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A CHARACTERIZATION OF LOCAL NILPOTENCE FOR DIMENSION

TWO POLYNOMIAL DERIVATIONS

Ivan Pan
1

Abstract. Let k be an algebraically closed field. We prove that a polynomial k-derivation D

in two variables is locally nilpotent if and only if the subgroup of polynomial k-automorphisms
which commute with D admits elements whose degree is arbitrary big.

1. introduction

Let k be a field of characteristic 0. A well known result of Rentschler (see [Re1968]) says that
a polynomial derivation D : k[x, y] → k[x, y] (over k) is locally nilpotent, i.e. for any polynomial
f one has Dnf = 0 for some n ≥ 1, if and only if D is conjugate to a derivation of the form
u(x)∂y, by means of a suitable polynomial automorphism ϕ ∈ Autk(k[x, y]). If Aut(D) denotes
the isotropy subgroup of D with respect to the natural conjugation action of Autk(k[x, y]) on
the set Derk(k[x, y]) of k derivations, we deduce that D being locally nilpotent implies Aut(D)
is conjugate to a subgroup of the form

Ju = {(αx+ β, γy + P (x);α, γ ∈ k
∗, β ∈ k, P ∈ k[x], u(αx+ β)/u(x) = γ},

for some u ∈ k[x]; here we write ϕ = (f, g) ∈ Autk(k[x, y]) to mean ϕ(x) = f and ϕ(y) = g.

On the other hand, we consider on Autk(k[x, y]) the so-called inductive topology defined
by the filtration A1 ⊂ A2 ⊂ · · · ⊂ Ad ⊂ · · · , where Ad = {(f, g); deg f,deg g ≤ d}. If k is
algebraically closed, we see that Ai is an affine variety for any i and the subgroup above is an
infinite dimension algebraic group in the sense of [Sha1981] or [Ka1979]. Following this last
reference, we conclude that Aut(u(x)∂y) doesn’t satisfy the property of acting algebraically on
k[x, y] as an (usual) algebraic group. Indeed, as shown there for a subgroup of Autk(k[x, y]) that
property is equivalent to being closed (which Aut(D) does for any derivation D: see [BaPa2019,
Cor. 2.2]) and having bounded degree.

The aim of the present note is to prove that that holds true exclusively for locally nilpo-
tent derivations. More precisely, we have the following characterization of the local nilpotence
property whose proof relies strongly on the results of [BaPa2019].

Theorem 1.1. Let D be a nonzero derivation of k[x, y] where k is a field algebraically closed of

characteristic 0. Then the following assertions are equivalent:

(a) D is locally nilpotent;

(b) for every d there exists (f, g) ∈ Aut(D) such that deg f ≥ d or deg g ≥ d;

(c) Aut(D) is not an algebraic subgroup of Aut(k[x, y]);

(d) Aut(D) is an infinite dimensional algebraic subgroup of Aut(k[x, y]).
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2 DIMENSION TWO POLYNOMIAL LOCALLY NILPOTENT DERIVATIONS

Note that whereas (b) and (c) are equivalent and both are a consequence of (d) the converse
is not, a priori, necessarily true because Z is not an algebraic subgroup of k. Moreover, since
conjugating is a homeomorphism which respects the degree’s boundedness, then from Rentchler’s
result we deduce that (a) implies (d). Thus we only need to prove that (b) implies (a).

Notice also that Theorem 1.1 says that Aut(D) is an algebraic group when D is not locally
nilpotent and then one may ask what kind of such a group corresponds to the conjugation class
of a non locally nilpotent derivation.

Finally, we observe that Theorem 1.1 doesn’t hold true for dimension 3 or higher (Example
2.4) even though assertion (b) does for any locally nilpotent derivation D ([BaVe2020, Remark
3]).

Remark 1.2. What we observe here about Aut(D) recalls what happens with the isotropy of
another action of Autk(k[x, y]). Indeed, it makes one think of the natural action of that group
on the set of reduced principal ideals of height 1 (i.e. algebraic plane curves) where the isotropy
of such an ideal (f) is not an algebraic group if and only if its generator f ∈ k[x, y] may be
transformed into an element in k[x] by means of an automorphism (see [BlSt2015] and references
therein). In other words, the ideal generated by such an f would correspond in our research to
a locally nilpotent derivation. Moreover, when n > 2 the phenomena observed in Example 2.4
matches the one described in [BlSt2015, Ex. 3.16].

