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Abstract—Traffic Engineering (TE) has become a challenging
mechanism for network management and resources optimization
due to the uncertainty and the difficulty to predict current t raffic
patterns. Recent works have proposed robust optimization tech-
niques to cope with uncertain traffic, computing a stable routing
configuration that is immune to demand variations within certain
uncertainty set. However, using a single routing configuration
for long-time periods can be highly inefficient. Even more, the
presence of abnormal and malicious traffic has magnified the
network operation problem, claiming for solutions which not
only deal with traffic uncertainty but also allow to identify faulty
traffic. In this paper, we propose two complementary methods
to tackle both problems. Based on expected traffic patterns,we
adapt the uncertainty set and build a multi-hour yet robust
routing scheme that outperforms the stable approach. For the
case of anomalous and unexpected traffic, we propose a fast
anomaly detection/isolation algorithm which relies on a novel
linear spline-based model of traffic demands to identify traffic
problems and decide routing changes. This algorithm is optimal
in the sense that it minimizes the decision delay for a given mean
false alarm rate and false isolation probabilities. Both proposals
are validated using real traffic data from two Internet backbone
networks.

I. I NTRODUCTION

Traffic engineering (TE) represents a major issue for net-
work operators in today’s scenario. TE allows the optimization
of network resources usage through multiple mechanisms.
In this work, we focus on routing optimization over an
Autonomous System (AS). This optimization is becoming
increasingly difficult due to the dynamic nature of current
traffic. Traffic demands present two different components or
behaviors: on one hand, a stable and predictable compo-
nent due to normal traffic usage patterns (e.g. daily demand
fluctuation); on the other hand, an abrupt and unpredictable
behavior due to unexpected events, such as network equipment
failures, flash crowd occurrences, security threats (e.g. denial
of service attacks, virus propagation), external routing changes
(e.g. inter-AS routing through BGP) and new spontaneous
overlay services (e.g. P2P applications). We use the term
volume anomaly[17] to describe these unexpected network
events (large and sudden link load changes).

Recent works [2]–[5] have proposed a new perspective to
the routing optimization under traffic uncertainty problem: the
Robust Routing (RR) approach. In a robust approach of TE,
demand uncertainty is taken into account directly within the

routing optimization, computing a single routing configuration
for all demands within anuncertainty set. While this routing
configuration is not optimal for any single traffic matrix (TM)
within the set, it minimizes the worst case performance over
the whole set. RR provides performance guarantees (i.e. worst-
case bounds) for all possible traffic variations within the un-
certainty set. However, applying a single robust configuration
in the presence of highly variable traffic raises a difficult
question: how should this uncertainty set be defined? Larger
sets cover a broader group of possible demands, but at the
cost of routing inefficiency. On the other hand, tighter sets
produce more efficient routing schemes, but subject to poor
performance guarantees. RR presents another drawback: it
does not solve the problem of faulty traffic identification.
The early detection and isolation of unusual and significant
changes in traffic demands allows not only to perform an
accurate routing reconfiguration but also provides additional
information for improving network operation.

A. Related Work

There is a large literature on traffic engineering with un-
certain traffic demands. Traditional algorithms rely on a small
group of expected TMs (representative traffic demands from
past observations) or estimated TMs to compute optimal and
reliable routing configurations. An extreme case is presented
in [12], where routing is optimized for a single estimated TM
and it is then applied for long-time periods (24hs periods).
Traffic uncertainty is characterized by multiple TMs in [13],
[14] (e.g. set of TMs from previous day, same day of previous
week, etc.), and different ways to find optimal routes for theset
are presented. Given the dynamic nature of present demands,
this perspective is no longer suitable for current scenario[1]. A
different approach is provided by online reactive algorithms:
TeXCP [15] and MATE [16] both balance load in realtime,
responding to instantaneous traffic demands. Their main goal
is to avoid network congestion by adaptively balancing the
load among paths, based on measurement. Reactive routing
presents a desirable property, that of keeping routing adapted
to current traffic. However, these adaptive algorithms present
poor performance under significant and abrupt traffic changes
[5]. A third category of algorithms consists in Stable Robust
Routing techniques [2]–[6]. In [2], the authors capture traffic
variations by introducing a polyhedral set of demands, ap-



