
ESQUEMAS DE UNITARIZACIÓN PARA
DIFRACCIÓN HADRÓNICA

ANÁLISIS DEL POMERON SOFT EN EL LHC

Tesis de Maestría
Lic. Marina Maneyro

Posgrado en Física
Facultad de Ciencias

Universidad de la República

Mayo de 2023

Orientadores:

Dr. Emerson Luna

Dra. Marcela Peláez



UNITARIZATION SCHEMES FOR
HADRONIC DIFFRACTION

ANALYSIS OF THE SOFT POMERON AT THE LHC

Master’s Thesis
Lic. Marina Maneyro

Physics Postgraduate Program
Faculty of Sciences

University of the Republic

May 2023

Supervisors:

Dr. Emerson Luna

Dr. Marcela Peláez



MEMBERS OF THE DEFENSE TRIBUNAL
MIEMBROS DEL TRIBUNAL DE DEFENSA

Dr. Lucía Duarte
Universidad de la República

Dr. Sofía Favre
Universidad de la República

Dr. Cristina Aguilar
Universidade Estadual de Campinas

Dr. Magno Machado
Universidade Federal de Rio Grande do Sul

Co-advisor / Co-orientador:
Dr. Emerson Luna

Universidade Federal de Rio Grande do Sul

Substitute / Suplente:
Dr. Rodrigo Eyheralde

Universidad de la República

Date / Fecha: 30th of June, 2023





Acknowledgments

I would like to extend my thanks to my supervisors, Marcela and Emerson, for their
instruction, mentorship, and encouragement throughout this project. I would also like to
acknowledge the support of my family in all my undertakings.

Additionally, I am grateful for the teachers, classmates, colleagues and proofreaders who
have been a part of my journey in the past few years. Finally, I acknowledge the financial
resources provided by ANII to carry out this project as part of FCE_2021_166479.

i



Resumen

Los protones son uno de los componentes fundamentales de los núcleos atómicos. Aunque
su descubrimiento se remonta al comienzo del siglo XX, todavía hay muchos aspectos de sus
interacciones que no se comprenden totalmente. Esta tesis se centra en las colisiones elásticas
y difractivas entre protones, y entre protones y antiprotones. Estos tipos de colisiones pueden
ocurrir en aceleradores de partículas, como los experimentos del CERN, para energías cada
vez mayores.

Debido a la prevalencia de eventos de bajo momento transferido en estas colisiones,
no es posible aplicar métodos perturbativos en su descripción. Por esta razón, un enfoque
comúnmente utilizado para la difracción hadrónica se basa en el Pomeron soft, un estado
que surge de la teoría de Regge.

Uno de los problemas presentes en el enfoque del Pomeron es que puede introducir
violaciones de la unitariedad. La unitariedad impone un límite en la tasa de crecimiento
de las secciones eficaces hadrónicas. Dos métodos ampliamente utilizados para restaurar la
unitariedad son los esquemas eikonal y de matriz U, que llevan a predicciones asintóticas
distintas (a altas energías).

Esta tesis ofrece una comparación entre ambos esquemas para determinar si los datos más
recientes de choques entre protones para altas energías favorecen la unitarización eikonal o la
de la matriz U. La pregunta se abordó utilizando datos de los experimentos TOTEM y ATLAS
del LHC. La metodología consistió en obtener ajustes χ2 para los datos de sección eficaz,
sección eficaz diferencial y parámetro ρ, usando cálculos de teoría de Regge dominados por
el Pomeron.

Motivados por el reciente descubrimiento de otro estado de Regge conocido como Od-
deron, el análisis incluye un modelo para esta contribución. Se realizó una comparación entre
los resultados basados en el Pomeron y aquellos que también incluyen al Odderon.

Proporcionamos nuevos estimativos para los parámetros asociados al Pomeron y Odderon
para los dos conjuntos de datos altamente divergentes que fueron considerados. De nuestro
análisis, destacamos que los resultados favorecen el factor de fase ξO = −1 para el Odderon.
Esta es la fase que lleva a un acoplamiento no nulo para el Odderon. Esta conclusión es
independiente de la elección del esquema de unitarización.

Palabras clave: Fenomenología de interacciones fuertes, física de altas energías, scattering
hadrónico, Pomeron soft, unitarización, Odderon.
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Abstract

Protons are one of the building blocks of atomic nuclei. Although their discovery dates
back to the beginning of the 20th century, many aspects of their interactions are yet to be
understood. This thesis focuses on elastic and diffractive collisions between protons, and
protons and antiprotons. These kinds of collisions can occur at particle accelerators, such as
the experiments at CERN, for increasingly high energies.

Due to the prevalence of low transferred momentum events in these collisions, it is not
possible to apply perturbative methods in their description. Because of this, a common
approach to hadronic diffraction is based on the soft Pomeron, a state arising from Regge
theory.

One of the issues present in the Pomeron approach is that it may lead to unitarity violations.
Unitarity imposes a limit on the rate of growth of hadronic cross-sections. Two widely used
methods for restoring unitarity are the eikonal and U-matrix schemes, leading to distinct
asymptotic predictions (at high energies).

This thesis offers a comparison of both of these schemes, to determine whether the latest
high-energy data for proton scattering favors eikonal or U-matrix unitarization. The question was
addressed using data from the TOTEM and ATLAS experiments at the LHC. The methodology
consisted of producing χ2 fits for cross-section, differential cross-section, and ρ parameter
data, from Regge theory calculations dominated by the Pomeron.

Motivated by the recent discovery of another Regge state known as the Odderon, our
analysis takes into account a model for this contribution. A comparison was drawn between
results based on the Pomeron and those also including the Odderon.

We provide new estimations for Pomeron and Odderon parameters for both of the highly
divergent datasets considered. From our analysis, we highlight that the results favor the Odderon
phase factor ξO = −1. This is also the phase leading to a non-zero Odderon coupling. This
conclusion is independent of the choice of unitarization scheme.

Keywords: Phenomenology of strong interactions, high-energy physics, hadron scattering, soft

Pomeron, unitarization, Odderon.

iii



Contents

Introduction 1

1 Quantum Chromodynamics and Hadron Scattering 4
1.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Fundamental Characteristics . . . . . . . . . . . . . . . . . . 5
1.1.2 Perturbative Quantum Chromodynamics . . . . . . . . . . . 9

1.2 Scattering Cross-sections . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Hadronic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 S-matrix Formalism 15
2.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Further Implications of Unitarity . . . . . . . . . . . . . . . . 22

2.3 Analyticity and Crossing . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Analyticity and Causality: An Example from Optics . . . . . . 23
2.3.2 Analyticity in Relativistic Scattering . . . . . . . . . . . . . . 24
2.3.3 Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Regge Theory 28
3.1 Conceptual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Partial Wave Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Domains of Amplitude Convergence . . . . . . . . . . . . . . . . . . 30

3.3.1 Continuation to Complex Angular Momenta . . . . . . . . . 32
3.4 Analytical Continuation for All Channels . . . . . . . . . . . . . . . . 32

3.4.1 Asymptotic Behavior in the Watson-Sommerfeld Representation 36
3.4.2 Signatures of Regge Poles . . . . . . . . . . . . . . . . . . . . 37

3.5 Regge Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 The Pomeron . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



CONTENTS

3.5.2 The Odderon . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Some Open Questions in Regge Theory . . . . . . . . . . . . . . . . 42

4 Unitarization Schemes 44
4.1 Unitarity in the Impact Parameter Representation . . . . . . . . . . . 45
4.2 The Eikonal and the U-matrix . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Eikonal Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 U-matrix Scheme . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Scheme Properties and Differences . . . . . . . . . . . . . . . . . . 48

5 Models and Methodology 50
5.1 Included Reggeons . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Pomeron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Correction to the Pomeron Trajectory . . . . . . . . . . . . . 53
5.1.3 Secondary Reggeon Trajectories f− a and ω− ρ . . . . . . . 55
5.1.4 Odderon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.5 Summary of Fitted and Fixed Parameters . . . . . . . . . . . 59

5.2 Computed Observables . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Fitting Method: χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Results 64
6.1 Fits for the Pomeron . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Fits for the Pomeron plus Odderon . . . . . . . . . . . . . . . . . . . 72

6.2.1 The ξO = −1 case . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 The ξO = +1 case . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Comparisons for all models at high energy . . . . . . . . . . . . . . . 79

7 Conclusions 82

Bibliography 88

Appendices 89
A Useful Tools in Particle Scattering . . . . . . . . . . . . . . . . . . . 89

A.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Mandelstam Variables . . . . . . . . . . . . . . . . . . . . . 90

B Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



List of Figures

1.1 Electric charge screening . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Plot of the variation of the QED coupling with energy, based on [1]. . 8
1.3 Plot of the variation of the QCD coupling with energy, based on [2]. 9
1.4 Example of a low-order Feynman diagram for an interaction between

two quarks, mediated by the exchange of a virtual gluon. . . . . . . . 10
1.5 Diagrams representing fermion-gluon vertices and gluon-gluon vertices

contributing to QCD. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Types of processes conserving quantum numbers. . . . . . . . . . . . 14
1.7 Diagram exemplifying the rapidity gap in Diffractive Deep Inelastic

Scattering (DDIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Feynman diagram for the s-channel exchange of a scalar. . . . . . . . 25
2.2 Diagram of the s-channel singularities for the two-body equal-mass

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Diagram of the three physical regions associated with an equal-mass

scattering in the s, t and u channels. . . . . . . . . . . . . . . . . . . 27
2.4 Diagram of the scattering amplitude singularities (all channels) for the

two-body equal-mass example. . . . . . . . . . . . . . . . . . . . . . 27

3.1 Scattering of a plane wave by a spherical potential. . . . . . . . . . . 30
3.2 Illustrations of convergence when allowing complex values of cos θ. . 31
3.3 Domain of convergence hyperbola for imaginary ` in the complex cos θ

plane (with Lehmann ellipse). . . . . . . . . . . . . . . . . . . . . . 33
3.4 Integration contours for scattering amplitudes in the Watson-Sommerfeld

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Deformed contours for scattering amplitudes in the Watson-Sommerfeld

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Illustration showing impact parameter b in a particle collision event. 45

vi



LIST OF FIGURES

5.1 Diagram of Pomeron pole exchange between two protons. . . . . . . 52
5.2 Feynman diagram for the two-pion loop contribution to Pomeron ex-

change in nucleon interaction. . . . . . . . . . . . . . . . . . . . . . 55
5.3 Example of proton-proton event diagram with Pomeron and ρ-meson

contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Chew-Frautschi plot of |t| = m2 (energy) vs spin (angular momentum)

for leading mesonic trajectories, with a linear fit. Data from PDG [3] . 56

6.1 Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦)
channels. Results obtained using eikonal unitarization for Models I and II. 68

6.2 Differential cross-section for pp (N, H) channel. Results obtained using
eikonal unitarization for Models I and II. . . . . . . . . . . . . . . . . 69

6.3 Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦)
channels. Results obtained using U-matrix unitarization for Models I
and II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Differential cross-section for pp (N, H) channel. Results obtained using
U-matrix unitarization for Models I and II. . . . . . . . . . . . . . . . 71

6.5 Total cross-section and ρ-parameter fits for pp (•, N, H) and pp̄ (◦)
channels. Results obtained using eikonal unitarization for Models III
and IV using ξO = −1. . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Differential cross-section for pp (N, H) channel. Results obtained using
eikonal unitarization for Models III and IV using ξO = −1. . . . . . . 76

6.7 Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦)
channels. Results obtained using U-matrix unitarization for Models III
and IV using ξO = −1. . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.8 Differential cross-section for pp (N, H) channel. Results obtained using
U-matrix unitarization for Models III and IV using ξO = −1. . . . . . 78

6.9 High-energy comparison of results for Models I, I, III, and IV in the
eikonal scheme. Also included is σpptot data obtained from cosmic-ray
experiments (AUGER and TA). . . . . . . . . . . . . . . . . . . . . . 80

6.10 High-energy comparison of results for Models I, I, III, and IV in the
U-matrix scheme. Also included is σpptot data obtained from cosmic-ray
experiments (AUGER and TA) . . . . . . . . . . . . . . . . . . . . . 81

A.1 Diagram illustrating the considered four-momenta. . . . . . . . . . . 90
A.2 Feynman diagrams for the different ( )-channel reactions. . . . . . . . 91
B.1 Momenta and scattering angle in the center-of-mass system. . . . . . 92

vii



List of Tables

5.1 Summary of the parameters and terms used for each Reggeon in Model
I (without Odderon) and Model III (with Odderon). . . . . . . . . . . 59

5.2 Summary of the parameters and terms used for each Reggeon in Model
II (without Odderon) and Model IV (with Odderon). . . . . . . . . . 59

6.1 Fitted parameters obtained with Eikonal unitarization for the Pomeron
(and secondary Reggeon) models. . . . . . . . . . . . . . . . . . . . 66

6.2 Fitted parameters obtained with U-matrix unitarization for the Pomeron
(and secondary Reggeon) models. . . . . . . . . . . . . . . . . . . . 67

6.3 Fitted parameters obtained with Eikonal unitarization for the Pomeron
plus Odderon models, for ξO = −1. . . . . . . . . . . . . . . . . . . 73

6.4 Fitted parameters obtained with U-matrix unitarization for the Pomeron
plus Odderon models, for ξO = −1. . . . . . . . . . . . . . . . . . . 74

A.1 Dimensions in natural units for relevant quantities. . . . . . . . . . . 89

vii





Introduction

Present day experimental capabilities have provided deeper knowledge of the
structure of matter. In this context, the field of particle physics has enjoyed major
landmark discoveries, enabled by colliders such as the LHC. At the core of the physics
of elementary particles lies the Standard Model, providing a unified description of
three distinct forms of matter interaction, comprised by electromagnetic, weak, and
strong interactions. Despite this, many of the phenomena currently observed are yet
to get complete first-principles descriptions.

This is the case for hadronic scattering events such as proton-proton collisions,
which can be produced at increasingly high energies in laboratories. The study of these
particles is tied to Quantum Chromodynamics (QCD), a theory within the Standard
Model that has been extremely successful in its description of strong interactions.
Strong interactions represent one of the four fundamental forces in nature, responsible
for binding together the quarks that make up protons and neutrons.

Hadronic scattering at high energies includes significant contributions from dif-
fractive processes. This category of events is not at present describable from QCD, as
they do not correspond to the regime where perturbative techniques can be applied.
Due to this, a central tool in diffractive scattering comes from Regge Theory [4–6]. This
theory arose from the S-matrix theory, a candidate model for strong interactions in the
pre-QCD era [7]. It explains processes such as proton-proton scattering by introducing
the exchange of some ’state’ known as the Pomeron. Pomeron physics has been used
to obtain good phenomenological results for many decades. However, it is still unclear
how it fits within QCD.

This thesis focuses on some problems that arise when using the Regge framework.
In particular, it aims to determine whether the most recent collider data could shed
light on aspects of this description. Some of these include unitarization schemes, the
discrepancies in available datasets, and the inclusion of a counterpart of the Pomeron
known as Odderon.

A known conflict in Regge theory is that the soft Pomeron (that is, the Pomeron
used to describe diffractive or soft processes) violates unitarity. In order to reflect

1



INTRODUCTION

the rise in hadronic cross-sections with energy, as observed in the experiments, the
Pomeron description must have numerical parameters with particular characteristics.

However, these properties of the Pomeron may conflict with unitarity. The Froissart-
Martin bound shows that although scattering cross-sections should increase, they
must not do so at too high a rate [6, 8] for unitarity to be respected. Unitarity is a
fundamental property of quantum theories, where the probabilities of all processes
must add up to unity in order to be well defined. Although it has been suggested
that unitarity violations could occur at energies far beyond our current experimental
capabilities, compelling arguments of the contrary have been put forward as well.

In order to address the issue, unitarization methods have been developed which
enforce the unitarity of Pomeron based predictions. This work compares the eikonal
and U-matrix unitarization schemes commonly used in the area. Although the results
obtained from both schemes are expected to be compatible at low energies they lead
to different asymptotic behaviors at high energies. The goal is to elucidate if the latest
LHC data could help determine which of the schemes results in better descriptions of
the physical phenomena of interest. The data provides values of scattering observables
for collisions of up to 13 TeV of energy.

The predictions of these unitarization methods were evaluated for data from two
experiments: TOTEM and ATLAS. Although these experiments have obtained measure-
ments of the same observables, the techniques applied by each of these collaborations
lead to differences in the results obtained. These discrepancies lead to distinct estima-
tions of the parameters linked to the Pomeron.

Recent TOTEM results have suggested that another state from Regge theory should
be included in theoretical models of diffractive scattering [9,10]. The contributions of
this state known as the Odderon, are taken into account in the methodology of this
thesis. The results of the models with and without the Odderon were contrasted for
the different datasets and unitarization schemes considered.

The methodology utilized in this work was based on fitting the experimental
data from ATLAS and TOTEM using the unitarized Regge framework. The fits were
produced through χ2 minimization, which provides tools to evaluate fit quality for
each of the models used. It also results in new estimations of the numerical values of
the parameters of the Regge states. These results were analyzed to determine if one
of the unitarization schemes shows better agreement with high energy observations.
The outcomes of the procedures also denote the effect of the Odderon inclusion and
other model variations in the quality of the theoretical predictions.

In order to provide a more detailed picture of the questions addressed, this thesis
is outlined as follows. Firstly, a general overview of QCD and hadronic diffraction

2



INTRODUCTION

is provided in Chapter 1, highlighting the limitations that justify the need for Regge
theory. Having established this, Chapter 2 provides a summary of S-matrix theory,
which, besides being a rich framework in and of itself, explores some of the basic
concepts that lead to Regge theory. Then, Chapter 3 describes Regge theory in detail,
as well as the origins of the Pomeron and Odderon. As the introduction of the Pomeron
has consequences for unitarity, the eikonal and U-matrix schemes implemented are
described in Chapter 4, completing the theoretical background that underlies this
work.

The following chapter explores the methodology that was followed, from the
subtleties contained within the models used to the fitting procedure. The remainder of
the thesis is dedicated to sharing the results obtained and highlighting the conclusions
they lead to.

3



1 Quantum Chromodynamics
and Hadron Scattering

This thesis focuses on some aspects of the description of proton interactions. Protons
belong to a group of particles called hadrons, characterized by being composed of
quarks. Quarks are fundamental particles sensitive to strong interactions, typically
described using Quantum Chromodynamics (QCD), a field theory backed by extensive
experimental evidence. However, explicit analytical calculations in QCD tend to be
restricted to processes at high energy scales, through the use of perturbative methods.
As a result, it is not always possible to obtain complete first-principle-based descriptions
of all hadronic interactions from QCD.

