but we will not index it to simplify the notation. Our objective is to define a test statistic for

the test 2 that bounds the same test statistic for the test 1. Our strategy is to do that in two

steps: first, we will construct a score for each chromosome pair; and second, we will combine

all those scores into a test statistic in different manners.

2.4.1 Chromosome scores. Definition 2.5 (Chromosome statistics). Given a chromosome
pair, we will consider two possible statistics:

• mmax
i is the maximum length among all P1-tracts in the chromosome pair,

• msum
i is the maximum sum of lengths of all P1-tracts among the chromosome pair.

In order to ease the notation, we will denote the chosen statistic by mi, for i = 1, . . ., 22,

unless the distinction is needed.

As the lengths of the chromosomes are all different, the mi are not comparable across chro-

mosome pairs. Let Mi be the random variable from which mi is sampled, and define pi as:

pi ¼ PH0
ðMi � mi jMi > 0Þ; ð3Þ

the probability under H0 of observing a smaller chromosome statistic Mi that the one observed

mi. As a technical consideration, we will condition the probability pi to Mi> 0 to improve the

performance of the hypothesis test (we refer to the supplementary section for further details).

Definition 2.6 (Chromosome scores). Let mi, for i = 1, . . ., 22 be a chromosome statistic.
Denote Mi the random variable from which mi is sampled. For i = 1, . . ., 22, we define the chro-
mosome score pi as

pi ¼ PH0
ðMi � mi jMi > 0Þ;

It is important to note that PH0
depends on t.

The chromosome scores have similar distributions across all chromosomes, and thus

we can compare and combine them: To see that, let us denote as Pi the random variable

used to sample pi. Using the probability integral transform, and observing that w0 ¼ PH0
ðMi ¼

0Þ ¼/ 0 and wL ¼ PH0
ðMi ¼ LiÞ ¼/ 0, we deduce the distribution function of the random vari-

able Pi:

Pi¼
d 1fV>1� wLg

þ U1fw0�V�1� wLg
; where

U;V � Unifð0; 1Þ

U;V are independent

ð4Þ

where¼
d

denotes that the random variables are equal in distribution. We observe that
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PH0
ðMi ¼ 0Þ ¼/ PH0

ðMj ¼ 0Þ and PH0
ðMi ¼ LiÞ ¼/ PH0

ðMj ¼ LjÞ if i 6¼ j, but we will avoid the

chromosome indexation to simplify the notation. We conclude that Pi 6¼ Pj if i 6¼ j, but they

have the same range, and they both behave as uniform distributions in the interval (0, 1). They

only differ in the weight of their atoms (when M = 0 or M = L).

2.4.2 Combining the chromosome scores into a test statistic. The distribution of the

random variable Pi is given by Eq 4, and we observe that Pi ¼/
d
Pj if i 6¼ j. Assuming that the

recombination spots are independent between chromosomes, then all Mi are independent,

and thus the Pi are independent.

The distribution function of Mi under H0 is unknown, hence to compute the pis we can

simulate using Monte Carlo their distribution under �H 0. The probabilities we need to approxi-

mate are pH0
ðMi � miÞ, w0 and wL, that are enough to compute pi and approximate their theo-

retical distribution function.

Subsequently, we propose two different ways of combining all chromosome scores pi into a

test statistic whose p-value is easy to compute. Our first proposal is to define pmax as the maxi-

mum of all pi

pmax ¼ max
i¼1;...;22

pi: ð5Þ

If Fi is the distribution of Pi, then the distribution of the random variable Pmax:

FPmax
ðxÞ ¼

Y22

i¼1

FiðxÞ; 8x 2 ½0; 1�; ð6Þ

and the final p-value as p ¼ FPmax
ðpmaxÞ.

The second idea is to consider psum, the sum of all chromosome scores

psum ¼
X22

i¼1

pi: ð7Þ

As the distribution functions of all Pi, Fi, are different, it is very difficult to compute the the-

oretical distribution FPsum
. However, as we know Fi for all i, it is easy to approximate the p-

value of the test using Monte Carlo simulations.