plying linear programming techniques to compute an optimal
stable routing for all demands within this set. [4] applies this
robust technique to compute a robust MPLS routing configura-
tion without depending on TM estimation. Oblivious Routing
[3] also defines linear algorithms to optimize worst-case per-
formance for different sizes of traffic uncertainty sets, aiming
to handle dynamic changes. [6] analyses the use of robust
routing through a combination of traffic matrix estimation and
its corresponding estimation error bounds, in order to shrink
the uncertainty set. The drawback of stable robust routing is its
inherent dependence on the definition of the uncertainty set:
larger sets allow to handle a broader group of traffic demands,
but at the cost of routing inefficiency; conversely, tightersets
produce more efficient routing schemes, but subject to poor
performance guarantees.

As regards anomaly detection in data networks, the prob-
lem has been extensively studied. In this section, we will
just overview those works that have motivated our signal-
processing based detection algorithm. Signal processing tech-
niques have been applied to the anomaly detection field [9]–
[11], [19]. The usual behavior of data flows is modeled by
several approaches: spectral analysis, time series analysis,
wavelets decomposition, etc. Anomalies correspond to devi-
ations from the usual behavior of the data flows. The general
flaw of these algorithms is the lack of stability over time
of the proposed traffic models, as well as the absence of
optimality conditions for the detection in most cases. A second
class of methods related to our model concerns statistical
hypotheses testing [17]–[19]. When data flows are paramet-
rically modeled, the design of optimal algorithms is possi-
ble. Nevertheless, non-parametric approaches are particularly
studied because of the lack of parametric models, and these
approaches are often suboptimal. The detection/isolationof
traffic anomalies problem was previously treated in [17], using
a TM decomposition on the Principal Component Analysis
(PCA) basis. However, this approach presents a major stability
problem: the PCA basis depends on the measurement period,
rendering it unstable over time.

B. Contributions of the Paper

We propose two novel and complementary approaches to
deal with current dynamic traffic demands, separately treating
both traffic uncertainty sources. Forexpected traffic fluctu-
ations, we present a time varying approach of RR that out-
performs the currentstableapproach: theMulti-Hour Robust
Routing (MHRR) . We preserve the virtues of RR, but change
the routing configuration during time. The uncertainty set is
optimally divided into several uncertainty sub-sets that better
adapt to real traffic loads and a stable robust routing schemeis
computed for each sub-set. The partitioning algorithm allows
to calculate the exact moments when routing changes must be
performed. For the case ofunpredictable traffic behavior, we
propose a novel volume anomaly detection/isolation algorithm
to identify traffic problems and decide routing changes. To
overcome the limitations of the PCA approach [17], we
propose a non data-driven traffic model which remains sta-

ble over time. This model allows to separate normal from
anomalous traffic, based on simple link load measurements.
Both proposals are validated using real traffic data from two
backbone networks, the Internet2 Abilene backbone network
and a private international Tier-2 network.

The remainder of this paper is organized as follows. In
Section II, we recall the basic aspects of the robust routing
approach. Section III presents the theoretical backgroundand
empirical evaluation of the MHRR. The proposed algorithm
and traffic model for anomaly detection/isolation are intro-
duced and validated in section IV. Finally, Section V concludes
this work.