Processes such as proton diffraction involve scales where perturbative QCD is not
applicable. Section 1.3 will specify what diffraction entails in this context. Diffractive
scattering phenomena represent a significant fraction of contributions to proton inte-
ractions, which motivates the need for alternative descriptions. Other implementations
could rely on techniques such as effective theories, numerical simulations, and non-
perturbative methods. This work’s approach to the problem stems from Regge theory
and is described in subsequent chapters.

In this chapter, general characteristics of QCD are introduced, along with further
details about hadronic processes. The goal is to provide a general background of strong
interactions, and thus give context to the theories and methods that will be introduced
and applied in later chapters.

1.1| Quantum Chromodynamics

Quantum Chromodynamics is one of the main components of the Standard Model
of particle physics. Alongside Quantum Electrodynamics (QED) and the Electroweak
model, it describes fundamental interactions between quantum particles at relativistic
speeds. As such it is necessary to consider its basic properties in order to understand
its applicability and limitations for high-energy hadron scattering.

4



1.1. QUANTUM CHROMODYNAMICS

1.1.1| Fundamental Characteristics

Quarks, gluons, and color

QCD gets its name from the color charges associated with strongly interacting
particles. These charges are analogous to the electric charges present in electrodynamic
interactions. Hadrons like protons and neutrons have long been known to interact
through the strong force, widely described as binding atomic nuclei. However, hadrons
do not carry a net color charge. These particles were found to be bound states of
quarks, color-charged elementary particles.

Quantum Chromodynamics provides a framework for the interaction between
these point-like charges (not possessing internal structures). Hadrons can be classified
into two groups, mesons and baryons1. Mesons (such as pions and kaons) are typically
composed of a quark and an antiquark, held together by the strong interaction. Baryons,
on the other hand, usually contain three quarks. Protons (the hadrons of interest in
this thesis) belong to the latter group.

As a gauge quantum field theory, QCD describes the strong force through particle
exchanges. Particles that mediate an interaction are known as gauge bosons. Although
some of these elementary particles can be detectable, they are usually exchanged as
virtual particles [12]. These intermediate states share some of the properties of their
real counterparts but can carry different masses and energies. Virtual particles cannot
be detected experimentally because their presence is both allowed and restricted by
the uncertainty principle. As such, they can be thought of as existing for extremely
brief periods of time. Despite this, their inclusion in interaction calculations is well
established.

In the same way QED (the field theory for Electromagnetism) can describe a Cou-
lomb force as an exchange of virtual photons, QCD describes quark interactions as
mediated by gluons. Gluons are gauge bosons carrying color charges. This property
of gluons presents a first example of the differences between Electrodynamics and
Chromodynamics. Photons have no electric charge and therefore do not interact with
each other, but gluons do interact with other gluons (QCD is non-Abelian). Further-
more, there are three quark color charges (red, blue, green and their corresponding
anti-colors for antiquarks) forming eight different possible color states for the gluons,
compared to just one type of photon.

1This classification is based on the quark model [11], taking into account the particles’ valence
quarks (those determining a hadron’s quantum numbers). In reality, more complex descriptions are
needed to fully model the hadron structure.

5



1. QUANTUM CHROMODYNAMICS AND HADRON SCATTERING

Color confinement, asymptotic freedom, and Chiral Symmetry Breaking

The physical phenomena related to the strong interaction present a few very im-
portant features. One characteristic behavior is referred to as color confinement. It
relates to the fact that quarks and gluons have not been observed isolated in nature,
and appear to always be present forming bound states (the hadrons). To accurately
reflect this, a fundamental property of QCD is that only colorless particles should be
allowed. Therefore, colored particles must always be contained in color-neutral bound
states. This is yet to be fully proven from first principles.

Lattice simulations2 have shown (for static quarks) that the quark and antiquark
forming a meson are linked by a flux tube [13]. A consequence of this behavior is that
the microscopic force between the particles remains constant as the distance between
them varies. This is the case at large distances (of the order of the size of hadrons),
where the potential increases linearly [14]. This is distinct from other interactions. It is
well known, for example, that when separating electric charges the strength of their
interaction decreases.

Confinement can be understood by considering that an effort to separate bound
quarks leads to the creation of a quark-antiquark pair3. The nature of the strong
interaction makes this more energetically favorable than a simple separation of the
linked particles. In other words, instead of further “stretching” the flux tube, the
increased distance “snaps” the flux tube, resulting in two bound states with their
respective connecting tubes.

The confinement phenomenon applies to all color-charged states, including gluons
which, unlike photons, cannot be directly observed [15]. Confinement also implies
that the experimental study of strong force phenomena will not be possible using
point-like particles. Therefore, it will require modeling internal hadron structures.
These structures must reflect the distributions of partons (quarks and gluons) consistent
with the results from probing each hadron.

A second special property of the strong interaction is known as asymptotic freedom,
given by the magnitude of the strong interaction at different energy scales. It is tied to
the fact that quarks seem to behave like free particles within hadrons. In other words,

2Lattice field theories can be developed by discretizing spacetime in a lattice. Although this does
not necessitate that they will be analytically solvable, it allows for the application of Monte Carlo
methods. The resulting simulations can provide very useful information on behaviors that can not be
easily understood otherwise. Due to the unique characteristics of QCD, they are particularly useful
when investigating its properties.

3Particle production is allowed by quantum field theory, provided that the energy available is greater
than the rest mass energy of created particles and relevant quantum numbers are conserved. Given that
antiparticles have charges opposite to the associated particle, this implies that production will be of
particle-antiparticle pairs.
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Figure 1.1: Electric charge screening

the strong interaction becomes weaker at high energies, taking into account that length
scales are inversely proportional to energy and momentum scales.

Empirical evidence for asymptotic freedom arose from attempts to understand the
structures within protons, validating the parton models that had been postulated at the
time. Hadrons were initially expected to simply be elementary particles, in agreement
with the fact that they could not be separated into smaller elements. Attempts to classify
hadrons led to the proposal of quarks as constituent particles, but their physical nature
was unclear. Furthermore, the quarks predicted by parton models carried fractions of
elementary charge e, unlike previously known particles.

The discovery of quarks was realized through deep inelastic scattering experiments
at SLAC (Stanford Linear Accelerator Center) [16, 17]. The experiments probed the
insides of protons by colliding electrons and hydrogen atoms at high energies. The
evidence gathered on the quark composition of hadrons also provided clues about
the interactions occurring within them. As a result, it led to the development of the
concept of asymptotic freedom and reconciled it with the seemingly contradictory
idea of confinement [18,19]. Proving that QCD successfully reproduced this behavior
was instrumental to its acceptance as the leading theory for strong interactions.

The strength of an interaction can be represented through a coupling constant for
a given theory. Contrary to what the name suggests, in quantum field theories, the
value of the coupling can depend on the distance of the interaction. Qualitatively, the
variation can be understood in terms of charge screening.

When measuring the charge of an electron, in light of quantum field theory, the
presence of said charge is not the only effect detected. The electron could, for example,
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Figure 1.2: Plot of the variation of the QED coupling with energy, based on [1].

emit virtual photons, which in turn decay into electron-positron pairs. Electromagnetic
interactions lead to the produced positrons being positioned closer to the initial
electron, effectively causing the polarization of the space surrounding the initial
charge.

Probing the area with a test charge, the perceived effect of the initial electron will
be modified by the polarization, and its charge is said to be screened (as illustrated in
Figure 1.1). The effective charge will depend on where the probing takes place, and
therefore on the scale of the interaction. In this case, the measured charge decreases
with distance from the particle, and so does the strength of the coupling αQED. This
corresponds to a smaller coupling at low probing energies (see Figure 1.2). Note
how the plot shows extremely slow growth for the coupling. In reality, the scaling is
expected to have a Landau pole. However, it occurs at such high energy4 that it is not
within the scope of the measurable.

Focusing on QCD again, it is useful to consider how screening occurs if, instead of
measuring the electric charge of an electron, the color charge of a quark is probed. In
the same way electron-positron pairs are produced in QED, Chromodynamics allows
for the production of quark-antiquark pairs surrounding the initial quark. Unlike what
happens with photons, it is also possible to have gluons producing gluon pairs, which
also affect the measured charge.

Favorable distributions will place color charges equal to the original quark’s charge
closer to it. The resulting behavior, in this case, is charge anti-screening. Accordingly,
the QCD coupling αQCD increases for larger distances. Therefore it is greater at low
energies and smaller at high energies (Figure 1.3). Asymptotic freedom means quarks

4Roughly 10277 GeV if considering only the electron, 1034 GeV in the Standard Model [20].
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Figure 1.3: Plot of the variation of the QCD coupling with energy, based on [2].

are essentially “free” in terms of their mutual strong interactions when placed close
together (inside a hadron), but their bond strengthens as they get separated, leading to
confinement. The counter-intuitive short-distance nature of the interactions displays
another significant way color charge forces differ from electric charge forces [15].

Another important property displayed in QCD is Spontaneous Chiral Symmetry
Breaking. QCD has Chiral Symmetry (invariance under a parity transformation) only
when quark masses are taken to be zero. However, using a QCD Lagrangian without
quark mass terms gives rise to non-zero effective masses for quarks. In this model,
there is no energetic cost associated with the creation of a (massless) quark-antiquark
pair. Therefore, the vacuum could be filled by any number and combination of these
pairs. The effect of the interactions between them is analogous to including the mass
terms, giving rise to effective masses for valence quarks within hadrons [21]. This
broken symmetry also explains the huge difference between the mass of a proton and
the mass of its valence quarks.

1.1.2| Perturbative Quantum Chromodynamics

High energy coupling values related to asymptotic freedom have relevant con-
sequences when trying to obtain testable predictions from QCD. As is the case for
other theories, exact calculations of physical observables can be difficult to produce.
However, it may be possible to write approximate solutions by adding perturbative
corrections to a simpler (solvable) case. Successive corrections correspond to a power
series for a parameter taken to be small. In the case of field theories such as QED
and QCD, perturbative approximations can be performed using the corresponding
coupling constants as expansion parameters. A given observable f can be expressed

9
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Figure 1.4: Example of a low-order Feynman diagram for an interaction between two
quarks, mediated by the exchange of a virtual gluon.

as a series in the following way:

f = f0 + f1α+ f2α
2 + . . . (1.1)

Generally, only first and second-order terms are considered. Increasing orders in α
correspond to the exchange of a higher number of virtual particles.

Different terms in the expansion of probability amplitudes for a reaction can be
represented as a Feynman diagram. The diagrams serve as a visual interpretation of
the factors and integrals present in the calculation. An example of a QCD diagram
is included in Figure 1.4. Each kind of particle (fermions, gluons, photons, etc.) is
represented by a different style of line. Wherever these lines meet, there is an associated
vertex, which contributes to the order of the interaction in terms of α. It is possible to
define a set of Feynman Rules for each Field Theory, relating the graphical elements
with mathematical expressions. These include the types of vertices allowed by a given
interaction Lagrangian, as well as the types of particle lines [12].

QCD includes three distinct types of vertex, which are presented in Figure 1.5.
The gluons (curled lines) can interact with fermions (straight lines). Gluon-gluon
interactions can also occur, in two distinct ways. One gluon vertex is associated with
a cubic term in the Lagrangian, and the other a quartic term.

In the case of QCD, the coupling is small only at high energies, as previously shown.
Therefore perturbative methods cannot be applied to large-scale strong processes.
To study an interaction it is necessary to consider its characteristic length scales
to determine if this approximation is usable. This discussion is further developed in
Section 1.3, but before that, it is convenient to introduce the main scattering observable,
the cross-section.
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1.2. SCATTERING CROSS-SECTIONS

(a) (b) (c)

Figure 1.5: Diagrams representing fermion-gluon vertices and gluon-gluon vertices
contributing to QCD.

1.2| Scattering Cross-sections

The study of elementary particles and their behavior is centered on scattering
experiments. It is possible to cause beams of particles to collide and then measure
the outcomes. Final states are determined by the beams of particles selected, and the
momentum provided to the beams prior to an interaction. Accordingly, it is essential
to define an observable that contains information on the probability of producing any
of the states that could result from a particular collision.

Probabilities for a given process are tied to a cross-section, a quantity intrinsic
to each scattering experiment. When describing classical collisions against a target
with minimal non-contact interactions with the incoming particles, the cross-section
is given by the size of the target. The area that the target presents for the collisions
determines the odds of the incoming particles hitting it or continuing past it.

In particle physics defining an effective cross-section requires taking into account
the deflection caused by non-contact interactions. Moreover, there is the possibility
of non-elastic scattering where the final states may contain a different set of particles
than the initial state. Each outgoing set (allowed by quantum number and energy-
momentum conservation) has its own cross-section and contributes to the total or
inclusive cross-section [12,22].

Cross sections can be defined by considering a detector (placed at an arbitrary angle
from the incoming beam) and the particles it is expected to measure. The differential
cross section for a detector spanning solid angle dΩ = sin θdθdφ is defined as:

dσ

dΩ
=

Number of scattered particles detected in dΩ

Total number of scattered particles
(1.2)

Consequently, it represents the probability of finding a scattered particle traveling in a
particular direction. Due to conservation, each solid angle corresponds to a particular
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1. QUANTUM CHROMODYNAMICS AND HADRON SCATTERING

value of outgoing momenta. In terms of classical scattering, dσ represents the area
that an incoming particle needs to traverse to be scattered at angle dΩ. The total
cross-section for a process is obtained through integration over the solid angle:

σ =

∫
dσ

dΩ
dΩ. (1.3)

When working with quantum relativistic particles, distinct processes have associated
probabilities stemming from the relevant field theories. That information will be
included in the cross-sections. It is possible to define partial cross-sections for specific
processes or categories. This allows, for example, to work with separate cross-sections
for elastic and inelastic contributions.

In the relativistic case, the cross-sections do not correlate to target sizes. However,
they are still expressed in units of area (typically in barns5). Inclusive cross-sections
(also known as total cross-sections, but not to be confused with Eq. (1.3)) contain
probability information for all viable processes in a scattering experiment, and result
from adding all partial contributions. Probabilities depend on the energy involved in
the process and therefore on the momentum of incoming particles. As an example,
elastic scattering tends to dominate at lower energies, as the energy level does not
favor the production of extra particles or the fragmentation of bound states.

Cross-sections will be discussed further in the following chapters, including some
details of their calculation in quantum field theories. Due to the topic of this work,
the concept will be relevant throughout, as it is the main observable considered in
hadronic scattering.

For currently accessible energy scales there are available cross-section and differen-
tial cross-section datasets which were considered in the methodology applied in this
thesis. These quantities were calculated from scattering amplitudes, as obtained from
Regge theory. A further observable, known as the ρ-parameter was also taken into
account. The parameter relates the real and imaginary parts of scattering amplitudes
(in the forward direction) and is also studied at the LHC.

1.3| Hadronic Processes

When considering hadronic processes it is useful to apply classifications according
to the length scales involved. To that end, it is possible to define two broad categories:
soft and hard processes.

Hard processes involve large transferred momentum scales and can be treated
51b (barn) = 10−28m2,
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perturbatively. Predictions for these interactions typically require knowledge of the
distribution of partons inside each hadron. These distributions are not wholly pertur-
bative. However, they can be separated from the perturbative treatment of the problem
as they are universal to processes involving the same hadrons [23]. The presence of
these two approaches to working with hadronic scattering illustrates some of the issues
that arise when seeking to develop comprehensive models for these phenomena.

Soft processes, on the other hand, are characterized by a length scale of the order of
the involved hadron’s size (R). This is a large scale in the context of strong interactions,
as due to confinement it will not be possible to separate quarks beyond this distance.
Consequently, it does not allow the application of perturbative Chromodynamics
(pQCD).

The transferred momentum scale of a soft process can be expressed as |t| ∼ 1/R2

(where t refers to the Mandelstam variable, see Appendix A.2). The behavior of its
differential cross-section in terms of t is dσ/dt ∼ e−R2|t|. Therefore processes with
high transferred momentum (high t) are suppressed [23].

Soft cross-sections at high energy can be phenomenologically described as domi-
nated by the exchange of a Pomeron, which will be introduced in later chapters. This
approach poses questions regarding the relationship between the soft Pomeron and
QCD, obscured by the unknown physics contained in the Pomeron object.

This thesis focuses on soft phenomena and the Pomeron description. These pro-
cesses are dominant in high energy scattering [24]. A group of processes typically
associated with soft scales (low transferred momentum) are known as hadron dif-
fraction. The term diffraction was chosen in analogy with optics, where the diffraction
of a wave by an object produces a pattern of intensity peaks and valleys [25]. In ha-
dronic diffraction, it is also possible to observe maxima and minima in the differential
cross-sections [23].

Diffractive scattering is characterized by large rapidity gaps. These gaps refer to
angular regions of space where no outgoing particles are detected after a collision (see
Figure 1.7) [26]. More precisely, identifying a diffractive event requires the presence
of a rapidity gap that is not exponentially suppressed. This means that the number of
diffractive events N should not decrease according to dN/d∆η ∼ e−∆η (or faster) as
the gap size ∆η increases.

A perhaps more intuitive notion of diffraction is a process in which particle quantum
numbers are not exchanged, as is the case in elastic scattering (e.g. pp→ pp)6. This
definition may not always succeed at ruling out non-diffractive processes, however,
it works well at high energies, where these non-diffractive events become less likely.

6It may be useful to note that in the literature elastic processes are often discussed separately from
inelastic diffractive processes, or as a particular case in hadronic diffraction [27].
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Figure 1.6: Types of processes conserving quantum numbers.
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Figure 1.7: Diagram exemplifying the rapidity gap in Diffractive Deep Inelastic Scatte-
ring (DDIS).

Other diffractive processes are, for example, single and double diffraction, where one
or both of the incident hadrons engender a set of particles (while conserving quantum
numbers), as seen in Figure 1.6.

Further research has identified processes such as Diffractive Deep Inelastic Scatte-
ring (Figure 1.7) involving two length scales, one soft and one hard. These are also
categorized as diffractive because they display the same characteristic rapidity gap
behavior.

As was previously mentioned, diffractive phenomena can be described through
Pomeron physics. In order to introduce the methodology involved, the next chapter
discusses S-Matrix theory. The study of the S-Matrix and its properties produces ways
to calculate scattering observables and gives rise to Regge theory and the Pomeron.

14



2 S-matrix Formalism

The S-matrix can be used to represent scattering processes in a variety of theories,
including quantum field theories as well as non-relativistic quantum mechanics. The
following chapter provides a brief overview of the goals of S-matrix Theory, developed
as a possible contender for a complete model of strong interactions as QCD was
emerging. The most relevant properties are also discussed, as their study leads to
useful methods still applied in hadronic physics.