Considering that both pmax and psum can be constructed using both definitions of mi

defined in 2.5, we propose four variants of the hypothesis test 2.

Definition 2.7. We define the following test statistics.

• pmm when we use mmax
i and we consider the maximum of all pi.

• psm when we use msum
i and we consider the maximum of all pi.

• pms when we use mmax
i and we consider the sum of all pi.

• pss when we use msum
i and we consider the sum of all pi.

As we are interested in the hypothesis test 1, we need the following theorem 2.1, that allows

us to simulate under �H0 and use the results to bound the p-values of test 1.

Theorem 2.1. Let p be any of the four p-values defined for the hypothesis test 2 (pmm, psm,

pms, pss). Then, CR = {p� α} is a critical region for the test 1 with probability β� α.

In other words, we can control the type I error of the hypothesis test 1 by controlling the

type I error of the hypothesis test 2. The proof of theorem 2.1 is detailed in the S1 File.

Algorithm 1 shows a summary of the methodology we developed. Usually, one should con-

sider all choices for chromosome statistic and test statistic. As long as they result in few tests
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(i.e. we avoid multiple testing issues), we can consider only the smallest p-value obtained, and

reject the null hypothesis if any of the test rejects.

Algorithm 1 Ancestry test algorithm for a given individual
1) Set an objective ancestral population and a number of generations t.
2) Choose a chromosome statistic; usually mmax

i or msum
i . Compute all 22

statistics.
3) Using simulations, estimate the distribution functions for the

chromosome statistics under �H0, and compute the chromosome scores.
4) Choose a way of combining all chromosome scores into a test statis-

tic; usually the sum of scores psum, or the maximum of scores pmax.
5) Compute the distribution of the test statistic, and compute the

test p-value p.
return p

2.5 Theoretical computation of the distribution of a chromosome pair

The objective of this section is to show that the computation of the chromosome statistics dis-

tribution, under �H0 , is a very difficult problem. The main reason is that our model for chromo-

some recombination is not a Markov process when we condition only to the genetic

information of the parent chromosomes.

An important observation is that, under �H0 and for a given t, one of the chromosomes in

each chromosome pair ðc1
i ; c

2
i Þ of a0 will be a P2-complete chromosome. Let us assume c2

i is the

P2-complete chromosome. We only need to focus on the P1-tracts in c1
i , and deduce the distri-

bution function of the chosen chromosome pair statistic mi.

Let us start for t = 1. In this case, we have two chromosome pairs (one for each parent). One

of the chromosome pair is P1-complete, and the other one is P2-complete. The first chromo-

some pair recombines to create a P1-complete chromosome, and the other pair recombines to

create a P2-complete chromosome (as expected). Thus, c1
i is a P1-complete chromosome, so

we conclude that �H0 is false if neither of the chromosomes is P1-complete.

For t = 2, c1
i will be a recombination of a P1-complete chromosome and a P2-complete

chromosome (as in Fig 1). We observe that the length of each tract is distributed as exp(1), and

tracts alternate between P1 and P2. Let Ni be the amount of P1-tracts in c1
i . If we can compute

the distribution of Ni, we will be able to compute the distribution of mi, whichever we choose.