II. ROBUST ROUTING

Let us consider a network topology defined by a set
of n nodes andL = {1, . . . , r} links with capacities in
C = (c1, c2, . . . , cr). The TM demandd = {di,j} denotes
the traffic flow between every nodei and nodej (i 6= j)
of the network. We re-arranged as a column vector,d =
{dk, k=1..m}, wheredk represents the traffic flow transmitted
by OD pair k (OD-flow k) and m = n × (n − 1) is the
number of OD pairs. LetN = {OD1, . . . , ODm} be the set of
OD pairs. Link’s informationyl represents the total traffic (i.e.
aggregated OD flows) through linkl in a certain period of time.
This information is available from router’s MIB variables and
it is usually collected every 5’ periods via SNMP [20]. Traffic
demands and links’ traffic are related through the routing
matrix R, a r × m matrix R = {rl,k} where0 6 rl,k 6 1
represents the fraction of OD demandk routed through linkl:

y = R × d. (1)

with y = {yl, l=1..r}. Routing optimization depends on
the underlying data transport mechanism; we will focus on
path-based routing such as MPLS. This optimization consists
of minimizing certain performance metric associated with
traffic demand. Throughout this work we consider maximum
link utilization (MLU) as the routing performance criterion.
Overloaded links tend to cause QoS degradation (e.g. larger
delays and packet losses, throughput reduction, etc.), so MLU
represents a reasonable measure of network performance. The
are many other performance metrics that could be used instead
of MLU, like path’s end-to-end delay or mean link utilization;
setting the focus too strictly on the MLU can often lead to
longer average traffic paths and thus adversely affect the mean.
However, we use the MLU as it is the most commonly applied
criterion and it represents an easy to understand performance
metric. For a given routing matrixR = {rl,k} and a traffic
demandd, the MLU (umax) is defined as the maximum of
the ratio between link load and link capacity:

umax (C,d, R) = max
l∈{1...r}

∑

k

rl,k · dk

cl

= max
l∈{1...r}

yl

cl

(2)

Let P (k) be the set of possible paths for OD demandk.
Let xk

p be the proportion of traffic demanddk that flows
through pathp ∈ P (k), 0 6 xk

p 6 1. Finally, let xk
l be

the proportion of traffic demanddk that flows through link
l ∈ L, 0 6 xk

l 6 1. We defineD as the uncertainty set



where traffic demand may vary. This set can be defined in
different ways, depending on the available information: link
load measurements and historical routing, a set of previously
observed TMs{d1,d2, . . . ,do}, TM time seriesd(t), etc. [2]
defines this set as apolytope, based on the intersection of
several half-spaces that result from linear constraints imposed
to traffic demand. The Robust Routing Optimization Problem
(RROP) consists of minimizingumax, considering all demands
within D (3). The RROP can be efficiently solved by linear

minimize umax

subject to: (3)∑
p∈P(k)

xk
p > 1 ∀ k ∈ N

∑
p∈P (k), l∈p

xk
p 6 xk

l ∀ k ∈ N, ∀ l ∈ L

∑
k∈N

xk
l .dk 6 umax · cl ∀ l ∈ L, ∀ d ∈ D

xk
p , xk

l > 0 ∀ l ∈ L, ∀ p ∈ P (k), ∀ k ∈ N

umax 6 1

programming techniques, applying a combined column and
constraint generation method [2]. In a traditional robust rout-
ing application, the obtained routing configuration is applied
during long-term periods of time (i.e. daily routing). In this
sense, we refer to robust routing asStable Robust Routing
(SRR).

III. M ULTI -HOUR ROBUST ROUTING

In [1] we present the advantages of the SRR with respect
to traditional routing approaches: SRR offers stability
guarantees against traffic uncertainty and traffic time-
variations at a reasonable cost. However, considering a
single routing scheme for long-time periods is conservative
and results in sub-optimal performance. We propose a
simple approach to shrink and adapt the uncertainty set
along time that outperforms the SRR. Based on rough
knowledge of traffic variations (i.e. considering expected
traffic behavior), we propose to optimally divide the
uncertainty set and build a multi-hour routing configuration,
considering a single SRR configuration for each sub-set.
Daily traffic changes can be seen as a time variation of

time
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Fig. 1. (a) Daily variation of the polytopeDt, (b) time partitioning ofDt.

the uncertainty set. At each timet, the routing matrixR

and the link load valuesy(t) = yt define an instantaneous
uncertainty setD(t) = {d ∈ R

m, R × d 6 yt, d > 0}. The
continuous union of infinite instantaneous uncertainty
sets along time t defines the daily uncertainty set

Dt =
{
(d, t) ∈ R

m+1, d ∈ ∪ t16t6tτ
D(t), t1 6 t 6 tτ

}
.