The S-matrix operator is defined as the transformation of an initial scattering state
|i〉 into a final state |f〉, as expressed in the following equation:

|f〉 = S |i〉 . (2.1)

The states are associated with free particles (outside the presumably short range of
the interactions) and defined at times ti = −∞ and tf = +∞, respectively. Conse-
quently, the S-matrix can be written using the time evolution operator for the system
(U) from ti to tf, as follows.

S ≡ U(−∞,+∞) (2.2)

In quantum field theory, the evolution operator can be calculated from the Hamiltonian
of the theory.

In agreement with the quantum superposition principle, the S operator is linear. Its
elements are also taken to be Lorentz invariant functions of the kinematic variables
of the system, making the S-matrix independent of the chosen frame of reference.
Other relevant properties, their physical significance and their consequences will
be developed in further sections of this chapter, including unitarity, the focus of this
thesis.

Usage of the S-matrix and the properties and principles tied to it were developed
intensely in the 1960s, although the resulting theory was surpassed by QCD in the
following decade. The next section provides a brief overview of the chronology and
motivations behind the S-matrix theory of strong interactions.
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2.1| Historical Background

The S-Matrix, also known as the scattering matrix, was initially introduced in 1937
as part of a model for composite nuclei [28]. A few years later, it was proposed as a
foundation of elementary particle scattering by Heisenberg [29]. Heisenberg believed
that the S-matrix formulation could eventually replace the work performed from a
Hamiltonian. In the 1940s, advances developed in QED provided tools to address
the scattering of particles such as electrons and photons. Heisenberg’s approach was
also shown to result in complete descriptions of those processes. Both methods were
proven to be compatible, in the sense that S-matrix elements could be calculated
through the perturbative methods (based on Feynman diagrams) that had already been
established [30].

One of the issues arising in diagrammatic calculations from QED was the presence
of divergences in the observables, which lead to the development of renormalization
methods1. From the S-matrix approach, however, divergences requiring infinite re-
normalization could automatically vanish by bypassing the Hamiltonian formalism.
It was also expected that the S-matrix could help avoid the limitations inherent in
perturbative calculations, which rely on weak couplings. In consequence, the S-matrix
and its properties were studied extensively, leading to the S-matrix theory program,
prevalent in the late 50s and early 60s.

The core idea behind S-matrix theory was developing a formalism that exploited the
mathematical properties of this operator, such as unitarity and analyticity. If enough
properties were formulated, it could lead to uniquely determined expressions for the
S-matrix. This would be enough to make empirically verifiable predictions [31].

In order to understand the appeal of this, one could consider the roles of the fields
in theories such as QED and QCD. Within them, the fields themselves are not entities
of interest and instead constitute tools to construct physical observables. Therefore,
it stands to reason that alternative frameworks could produce scattering amplitudes
without using the formalism of local fields, and in doing so avoid the complications of
field theories. The limitation of this perspective is that the complexities of the physics
being described are relegated to a “black box”, which shall remain inaccessible.

The S-matrix also relates to spacetime differently from field theories. The path
integral perspective of quantum field theory relies on fragmenting a time interval into
smaller steps. However, the S-matrix links the initial and final times directly.

1Renormalization in quantum field theories consists in redefining a model’s parameters in such a
way that the infinities arising in the theory get “absorbed” away from measurable quantities, which
need to be finite. In other words, the constants in a model need to be chosen in ways consistent with
empirical values (such as masses) in order to avoid undesirable divergences.
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The resulting theory was a particularly good candidate to model strong interactions,
at a time when QCD was not yet discovered. The formalism that had been developed for
electrodynamic interactions relied heavily on perturbative calculations. Nevertheless,
as was detailed in Sections 1.1.1 and 1.1.2, the usability of perturbation theory in
QCD is limited. A strong interaction S-matrix deduced from analyticity constraints, if
found, could avoid the perturbation problem [32]. It is worth noting that the S-matrix
for strong interactions is yet to be determined without relying on results from field
theory. The advent of QCD and its empirical success led to the disuse of S-matrix
theory, which at times got portrayed as an outdated curiosity of limited applicability. It
remains to be seen if some of the more unusual properties of QCD could be clarified
with the help of S-matrix theory.

In some areas, however, it has remained extremely useful. It is, for example, part of
the basis of string theory. One of Heisenberg’s concerns when proposing the framework
was that quantum theories would break down at sufficiently small scales. At this stage,
perturbative calculations were known to have divergences when integrating up to
high momentum. Although his prediction was correct, Heisenberg overestimated the
length at which this would occur. The S-matrix as a tool, however, has proven to
be useful at the exceedingly small scales (Planck length of the order of 10−35m) that
quantum gravity is concerned with, and as such remains popular in the context of
string theory [33].

The properties and postulates associated with the S-matrix were mainly based on
known properties of existing field theories. One of the goals during the heyday of
the theory was to prove that it is self-contained and physical. The framework was
considered very abstract, even by the physicists proposing it. Leading contributions
in the area included those of Geoffrey Chew, Stanley Mandelstam, Tullio Regge, and
Steven Frautschi, among others.

Unitarity is perhaps the most straightforward property of the S-matrix, alongside
Lorentz invariance (agreement with special relativity) and linearity. In quantum theories,
the unitarity of operators is tied to the necessity of probability conservation. This
property will be discussed further in Section 2.2, and has as a result the Optical
Theorem, fundamental to the methodology in this work.

An extremely relevant postulate of S-matrix theory is analyticity, the basis of much
of the developments in S-matrix theory. S-matrix elements, the scattering amplitudes,
need to be analytical functions of the kinematic variables of the problem (generally
expressed through Mandelstam variables, detailed in A.2). The postulate is at times
referred to as maximal analyticity, as the singularity structure of the amplitudes is
expected to include only the singularities required by other postulates, such as unitarity
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and crossing [34]. Although it is highly nontrivial to prove that this property is necessary
from first principles, it is arguably the most important in the S-matrix framework. The
study of the analytical continuation of the S-matrix is, for example, the basis of Regge
theory, the focus of the next chapter. The postulate was based on the fact that analyticity
is tied to causality in quantum mechanics, and it was also present in perturbative field
theory calculations available at the time. The analytical S-matrix will be explored in
more depth in Section 2.3.

Another postulate refers to crossing symmetry, previously known in quantum field
theories. It relates processes occurring in different channels (see A.2), by exchanging
(or crossing) incoming particles with outgoing antiparticles. Knowledge of scattering
amplitudes of s-channel gauge boson exchanges, for example, provides information
on the related t-channel process as well. Thanks to this property, the S-matrix can
simultaneously describe multiple different physical regions in the kinematic varia-
bles. This is relevant because, as will be developed in Section 2.3, different channel
processes occupy non-overlapping kinematic regions.

Although the principles of Lorentz invariance, unitarity, analyticity and crossing sym-
metry were enough to obtain a formalism compatible with leading order perturbative
calculations, further progress in implementing S-matrix theory required introducing
new properties. The bootstrap, for example, states that, if particles get included in one
channel (as singularities), it is possible to discover corresponding particles in other
channels using unitarity and crossing operations.

Another relevant concept in the theory was nuclear democracy, where the idea of
elementary particles was thought to be meaningless, and particles were all a priori
bound states of each other. As per Chew [7,34], this was inspired by Feynman’s criteria,
suggesting that a correct theory of particle physics should not distinguish between
elementary particles, bound states, and resonances. A further consequence of nuclear
democracy was that all particles would be associated with a Regge trajectory (see
Chapter 3).

Following this general overview of the S-matrix and the goals of its usage, the
subsequent sections expand on the mentioned properties and the useful developments
that they enabled.

2.2| Unitarity

At its most fundamental level, the unitarity property of the S-matrix can be tied
to the conservation of probability attributed to quantum systems. This conservation
implies that the total probability of the complete ensemble of states is constant. It is
possible to explicitly derive the unitarity requirement of the S-matrix by postulating
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this conservation law.
In terms of the S-matrix, the probability of transition between a state |i〉 and state

|f〉 can be defined as follows:

Pi→f = |〈f|S |i〉|2 (2.3)

In order to impose probability conservation, the sum of probabilities of going to any
|k〉 in an orthogonal basis is expressed as:

∑
k

Pi→k =
∑
k

|〈k|S |i〉|2 (2.4)

and set to 1. By rewriting the terms and using the completeness relation for the basis
vectors (

∑
k |k〉 〈k| = 1), the unitarity constraint on the S-matrix can be obtained.∑

k

|〈k|S |i〉|2 =
∑
k

〈i|S† |k〉 〈k|S |i〉 = 〈i|S†S |i〉 = 1 (2.5)

=⇒ S†S = 1 (2.6)

Therefore, to fulfill the postulate, the operator needs to be unitary. It is worth noting
that, for this relation to hold, it is necessary to include all possible states for the theory
of interest. This is consistent with the previously mentioned assumption that the S-
matrix relates free-particle states to free-particle states. What this entails is that the
interactions considered are short-range. Short-range interactions can be guaranteed
by choosing all force-carrying particles to be massive, as the range of interaction is
inversely proportional to the carrier mass (per Heisenberg’s uncertainty principle).
The strong force in particular is mediated by massless gluons. However, confinement
implies that its effects are short-range.

One of the central implications of the unitarity constraints on S-Matrix elements
is the optical theorem. For this work, the theorem is essential, as it provides a straig-
htforward way to calculate observable cross-sections from the approach of Pomeron
exchange.

2.2.1| Optical Theorem

The optical theorem states that total scattering cross-sections can be completely
determined from the imaginary parts of scattering amplitudes in the forward direction.
To visualize how it is obtained from the unitarity relation, it is necessary to establish
some preliminary definitions. Firstly, for convenience, the S-matrix can be expressed
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in terms of a transition matrix T in the following way:

S = 1+ iT . (2.7)

This notation allows for the distinction between the scenario where the state of the
particles is unchanged (identity) and the nontrivial processes (included in T ).

Considering the relation in (2.7) in terms of matrix components as follows

Sif = 〈f|S |i〉 = 〈f|i〉+ i 〈f| T |i〉 = δif + iTif, (2.8)

it is possible to extract scattering amplitudes A. These amplitudes constitute the
analytical parts of the transition matrix elements. Here δif is the Kronecker delta.
The non-analytical contributions stem from energy-momentum conservation, which
must be imposed on the S-matrix in the form of Dirac delta functions. Through this
dissection, factors Tij are thus

Tif = (2π)4δ(4)(pf − pi)A(i→ f), (2.9)

where the inclusion of (2π)4 stems from normalization conventions.
These formulae can be applied to the expression of S-matrix unitarity in Equation

(2.6), resulting in:

(1+ iT)†(1+ iT) = 1 =⇒ i(T † − T) = T †T . (2.10)

Considering this correspondence in terms of matrix elements produces

i 〈f| T † − T |i〉 =
∑
{n}

〈f| T † |n〉 〈n| T |i〉 , (2.11)

where a completeness relation has been inserted to represent all possible intermediate
states |n〉. The summation

∑
{n} includes all quantum numbers and integration in all

the intermediate particle momenta.
Then, transition matrix elements, and therefore scattering amplitudes for different

processes, must be related as follows:

2 Im Tif =
∑
{n}

T∗fnTni =⇒ 2 ImA(i→ f) =
∑
{n}

′
A∗(f→ n)A(i→ n). (2.12)

In order to simplify notation, momentum delta functions are implicitly included in the
phase space integration contained within

∑ ′
{n}.
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Even though this expression constitutes a very complex set of equations, it can still
be convenient to apply. It allows, for example, to obtain amplitudes for processes of
perturbation order n through recurrence with amplitudes of lower orders.

The optical theorem stems from a special case of the relations in equation (2.12).
Considering elastic processes for two identical particles 1 + 2 → 1 + 2 by choosing
|i〉 = |f〉 leads to

2 ImAel(s, t = 0) =
∑
{n}

′
A∗(f→ n)A(i→ n). (2.13)

The elastic amplitude is evaluated in terms of the Mandelstam kinematic variables,
where for this particular case t = 0. This limit is known as forward elastic scattering
because the study of the kinematics in the center-of-mass frame shows that t ∝
(1− cosθ), where θ is the scattering angle (see Appendix B). It is clear then that t = 0
occurs for scattering events in the forward direction (θ = 0).

The remaining step is to interpret the right-hand side of equation (2.13). Recalling
the significance of the cross-section, we can relate them to scattering amplitudes. The
cross-sections represent the ratio between the outgoing flux of states and the incoming
flux of particles. The outgoing flux is given by the scattering amplitudes, and in order to
obtain σtot the amplitudes for all possible outgoing states must be taken into account.
For initial flux Φ, this results in

σtot =
1
Φ

∑
{n}

′
|A(f→ n)|

2 , (2.14)

where the summation is once again made over all possible quantum numbers and
regions of Lorentz-invariant phase space.

An invariant expression for the incident flux was proposed by Møller [35]. It is
defined as Φ = 2E12E2 |~v1 − ~v2| for two incident particles 1 and 2 (in terms of their
respective energies and velocities). It is of particular interest to consider the high
energy limit, where s→ ∞, and Φ ' 2s. Using equation (2.14), it is straightforward
to conclude that

σtot =
1
s

ImAel(s, t = 0) (2.15)

when s is large.
In this way, cross-section predictions can be based exclusively on knowledge of

one S-matrix element, corresponding to the elastic case. In this thesis, the optical
theorem will be applied by considering amplitudes provided by Regge theory.

It is interesting to note that the optical theorem arises in scattering problems in
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2. S-MATRIX FORMALISM

several areas of physics, and is not restricted to relativistic scattering. Before it got
adopted and named in high-energy physics circles, it was a well-known property in
optics [36]. In this context, it can be proven considering plane waves that scatter off
some object. However, instead of stemming from quantum unitarity, it is linked to
energy conservation. Analogous derivations can also be obtained for the scattering of
nonrelativistic quantum mechanical states by a potential, through the conservation of
probability currents [23].

2.2.2| Further Implications of Unitarity

Working from elastic scattering contributions can lead to qualitative notions of
the behavior unitarity constraints should enforce. It may be interesting to consider,
for instance, what happens when scattering deviates from the forward case, but only
slightly. From the constraint equation (2.12), the imaginary contributions from different
processes are expected to vanish. Assume that, at sufficiently high energies (high
number of states |n〉), the phases for the right-hand terms become randomly distributed.
A real right-hand term would require the suppression of imaginary contributions to
the amplitudes, and therefore a decrease in cross-sections. As a result, the imaginary
parts of amplitudes are expected to have a peak at t = 0 and rapidly decrease when t
increases or decreases.

This also applies to diffractive processes, where |i〉 ' |f〉 as well, because quantum
numbers are preserved. In fact, the peak at t = 0 is expected to govern the behavior
of the scattering amplitudes at asymptotically high energy. The result of having a
slightly deflected but highly energetic hadron is a phenomenon known as the leading
particle effect. In a significant fraction of the outcomes, the leading hadron will carry
on traveling forward, leaving behind soft (slower) hadrons. In this approach, the focus
is on inclusive processes, where there is no interest in observing the complete final
state. More precisely, the leading hadron is detected, but the soft particles left behind
are treated as an unresolved missing mass.

Since the Pomeron also has a peak in its contribution, Barone and Predazzi [23]
propose that the source of the Pomeron could be linked to unitarity relations. However,
as the Pomeron could represent a complex state or a complex collection of phenomena,
an actual understanding of this relation would require a more exact grasp of the
qualitative ideas discussed here.
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2.3. ANALYTICITY AND CROSSING

2.3| Analyticity and Crossing

The second fundamental property postulated for the S-Matrix is analyticity. As
was previously mentioned, the requirement is that scattering amplitudes given by the
S-matrix will be analytical functions of kinematic variables, where the variables are
analytically continued in the complex plane. To recover physical, and therefore real
amplitudes, one must take the real limit of the variables.

The analyticity postulate is linked to the concept of causality, stating that an output
can not precede an input, which quantum field theories are expected to hold. The link
with causality can be explicitly established in some areas of physics, such as optics
and nonrelativistic quantum mechanics.

2.3.1| Analyticity and Causality: An Example from Optics

One could consider for instance what happens with a wavepacket traveling along
the z axis at time τ, as represented by the following equation:

A(z, τ) =
1

√
2π

∫∞
−∞ dω a(ω)eiω( z

v−τ), (2.16)

where the packet is assigned velocity v. Inverting this equation gives the amplitude

a(ω) =
1

√
2π

∫∞
−∞ dτA(0, τ)e(iωτ). (2.17)

If the wavepacket scatters off a particle placed at the origin, the resulting wave in
the forward direction is

G(r, τ) =
1

r
√

2π

∫∞
−∞ dω f(ω) a(ω)eiω( z

v−τ). (2.18)

In this case, the wave travels radially, hence the spatial dependence on propagation
radius r. Factor f(ω) represents the scattering amplitude.

In this situation, it is possible to extend the frequencies ω into the complex plane.
It follows that a(ω) is regular (analytical and single-valued) in the upper half of the
complex plane ifA(0, τ) = 0 for negative τ. That is, under the imposition that the wave
packet does not reach the origin before τ = 0. The convergence of a(ω) under the
restriction for A(0, τ) is in fact improved by the inclusion of complex ω with positive
imaginary parts.

For causality to be obeyed, the scattered wave cannot exist in regions of spacetime
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not permitted by the arrival of the wave packet at z = 0. This condition can be expressed
as G(r, τ) = 0 for vτ− r < 0. The causality requirement imposes that f(ω)a(ω) must
be analytic in the upper complex plane. Then, the scattering amplitude f(ω) must
be an analytic function for all ω in this region, except where a(ω) happens to be
zero [32].

This type of approach is common when studying dispersion relations in optics. In
the case of quantum fields, the link is less straightforward. This is because, in reality,
it is not feasible to impose the localization of the incident wave in such a way as to
ensure A(0, τ) = 0 for a well-defined range of time.

In quantum field theory, causality is typically expressed in terms of the commutati-
vity of the fields evaluated at different points in spacetime. When these points have a
spacelike separation (x− x ′)2 < 0, field operators obey:

[φ(x),φ(x ′)] = 0 (2.19)

This is often referred to as microcausality, and is considered less stringent than the
more straightforward notion of causality applied in other contexts. This limits the
applicability of causality in the determination of dispersion relations for relativistic
scattering, and the confidence that can be placed behind these results [23]. However,
there is no known rigorous way to prove the link between analyticity and causality
without relying on perturbation theory.