Let T1; . . . ;TNi
be the lengths of the P1-tracts in c1

i , then the distribution functions for mmax
i

and msum
i are

Fiðm
max
i Þ ¼

Xþ1

j¼0

PrðNi ¼ jÞPrðmaxfT1; . . . ;Tjg � mmax
i Þ; ð8Þ

Fiðm
sum
i Þ ¼

Xþ1

j¼0

PrðNi ¼ jÞPrð
Xj

k¼1

Tk � msum
i Þ: ð9Þ

We conclude that, for t = 2, the distributions can be computed, or at least approximated

with precision. However, for t� 3, it is not clear how to compute the distribution of the

lengths of the P2-tracts. The problem is that, after we reach a recombination point in c1
i , we

can not compute the exact probability of the next tract being P1 or P2, because it is not a Mar-

kov process. This means that we can not compute the distribution of Ni, and can not recover

the Eqs 8 and 9.
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3 Results

3.1 Simulated results

Our only option is to simulate the distributions using Monte Carlo methods, which can be

done fast under �H0 . We use the R software for raw data manipulation, and the Julia software

[13] to run the hypothesis tests. The data can be found in http://urugenomes.org/lovd/

variants, and the R and Julia code can be found in https://github.com/gabriel-illanes/

Ancestors_test.

3.1.1 Simulated distributions under �H0 . We compare the effect of increasing the number

of generations t, and the effect of choosing as statistic the maximum length of P1-tracts (mmax
i )

or the sum of lengths of P1-tracts (msum
i ). In Fig 2 we show the simulations for the 11th chro-

mosome, as it has the mean length of the rest of the chromosomes.

As expected, the statistics decreases as t increases; for t = 6 we already observe a very large

value of Pðmmax ¼ 0Þ. Also, we verify that Mmax is stochastically smaller than Msum, as the sum

of lengths will always be larger than the maximum length.

For verifying Equation 2.6 and validate that we can estimate the distribution function of Pi
using only the atoms ω0 and ωL, we first simulate 10000 values of mmax

11
. From Equation 2.6, we

observe that we can estimate the distribution function of Pmax
11

using only the estimated values

of ω0 and ωL. Whereas a more naive and inefficient method would be to simulate a new set of

10000 values of mmax
11

, obtain a vector of chromosome scores pmax
11

and use them to create the

empirical cumulative distribution function (Fig 3).

3.1.2 Power of the test. We have four possible variants of the hypothesis test statistic: for

each chromosome compute either the maximum length of the P1-tract or the sum of the

lengths of the P1-tracts and then combine them into a global statistic either as maximum of all

pi or sum of all pi. We asses the power of the hypothesis test in different scenarios, each one of

them being a particular case of the alternative hypothesis H1, based on 1000 Monte Carlo sim-

ulations for each one.

The first scenario is, for a given t, the ancestors at
1
; . . . ; at

2t� 1 have, in average, 2/2t P1 genetic

information, whereas ancestors at
2t� 1þ1

; . . . ; at
2t have 0 P1 genetic information. In other words,

Fig 2. Left: Histogram of 10000 simulations of mmax
11

for generations t = 2, 4, 6 under �H0 . We can observe that the atom

in 0 becomes larger and, in general, the distributions of mmax
11

become stochastically smaller as t increases. Right:

Histogram of 10000 simulations of mmax
11

and msum
11

for generation t = 2 under �H0 . The distribution of mmax
11

is

stochastically smaller than the distribution of msum
11

; and for t = 2, the density of msum
11

is symmetrical with respect to L/2.

https://doi.org/10.1371/journal.pone.0271097.g002
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we take twice the P1 genetic information of a P1-complete ancestor, and spread it across the

first 2t−1 ancestors (the ancestors from one parent’s side).

This scenario aims to study the impact of the structure of the P1-tracts, as we expect to have

more P1 genetic information than in the �H 0 scenario, but resulting from multiple small tracts,

rather than several larger ones. We expect that considering the length of maximum P1-tract as

chromosome pair statistic (either pmm or pms) should yield more power for the hypothesis test.

The best results are obtained when we consider pmm, as expected (Table 1).

The second scenario aims to study what happens when some of the P1-chromosomes are

replaced with P2-chromosomes. More precisely, we start considering the �H 0 scenario, take the

P1-complete ancestor, and replace half of their chromosomes (in average) with

P2-chromosomes.