Figure 1(a) explains this idea. Assuming this set is an
union of polytopes, [7] provides a theoretical study of the
optimal partitioning ofDt, using a partitioning hyper plane.
[7] proves that this is a NP-hard problem, except for the
case where a partitioning direction is previously fixed. We
define a partitioning hyper plane by its direction vector
α and a valuew: α.d = w. In the MHRR approach, we
consider a particular direction for partitioning: thetime
direction. In that case,w represents the time of the day. We
define h + 1 hyperplanes at times{w1, w2, .., wh+1}. The
intersection betweenDt and the half-spaces defined by these
partitioning hyperplanes results inh uncertainty sub-sets
Di = {Dt ∩ {d, α.d > wi} ∩ {d, α.d 6 wi+1}} , ∀i = 1, ., h.
Let Di be the smallest single-time set that contains all
demandsd(t) ∈ Di, wi 6 t 6 wi+1 (see figure 1(b)). A SRR
configurationRi

robust is computed for each sub-setDi. Each
routing configuration is finally applied at each time interval.
The optimal values of routing changesw∗ = {w∗

2 , . . . , w
∗
h}

are the solution for the following optimization problem (w1

and wh+1 are fixed a priori, as they define the considered
time interval of analysis):

w∗(Dt) = argmin
w

{
max
i=1..h

umax(Di)

}
(4)

whereumax(Di) is the solution for (3) for polytopeDi. [7]
presents a simple algorithm to approximately solve (4) (within
an arbitrary precision), using a generalization of a simple
dichotomy methodology. The MHRR presents a trade-off
between performance and routing stability. The more intervals
we use, the more adapted the routing becomes. However,
the number of intervals should be bounded as many routing
changes may lead to instabilities and performance degradation.
In a general case, 2 sub-sets are enough to handle the usual
daily variation.

MHRR Evaluation

We present a comparative analysis between SRR and
MHRR in Abilene, an Internet2 backbone network. Abilene
consists of 12 router-level nodes and 30 OC192 links (2
OC48). The used router-level network topology and traffic
demands are available at [25]. Traffic data consists of 6-
month traffic matrices collected every 5’ via Netflow from the
Abilene Observatory [26]. The time-variation of the polytope
is not a simple homothety [1]; in this sense, we will show
that a routing configuration change during the day improves
routing performance. LetRo be the historical routing matrix of
Abilene, not necessarily optimal (Ro is available at [25]). We
consider a single time partitioning (i.e. 2 routing intervals),
w1 = 20:00, w2 = w∗ and w3 = 21:00, wherew∗ is
the solution for (4). For each time interval, we consider the
smallest polytope that includes all possible realizationsover
that period:

DA,B = {d ∈ R
m, Ro × d 6 yA,B, d > 0} (5)

where yA = y20:00−w∗

max and yB = yw∗−21:00
max (maximum

values for each link). In this way,DA includes all traffic



demands between 20:00 andw∗ and DB betweenw∗ and
21:00 (see figure 1(b)). For each polytope, we compute a
SRR configuration,RA

robust andRB
robust. In order to compare

stable and multi-hour approaches, we apply both routing
configurations during the whole evaluation period. We include
the routing performance obtained withRo (curve historical
routing) to appreciate the time variation of traffic loads. Figure
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Fig. 2. Routing performance, stable vs. multi-hour robust routing.