Despite this, the study of the analyticity of the S-matrix is fundamental to the study
of scattering amplitudes. In fact, through dispersion relations, it is possible to relate the
real and imaginary parts of these quantities [37]. It also leads to the crossing property,
which allows us to relate processes occurring in different physical regions (different
scattering channels, see Figure 2.3).

2.3.2| Analyticity in Relativistic Scattering

A further concept that forms the basis of the study of the analytical properties
of scattering amplitudes is maximal analyticity. Under this postulate, the singularity
structure is restricted to those required by unitarity and crossing. This implies that all
the singularities present in the amplitude have a dynamical origin, as will be further
developed in this section.

Through unitarity, it is expected that a new singularity will appear every time the
threshold allowing for the production of a new particle is crossed. This represents the
addition of a right-hand term in equation (2.13). Working from Feynman diagrams
helps justify the analyticity postulate, as the singularity structures they provide are
consistent with S-matrix theory.
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2.3. ANALYTICITY AND CROSSING

In order to understand this, what follows is an analysis of the analytical properties
for the case of two-body processes. For the sake of simplicity, it will be limited to the
equal-mass limit. To begin, consider pole-type singularities.

The exchange of particle of mass m represented by a scalar field has the following
s-channel Feynman diagram:

Figure 2.1: Feynman diagram for the s-channel exchange of a scalar.

The propagator for this exchanged particle is of the form

1
s−m2 + iε

(2.20)

leading to a singularity at s = m2 in the scattering amplitude As(s, t) for the process.
The same will occur in channels t and u for t = m2 and u = m2 respectively.

If two or more particles were exchanged instead, the singularities would correspond
to branch cuts, starting from s = (nm)2, where n represents the quantity of exchanged
scalars. This can be seen by applying the unitarity constraint in equation (2.13) for this
particular case. Once again, the singularities in the other channels are analogous. The
singularity structure for this example can be visualized in the s-plane in Figure 2.2.

In the center-of-mass frame, the Mandelstam variable s corresponds to the square
of the total energy (see Appendix B). Therefore, poles and branch cuts occur at the
energy thresholds for the production of particles. In this case, for example, it is not
possible to produce two particles of massm for s < 4m2, that is, before the branch cut.
As a result, the addition of a singularity also entails the inclusion of a new possible
intermediate term to be summed over in the unitarity relation (2.13).

It is worth noting that the fact that these kinds of singularities are present can be

•
m2

×
4m2

×
9m2

Figure 2.2: Diagram of the s-channel singularities for the two-body equal-mass example.
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derived in more general terms by studying the unitarity equations. This is beyond the
scope of this thesis.

2.3.3| Crossing

As was previously mentioned, the analyticity property will permit us to link the
amplitudes of the processes occurring through different channels. This crossing sym-
metry is a highly relevant concept in quantum field theories. It draws the equivalence
between an incoming particle (with momentum p) and an outgoing antiparticle (with
momentum −p, traveling backward in time).

Applying the crossing operation relates the different channels as follows:

A+ B→ C+D (s-channel) (2.21)

A+ C→ B+D (t-channel) (2.22)

A+D→ B+ C (u-channel) (2.23)

Note that the overlined terms represent antiparticles.
Furthermore, the CPT symmetry2 provides further reactions that can be described

from the same amplitude, such as:

C+D→ A+ B (s-channel) (2.24)

B+D→ A+ C (t-channel) (2.25)

B+ C→ A+D (u-channel) (2.26)

The result of these symmetries is that one function of the invariant Mandelstam
variables can be used to describe the distinct regions of kinematic space illustrated in
Figure 2.3. This can be realized by simply exchanging the role of each of the variables.
Therefore, through knowledge of the singularity structure in one of these regions,
one can infer the singularity structure elsewhere. It is worth noting that the regions
associated with each of the channels do not overlap. An analytical continuation of, for
example, the s-channel amplitude to different domains of s, t, and u is postulated to
be possible. This is once again not easily proven for a general S-matrix, but is well
justified when restricted to perturbative calculations.

From the previous example, it is possible to see the continuation of the s-channel
structure through a well-known property of the Mandelstam variables. Only two of

2CPT symmetry refers to the invariance when conjunctly applying the charge conjugation, time
reversal, and parity transformations. It has been observed for all known physical laws.

26



2.3. ANALYTICITY AND CROSSING

s = 4m2

u = 0 t = 0
t = 4m2u = 4m2

s = 0

s

u t

Figure 2.3: Diagram of the three physical regions associated with an equal-mass
scattering in the s, t and u channels.

•
m2

×
4m2

×
9m2

•
3m2 − t

×
−t

×
−t− 5m2

Figure 2.4: Diagram of the scattering amplitude singularities (all channels) for the
two-body equal-mass example.

these kinematic invariants are independent, as they obey3 s+t+u = 4m2. By choosing
s and t to be independent, and fixing t, the singularities in the u-channel give:

u = m2 → s = 3m2 − t (2.27)

u = (nm)2 → s = (4 − n2)m2 − t. (2.28)

This now gives a singularity structure for the amplitude of all processes, as seen
diagrammatically in Figure 2.4.

The discussions throughout this chapter provide a general idea of what S-matrix the-
ory says about scattering amplitudes and their mathematical features. The focus of the
next chapter will be the study of the singularity structure from the perspective of Regge
theory. The analytical continuation applied in this case will lead to the identification
of Regge poles (such as the Pomeron) that represent a powerful phenomenological
tool.

3When the masses of the particles are chosen to be equal, see Appendix B.
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3 Regge Theory

The methodology of Regge theory links the high-energy behavior of scattering
amplitudes with a set of resonances referred to as Regge poles [4,5,7]. The approach
has a long history as a phenomenological success, enabling the study of processes
for which theoretical frameworks are nonexistent or scarce. This chapter is centered
on the discussion of how these poles arise from the analytic continuation of angular
momentum to complex values. For this purpose, it will be necessary to apply the
partial wave expansion to write amplitudes in terms of the different angular momentum
contributions.

From there, the identified poles can be tied to the phenomenology of diffractive
scattering, that this work aims to describe. The behavior of proton-proton and proton-
antiproton scattering will then be expressed in terms of the exchange of a particular
Regge state, called the Pomeron. Through the optical theorem, it will be possible to see
how the properties of the Pomeron exchange can be used to guarantee cross-sections
compatible with experiments. Due to empirical observations, the cross-sections have
long been known to increase with energy (for energies above 100GeV). The rate of
growth must, however, respect the Froissart-Martin bound to ensure unitarity [6,8].
The implications of this limit for Regge trajectories will be part of the content of this
chapter as well.

3.1| Conceptual Overview

The idea of allowing complex values of angular momentum was successfully applied
to nonrelativistic scattering by a potential by Tullio Regge, in 1959 [4]. Regge noticed
that this treatment provided direct determinations for most potentials from scattering
amplitudes, and could be used to generalize dispersion relations to cases with high
momentum transfer. In this case, the study of the structure of scattering amplitudes, as
mentioned in the previous chapter, is straightforward.

Soon after, Steven Frautschi and Geoffrey Chew saw in Regge’s approach a possible
key to strong interactions, from the perspective of relativistic S-matrix theory [7]. Here,
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3.2. PARTIAL WAVE EXPANSION

if the postulates of unitarity, analyticity and crossing are accepted, it is possible to get
highly useful fits of scattering amplitudes by utilizing the same analytical continuation.
They posited that all the poles in the S-matrix would correspond to some Regge pole.
This aspect of the idea constitutes an application of the maximal analyticity postulate
to angular momenta. Clarifying the link between this description and QCD, and
thereby relating Regge theory to first principles, could give a fuller picture of strong
interactions.

Working from the properties of the S-matrix, the next sections will show that
relativistic scattering amplitudes A(`, t) will have simple poles that obey the following
relationships:

` = α(t). (3.1)

Here the variable ` refers to some physical value in angular momentum space and the
functions α(t) are called Regge trajectories. They represent families of bound states or
resonances, which are exchanged in the t-channel. From each of these trajectories, one
can find straightforward contributions to asymptotic scattering amplitudes as functions
of energy. These take the following form:

A(s, t) ∼
s→∞ sα(t) (3.2)

Recall that Mandelstam variable s corresponds to the square of the energy in the case
of center-of-mass scattering. The t-channel exchange of the trajectory with the largest
real part will then determine the behavior of the s-channel scattering amplitude. Then,
through the optical theorem, it is possible to write high-energy observables such as
the cross-section as a linear combination of powers of s.

In order to elaborate on this summary, the next section introduces the partial wave
expansion of scattering amplitudes. This will help rewrite amplitudes as summations
in angular momentum, to perform the analytical continuation proposed by Regge.

3.2| Partial Wave Expansion

Partial wave expansions can be applied whenever one is working with scattering
due to a spherically symmetrical potential. Consider the example of a plane wave
ψ(~r) (spinless) in nonrelativistic quantum mechanics, as illustrated in Figure 3.1. The
potential V(~r) is assumed to have a finite range, as when working with the S-matrix.
The scattering process is described through the following Schrödinger’s equation [23]:

−
 h

2µ∇
2ψ(~r) + V(~r)ψ(~r) = Eψ(~r) (3.3)
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~k

•

~k ′

Figure 3.1: Scattering of a plane wave by a spherical potential.

The wavefunction after the scattering occurs is

ψ(~r) ∼
r→∞ ei~k·~r + f(~k,~k ′)

eikr

r
, (3.4)

where ~k and ~k ′ are the incoming and outgoing wavevectors. Factor f(~k,~k ′) is the
scattering amplitude and contains the dependence of the solution with the potential.

Due to the symmetry of this problem, it makes sense to separate the contributions to
the amplitude of each of the angular momenta, as they will be conserved throughout
the process [38]. For spinless particles, the angular dependence for angular momentum
` is given by a Legendre polynomial P`. Therefore, the amplitude for the scattering in
the center-of-mass frame can be written as a series expansion:

f(k, θ) =
∑∞̀

=0(2`+ 1) a`(k)P`(cosθ), (3.5)

where θ refers to the scattering angle (between ~k and ~k ′). Factors a`(k) are partial
wave amplitudes. As they contain the information of the interaction (in this case via
potential V(~r)), they can be expressed in terms of S-matrix eigenvalues S` [39].

a`(k) =
S`(k) − 1

2ik (3.6)

3.3| Domains of Amplitude Convergence

Before proceeding to implement the expression in equation (3.5) to obtain the
analytical continuation in complex `, it is important to mention the domain of con-
vergence of this expanded amplitude. As was illustrated in the example of Section
2.3.1, understanding the mathematical properties of the amplitudes is fundamental to
applying analytical continuations, and to the study of the singularity structures. An
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Re(θ)

Im(θ)

η(s)

(a) Domain of convergence in the complex
θ plane.

•
−1

•
+1

x

y

(b) Domain of convergence in the complex
cos θ plane (Lehmann ellipse).

Figure 3.2: Illustrations of convergence when allowing complex values of cos θ.

amplitude in the s-channel will have a partial wave expansion:

A(s, θ) =
∞∑
`=0

(2`+ 1) A`(s)P`(cosθ). (3.7)

For the sake of simplicity, the analysis will be restricted to the equal-mass two-body
scalar case, where cos θ = 1 + 2t

s−4m2 (see Appendix B). Then, the amplitude is well
defined for the s-channel domain, where s > 4m2 (see Figure 2.3) [23].

As was mentioned in the previous chapter, the goal of performing an analytical
expansion is to describe a greater domain of the kinematic variables through the same
amplitude. Having established the convergence for the s-channel, it is then worth
exploring if allowing complex values of the Mandelstam variables can advance that
objective. For this purpose, consider a complex-valued cos θ.

As ` goes to infinity, the Legendre polynomials tend to O(e`| Imθ|) [23]. Because
of this, ensuring the convergence of the scattering amplitude in this limit requires
the partial amplitudes to behave as A`(s) ∼ e`η(s). The function η(s) imposes the
restriction in the complex-θ plane, given by | Im θ| 6 η(s). The domain is represented
in the complex plane in Figure 3.2a.

To visualize whether an expansion of the domain of convergence has been achieved,
it is convenient to think of this domain in the complex cos θ plane. Consider cos θ ≡
x+ iy. Initially, when the variable is real, the domain of convergence in the s-channel
corresponds to −1 6 cos θ 6 1. After the introduction of complex values, the domain
in terms of cos θ will be given by an ellipse with foci at ±1, known as the Lehmann
ellipse. The ellipse has axes that depend on η(s), and is defined by the following
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equation:
x2

χ2 +
y2

χ2 − 1 = 1, with χ = cosh η(s). (3.8)

The domain of convergence given by this ellipse (as shown in Figure 3.2b) is larger
than the physical domain. However, this continuation still does not allow access to
amplitudes for arbitrarily large values of cos θ. In terms of the Mandelstam invariants,
at a given value of s, it will not be possible to obtain a well-defined amplitude for all t
or u [23]. Therefore, this extension of the domain is not useful to the goal of obtaining
a scattering amplitude for all channels.

The next subsection will show that the Regge approach to analytical continuation
will in effect be able to provide the desired outcome.

3.3.1| Continuation to Complex Angular Momenta

To understand the effect of complex momenta on amplitude convergence, it is
useful to consider the example where ` is chosen to be purely imaginary. In this case,
the analogous procedure can be applied to determine that asymptotic convergence is
guaranteed for:

A|`| ∼
`→i∞ e−|`|δ(s). (3.9)

Now the domain of convergence is given by δ(s) > |Re θ|. That is, instead of a
horizontal strip domain in the complex θ plane as in Figure 3.2a, the domain is a
vertical strip. Now, using cos θ ≡ x + iy and cos ξ = δ(s) it is possible to conclude
that the domain of convergence in the xy plane is described by the hyperbola

x2

ξ2 −
y2

1 − ξ2 = 1. (3.10)

From this new domain, which is shown in Figure 3.3, it is possible to get two key
takeaways. The first and most important one is that, due to the hyperbola being an
open domain, the issue of being unable to generalize scattering amplitudes at large
|t| or |u| is no longer present. The image also shows that the expansion to imaginary
momenta produces a convergence domain that overlaps with the Lehmann ellipse
obtained in the previous analysis. Therefore, the new expansion can represent the
same scattering amplitudes in the extended domain [23].

3.4| Analytical Continuation for All Channels

Having shown that the consideration of imaginary momenta is indeed a viable
approach to the analytical continuation of amplitudes to all channels, what follows is
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•
−1

•
+1

x

y

Figure 3.3: Domain of convergence hyperbola for imaginary ` in the complex cos θ
plane (with Lehmann ellipse).

a detailed discussion of that process.
Chapter 2 dealt with the properties of the S-matrix and some of their consequences

on the scattering amplitudes. When performing an analytical continuation (by allowing
kinematic variables to be complex) one expects to obtain unique representations of
amplitudes. Satisfying this requirement calls for the examination of the properties of
the scattering amplitudes. This can be done in the context of a uniqueness theorem
owing to Carlson.

Carlson’s theorem states that analytic functions displaying fast growth at infinity
cannot coincide when evaluated at integers [40, 41]. In the case of amplitudes, it
means only one analytic function will reduce to the correct partial amplitudes for
physical `’s. This is guaranteed for complex-momenta amplitudes A(`, s) that verify
that:

a. The singularities are isolated in the complex-` plane. This property allows the
use of the residue theorem.

b. The function is holomorphic (and therefore analytic) for Re ` > L, for some
arbitrary quantity L. This is a requirement from Carlson’s theorem.

c. At infinity A(`, s) →
`→∞ 0, in the right half of the `-complex plane. Carlson’s

theorem applies to functions bounded by an exponential in this limit.

A scattering amplitude satisfying these conditions is compatible with the relativistic
S-matrix formalism, provided it obeys particular dispersion relations [23].

Assume a function A(`, s) which satisfies these properties, and is therefore unique.
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Figure 3.4: Integration contours for scattering amplitudes in the Watson-Sommerfeld
representation.

The partial wave expansion from (3.7) can be rewritten using the residue theorem as:

A(s, θ) =
N−1∑
`=0

(2`+ 1) A`(s)P`(cosθ)

−
1
2i

∫
C

(2`+ 1) A(`, s)
P`(−cosθ)

sinπ` d`.

(3.11)

In the expression, N represents the lowest integer satisfying N > L, and C is the
contour surrounding the poles at |Re `| > L (Figure 3.4). This essentially separates the
contribution of the holomorphic and nonholomorphic regions and introduces poles at
physical values of angular momentum for Re ` > L. The introduction of the poles due
to the factor sinπ` does not modify the relationship between the amplitude A(s, θ)
and the physical amplitudes A`(s) given for integer `.

The integral can be performed by deforming contour C into a straight contour C ′

going to infinity, as is also shown in Figure 3.4. This new contour is closed at infinity
by a semicircle. Due to property c. of A(`, s) and the asymptotic behavior of Legendre
polynomials, the semicircular path does not contribute to the integral. So, equation
(3.11) is rewritten as

A(s, θ) =
N−1∑
`=0

(2`+ 1) A`(s)P`(cosθ)

−
1
2i

∫a+i∞
a−i∞ (2`+ 1) A(`, s)

P`(−cosθ)

sinπ` d`.

(3.12)

Here the contour C ′ = (a−i∞,a+i∞), as it represents a vertical line in the complex-`
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Figure 3.5: Deformed contours for scattering amplitudes in the Watson-Sommerfeld
representation.

plane1.
With the goal of representing the amplitude in terms of its singularity structure,

consider what happens when the contour is moved towards lower values of Re `. The
integral gets contributions from the residues of the singularities of A(`, s), which now
lie to the right of the contour, as shown in Figure 3.5. There will also be other poles
present due to the 1/ sinπ` factor introduced in the previous step. Taking the contour
down to include singularities for all real and positive ` gives the Watson-Sommerfeld
Representation [42,43]:

A(s, θ) =
∑
i

(2αi(s) + 1)βi(s)
Pαi

(−cosθ)

sinπαi

−
1
2i

∫c+i∞
c−i∞ (2`+ 1) A(`, s)

P`(−cosθ)

sinπ` d`.

(3.13)

Functions αi(s) represent the poles in the amplitude, while factors βi(s) are the
residues associated with each pole. The variable c in the integration limits is valued
according with −1

2 6 Re c < 0. This corresponds to going down to −1
2 6 Re ` < 0.

The integration contour after this process is illustrated in Figure 3.5.
This tool had a rich history before being applied to scattering by a potential. The

implementation for this particular problem was developed by Regge [4]. The domain
of convergence is once again given by studying the third property of amplitude, and
from the asymptotic properties of the Legendre polynomials. The resulting amplitude
is well-defined in a larger domain than the Lehmann ellipse. It also describes regions
not covered by the hyperbola of Figure 3.3.