2. The proof

We denote e(D) the number of D-stable reduced principal ideals of height 1. If (h) is such
a principal D-stable ideal, then D(h) = λh for some λ ∈ k[x, y] and we say h is a eigenvector

of D and λ is its (corresponding) eigenvalue. In the case where h is an eigenvector which is
reduced, i.e. square-free, we will also say that D stabilizes the curve of equation h = 0. Notice
that e(D) = 0 implies that the kernel kerD of D is equal to k.

Two elements f1, f2 ∈ k[x, y] are said to be equivalent if there is ϕ ∈ Autk(k[x, y]) such that
ϕ(f1) = f2. In the case where f1 is equivalent to x we say it is rectifiable.

We keep all notations introduced in the precedent section. If ϕ = (f, g) ∈ Autk(k[x, y]), we
denote degϕ the greatest degree of f and g and call it the degree of ϕ; notice that we have a
degree function deg : Autk(k[x, y]) → N which verifies degϕψ ≤ degϕdegψ.

Lemma 2.1. Let D ∈ Derk(k[x, y]) be a nonzero derivation and assume Aut(D) to be a non-

algebraic group. Then one of the following assertions holds

(a) 0 < e(D) <∞, all irreducible eigenvector is rectifiable and D is conjugate to a derivation

of the form a∂x + b∂y where either ab 6= 0 and x ∈ k[x, y] divides a or a = 0 and b ∈ k[x].

(b) e(D) = ∞ and D is conjugate to a derivation of the form b(x)∂y.

(c) e(D) = ∞, ker(D) = k and D stabilizes the members of a pencil of rational curves.

(d) e(D) = 0.

Proof. We assume e(D) 6= 0 and prove that one of the assertions (a), (b) or (c) holds.

First suppose 0 < e(D) <∞. By [BaPa2019, Thm. A] all irreducible eigenvector is rectifiable.
Then there is ϕ ∈ Autk(k[x, y]) such that ϕDϕ−1 = a∂x+b∂y admits x ∈ k[x, y] as an eigenvector.
Hence x divides a. From [BaPa2019, Thm. B] we deduce the assertion (a) holds in this case.
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Next suppose e(D) = ∞. If kerD 6= k, the references already cited imply we are in the
situation of assertion (b). Analogously, if kerD = k, then [BaPa2019, Thms. D] implies we are
as in assertion (c) which completes the proof. �

We consider the compactifications X = k
2 ∪ B of k2, where B is the union of at most two

curves isomorphic to P1: either X = Fn, n ≥ 1, where Fn is the nth Nagata-Hirzebruch surface
and B is the union of a fiber and the (−n)-curve in that surface or X = P2 is the projective
plane, with B = L∞ the line at infinity with respect to the affine chart k

2. We denote by
Aut(X,B) the group of automorphisms of X which leave B invariant.

Proposition 2.2. Let D ∈ Derk(k[x, y]) be a nonzero derivation and assume Aut(D) to be a

non-algebraic group. If e(D) 6= 0, then D is locally nilpotent.

Proof. By Lemma 2.1 we know D satisfies (a), (b) or (c) therein. Moreover, in case (b) the
assertion is obvious. Let us consider the case (c), and denote Λ a pencil of rational curves whose
members are stable under D. From [BaPa2019, Pro. 2.10, Cor. 2.12] we deduce that up to
conjugation Aut(D) may be thought of as either a subgroup of Aut(Fn, B), for some n, or one
of Aut(P2, L∞), where in the second case Λ turns out to be a pencil composed by lines passing
through a point p ∈ L∞. Without loss of generality we assume k

2 ⊂ P2 via the embedding
(x, y) 7→ (1 : x : y), with L∞ = (x0 = 0) and p = (0 : 0 : 1).

Since Aut(Fn, B) is an algebraic group then Aut(D) is necessarily as in the second case, hence
Aut(D) is contained in the so-called de Jonquières Group

J(k[x, y]) := {(αx + β, γy + P (x);α, β ∈ k
∗, γ ∈ k, P ∈ k[x]}.

Moreover, since a general member of Λ corresponds in k
2 to a line of equation x− β = 0, for a

general β ∈ k, we conclude that if D = a∂x + b∂y, then x− β divides D(x− β) = a, for any β.
Hence a = 0 and D = b(x, y)∂y . Thus the assertion is consequence of [BaPa2019, Thm. B].