2(a) compares the routing performance (MLU) between these
two RR configurations. PolytopeDA is well suited for smaller
loads, soRA

robust performs better during the first half of
the day, when network load is lower. However, when traffic
increases, demands that do not belong toDA produce higher
link utilizations than those obtained withRB

robust. The MHRR
consists in computing the time when routing must be changed
(w∗ ≈ 8:00 in this case), using the corresponding routing
configuration depending on the time of the day (RA

robust

beforew∗ andRB
robust after). The MHRR approach presents

a performance improvement of15% with respect to the SRR
approach beforew∗, reaching a near20% of over-efficiency
after w∗. We repeat the same evaluation but considering a
traffic demand that drastically changes (i.e. a large time-
variation of the polytope, caused by a volume anomaly). Figure
2(b) presents an abrupt change in MLU (almost 14 times
higher) at time 18:00. In this case, we assume that this change
is known in advance (note that in the general case, it is not
possible to predict these abrupt changes). The optimal moment
for changing routing isw∗ ≈ 18:00. The MHRR approach
definitely outperforms the SRR in this experience, presenting
a MLU between10% and 60% smaller during the whole
evaluation period.

IV. D EALING WITH UNEXPECTEDEVENTS

The proposed MHRR approach offers a robust and efficient
routing configuration, given a rough knowledge of the daily
uncertainty set. However, in the presence of volume anomalies
it is no longer possible to apply the MHRR as the daily
uncertainty set is unknown. For those cases, we propose a
fast volume anomaly detection/isolation algorithm to quickly
identify faulty traffic. This detection allows to decide as soon
as possible the moment when routing configuration must be
changed. The goal of the algorithm is to detect/isolate an addi-
tive changeθ in the time series of traffic demandd(t) from a
sequence of link load measurementsy(t) = R × d(t). We use

link loads as input to avoid relying on seldom available traffic
demands. In this work, we focus on detecting and isolating a
“localized” anomaly,θ = θ (δ1,i, . . . , δi,i, . . . , δm,i)

T , where
δi,j = 0 if i 6= j andδi,i = 1 (this corresponds to a changeθ in
OD flow i). If several OD flows are simultaneously corrupted,
the detection/isolation algorithm produces an alarm and iden-
tifies only one faulty OD flow. The algorithm can be extended
to detect/isolate simultaneous anomalies, but its’ complexity
(no hypotheses, see IV-B) grows highly. The isolation of the
anomalous traffic is possible since an anomaly in a given OD
flow typically spans multiple links. Real traffic demands follow
a non-observablemodel from link load measurements: since
r < m, it is impossible to retrieved(t) from y(t) without
additional assumptions on the traffic demand. To overcome
this difficulty, we propose a parsimonious linear model for
non-anomalous traffic. This model renders traffic demands
observable and therefore, it allows to separate usual from
anomalous traffic.

A. Stochastic Traffic Model for Anomaly Detection

We assume that the stochastic process of the OD traffic
demandd(t) obeys the following linear model:

d(t) = λ(t) + ξ(t) (6)

where λ(t) ∈ R
m is the mean traffic demand andξ(t)

is a white Gaussian noise with covariance matrixΣ(t) that
represents the model error together with the natural variability
of the OD flows (based on the results obtained in [22]). The
processλ(t) represents the “regular” part of the OD TM which
can be correctly modeled when the behavior of the network
is anomaly-free. We propose to parameterize this vector by
exploiting the stationarity of the spatial distribution ofthe TM.
One of the few invariants of Internet traffic is that a small
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Fig. 3. Approximation of real OD flows by the spline-based model.