1Note that a must obey Rea > L.
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Having arrived at the result in equation (3.13), it is possible to identify what is
known as Regge poles, which will be crucial to this thesis. The functions αi(s) give the
locations (in the complex plane) of the Regge poles, which were obtained through the
analytical continuation procedure. Regge poles are commonly referred to as trajectories,
as the positions given by αi depend on the energy. Further sections will cover in more
detail how these poles and residues can be expressed, and also utilized to obtain
scattering amplitudes through parametrization.

3.4.1| Asymptotic Behavior in the Watson-Sommerfeld Representation

As was mentioned previously, it is of particular interest to obtain analytical ampli-
tudes that contain the information for multiple scattering channels. Due to that, the
Watson-Sommerfeld representation should be tested at high values of the Mandelstam
variables.

Consider the Watson-Sommerfeld result in the limit of large t (at fixed s). Recalling
that cos θ = 1+ 2t

s−4m2 , this is equivalent to allowing the cosine to take large values. In
this limit, the properties of the Legendre polynomials indicate that, provided Re ` > 1/2
[44]:

P` ∼ (cos θ)` . (3.14)

When evaluating the integral in (3.13), its contribution to the amplitude will be
asymptotically insignificant.

In the limit, the amplitude simplifies to:

A(s, θ) ' −
∑
i

βi(s)
(−z)αi(s)

sinπαi(s)
, (3.15)

where some factors have been absorbed into βi(s). This series will be dominated by
the pole with the largest real value in αi, located furthest to the right in the complex-`
plane. The behavior of the scattering amplitude can be simplified further, giving:

A(s, t) ∼
t→∞ −β(s)

tα(s)

sinπα(s), (3.16)

where α(s) is the leading Regge pole, and β(s) its corresponding residue as utilized
in the previous equation. It is worth noting that taking into account other types of
singularity, such as cuts, will provide corrections to this result. However, this thesis
will not provide further discussion of these contributions.

If, instead, one is interested in high-s scattering amplitudes, due to the crossing
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3.4. ANALYTICAL CONTINUATION FOR ALL CHANNELS

property, the result is analogous:

A(s, t) ∼
s→∞ −βi(t)

sαi(t)

sinπαi(t)
. (3.17)

This work will use t-channel Regge poles, as the focus will be on high energy (i.e.
large s) scattering amplitudes. This is because the increase of the amplitude with s
could lead to the violation of unitarity, as will be shown in Section 3.5.1. The behavior
of diffractive processes at high energy will be dominated by the Regge pole known as
the Pomeron.

Recalling the discussions of energy scales in the first chapter, it is worth pointing
out that, although Regge theory is applicable in the high energy limit, it does not
necessarily mean it is easily linked to perturbative QCD. Although results from Regge
theory can, in some cases, be interpreted from perturbative gauge theory, the interest
in the theory lies in its description of diffractive processes. These soft interactions have
significant contributions to high-energy hadronic scattering, but, as was explained in
Section 1.3, also involve non-perturbative scales.

In the Regge limit, this section showed that complex angular momenta enable the
determination of scattering amplitudes in terms of its poles. Due to this, the concept
of Regge poles was embraced by proponents of S-matrix theory. See for example the
discussion that took place in 1967, based on a talk by Chew [45].

3.4.2| Signatures of Regge Poles

The previous section mentioned that the crossing property could be applied to
write the asymptotic amplitude with Regge poles for a different channel. Although
the result obtained from the s-channel can indeed be translated to the t-channel, it
leads to complications. When studying relativistic scattering, the crossing procedure
introduces divergences in the amplitudes. The issue can be resolved by distinguishing
between even and odd contributions. This is the general idea behind the signature, a
quantum number whose raison d’être is the resolution of these divergences.

Consider what happens when exchanging the contributions from channels s and u.
Using that u(−zt, t) = s(zt, t) for zt = cos θt = 1+ 2s

t−4m2 (see Appendix B) [23], this
is equivalent to taking zt → −zt. Through properties of the Legendre polynomials,
these factors transform as P`(−zt) = (−1)`P`(zt). The issue with the presence of
factors (−1)` is that it is incompatible with property c. of the analytical amplitudes in
Section 3.4 (A(`, s) →

`→∞ 0) [46]. Recall that this property guaranteed the uniqueness
of the function through Carlson’s theorem.

In the context of nonrelativistic mechanics, divergent terms only appear when there
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3. REGGE THEORY

are exchange terms in the potentials2. However, in relativistic scattering, a potential is
always expected to allow exchanges. These manifest as discontinuities of the scattering
amplitudes. The issue can be circumvented by considering two distinct analytical
functions. Each of the functions will contain only odd or even contributions to the
partial wave amplitudes Aξ

` . The partial amplitudes can be expressed as3:

A`(t) =
1
2
∑
ξ=±1

(1 + ξe−iπ`)Aξ
` . (3.18)

The summation index ξ represents the signature quantum number. It can take values
+1 for a positive signature (even `) and −1 for a negative signature (odd `). Now each
of the partial amplitudes (even and odd) is analytical, well-behaved at large angular
momenta, and uniquely determined.

Repeating the Watson-Sommerfeld representation procedure for each of these
amplitudes leads to

A(zt) '
|zt|→∞ −

∑
ξ=±1

∑
iξ

βiξ(t)
1 + ξe−iπαiξ

(t)

sinπαiξ(t)
(−zt)

αiξ
(t). (3.19)

In relation to the previous result in equation (3.15), the separation of the amplitu-
des through the definition of Aξ

` simply introduces factors (1 + ξe−iπαiξ
(t)).After

this,calculating amplitudes requires the classification of Regge poles according to their
signature.

Taking s→ ∞ and keeping only the contribution of the leading pole, the amplitude
can be written as:

A(s, t) ∼
s→∞ −β(t)

1 + ξeiα(t)

sinπα(t) t
α(s), (3.20)

when working with t-channel singularities. The analogous result will be valid for
s-channel singularities at high t.

3.5| Regge Poles

So far, this work has not explored the meaning of the Regge poles. In terms of
Regge poles, when `→ α(t), partial wave amplitudes behave as

A(`, t) ∼
β(t)

`− α(t)
. (3.21)

2An exchange term obeys V̂ψ(x) = V(x)ψ(−x).
3e−iπ` = (−1)` if ` is an integer.
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3.5. REGGE POLES

The pole α(t) in reality represents a trajectory in kinematic space. For positive values
of t (in the nonphysical region for the s-channel), the poles represent resonances and
bound states, with different possible values of `. Function α(t) is called a trajectory
because it interpolates between these states. The amplitudes obtained from a Regge
pole can be interpreted as an exchange of a family of resonances, as linked by this
trajectory. Note that the asymptotic behavior for the s-channel is in fact given by
exchanges in the t-channel, and vice versa. The overall exchanged state is often
referred to as a Reggeon.

As was explained in the previous section, resonances in the ` plane will be either
even or odd. A trajectory with a positive signature will interpolate resonances with
even angular momentum, and one with a negative signature will interpolate resonances
with odd angular momentum. Different processes may involve different trajectories
depending on the quantum numbers that participate in the process.

An interesting quality of Regge trajectories is that the small-t expansion

α(t) = α0 + α
′t (3.22)

can actually be generalized to relatively high values of twhenever the resonances being
interpolated possess the same quantum numbers [23]. In this thesis, the amplitudes of
interest will be evaluated in the forward direction (per the optical theorem). Therefore
the use of linear trajectories in t (with minor corrections) is well justified. The intercept
α0 and the slope α ′ (for each trajectory considered) will be some of the parameters
obtained in the determinations of cross-sections.

It is often convenient to express one-Reggeon amplitudes as

A(s, t) = β(t)η(t)sα(t), (3.23)

where η is the signature factor. The factor takes the following values:

η(t) = −
e−iπ

2 α(t)

sin π
2α(t)

for ξ = 1 (3.24)

η(t) = −i
e−iπ

2 α(t)

cos π
2α(t)

for ξ = −1 (3.25)

For small t (linear trajectories) this simplifies to:

η(t) = η(0)e−iπ
2 α(t). (3.26)

This notation will be applied throughout the remainder of this thesis.
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3. REGGE THEORY

3.5.1| The Pomeron

As was discussed previously, the main Regge trajectory of interest in this work is the
Pomeron. Contrary to other leading trajectories which tend to have intercepts near 0.5,
the Pomeron is typically found to have an intercept slightly greater than 1 when using
Regge theory to fit experimental data [23]. The behavior of secondary trajectories is
discussed in more detail in Chapter 5.

Reggeon intercepts regulate the growth of amplitudes with energy (
√
s in the

center-of-mass frame). Intercepts greater than one can lead to unitarity violations4. The
Froissart-Martin bound is a theorem derived from S-matrix analyticity and unitarity
properties [6,8]. It shows the restrictions on the asymptotic growth rate of cross-sections
with energy. The total cross-sections cannot grow faster than ln2 s, as expressed by:

σtot 6 C ln2 s as s→ ∞, (3.27)

where C is some constant. In hadronic scattering the value of C is given by the pion
mass, as this is the lightest particle that can be exchanged in the t channel [46,48].

From the optical theorem and (3.23), the contribution of a Reggeon to the cross-
section takes the following form:

σtot '
s→∞ sα(0)−1. (3.28)

At the asymptotic limit, this means trajectories with α(0) 6 1 will satisfy the bound.
It is natural then to wonder why the Pomeron is so important to the description of

hadronic processes, given its apparent conflict with unitarity. The Pomeron was postu-
lated in the 60s, in response to cross-sections that were expected to be asymptotically
constant. As introduced by Chew, Frautschi, and Gribov, the trajectory had intercept
1, saturating the unitarity bound [5,7].

This state was named after Isaak Pomeranchuck because it makes sure that the
cross-sections obey certain conditions he postulated. The Pomeranchuck theorem
states that the cross-sections for particle-particle and particle-antiparticle processes will
be asymptotically equal (at s→ ∞). Due to this theorem, the Pomeron is expected to
have the quantum numbers of the vacuum. As proposed, the Pomeron was theorized
to dominate all diffraction peaks [7].

As experimental data for hadronic scattering came to light, cross-sections were
found to increase logarithmically at high energy. Attempts to reflect this behavior
led to the wide implementation of the supercritical Pomeron with a slightly larger

4This is also true for exchanged particles of spin greater or equal to 2. However, this can be resolved
through a process known as Reggeization [47].
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3.5. REGGE POLES

intercept [47]. This is also referred to as the soft Pomeron, as it is essential to the
description of hadronic diffraction. The unitarity violations that may arise require
careful consideration, but do not negate the usefulness of the supercritical Pomeron.
Some aspects worth highlighting are that:

• Pomeron unitarity violations could occur at energies beyond what is observable
now or in the near future [23,46].

• The rate of growth of the cross-sections could be reduced by taking into account
the exchange of multiple Pomerons. This is equivalent to including Regge cuts in
the formulation of amplitudes [23,46].

• It is possible to ensure unitarity through the Eikonal and U-matrix schemes, as
will be shown in Chapter 4. This is the methodology of interest in this work.

The discussion in Chapter 1 stated that hadronic processes are dominated by strong
interactions. Therefore, there should be a way to describe them in the language of
QCD. The discussion of the Pomeron so far has been fairly abstract, and somewhat
disconnected from the Lagrangian approach to quantum field theory. This is one of the
challenges in Regge theory, it is not clear how it fits within such a well-verified and
first-principle-rooted theory as QCD. However, in the case of perturbative interactions,
there exists a hard Pomeron formalism. This approach is based on BFKL (Balitsky,
Fadin, Kuraev, Lipatov) theory, which aimed to link the Pomeron with the building
blocks of QCD (quarks and gluons) [49–53]. Despite this, the relationship between
the soft and hard Pomeron is not fully understood.

A difficulty in studying the Pomeron is that measurements of states with vacuum-
like properties are not trivial. Contrary to other Regge trajectories the Pomeron does
not interpolate the typical resonances studied in particle physics. According to BFKL
theory, it is expected, instead, to interpolate hypothetical bound states of gluons,
known as glueballs. In other words, the exchange of a Pomeron should be equivalent
to a complicated exchange of an even number of gluons. This perspective is compatible
with perturbative QCD in hard processes [54–56].

3.5.2| The Odderon

The Pomeron has an odd signature counterpart known as the Odderon. It was
proposed by Łukaszuk and Nicolescu in the early 70s [57], but the evidence to support
its existence was hard to obtain. At sufficiently high energy, it is expected to explain
the differences between proton-proton and proton-antiproton scattering amplitudes.

Recently, there has been renewed interest in this resonance. The behavior of proton
scattering that has been registered by the TOTEM experiment has provided evidence
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3. REGGE THEORY

of Odderon contributions. This was announced by CERN in 2021, based on the work
in [9] and [10]. In terms of QCD, the Odderon corresponds to a bound state of an odd
number of quarks. It is typically associated with a three-gluon glueball.

The detection of this state and the current availability of 13 TeV proton collision
data led to the consideration of the Odderon in the analysis that will be presented
here.

3.6| Some Open Questions in Regge Theory

As was explained throughout this chapter, Regge theory is a very powerful tool in
the description of soft (quasi-forward region) hadronic scattering, where working from
the QCD Lagrangian is not possible. It is worth mentioning some of the gaps that still
remain in Regge theory.

• The dynamical origins of the mathematical description Regge theory provides
are unclear.

• Although from a perturbative point of view the Pomeron and Odderon are thought
to interpolate glueballs, these are only postulated particles. This means that the
diffractive descriptions from Reggeons are dominated by trajectories interpolating
bound states that have not been linked to observed particles. This is not the case
for some secondary trajectories, which are tied to known mesons and baryons.

• The relationship between the soft Pomeron and the hard Pomeron is unclear. It is
not known, for example, if they are distinct, or if there is some transition between
them, given by the change in energy scale.

• The inclusion of higher-order corrections affects the magnitude of the resulting
soft Pomeron intercept, making it deviate from values obtained by relying on
simpler fits. This aspect relates to the motivations of this work, where different
unitarity corrections are expected to approximate some set of multi-Reggeon
exchanges (see Chapter 4).

• Having found evidence for Odderon contributions at the LHC, the door is open
to learn more about its characteristics. Some questions to answer are what the
Odderon intercept should be, and if a distinction needs to be made between a
soft and a hard Odderon.

• There is still open discussion over to what extent a hard Pomeron contribution is
present in elastic scattering.
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• Further experimental measurements for higher energies will show whether the
Pomeron model still provides an adequate description of data.

To summarize, this chapter showed how S-matrix theory and the analysis of scat-
tering amplitudes lead to the Regge formulation. Through Reggeon contributions
dominated by the Pomeron, it will be possible to obtain predictions for hadronic
cross-sections. However, the Pomeron model can display unitarity violations, which
should be handled with appropriate care. The following chapter will introduce the
unitarization methods that this thesis aims to compare in view of new empirical
evidence.
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Chapter 3 explained how the Pomeron approach to diffractive scattering could lead
to unitarity issues. However, the possible violation of the property is not insurmounta-
ble. The present chapter will delve into the unitarization schemes that will be applied
in this work to restore unitarity.

Before explaining the details of unitarization, it is merited to discuss why it is worth
focusing on this approach. As was mentioned before, many have argued that unitarity
violations are not even relevant at experimentally accessible energies. However, even
harkening back to the Tevatron era1, there has been work suggesting that unitarity
violations could already be present at the available energies [58–61]. For example, in
[58], it is shown that although unitarity is guaranteed at presently available energies for
integrated quantities, such as cross-sections, it is violated when looking at amplitudes
in impact parameter space. The impact parameter space description of amplitudes
will be discussed in the next section.

It is not straightforward to determine the cutoff energy where unitarity is no longer
assured by the Pomeron model. As the property needs to be fulfilled regardless, it
makes sense to impose it from the beginning when calculating amplitudes.

Likewise, the inclusion of cuts has been shown to “tame” the rise of the amplitudes
with energy, as well as correct other behaviors in pole-only models [23,38,46]. It is
possible in fact to calculate the form that cut contributions to amplitudes take. The
issue underlying this approach is that cut Regge theory is not as well understood as
the pole contributions. Separating the observed effects of the poles from those of the
cuts can also be a challenge, even in the perturbative case [62].

Another aspect to note is that as |t| grows, the dependence of the amplitudes with
energy becomes increasingly complicated. Then, at sufficiently high |t|, perturbative
QCD can be applied [23,38]. This negates the need for Regge theory in the high |t|

kinematic region, as there is already a fundamental and well-verified theory that can
be used.

1The Tevatron was a synchrotron experiment that ran from 1983 to 2011 at Fermilab. The accelerator
produced beams of up to 1 TeV of energy. It was succeeded by the LHC experiment at CERN, where
proton beams have been accelerated up to 6.8 TeV.
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Figure 4.1: Illustration showing impact parameter b in a particle collision event.

As the rest of the chapter will show, the unitarization schemes can be thought of
in terms of the inclusion of multiple pole exchanges. In this sense, the unitarization
schemes do not necessarily represent a rejection of the cut-based restoration of unitarity.
The unitarization procedures in fact constitute approximate incorporations of more
complex Reggeon-mediated diagrams. As such, they are also a tool to generalize
amplitude calculations to high-|t|, away from the elastic case [63].

4.1| Unitarity in the Impact Parameter Representation

To obtain the unitarization schemes, it is necessary to consider unitarity relations in
the impact parameter space. The introduced parameter b of particle collision represents
the perpendicular distance between the path of the incoming particle and the center
of the scatterer, as shown in Figure 4.1.

As an overview, through the unitarization schemes, it will be possible to write
unitarized amplitudes in terms of functions χ(s,b). These functions will be defined
from the Regge scattering amplitudes, led by the Pomeron exchange. Then, unitarized
cross-sections can be expressed as:

σtot = 4π Im
∫∞

0
db b F(χ(s,b)), (4.1)

where function G(χ(s,b)) will vary according to the chosen scheme [64].
To understand the process in detail, recall the unitarity equation (2.13). It is possible

to translate this relation by taking the amplitudes into the impact parameter space.
Using a Fourier-Bessel transform one can define:

H(s,b) =
1

8πs

∫∞
0
dqqJ0(b

√
−t)Ael(s, t), (4.2)

where J0 refers to the Bessel function of the first kind. Variable q represents the
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momentum transferred in the process. The definitions of the Mandelstam variables in
Appendix A.2 give t = −q2.

This approach to rewriting amplitudes has been well studied, and the interpretation
of quantity b as an impact parameter has been established. See for example [65].
The relation is exact and can be applied at all energies. One of the benefits of its
implementation is that writing amplitudes in terms of the invariant momentum transfer
in t is more natural for relativistic scattering than the dependence on angles used in
partial wave expansion.