As we expect to obtain half of the P1 genetic information compared to the �H 0 scenario,

considering the sum of all the chromosome pair scores as test statistic (either pms or pss) should

yield more power for the hypothesis test. The best results are obtained when we consider pms

and pss, as expected (Table 2).

The third scenario aims to understand what happens, when we do the hypothesis test for

generation t, but the true scenario is �H 0 for generation t + 1 (the first P1-complete ancestor

can be found t + 1 generations ago). A priori, it is not clear, which of the methods will work

best, as we expect smaller P1-tracts, and less P1 genetic information than the �H 0 scenario for

generation t.

Fig 3. Empirical cumulative distribution function of the chromosome score P11, for chromosome 11 and

generation t = 3. In blue, the estimation is done using a new set of 10000 simulations. In red, we use the estimated

values of the atoms ω0 and ωL from the original simulations.

https://doi.org/10.1371/journal.pone.0271097.g003

Table 1. Estimated power of the test under the first scenario (ancestors on one parent’s side average 2/2t P1 genetic

information, ancestors on father’s side average 0 P1 genetic information) for the four variants of the hypothesis

test.

Method t = 2 t = 3 t = 4 t = 5

pmm 0.995 0.952 0.431 0.008

pms 1.0 0.949 0.004 0.0

psm 0.996 0.919 0.2 0.001

pss 1.0 0.794 0.001 0.0

https://doi.org/10.1371/journal.pone.0271097.t001
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The best results are obtained when we consider pms and pss (Table 3). We could conclude

that the impact of obtaining less P1 genetic information is larger than the length reduction of

the P1-tracts.

From this results several remarks can be done:

• The most impactful decision, under the studied scenarios, is how to combine the chromo-

some scores to obtain a test p-value, rather than how to obtain a chromosome score.

• For almost every scenario and choice of method, we obtained a test power greater than 0.05,

which is the expected power under the null hypothesis.

• The difficulty of the problem increases rapidly when increasing t. When t> 4, we can not

expect to obtain reliable results. When t = 7, the (simulated) probability of all the P1 genetic

information disappearing (genetic drift) is greater than 0.05, so we would obtain power 0 for

any test with level α = 0.05.

3.2 Empirical results and discussion

We applied the hypothesis test onto a real data set, originated in the context of the project Uru-
genomes. In this project, 10 Uruguayan individuals of known Amerindian ancestry (probably

Charrúas) were analyzed; these are the same 10 individuals that were studied in [1]. The inclu-

sion criteria to be part of the study was to have at least one indigenous great grandfather or

great great grandfather, according to social anthropological studies and family records and

genealogies. Additionally, 10 individuals of known African ancestry were included, that did

not know about their Amerindian ancestry. According to historical records, after the first

Europeans (Spanish and Portuguese) came to the country, Africans were brought as slaves.

Recent results of the Urugenomes project (urugenomes.org) show that these African descen-

dants have also admixture with Amerindian (manuscript in preparation), so they were

included in the present study.

Whole genome sequencing of these 20 individuals was done using NGS. Variants were

determined and results were phased (haplotype constructions) using 1000Genomes project as

reference panel [14]. For this study, we kept only 363578 genome-wide variants, which

Table 2. Estimated power of the test under the second scenario (under �H 0, replace half of a P1-complete ancestor’s

chromosomes for P2-chromosomes) for the four variants of the hypothesis test.

Method t = 2 t = 3 t = 4 t = 5

pmm 0.694 0.504 0.332 0.292

pms 0.999 0.832 0.574 0.377

psm 0.701 0.527 0.34 0.249

pss 0.999 0.823 0.575 0.359

https://doi.org/10.1371/journal.pone.0271097.t002

Table 3. Estimated power of the test under the third scenario (testing for generation t when simulating for genera-

tion t + 1) for the four variants of the hypothesis test.