percentage of flows contribute to a large proportion of total
traffic [4], [8]. Hence, if we assume that the traffic distribution
between the different OD couples is spatially stationary in
the absence of an anomaly, the order of increasing OD flows
remains constant during long time periods. The proposed
traffic model takes advantage of the stationary property of this
ordering. We propose to classify OD flows in three different
classes, depending on their volume: large OD flows, small
OD flows and medium-size OD flows. The sorted components



can be interpreted as a discrete increasing signal. The curve
obtained by interpolating this discrete signal is assumed to be
a continuous curve, hence it can be parameterized by using
a polynomial approximation. Figure 3 shows the OD flows,
sorted in the increasing order of their volume of traffic, as
a function of the timet. Since data are vectors of finite
dimension, we propose to use the following method to design
a discrete spline basis: (i) we choose a continuous spline
basis; (ii) we discretize all these splines according tom points
uniformly chosen in the interval[1; m] and (iii) we rearrange
all these discrete signals according to previous sorting order.
We finally obtain the following linear model for the anomaly-
free traffic demand:

d(t) = Sµ(t) + ξ(t) (7)

where S = (s1 s2 . . . sq) is a m × q known matrix with
columnssj and q is small with respect tom. The vectors
si, which correspond to the rearranged discrete spline, form a
set of known basis vectors describing the spatial distribution
of the traffic andµ(t) = (µ1(t) . . . µq(t))

T is the unknown
time varying parameter vector which describes the OD flow
intensity distribution with respect to the set of vectorssi. The
model for the anomaly-free link traffic is given by:

y(t) = Hµ(t) + ζ(t), (8)

where H = RS and ζ(t) = Rξ(t). In this way, we can
describe the usual behavior of traffic demands from simple
link measurements. The computation of the rank ofH is not
simple since it depends on the routing matrixR. In practice,
since the number of columns ofH is very small, the product
RS and its rank can be computed very fast. Therefore, we
will assume thatH is full column rank. Finally, the covariance
matrix Σ is unknown. The remedy consists in computing an
estimateΣ̂ of Σ. Results on the estimation of̂Σ can be found
in [21].

B. Volume Anomaly Detection/Isolation

The detection/isolation of a volume anomaly at timet0 can
be treated as a hypothesis testing problem where the null
hypothesisH0

t0
= {the OD flows are anomaly-free at time

t0} is tested againstm alternativesHj
t0

= {the j-th OD flow
presents an anomalous additional amount of trafficθ from the
time t0}. The change detection algorithm has to compute a pair
(T, ν), whereT is the alarm time at which aν-type change
(ν ∈ {1, 2, . . . , m}) is detected and isolated, based on link
traffic observationsy1,y2, ... The hypothesis testing can be
written as

H0 : y(t) ∼ N (H µ(t), RΣRT ) , t = 1, 2, . . . , (9)

Hj
t0

:






y(t) ∼ N (H µ(t), RΣRT ), t = 1, . . . , t0 − 1,

y(t) ∼ N (H µ(t) + θj rj , RΣRT ) ,

θj,1 6 |θj | 6 θj,2 , t = t0, t0 + 1, . . .

(10)

whererj, 16j6m denotes the normalizedj-th column ofR and
0 < θj,1 < θj,2 < +∞ are some known bounds on the change
intensity of thej-th OD flow (these bounds are introduced
for technical reasons but they can be chosen arbitrarily). As
we show in the Appendix, we can simplify this problem by

eliminating the non-anomalous traffic. In this case, hypothesis
(10) can be rewritten as

Hj
t0

:






z(t) ∼ N (0, Ir−q) , t = 1, . . . , t0 − 1,

z(t) ∼ N (θjvj , Ir−q) ,

θj,0 6 |θj | 6 θj,1 , t = t0, t0 + 1, . . .