The transformed unitarity equation then results in

ImH(s,b) = |H(s,b)|2 +Gin(s,b). (4.3)

The term Gin(s,b) represents the contributions of all inelastic processes to the inter-
mediate states summed over in (2.13), and is called the inelastic overlap function. This
is where most of the unknowns in the theory are contained.

The impact parameter unitarity constraint has more than one possible solution
(H(s,b) satisfying Equation (4.3)). The following sections will discuss the solutions
corresponding to the Eikonal approximation and the U-matrix.

4.2| The Eikonal and the U-matrix

Unitarity equation (4.3) imposes restrictions over function H(s,b), representing
inelastic contributions in impact parameter space. The inelastic contribution in Gin

is taken to be bounded by Gin(s,b) > 0, and the following relation stems from
unitarity [66,67]:

0 6 |H(s,b)|2 6 ImH(s,b) 6 1. (4.4)

Therefore the inelastic overlap function must obey 0 6 Gin(s,b) 6 1. There is a straig-
htforward interpretation of this. When Gin(s,b) = 0 the elastic processes dominate.
However, when Gin(s,b) = 1 there is full absorption [24]. Recall that |H(s,b)|2 is the
elastic counterpart of Gin(s,b) and as such presents the complementary behavior.

The two solutions to the unitarity equation are given by:

H(s,b) =
1
2

[
1 ±

√
1 − 4Gin(s,b)

]
. (4.5)
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4.2.1| Eikonal Scheme

Taking first the minus sign solution leads to the eikonal approximation2, where

H(s,b) =
i

2
[
1 − e−iχ(s,b)] . (4.6)

The term χ(s,b) is purely imaginary at the high energy limit s → ∞ and is known
as the eikonal function. This is where the information of the processes is included,
from the amplitudes that can be calculated in Regge theory. The eikonal is in fact a
transformation of this amplitude according to

χ(s,b) =
1
s

∫∞
0
qdqJ0(bq)ABorn(s, t). (4.7)

Here, the amplitude is taken to be a Born amplitude. In perturbative terms, the Born
amplitude represents the simplest exchange processes. In Regge theory, it is calculated
from single-Reggeon exchange amplitudes. Considering the inverse of equation (4.2),
the eikonalized amplitude can be written in terms of χ(s,b):

Aeik(s, t) = is
∫∞

0 bdbJ0(bq)
[
1 − e−iχ(s,b)]. (4.8)

From there it follows that the eikonalized amplitude includes the Born amplitude at
low order, but also includes further contributions. These are expected to take the form
ℙ + ℙℙ + ℙℙℙ + ..., representing the multiplicity of exchanged Pomerons ℙ [67].
Although it is not always viable to calculate higher-order contributions to verify that
they coincide with the eikonal approximation, it is still possible to assert that this is
what occurs at a phenomenological level [64].

4.2.2| U-matrix Scheme

A second solution corresponds to the U-matrix scheme, and it has the form

H(s,b) =
Im χ̃(s,b)

1 − iχ̃(s,b). (4.9)

2The name eikonal comes from the Greek word for image, as equations of this form can also be
obtained when studying optical wave scattering. It can also be obtained in nonrelativistic quantum
mechanics. The approximation works in the high-energy limit (when particle energy is significantly
greater than the potential).
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Function χ̃(s,b) is analogous in its role to the eikonal function3. The two can be related
by χ̃(s,b) = χ(s,b)

2 . In view of this, the functions required to write eikonalized or U-
matrix amplitudes are calculated for Regge Poles from essentially the same procedure.
The U-matrix-unitarized amplitude is:

AU−mtx(s, t) = is
∫∞

0 bdbJ0(bq)

[
2χ̃(s,b)

1 + χ̃(s,b)

]
. (4.10)

As will be detailed in the next section, both schemes are expected to share relevant
properties in order to be viable approaches to unitarity. Given that they stem from the
same equation, both the eikonal and the U-matrix are widely used to restore unitarity
for the supercritical Pomeron. However, their differences become more evident as
the energy increases. Therefore, the most recent LHC data could potentially help
determine if one of the schemes shows greater agreement with experiments. The study
of this possible distinction constitutes the main goal of this thesis.

4.3| Scheme Properties and Differences

To begin the discussion of the unitarization schemes presented it is worth high-
lighting some fundamental aspects in which they coincide. Firstly it is clear that
both unitarization schemes should reduce to the same (Born) scattering amplitude at
low energy [64]. At high energy, however, each of the schemes represents the inclu-
sion of different higher-order diagrams. In other words, the unitarization is achieved
through different scattering mechanisms. Therefore, eikonal and U-matrix amplitudes
should differ at high energy, and in consequence, so should observables such as the
cross-section.

Both schemes impose a bound on the amplitudes. The eikonalization procedure
enforces the black disc limit. The restriction can be expressed as ImH(s,b) 6 1

2 . At
the asymptote, the saturation of this constraint leads to σel(s) = σin(s) =

1
2σtot(s)

(equivalently σel

σtot
→ 1

2 ) [66]. This represents equal contributions from elastic and
absorption processes to the total cross-section. The restriction corresponds to an
upper bound in the allowed values of impact parameter b. Hence the possibility of
defining a disc in impact parameter space, as mapped onto the unitarity domain by
the unitarization process.

In the context of proton scattering, when the black disc limit is reached the proton
3The U-matrix solution for H(s,b) is often expressed, instead of in terms of χ̃ a function U. This

helps in part to explain the name. However, note that χ̃ is not actually a matrix. Just like in the eikonal
case, the name stems from the appearance of equations of this form in other physical contexts. It is also
known as the generalized reaction matrix. See for example the derivation in [68].
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is said to become black (maximally absorptive). The inelastic term Gin(s,b) is also
referred to as shadow profile function, as the “shadow” produced by summing over
all inelastic processes can be thought to “generate” elastic scattering.

On the other hand, with the U-matrix, the behavior for s → ∞ is σel

σtot
→ 1.

This means that asymptotically, the elastic contributions to the cross-section should
dominate at high energies. From this, it is possible to see that determining that a
particular scheme is more compatible with observations leads to different predictions
for hadron diffraction.

The use of the U-matrix allows elastic amplitudes to exceed the black disc limit
and keep increasing up to the complete unitarity circle. The U-matrix is said to display
“anti-shadowing”. In impact parameter space, a proton in this picture has a “grey”
center (where absorption and transparency coexist) with a surrounding black ring [64].

It has been shown that eikonalization may, in some cases, allow small asymptotic
violations of unitarity for the supercritical Pomeron [69]. This is not expected to affect
the results presented in this thesis [67].

The first four chapters have established the theoretical building blocks of the
approach implemented in this work for diffractive scattering. The following chapter will
refer to the methodology applied to compare the unitarization results for experimental
data. It will also detail the technical considerations that were used to obtain those
results.
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The goal of this chapter is to delve into the more technical details of this work’s
approach to unitarity in diffractive scattering. It aims to show how the optical theorem,
Regge poles and unitarization schemes come together to make predictions for proton-
proton and proton-antiproton collisions. With this in mind, it will be relevant to discuss
the observables that will be considered, the datasets used, the Reggeons that were
included, the fits that linked the calculations with the experiments, and more.

As an overview, the work consisted of applying a χ2 minimization fit over the
parameters associated with each of the Reggeons. The parameters include, for example,
the intercept and slope of the Pomeron, as given by equation (3.22). The amplitudes
calculated from Regge theory were unitarized using numerical integration. Then
they were used to calculate total cross-sections, differential cross-sections, and the ρ
parameter, as will be expanded on in this chapter. The χ2 method of statistical testing
consists of finding a set of parameters for which the theoretical predictions are in
satisfactory agreement with experimental data.

The process was realized for data from the TOTEM and ATLAS experiments at the
LHC, to allow comparisons to be drawn. It was also possible to compare different
criteria in some of the choices that will be outlined in this chapter, such as the inclusion
of the Odderon.

5.1| Included Reggeons

Firstly, recall the properties and amplitudes for the Reggeons as given by Regge
theory. As equation (3.23) showed, the amplitude contribution of each Reggeon can
be written in terms of a signature factor η(t), and the Regge pole trajectory α(t). It
also includes a factor β(t) which contains the residue of the Regge pole and some
other absorbed terms.

For the purposes of the fitting procedure, equation (3.23) is further rewritten as
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follows:

Ai(s, t) = β2(t)η(t)

(
s

s0

)α(t)

, (5.1)

This expression for the amplitude is conventionally used when performing the types of
calculations presented here. Note that β(t) has been redefined through factorization.
The constant s0 is a mass scale and is fixed at 1 GeV2.

In order to simplify the dependence on the Regge trajectory, the signature factors
are chosen according to the approximation in Covolan et al. [58]. By noticing that the
sine and cosine factors in (3.24) and (3.25) will have smaller contributions than the
exponential at t = 0, it is possible to obtain:

η+(t) = −e−iπ
2 αi(t) (even signature) (5.2)

η−(t) = −ie−iπ
2 αi(t) (odd signature) (5.3)

Recall that the optical theorem, which will be used to calculate cross-sections, ta-
kes input amplitudes evaluated in the forward limit. Therefore, the emphasis in the
calculations was placed at small |t| throughout the methodology implemented.

5.1.1| Pomeron

As was mentioned previously, the amplitude contributions are dominated by the
Pomeron exchange. It is natural then to begin by outlining the details of its inclusion
in this work.

• As the Pomeron carries the quantum numbers of the vacuum, its signature will
be even.

• The factor β(t) represents the proton-Pomeron interaction vertex. These vertices
are illustrated in the Pomeron exchange diagram in Figure 5.1. The vertices can
be interpreted as a coupling magnitude times a vertex form factor, which reflects
the compositeness of these particles (as a function of t). The exact expressions
that the form factors should have is not known. However, there are standard ways
to model the expected behavior, as will be discussed later in this section.

• The Pomeron trajectory is generally taken to be linear, as shown in equation
(3.22). As the calculations focus on the supercritical Pomeron (α0 > 1), the
intercept α0 is expressed as 1 + ε. The parameter ε to determine reflects by how
much the intercept exceeds criticality. In this work, a further correction is taken
into account, corresponding to a two-pion loop.
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Figure 5.1: Diagram of Pomeron pole exchange between two protons.

The implementation of the first point is self-explanatory. The choices associated
with β(t), however, are subject to more consideration. In fact, the exact form factor
related to this interaction is unknown and some parametrization must be selected.
Recall that in Section 2.2.2 it was mentioned that the imaginary contributions to
amplitudes are expected to peak at t = 0 and decrease quickly as |t| increases.

At a simple level, the vertex is often modeled as an exponential in t (with two
parameters), as follows:

βℙ(t) = βℙ(0)erℙt/2. (5.4)

This choice will be referred to as Model I. Parameters βℙ(0) and rℙ are obtained
from the fitting procedure. In the region of interest (s-channel) t is negative, therefore
the use of an exponential vertex reflects the qualitative behavior expected from the
amplitudes.

Another common two-parameter approach to the proton-Pomeron vertex is using a
power-like vertex of the form:

βℙ(t) =
βℙ(0)

(1 − t/m2
ρ)(1 − t/aℙ)

. (5.5)

This type of vertex will be used in Model II. In this model, factors aℙ and βℙ(0) are
obtained from the fit. The quantitymρ that appears in the expression refers to the mass
of the ρ meson. The relevance of this meson on the form factors of strongly interacting
particles is discussed further in the next section.

The implementation of these two models enabled the comparison of vertices that
appear in the literature of the area. Note that it is also possible to implement a more
complex vertex with a higher number of parameters. In the early stages of this work,
several proton-Pomeron vertex expressions were tested, including, for instance, linear
combinations of exponentials, and thus more free parameters. Consequently, it was
determined that the improvements in the small t region were not significant enough
to justify the increased computational cost.
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5.1.2| Correction to the Pomeron Trajectory

Regarding the Pomeron trajectory, the two-pion loop correction (see Figure 5.2)
results in a trajectory of the following form:

αℙ(t) = 1 + ε+ α ′
ℙt
m2

π

32π3 h(τ), (5.6)

where variable τ is given by τ = 4m2
π/|t|. The constant mπ is the mass of the pion

(139.6 MeV).
There is a lot to be said about function h(τ), and the terms therein. Note that this

chapter provides a general overview of the multiple choices that were required to apply
the models used in this work. However, many of them have their own rich histories
and several valid approaches, making it unfeasible to provide a truly comprehensive
account of these topics.

First of all, consider why the two-pion loop in Figure 5.2 should be included. This
stems from taking into account the nearest singularity with respect to the Pomeron
trajectory, as required by t-channel unitarity. This singularity corresponds to the two-
pion production threshold. Pions are the lightest mesons, as well as the lightest hadrons.
In fact, due to this, the pion was thought to carry the strong interaction before QCD
was established.

The correction function h(τ) is defined as [70–72]:

h(τ) = −
4
τ
F2
π(t)

[
2τ− (1 + τ)

3/2 ln
(√

1 + τ+ 1
√

1 + τ− 1

)
+ ln

(
m2

m2
π

)]
. (5.7)

The expression includes a scaling mass m, typically fixed at 1 GeV. The factor F2
π(t)

is the pion-Pomeron vertex. The standard expression for the vertex corresponds to a
simple pole and has the form Fπ(t) = βπ/(1 − t/a1), where βπ specifies the value of
the coupling.

The mass scale a1 is the square of the mass of the ρ meson (775.5 MeV). This
choice is due to an effective theory called Vector Meson Dominance, which preceded
the current knowledge of QCD [73]. It was based on the postulate that the hadronic
contributions to photon vacuum polarization should only correspond to light vector
mesons. Out of this category of particles, the ρ meson would be dominant, as it is the
lightest.

Through these assumptions, the pion form factor is obtained from a low-order
approach to the electromagnetic vacuum interactions of the pion [74]. Its decrease
is found to be regulated by the dominant vector meson, hence the term a1 = m2

ρ. It
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is worth mentioning that, although Vector Meson Dominance still proves useful, it
does not provide a full picture of hadronic interactions. In fact, other valid approaches
to the pion-Pomeron vertex can be implemented. The magnitude of a1 could be a
parameter determined through the fitting procedure, for example. This also explains
the mass term that appears in the proton-Pomeron form factor in equation (5.5).

Once again, the form factor cannot be obtained from first principles, but several
parametrizations can be proposed. Reasonable restrictions on the behavior of the
amplitudes with t are usually the driving force behind these choices. Differential cross-
sections, as functions of t, are key to the evaluation of the agreement of these form
factors with experiments. For the elastic scattering regime, the observable is slightly
better described by inverse power parametrizations at small |t|. However, exponential
form factors are conventionally used, as they guarantee that soft amplitudes decrease
faster than those from perturbative regimes. This provides a desirable asymptotic
behavior at higher t, while still showing good agreement closer to the forward region
[75]. The form factor chosen here is standard, and should not greatly affect the
results [76].

The most important assumption regarding the pion-loop correction is that accor-
ding to the additive quark model, βπ relates to the proton-Pomeron coupling by
βπ/βℙ(0) = 2/3. This relation has been verified through experimental ratios of pion-
proton and proton-proton cross-sections (at low energy) [76]. It stems from modeling
hadron-hadron interactions in terms of Pomeron exchanges between two quarks, each
belonging to one of the hadrons. The total amplitudes of a hadron-hadron interaction
mediated by a Pomeron are then proportional to the amounts of quarks in each
hadron. That is, an interaction amplitude between hadron 1 (with n1 quarks) and
hadron 2 (with n2 quarks) has a multiplicative factor n1n2 [77]. As a pion contains
two quarks and a proton has three, the ratio between pion-proton and proton-proton
total cross-sections is then found to be 2/3.

Although a lot has been stated so far about the choices in the implementation of
the pion-loop correction, the origin of equation (5.7) is yet to be explained. The role
of h(τ) is modeling the behavior of the Pomeron trajectory near the pion production
singularity. This can be done to different levels of precision. The expression used in this
case can be obtained by studying once again the unitarity and analytical continuation
of partial waves in the t-channel. A more complete picture of the considerations
behind this is presented in [70].

The inclusion of the nonlinear terms in the trajectory affects the slope of the
diffraction peak centered at t = 0. In other words, it affects the behavior of the
differential cross-section, as this is the observable that contains process information in
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Figure 5.2: Feynman diagram for the two-pion loop contribution to Pomeron exchange
in nucleon interaction.
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Figure 5.3: Example of proton-proton event diagram with Pomeron and ρ-meson
contributions.

terms of the angle (expressed through variable t). This effect is particularly relevant
at small t. When applied jointly with the eikonal approximation, the effects of both
corrections tend to eliminate the dependence of the slope with t (close to t = 0),
which is consistent with the available data. It is worth mentioning that the magnitude
of the effect of the pion-loop correction is influenced by the energy as well [76].

Having established how the dominant Reggeon contribution of the Pomeron was
implemented in this work, the following section will show the details of the inclusion
of secondary Reggeons f(a) and ω(ρ).

5.1.3| Secondary Reggeon Trajectories f− a and ω− ρ

The secondary contributions considered are those corresponding to mesonic Regge
trajectories. These meson trajectories interpolate light mesons ρ, f, a and ω. An
example of a proton-proton scattering process with contributions from ρ-mesons
(which decay into pion pairs) can be seen in Figure 5.3.

The intercepts for the light meson Regge trajectories are below 1, but greater than
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Figure 5.4: Chew-Frautschi plot of |t| = m2 (energy) vs spin (angular momentum) for
leading mesonic trajectories, with a linear fit. Data from PDG [3]

for other possible trajectories, such as those linked to baryons. When calculating
amplitudes, only two contributions for meson trajectories were included. This is due
to the phenomena of exchange degeneracy that Regge trajectories display. As can
be seen in the plot in Figure 5.4, the trajectories interpolating each of these meson
families are essentially overlapping1. Although the degeneracy of the trajectories is
not an exact property, it is still reasonable to use it to justify excluding further mesonic
trajectories from the analysis.

The choice of only two distinct trajectories is explained by the fact that one of these
trajectories was given a positive signature and the a second negative one. Therefore,
implementing these two is sufficient to represent the interpolation over even and odd
angular momenta. From now on, the functions and parameters for f− a degenerate
trajectories will be indicated with subscript (+) and those related to ω − ρ mesons
will be labeled (−).