Now, assume we are as in the assertion (a) of Lemma 2.1. Up to conjugation we may assume
D = xℓa(x, y)∂x+ b(x, y)∂y , where we may suppose a 6= 0 and x does not divide a because a = 0
and b ∈ k[x] leads to the required conclusion.

We have a homomorphism Aut(D) → Per(E), where E is the set of prime principal ideals of
k[x, y] which are D-stable and Per(E) denotes the finite group of permutations of E. Hence the
principal ideal xk[x, y] belongs to E. Since the degree function deg : Autk(k[x, y]) → N is not
bounded on Aut(D) we deduce it is not bounded on the kernel K of that homomorphism, so
K is not an algebraic group. Note that an element ϕ = (f, g) ∈ K verifies ϕ(x)/x ∈ k

∗, hence
f = αx for some α ∈ k

∗. Since the jacobian of ϕ is constant we deduce g = γy + P (x) for some
γ ∈ k

∗ and P ∈ k[x]. In other words K is contained in the subgroup of J(k[x, y]) whose elements
fix the ideal generated by x. More explicitly, if ϕ = (αx, γy + P (x)) ∈ K, then

{

αℓ−1a(αx, γy + P (x)) = a(x, y)
b(αx, γy + P (x)) = γb(x, y) + xℓa(x, y)P ′(x).

(1)

On the other hand, sinceK is not an algebraic group we deduce it contains a sequence (ϕn)n≥1

of elements such that the corresponding sequence of degrees (degϕn)n≥1 is increasing. We will
show in several steps this implies a = 0 which yields a contradiction and terminates the proof.
Write ϕn = (αnx, γny + Pn(x)), n ≥ 1.
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First we observe that a does not depend on y. Indeed, write a =
∑d

i=0
ai(x)y

i, d ≥ 0.

Since degPn increases with n, if d > 0 we see that the top equality in (1) implies degPn(x)
d is

bounded, hence d = 0.

Second, by an analogous reasoning the bottom equality in (1) gives b = b0(x)+ b1(x)y, where
b1 6= 0, and then that equality is equivalent to the following two ones

b0(αx) + b1(αx)P (x) = γb0(x) + xℓa(x)P ′(x), (2)

b1(αx) = b1(x). (3)

Now write

a =

r
∑

i=0

Aix
i, b1 =

s
∑

i=0

Bix
i,

where ArBs 6= 0. If P = Pn =
∑m

i=0
pix

i for some n≫ 0, we deduce

m = mn = αs
nBsA

−1
r .

Hence we may suppose αs
n 6= 1 because mn increases with n, and so s = deg b1 > 0. From (3)

we deduce α = 1, a contradiction which finishes the proof. �

Now we treat the case (d) of Lemma 2.1. We have the following result valid over an arbitrary
field of characteristic zero which together with Proposition 2.2 readily leads Theorem 1.1.

Proposition 2.3. Let D be a derivation such that e(D) = 0. Then Aut(D) is finite.

Proof. If k = C is the field of complex numbers, the result is a straightforward consequence of
[CMP2019, Thm. A]. Denote by ℓ the order of Aut(D) in that case. It suffices to prove that if
F = {ϕ1, . . . , ϕn} is a subset of Aut(D) in the general case, then n ≤ ℓ.

In fact, inspired by the proof of [DeKa2009, Prop. 1.4] we consider the extension k0 of Q

obtained by adjoining the coefficients of D(x),D(y), ϕi(x), ϕi(y), i = . . . , n. Then D and all of
the ϕ′

is restraint to give a derivation and suitable automorphisms D0, ϕi0 : k0[x, y] → k0[x, y],
i = 1 . . . , n, such that ϕi0D = Dϕi0 for all i. Since k0 is isomorphic to a subfield of C we may
suppose k0 ⊂ C, and then all these maps extend to C[x, y] from which the assertion follows. �

Example 2.4. Theorem 1.1 doesn’t hold true for n > 2. Indeed, let D =
∑n

i=1
ai∂xi

be a
derivation of B = k[x1, . . . , xn], where a1, . . . , an−1 don’t depend on x1, xn and an = 0. Then D
induces a derivation in A = k[x2, . . . , xn−1]. If a2, . . . , an−1 are general enough to ensure D is
not locally nilpotent as derivation in A, then it is so also as derivation in B. However, Aut(D)
contains the automorphisms of the form

(x1 + p(xn), . . . , xn−1, xn), p ∈ k[xn],

hence it contains elements defined by polynomials of arbitrary degree.
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