Method t = 2 t = 3 t = 4 t = 5

pmm 0.323 0.261 0.23 0.208

pms 0.998 0.881 0.622 0.404

psm 0.347 0.224 0.213 0.201

pss 1.0 0.891 0.602 0.406

https://doi.org/10.1371/journal.pone.0271097.t003
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correspond to the genotyping array positions used in [15] to study Native American popula-

tions. Phased variants were used to construct ancestry specific haplotypes (local ancestry esti-

mations) using RFMix [10]. For this, a reference panel was used that contained complete

individuals of European, African and Amerindian ancestries. As a result the data set contained

ancestry specific segments of different lengths for each individual. For the purpose of the pres-

ent work, only indigenous ancestry segments were considered, while the other two ancestries

(African and European) were masked out of the data. In summary, the data set is represented

by a matrix of 40 haplotypes (corresponding to 20 individuals) and 363578 variants, where

information is kept only within indigenous haplotypes and the rest were set to missing data.

Out of the matrix, the length distribution of indigenous segments in each haplotype was deter-

mined, which is the starting point of the proposed algorithm. For each individual, we obtained

their chromosome statistics (either the length of maximum indigenous tract, or the sum of

lengths of all indigenous tracts), and undertook all four variants of the hypothesis test. We

tested, for t = 2, . . ., 5, whether the individuals might have had at least a complete Amerindian

ancestor t generations ago. Fig 4 presents the obtained p-values for each individual, method

and value of t.
We observe that the factor that impacts the most option is the combination of chromosome

scores, as we observe larger p-values when we consider the sum of all chromosome scores as

the test statistic. This can be interpreted as observing more indigenous genetic information

than the expected under �H 0, but there are no chromosomes with very large scores. This is a

similar behavior as the one observed in the first simulated scenario. That being said, in general,

rejecting the hypothesis test for at least one of the statistics should be enough statistical evi-

dence to conclude that the individual does not have any complete Amerindian ancestor t gen-

erations ago, specially considering the low power of these tests. In other words, in order to

reject the null hypothesis for a given t and a given individual, we should focus on the smallest

p-value across all statistics.

Considering the test results for the pmm and psm statistics, we observe that there is a concor-

dance of the test with the expected biological results. Individuals 12, 14, 15, 16, 19 and 20 do

not reject the null hypothesis for the presence of a complete Amerindian ancestor for t = 3

Fig 4. Estimated values of pmm (top left), psm (top right), pms (bottom left), and pss (bottom right), using 10000

iterations, for every individual and every t = 2, . . ., 5. Given a choice of statistic, an individual, and fixed t, we will reject

the null hypothesis if the corresponding p-value is below 0.05 (shown in the horizontal line in all graphics). For a

unified criterion across all statistics, if one of them rejects the null hypothesis, that is enough statistical evidence to

reject H0 for the given individual and t.

https://doi.org/10.1371/journal.pone.0271097.g004
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generations ago -they could have had a complete Amerindian ancestor 3 generations ago-,

whereas individuals 11, 13, 17 and 18 reject the null hypothesis for t = 3 -there is statistical evi-

dence pointing out that these individuals did not have a complete Amerindian ancestor 3 gen-

erations ago-. When considering the test results for pms and pss, we observe larger p-values for

every test -across both individuals and generations-, and thus, we do not focus on them. Con-

curring, individuals 12, 14, 15, 16, 19 and 20 have the largest indigenous ancestry among the

10 individuals with Amerindian ancestry as calculated by genomic approaches.

Regarding the individuals that declared African ancestry (individuals 1 to 10), we observe

that they have lower p-values, in average, compared to individuals that declared Native Ameri-

can ancestry (individuals 11 to 20). It is important to note that individuals 7 and 9 do not reject

the null hypothesis for t = 3, but this does not contradict the individuals’ declared ancestry (as

they could have had at least one complete Native American ancestor 3 generations ago, as well

as several complete African ancestors). Another interesting thing to note is that individual 5

rejects the null hypothesis for t = 5; it is possible that the individual’s family tree members are

not originary from South America.
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