Due to the smaller effects on the amplitudes that these trajectories represent (when
compared to the Pomeron), they will simply be taken as linear. The fit from Figure 5.4
shows that this is a reasonable choice according to current data for the properties of
the light mesons. As the intercepts are known to be smaller than 1 the fit parameters

1It is also worth pointing out that the figure shows that they remain broadly linear as |t| increases.
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ε± were used as follows:
α±(t) = 1 − ε± + α ′

±t. (5.8)

The values for the slopes of these trajectories were chosen to be fixed at 0.9 GeV−2.
It is well-established that the mesonic (and baryonic) Regge trajectories all present
similar slopes of approximately this value. This is in fact verified by the fit shown in
Figure 5.4 for the latest Particle Data Group data on the masses of the interpolated
mesons [3]. A key difference between mesonic and Pomeron/Odderon trajectories
is that meson trajectories interpolate known, and oftentimes detectable particles.
Therefore their trajectories can be determined as shown in the plot, instead of working
with cross-section data.

Fixing some of the Reggeon parameters before performing a cross-section fit can
drastically reduce the computational intensiveness of the approach. As such, it is
useful to include this previous knowledge for secondary contributions, prioritizing the
determination of Pomeron and Odderon parameters.

Just as in the Pomeron case, the proton-Reggeon vertices β± are chosen to be
exponential, and can be expressed as follows:

β+(t) = β+(0)er+t/2 (5.9)

β−(t) = β−(0)er−t/2. (5.10)

The parameters r+ and r− were fixed at 4.0 GeV−2. This choice is consistent with
previous determinations of these parameters. It has also been shown that the values of
the secondary Reggeon form factor slopes have little statistical effect on the results
obtained for the Pomeron [67]. The coupling magnitudes β±(0) were determined
through the fits that were carried out.

The inclusion of secondary Reggeons better reflects the shape of experimental
cross-sections at low energy. It also leads to differences between proton-proton and
proton-antiproton cross-sections. The Pomeron has the quantum numbers of the
vacuum and therefore should couple equally to particles and antiparticles [78]. As
a result, a Pomeron exchange is not enough to reflect the clear differences in the
experimental data for pp and pp̄ scattering. This is achieved through the inclusion
of the negative signature secondary contribution. The relationship between Reggeon
signature and particle-particle or particle-antiparticle scattering is discussed further in
Section 5.2.
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5.1.4| Odderon

At this stage, the remaining Reggeon trajectory to discuss is that of the Odderon.
The Odderon, as was introduced in Chapter 3, is the odd-signature counterpart of the
Pomeron. This Regge state also corresponds to the exchange of a series of unknown
gluon states, and as such its trajectory needs to be modeled in a similar way to the
Pomeron. The fits to experimental data were performed separately from only the
Pomeron and secondary Reggeons, and adding the Odderon.

The choices of proton-Odderon vertex lead to two further models which will be
considered. Model III considers an Odderon with an exponential vertex

βO(t) = βO(0)erOt/2. (5.11)

The value of rO was chosen according to rO = rℙ/2. Meanwhile, in Model IV the form
factor is, analogously to the Pomeron case, power-like:

βO(t) =
βO(0)

(1 − t/m2
ρ)(1 − t/aO)

, (5.12)

where aO = 2aℙ. Although the choices for rO and aO are somewhat arbitrary, they
are justified by the expectation that Odderon contributions should decrease slower in
t than those of the Pomeron (see for example [79]).

The chosen trajectory for the Odderon considered was simply αO(t) = 1 for all
models. This choice is consistent with some predictions for the Odderon intercept
stemming from recent works, using, for example, perturbative methods [80–82].

A new parameter for the Odderon was introduced, representing the positivity of
the Odderon contribution. Although Pomeron amplitudes are known to be positive, it
is not well established if the Odderon contributions must obey this as well [83,84].
The two possibilities were therefore taken into account when performing the fits. The
inclusion of this positivity parameter will be discussed further later in the chapter.

It is worth mentioning that the Odderon effects are expected to be noticeable
in some particular aspects of scattering. The first one is at high energies, where, in
particular, it should affect the ratio of imaginary and real amplitudes. This is how it
was observed, from the first determinations of the ρ parameter at 13 TeV, as obtained
by the TOTEM collaboration [9,10]. The ρ parameter is discussed in Section 5.2.

As a negative signature trajectory, the Odderon should distinguish between proton-
proton and proton-antiproton scattering. In particular, the analysis of the differential
cross-section away from the forward direction shows significant Odderon effects, see
for example [85].

58



5.1. INCLUDED REGGEONS

5.1.5| Summary of Fitted and Fixed Parameters

The following tables offer a summary of the Reggeon parameters that were used
and other choices which were mentioned in previous sections. It also shows which
parameters were obtained through the χ2 procedure and which were fixed. Table 5.1
corresponds to Models I and III, for the exponential form factor case with and without
Odderon. Table 5.2 does the same for the power-like vertices of Models II and IV.

Pomeron f− a ρ−ω Odderon

ε Fitted Fitted Fitted 0

α’ Fitted 0.9 GeV−2 0.9 GeV−2 0Trajectory

Linear No Yes Yes —

Type Exponential Exponential Exponential Exponential

β(0) Fitted Fitted Fitted FittedVertex

r Fitted 4.0 GeV−2 4.0 GeV−2 rℙ/2

Signature η + + − −

Table 5.1: Summary of the parameters and terms used for each Reggeon in Model I
(without Odderon) and Model III (with Odderon).

Pomeron f− a ρ−ω Odderon

ε Fitted Fitted Fitted 0

α’ Fitted 0.9 GeV−2 0.9 GeV−2 0Trajectory

Linear No Yes Yes —

Type Power-like Exponential Exponential Power-like

β(0) Fitted Fitted Fitted Fitted

a Fitted — — 2aℙ
Vertex

r — 4.0 GeV−2 4.0 GeV−2 —

Signature η + + − −

Table 5.2: Summary of the parameters and terms used for each Reggeon in Model II
(without Odderon) and Model IV (with Odderon).
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5.2| Computed Observables

The Regge amplitudes which can be calculated from the Reggeon contributions were
used to compare with three observables. These were total cross-sections, differential
cross-sections, and a ratio known as the ρ parameter, which relates the real and
imaginary parts of forward amplitudes. These were obtained for both proton-proton
and proton-antiproton scattering. This section shows how the observables relate to
Regge amplitudes.

First of all, consider how the contributions of different Regge trajectories (as obtained
from (5.1)) should be added. In order to obtain Born-level amplitudes it is sufficient to
add the different contributions. The main detail that must be taken into account is how
the addition should deal with crossing-even and crossing-odd amplitudes. Recall from
Section 3.4.2 that a crossing operation introduces a change of sign for odd scattering
amplitudes. Taking this into account, alongside the crossing relation between a proton
and an antiproton, the Born-level amplitude addition is:

A(s, t) = Aℙ(s, t) +A+(s, t) +A−(s, t) + ξOAO(s, t) for pp scattering (5.13)

A(s, t) = Aℙ(s, t) +A+(s, t) −A−(s, t) − ξOAO(s, t) for pp̄ scattering (5.14)

It is worth noting that in the literature the correspondence of each expression with
the pp and pp̄ case may be inverted, as it depends on whether the minus sign was
included in the expression for η−(t) in (5.3). The factors ξO represent the positivity
options that were considered for the Odderon, which relate to the phase that its
contribution may exhibit. The results were tested for ξO = 1 and ξO = −1.

When implementing unitarization procedures it is more precise to carry out the
sum for functions χ(s,b) and χ̃(s,b). The same sign changes due to crossing properties
apply in this approach [68,86], leading to:

χ(s,b) = χℙ(s,b) + χ+(s,b) + χ−(s,b) + ξOχO(s,b) for pp scattering (5.15)

χ(s,b) = χℙ(s,b) + χ+(s,b) − χ−(s,b) − ξOχO(s,b) for pp̄ scattering. (5.16)

Then, these functions including all Reggeon contributions are used according to
Equations (4.8) and (4.10) to obtain the unitarized amplitudes.

The calculation of the cross-sections for each case utilizes the optical theorem
presented in Section 2.2.2:

σtot =
1
s

ImAel(s, t = 0), (5.17)
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where elastic amplitude Ael(s, t) will correspond to Aeik(s, t) or AU−mtx(s, t).
Then, elastic differential cross-sections relate to the elastic scattering amplitudes by:

dσ

dt
(s, t) =

π

s2|A(s, t)|
2. (5.18)

Notice how in this case, the angular dependence is expressed through Mandelstam
variable t. Furthermore, this is the only observable where nonelastic amplitudes were
considered (t 6= 0).

The last observable that was taken into account was the ρ parameter, as defined by:

ρ(s) =
ReA(s, t = 0)
ImA(s, t = 0). (5.19)

This quantity only depends on forward scattering amplitudes, just like the total cross-
sections. However, there are several reasons to justify including it in the analysis.
First, it is important to note that the relationship between the imaginary and real
components of amplitudes is given by the analyticity and unitarity properties which
were extensively discussed throughout this work. Moreover, ρ is predicted to approach
0 from above for s → ∞. As such, it could be used as an indicator of whether the
asymptotic region has been reached by current experimental data [23].

The behavior of the parameter in Regge theory will be dominated by the magnitude
of the Pomeron intercept, therefore its inclusion in the fits could produce more reliable
results. The ρ parameter is also sensitive to Odderon contributions. Particularly, as
shown in [9] recent TOTEM values for the parameter led to the announced discovery
of the Odderon in 2021.

The following section explains the datasets for these three observables, as they
were used in the analysis carried out in this work.

5.3| Experimental Data

The fits were performed and contrasted for data corresponding to two collaborations
at the LHC, TOTEM and ATLAS. TOTEM stands for TOTal Elastic and diffractive cross
section Measurement. One of the main goals of this experiment is to achieve great
precision in the study of proton-proton collisions. It specializes in the measurement of
the forward scattering region [87]. The ATLAS (A Toroidal LHC Apparatus) experiment
on the other hand is a general-purpose detector, focused on registering as broad as
possible a range of signals that could be produced, allowing for the possible detection
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of physics beyond the standard model [88].
Due to the intrinsically different focus of both of these experiments, there are

discrepancies between the total cross-section measurements they have produced. This
justifies this thesis’ goal of obtaining and comparing results for the two, to shed some
light on how present models of diffractive and elastic scattering relate to both datasets.

The two collaborations have released data up to
√
s = 13 TeV of energy [89–

91]. These correspond to all the observables mentioned in the previous sections. In
particular, the analysis included:

• Total cross-section (σtot) and ρ parameter data for pp up to 13 TeV.

• Differential cross-section data for elastic pp scattering, at 7, 8 and 13 TeV [92–95].

Due to the focus on elastic and diffractive (soft) contributions, the differential cross-
section data used was restricted to the quasi-forward region. The fitting procedure was
carried out for −t 6 0.1 GeV. This provides more experimental input on the shape
of the diffractive peak to improve results for amplitudes near the forward region. It is
worth noting that TOTEM data provides both a higher number of data points for the
differential cross-sections and values for a greater range in t.

For each experiment, the results for all three observables were subject to a simul-
taneous fitting procedure, which is detailed in the next section. Note that the lower
energy data is not necessarily from the LHC, but comes from the Particle Data Group
datasets which concatenate the measurements of several experiments, such as the
Tevatron [3]. This is, in particular, true for all the proton-antiproton data used.

5.4| Fitting Method: χ2

The fits for the experimental data were performed through a χ2 function. The
function measures the quality of the fit for the experimental dataset, weighted according
to the error of each data point. It was defined as:

χ2 =
∑

i

(
Xi
teo − Xi

exp

∆Xi

)2

, (5.20)

where Xi
exp refers to an experimental data point, Xi

teo refers to the corresponding
prediction from Reggeon amplitudes, and ∆Xi to the experimental error. Note that the
summation is carried over all the considered data, for all of the observables stemming
from an experiment. The goodness of fit was evaluated by taking χ2/ν, where ν
represents the degrees of freedom. However, the dominance of systematic error in the
data (non-Gaussian distribution) limits the interpretation of this measure.
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In order to obtain values for the theoretical model values, a minimization procedure
was carried out for χ2. The MINUIT library was chosen for this purpose [96]. This
tool specializes in the minimization of functions with multiple parameters, through χ2

methods. It was developed at CERN and is a standard approach to minimization in
High Energy Physics.

The MINUIT library offers multiple minimization algorithms, as well as tools for
error determination. This work used the Migrad minimizer, which is appropriate for
most purposes. The errors were calculated through the HESSE method, which provides
an error matrix (inverse of the second-derivative matrix) and parameter errors [97].

Migrad receives a user-defined χ2 function and initialization values for the parame-
ters. Another user input is the desired confidence level, which in this case was set at
90%.

To summarize, this chapter specified several choices required to model the Reggeon
contributions from the Pomeron, Odderon, and secondary trajectories. The scattering
amplitudes were unitarized utilizing the eikonal function or the U-matrix. Then, these
new amplitudes were used to calculate observables, through relations from Section
5.2 such as the optical theorem. The parameter producing the best predictions ac-
cording to the experimental data from TOTEM and ATLAS were determined through
χ2 minimization. The following chapter displays the results obtained for each of the
unitarization schemes and datasets considered.
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6 Results

This chapter will show the main results that were obtained from the fitting procedure.
Recall that these were produced for models taking into account the Pomeron and the
secondary Reggeons, with and without the Odderon. The different models also refer to
the choices of vertex form factor for the Pomeron and Odderon. The results correspond
to the fits using the eikonal and U-matrix approaches, as well as the two datasets
coming from the ATLAS and TOTEM experiments (Ensembles A and T, respectively).
Recall that the lower energy data included in the datasets corresponds to PDG data.
It is also worth noting that there are no proton-antiproton data points coming from
ATLAS and TOTEM. To begin, a discussion of the fits without an Odderon contribution
is provided.

6.1| Fits for the Pomeron

Table 6.1 presents the fitted parameters obtained for the Pomeron and secondary
Reggeons using eikonal unitarization. This corresponds to Models I and II, that is,
to the two proton-Pomeron form factors considered. The results from the analogous
procedure for the U-matrix scheme are presented in Table 6.2.

The experimental data and the fits for ATLAS and TOTEM with Models I and II
are shown in the plots of Figures 6.1, 6.2, 6.3, and 6.4. The first and third of these
figures correspond to the proton-proton and proton-antiproton cross-sections and ρ
parameter for the eikonal and the U-matrix. The second and fourth show the pp elastic
differential cross-sections at 7, 8, and 13 TeV for the eikonal and the U-matrix. Note
that the experimental data points from ATLAS and TOTEM are highlighted in the plots.

For the Pomeron-based models, the fits obtained show comparable agreement with
the datasets for both the eikonal and U-matrix schemes. This can be observed by noting
that the values of χ2/ν take very similar values for both unitarization schemes (when
looking at the same model and dataset). Although the values of χ2/ν for Ensemble
T were significantly smaller than those for Ensemble A, there are limitations when
evaluating the fit quality. This suggests that this difference is mainly related to the
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higher density in differential cross-section measurements (higher degrees of freedom).
The estimates for the Pomeron intercept are slightly sensitive to the choices of vertex

form factor and unitarization scheme. However, they are overall compatible with each
other, and with previous estimates present in the literature. A result worth highlighting
is that TOTEM data reliably results in higher Pomeron intercepts for all models, as well
as approximately constant trajectories (αℙ compatible with zero).

The more significant differences in the parameters for both experimental ensem-
bles are related to the leading Pomeron contribution, as expected. However, they
tend to manifest themselves in parameters such as the trajectory slope α ′

ℙ and those
parameters regulating the slopes of the Pomeron-hadron vertices, rℙ and aℙ. The
discrepancies are particularly significant when contrasting the results for Ensembles A
and T, with everything else being equal. This can be attributed to the observation that
the differential cross-sections for the ensembles display a vertical shift in relation to
each other, at all the considered energy levels. Therefore, they could be explained by
the systematic error introduced by each of the datasets.
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Eikonal
Ensemble A Ensemble T

Model I Model II Model I Model II
0.1014 0.1112 0.1248 0.1336

ε
±0.0033 ±0.0013 ±0.0027 ±0.0023
0.2938 0.1148 0.56×10−9 0.009

α′
ℙ(GeV−2)

±0.0022 ±0.0076 ±0.11 ±0.040
2.154 1.999 1.814 1.742

βℙ(0)(GeV−1)
±0.063 ±0.023 ±0.043 ±0.028
2.375 7.448

rℙ(GeV−2)
±0.019

—
±0.087

—

0.829 0.499
aℙ(GeV2) —

±0.081
—

±0.084
0.360 0.344 0.286 0.262

ε+ ±0.048 ±0.030 ±0.025 ±0.015
4.56 4.374 4.02 3.93

β+(0)(GeV−1)
±0.47 ±0.34 ±0.21 ±0.14
0.556 0.550 0.536 0.530

ε− ±0.010 ±0.089 ±0.067 ±0.064
3.68 3.55 3.41 3.39

β−(0) (GeV−1)
±0.16 ±0.67 ±0.49 ±0.46

ν 226 226 350 350
χ2/ν 0.86 0.83 0.74 0.65

Table 6.1: Fitted parameters obtained with Eikonal unitarization for the Pomeron (and
secondary Reggeon) models.
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U-matrix
Ensemble A Ensemble T

Model I Model II Model I Model II
0.0911 0.0981 0.1129 0.1150

ε
±0.0037 ±0.0029 ±0.0048 ±0.0070
0.4425 0.2728 0.05 0.10

α′
ℙ(GeV−2)

±0.0085 ±0.0089 ±0.14 ±0.12
2.271 2.140 1.926 1.92

βℙ(0)(GeV−1)
±0.075 ±0.056 ±0.085 ±0.11
0.1051 7.2

rℙ(GeV−2)
±0.0061

—
±2.8

—

40 0.62
aℙ(GeV2) —

±20
—

±0.49
0.356 0.369 0.325 0.314

ε+ ±0.057 ±0.049 ±0.050 ±0.053
4.71 4.51 4.18 4.14

β+(0)(GeV−1)
±0.65 ±0.48 ±0.43 ±0.44
0.551 0.551 0.545 0.542

ε− ±0.098 ±0.043 ±0.074 ±0.075
3.59 3.54 3.43 3.43

β−(0) (GeV−1)
±0.74 ±0.34 ±0.54 ±0.54

ν 226 226 350 350
χ2/ν 0.85 0.86 0.71 0.64

Table 6.2: Fitted parameters obtained with U-matrix unitarization for the Pomeron
(and secondary Reggeon) models.
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6. RESULTS

Figure 6.1: Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦) channels.
Results obtained using eikonal unitarization for Models I and II.
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6.1. FITS FOR THE POMERON

Figure 6.2: Differential cross-section for pp (N, H) channel. Results obtained using
eikonal unitarization for Models I and II.
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6. RESULTS

Figure 6.3: Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦) channels.
Results obtained using U-matrix unitarization for Models I and II.
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6.1. FITS FOR THE POMERON

Figure 6.4: Differential cross-section for pp (N, H) channel. Results obtained using
U-matrix unitarization for Models I and II.
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6. RESULTS

6.2| Fits for the Pomeron plus Odderon

6.2.1| The ξO = −1 case

The results for Models III and IV, including the Pomeron and Odderon with expo-
nential and power-like form factors are presented first for the ξO = −1 case. The fit
parameters for the eikonal and U-matrix are included in Tables 6.3 and 6.4. The fits
are once again shown for all considered observables in Figures 6.4, 6.6, 6.7, and 6.8.

One of the more significant aspects to point out in the Odderon results is that the
magnitude of the Odderon-hadron couplings βO(0) is significantly smaller than the
couplings obtained for the Pomeron, as evidenced by all the cases that were included
in the analysis1. This helps explain the elusiveness of the Odderon, whose effects
were only confirmed very recently.

A visible effect of the Odderon inclusion is the differentiation between proton-
proton and proton-antiproton predictions for the ρ parameter. This can be observed by
comparing Figures 6.1 and 6.5, or 6.3 and 6.7. These plots show that, for intermediate
values of energy, the pp and pp̄ ρ-parameter fits “cross” each other when the Odderon
contribution is taken into account.

It is also worth mentioning that for the U-matrix and eikonal schemes, the fits
obtained are good and of comparable quality, just as in the case of the Pomeron-only
models. For most of the ensemble and scheme combinations, the fits are improved by
considering the power-like vertices, as opposed to the exponential. This is consistent
with what has been found previously, which suggests that power-like vertices better
reflect the t dependence in the quasi-forward region. Perhaps this result would have
been different if the differential cross-section data selected involved −t > 0.1 GeV,
where the data could be more in line with the exponential vertices.

1The magnitude difference in the couplings is also present for the secondary Reggeons. However,
this result is not as relevant as the effect of the Pomeron and Odderon are most important at high
energies, while the secondary Reggeon contributions affect the lower energy regions considered.
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6.2. FITS FOR THE POMERON PLUS ODDERON

Eikonal, ξO = −1
Ensemble A Ensemble T

Model III Model IV Model III Model IV
0.1017 0.1043 0.1247 0.1335

ε
±0.0043 ±0.0026 ±0.0048 ±0.0041

0.283 0.242 0.94×10−4 0.01
α′
ℙ(GeV−2)

±0.036 ±0.012 ±0.059 ±0.11
2.146 2.116 1.815 1.744

βℙ(0)(GeV−1)
±0.083 ±0.011 ±0.080 ±0.035

2.58 7.45
rℙ(GeV−2)

±0.68
—

±0.13
—

31 0.50
aℙ(GeV2) —

±11
—

±0.16
0.359 0.353 0.285 0.261

ε+ ±0.055 ±0.020 ±0.051 ±0.013
4.52 4.47 4.00 3.91

β+(0)(GeV−1)
±0.54 ±0.29 ±0.38 ±0.16
0.4823 0.482 0.490 0.489

ε− ±0.0019 ±0.077 ±0.030 ±0.077
3.20 3.19 3.14 3.15

β−(0) (GeV−1)
±0.13 ±0.50 ±0.22 ±0.50
0.47 0.40 0.31 0.27

βO(0) (GeV−1)
±0.24 ±0.17 ±0.24 ±0.20

ν 225 225 349 349
χ2/ν 0.84 0.80 0.73 0.65

Table 6.3: Fitted parameters obtained with Eikonal unitarization for the Pomeron plus
Odderon models, for ξO = −1.
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U-matrix, ξO = −1
Ensemble A Ensemble T

Model III Model IV Model III Model IV
0.0938 0.0978 0.1115 0.1148

ε
±0.0045 ±0.0047 ±0.0035 ±0.0060

0.364 0.273 0.10 0.106
α′
ℙ(GeV−2)

±0.029 ±0.031 ±0.15 ±0.098
2.215 2.146 1.951 1.919

βℙ(0)(GeV−1)
±0.075 ±0.066 ±0.063 ±0.093

1.57 6.2
rℙ(GeV−2)

±0.58
—

±3.0
—

40 0.63
aℙ(GeV2) —

±24
—

±0.41
0.374 0.369 0.327 0.313

ε+ ±0.031 ±0.026 ±0.071 ±0.046
4.62 4.49 4.18 4.12

β+(0)(GeV−1)
±0.50 ±0.64 ±0.72 ±0.38
0.490 0.48 0.49 0.50

ε− ±0.047 ±0.33 ±0.21 ±0.12
3.18 3.08 3.11 3.17

β−(0) (GeV−1)
±0.18 ±0.79 ±0.42 ±0.71
0.44 0.23 0.32 0.27

βO(0) (GeV−1)
±0.20 ±0.15 ±0.18 ±0.18

ν 225 225 349 349
χ2/ν 0.83 0.84 0.71 0.64

Table 6.4: Fitted parameters obtained with U-matrix unitarization for the Pomeron
plus Odderon models, for ξO = −1.

74



6.2. FITS FOR THE POMERON PLUS ODDERON

Figure 6.5: Total cross-section and ρ-parameter fits for pp (•, N, H) and pp̄ (◦) channels.
Results obtained using eikonal unitarization for Models III and IV using ξO = −1.
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6. RESULTS

Figure 6.6: Differential cross-section for pp (N, H) channel. Results obtained using
eikonal unitarization for Models III and IV using ξO = −1.
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6.2. FITS FOR THE POMERON PLUS ODDERON

Figure 6.7: Total cross-section and ρ parameter fits for pp (•, N, H) and pp̄ (◦) channels.
Results obtained using U-matrix unitarization for Models III and IV using ξO = −1.
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6. RESULTS

Figure 6.8: Differential cross-section for pp (N, H) channel. Results obtained using
U-matrix unitarization for Models III and IV using ξO = −1.
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6.3. COMPARISONS FOR ALL MODELS AT HIGH ENERGY

6.2.2| The ξO = +1 case

The results taking the positivity factor ξO = +1 for all datasets and unitarization
schemes did not show significant differences with the models without the Odderon.
The fitting procedure showed that the Odderon-hadron coupling βO(0) took values
compatible with zero. Meanwhile, the values of the rest of the fitted parameters did
not show significant changes relative to the cases that did not include the Odderon.
Due to this, the results for ξO = +1 are not shown explicitly.

6.3| Comparisons for all models at high energy

Figures 6.9 and 6.10 highlight the fit results for all the models, for both datasets.
Figure 6.9 offers side-by-side comparisons for Models I, II III and IV in the eikonal
case. Figure 6.10 illustrates the different results for the U-matrix scheme.

It is possible to see, for example, how the results for both the eikonal and U-matrix
case seem highly sensitive to the choices of form factor for the Pomeron and Odderon.
Moreover, these differences become more pronounced in the fits for TOTEM data.

The inclusion of the Odderon at these energy levels does not seem to lead to major
differences between the plots of the Pomeron only fits (when looking at the models
with the same form factor). This is coherent with the small Odderon-hadron couplings
that were found for the models used. However, it is worth noting that the inclusion
of the Odderon leads to a decrease in the intercept and coupling predictions for
the negative signature secondary Reggeons. In particular, it takes the odd secondary
intercept to values closer to the trajectory outlined by the PDG data in Figure 5.4.

It is important to highlight as well that the model for the Odderon as a simple
pole is not enough to reflect the experimental values for the ρ parameter at 13 TeV.
A more complex model is required to have better agreement with these data points.
In particular, this would be necessary to improve the results in the forward region
(for σtot and ρ). A model of these characteristics could also lead to more significant
effects for the Odderon contribution at high energy in the total cross-sections.
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6. RESULTS

Figure 6.9: High-energy comparison of results for Models I, I, III, and IV in the eikonal
scheme. Also included is σpptot data obtained from cosmic-ray experiments (AUGER
and TA).
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6.3. COMPARISONS FOR ALL MODELS AT HIGH ENERGY

Figure 6.10: High-energy comparison of results for Models I, I, III, and IV in the
U-matrix scheme. Also included is σpptot data obtained from cosmic-ray experiments
(AUGER and TA)
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7 Conclusions

This thesis focused on the study of hadronic scattering through the phenomenolo-
gical approach of Regge Theory. For this purpose, we carried out χ2 fits which took
into account the latest high-energy data from experiments TOTEM and ATLAS at the
LHC. The total cross-section, ρ parameter and elastic differential cross-section were
the observables included in the analysis.

The predictions for these observables in the language of Regge theory are domi-
nated by the Pomeron. However, there has been renewed interest in the Odderon
contributions, due to its detection at TOTEM. Therefore, our models also took into
account this Reggeon. The results for the fits and fit parameters were compared in
many aspects, as the fits were based on many different models.

First and foremost, two datasets were used, which led to some discrepancies in the
results. The cross-section and differential cross-section data for TOTEM and ATLAS
show significant differences. This resulted in different estimates for relevant parameters
such as the Pomeron intercept αℙ. Although the value of χ2/ν is lower for TOTEM fits,
this should not be taken as an indication of higher validity results, as it is likely due to
the higher number of degrees of freedom in Ensemble T. In fact, it is worth noting that
the ATLAS data has smaller errors. Perhaps future measurements will shed more light
on this regard.

The calculations were also performed utilizing two unitarization schemes, the
eikonal and the U-matrix. The goal was to distinguish which one of them produces
better agreement with experiments. This was motivated by the availability of higher
energy data, as the schemes are expected to differ at asymptotically high energy. At
this stage, it was not possible to draw significant distinctions between the results
produced by both unitarization methodologies. This could be an indication that
“asymptopia” has not yet been reached. It is also worth mentioning that the Odderon
was typically omitted in previous studies of the unitarization schemes, representing a
further contribution of this work to the topic.

The analysis also compared the results using exponential and power-like form
factors for hadron-Pomeron and hadron-Odderon vertices. The results tend to favor
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power-like factors, particularly for TOTEM data, as evidenced by the lower values of
χ2/ν for Models II and IV. However, it is worth recalling that these form factors regulate
the t-variation of scattering amplitudes. Our fits focused only on the quasi-forward
region, and although the differential cross-section fits give good results in this region,
they may not be as accurate at higher t.

There are also some interesting results stemming from the inclusion of the Odderon.
The Odderon coupling was studied for two possible phases in the Odderon amplitudes.
This property of the Odderon is a priori unknown. Our analysis showed that, in order
to have a non-zero coupling for the Odderon, the positivity factor representing the
phase must be ξO = −1. This choice was favored by our fit results.

Our estimates for the Odderon-hadron coupling βO(0) confirm that, even with
ξO = −1, the Odderon interacts significantly more weakly with protons than the
Pomeron and secondary Reggeons. This is well in line with the difficulties in finding
evidence of its effect. It also explains why the presence of the Odderon does not lead
to particularly significant deviations from the Pomeron-only models. For example, it
does not correct the fact that our fits do not show good agreement with the newest
measurements of the ρ parameter. It is likely that a simple-pole model for the Odderon
is not enough to reflect this behavior and a more complex model is needed.

Lastly, the Odderon leads to differences in the pp and pp̄ predictions for the
ρ parameter. Due to being an odd-signature Reggeon the Odderon is expected to
distinguish between the proton and antiproton. However, our models show an effect
not obtained by simply taking into account the crossing-odd meson trajectories. The
effect consists of a visible “crossing” that occurs between the pp and pp̄ ρ-parameter
fits, occurring at intermediate energies.

To summarize, our results contribute some insight into many aspects of the phe-
nomenology of diffractive hadron scattering. Some further work could consist of
improving the models, in particular for the inclusion of the Odderon. However, in
the case of unitarization and the parameter discrepancies for TOTEM and ATLAS,
further experimental data will likely be necessary to provide more clarity. The perhaps
most interesting result obtained is that we verified that a positivity factor ξO = −1 is
necessary to obtain a non-zero Odderon-proton coupling.
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Appendices

A Useful Tools in Particle Scattering

A.1| Units

In the context of Quantum Field Theory and high-energy physics, the units of
physical quantities are redefined in order to simplify expressions. This system, known
as natural units stems from setting Planck’s constant  h and the speed of light in the
vacuum c to  h = c = 1. Therefore, these constants are omitted from equations. If their
inclusion becomes necessary, they can be reintroduced by studying the dimensionality
of the results.

The standard units of energy in this context are GeVs. From this choice, and using

E2 = p2c2 +m2c4, (A.1)

one finds that the natural units of mass and momentum have energy dimensions.
Considering further known physical relations provides the units for other quantities.
The following table shows some relevant examples:

Quantity SI Units Natural Units

Mass kg E

Length m 1/E

Time s 1/E

Momentum kg·m/s E

Velocity m/s -

Charge C -

Angular Momentum kg·m2/s -

Table A.1: Dimensions in natural units for relevant quantities.
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APPENDICES

A.2| Mandelstam Variables

p1 p3

p2 p4

Figure A.1: Diagram illustrating the considered four-momenta.

Mandelstam variables are defined in terms of the external four-momenta of an
interaction. The four-momentum of a particle generalizes its usual three-dimensional
momentum vector to spacetime coordinates through the inclusion of the relativistic
energy. As a result, the structure of a four-momentum four-vector is

p = (E/c,px,py,pz) , (A.2)

where E is the energy, c is the speed of light, and pi are the three-dimensional
momentum components.

Mandelstam variables for a process A+ B→ C+D are defined as [12]:

s = (p1 + p2)
2c2 = (p3 + p4)

2c2 (A.3)

t = (p3 − p1)
2c2 = (p4 − p2)

2c2 (A.4)

u = (p4 − p1)
2c2 = (p3 − p2)

2c2 (A.5)

It is worth noting that the c2 factor appearing in the definitions is typically omitted
due to unit conventions, which are covered in Appendix A.1. These factors are left
out of the remainder of this appendix and throughout the thesis.

When looking at relativistic particle interactions the usage of Mandelstam variables
is widespread due to its convenience; these variables encode energy, momentum and
angle information in a compact Lorentz invariant manner. Appendix B will shed more
light on the relations for Mandelstam variables for two-particle equal-mass scattering
in the center-of-mass frame, as used throughout this thesis.

Exchanging the roles of these variables is equivalent to performing crossing operati-
ons, as described in Section 2.3.3. Note for example that switching momenta p3 and
p4 is equivalent to exchanging t and u. In terms of Feynman diagrams the s, t and u
channel processes for a two-body to two-body interactions are:
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p1

p2 p3

p4

(a) s-channel

p1 p3

p4p2

(b) t-channel

p1
p3

p2 p4

(c) u-channel

Figure A.2: Feynman diagrams for the different ( )-channel reactions.

A very useful property of the Mandelstam variables is the fact that they are not
independent from each other. By adding the expressions for the variables and imposing
conservation of momentum (p1+p2−p3−p4)

2 = 0 one obtains the following relation:

s+ t+ u =
∑
i

m2
i (A.6)

where the right-hand side of the equation represents the sum over the square masses
of all the interacting particles (p2

i = m
2
i ).

B Kinematics

Throughout the thesis, and for the sake of simplicity, relativistic scattering processes
are expressed in the center-of-mass system of reference. This appendix outlines some
useful expressions for this case, particularly for the Mandelstam variables.

An s-channel reaction 1 + 2 → 3 + 4 in the center-of-mass system should have
~p1 +~p2 = 0. Taking into account momentum conservation, if incoming particles 1 and
2 travel along the z-axis with momentum pz, the 4-momenta of the particles are:

p1 = (E1, 0, 0,pz) (B.1)

p2 = (E2, 0, 0,−pz) (B.2)

p3 = (E3,~p⊥,p ′
z) (B.3)

p4 = (E4,−~p⊥,−p ′
z). (B.4)

The momentum of the outgoing particles is expressed in terms of z-axis component p ′
z

and two-dimensional transverse momentum ~p⊥. These components can be related to
the outgoing momentum vector ~p ′ through scattering angle θ, as defined in Figure B.1

91



APPENDICES

p1 p2

p3

p4

θ

Figure B.1: Momenta and scattering angle in the center-of-mass system.

Then the components of outgoing momenta can be written as:

p ′
z = |~p ′| cos θ (B.5)

|p⊥| = |~p ′| sin θ. (B.6)

These relations, alongside the mass-shell conditions of the form p2 = E2 − ~p2 = m2

lead to center-of-mass expression for the Mandelstam invariants.
The s variable is related to the energies of the four particles in the process as follows:

E1 =
1

√
2s
(s+m2

1 −m
2
2) (B.7)

E2 =
1

√
2s
(s+m2

2 −m
2
1) (B.8)

E3 =
1

√
2s
(s+m2

3 −m
2
4) (B.9)

E4 =
1

√
2s
(s+m2

4 −m
2
3). (B.10)

In the high-energy limit (s → ∞) these expressions reduce to Ei =
√
s/2 for all

i = 1, . . . , 4. Note that the total energy of the system in this limit obeys E =
√
s, which

is why the s variable is commonly used to refer to the scattering energy.
A further simplification that was used throughout this work was taking the equal-

mass (elastic) case expressions, where m1 = m2 = m3 = m4 = m. From the
equations for the energy it is possible to visualize that, in the high energy limit, the
differences between the on-shell masses of the particles can be neglected, and the
equal-mass limit can be used to approximate more general cases. The approximation
produces straightforward relations between the momenta and scattering angle and the
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Mandelstam variables, leading to:

cos θ = 1 +
2t

s− 4m2 (B.11)

s = 4(~p2 +m2) (B.12)

t = −2~p2(1 − cosθ) (B.13)

From the last equation, it is clear that in the forward scattering direction (θ = 0) t
becomes zero.

By using (A.6) it is also possible to write:

u = −2~p2(1 + cosθ). (B.14)

For t and u-channel scattering, there are analogous results. For a t-channel process
with scattering angle θt one gets:

cos θt = 1 +
2s

t− 4m2, (B.15)

and in the u-channel, for scattering angle θu:

cos θu = 1 +
2t

u− 4m2 (B.16)

Then applying a crossing operation for t-channel scattering it is worth noting that
u(−zt, t) = s(zt, t), where zt = cos θt. This can be proven by writing (from (B.15)):

s =
1
2 (zt − 1)(t− 4m2) =

1
2 (ztt− zt4m2 − t+ 4m2), (B.17)

then u can be obtained using (A.6)

u = 4m2 − t−
1
2 (ztt− zt4m2 − t+ 4m2) =

1
2 (−zt − 1)(t− 4m2). (B.18)

Therefore, u(−zt, t) = s(zt, t).
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