(11)

where vj is a known vector andz(t) are the normalized
residuals obtained fromy(t) after filtering the non-anomalous
traffic. The vectorvj corresponds to the signature in the
residuals of a change in OD flowj. We use the optimal
recursive algorithm(Tr, νr) proposed in [24] to solve (11) :

Tr = min
16k6m

{Tr(k)}, νr = arg min
16k6m

{Tr(k)}

Tr(k)= inf

{
t > 1 : min

06j 6=k6m
[gt(k, j) − hk,j ] > 0

}
(12)

with gt(k, j) = gt(k, 0) − gt(j, 0). The recursive functions
gt(k, 0) are defined by

gt(k, 0) = (gt−1(k, 0) + zt(k, 0))+ (13)

zt(k, 0) = log
fk(z(t))

f0(z(t))
(14)

g0(k, 0) = 0 for every1 6 k 6 m andgt(0, 0) = 0 for all t.
f0 represents the probability density function of anomaly-free
traffic measurements.fk is the probability density function
of residualsz(t0), z(t0 + 1), .. after a change of typek. The
thresholdshk,j are chosen by the following formula:

hk,j =

{
hd if 1 6 k 6 m andj = 0
hi if 1 6 k, j 6 m andj 6= k

where hd is the detection threshold andhi is the isolation
threshold. For given boundsγ and β, this algorithm is
asymptotically optimal, i.e. it reaches the lower bound of the
maximum mean delay for detection [24]. The choice of the
detection and isolation thresholdshd andhi is discussed (with
practical comments and simulations) in [23].

C. Validation

We demonstrate the ability of the detection/isolation algo-
rithm to detect and identify a volume anomaly in SNMP link
flow data from two different networks (different not only in
the topology but also in the behavior of traffic demands): a
large Tier-2 network (50 nodes, 168 measured links and 2450
non-zero OD flows, sampled at a 10 minute rate) and Abilene
(the Abilene dataset consists in Netflow traces, so we use the
supplied routing matrix to retrieve link loads). Figure 4 shows
the typical realizations of the decision functionsgt(i, 0) and
st(i) = min06i6=k6m[gt(i, k)− hi,k] vs the elapsed time. The
functionsst(i) are used to “monitor” the OD flows; when the
function st(i) exceeds0, OD flow i is declared faulty. It is
assumed that the anomaly in the Tier-2 network begins at time
3660, and at time1070 in Abilene. Note that after this time,
several decision functionsgt(i, 0) rapidly grow. Each function
gt(i, 0) is associated with OD flowi and when this function
grows, it means that OD flowi is suspected of carrying an
abnormal amount of traffic. Contrary togt(i, 0), only decision
function st(159) (st(87) in Abilene) associated to faulty OD
flow 159 (87 respectively) grows and finally exceeds the
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Fig. 4. Typical realizations of decision functions for a Tier-2 network (a,b)
and Abilene (c,d).

threshold. Hence, the functionsst(i) permit us to isolate
the faulty OD flow among all the OD flows associated to
functionsgt(i, 0) that have rapidly grown. At time3660 (1070
respectively), an alarm is raised and the algorithm selectsthe
faulty OD flow 159 (87 respectively). The decision function
st(i) needs only1 observation (10 minutes in the Tier-2
network or5 minutes in Abilene, but this is the smallest delay
than can be achieved given these sampling-rates) to detect and
isolate the faulty OD flow. An interesting observation is that
the detection/isolation algorithm achieves good results in both
networks, even though the respective traffic demand behaviors
are completely different between these two networks.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we address the routing under traffic uncertainty
problem. We provide a solution that not only deals with
current dynamic traffic demands in a robust and efficient
way but also detects and isolates large-volume anomalous
traffic, improving network operation. We extend the robust
routing paradigm by introducing the notion of time-varying
uncertainty set, setting up a multi-hour robust routing scheme.
We show that this approach achieves better resource utilization
than previous stable robust proposals in different scenarios. We
introduce an original linear spline-based parsimonious model
to parameterize normal traffic behavior from widely available
link load measurements. Based on this model, we present a
statistical algorithm to detect and isolate volume anomalies
in network traffic. We apply this algorithm to cope with
sudden and large traffic changes in current dynamic demands,
complementing the multi-hour robust scheme. Many important
issues remain open for further study. A deep evaluation of the
challenges involved in changing routing configuration after
the detection of the anomalous traffic should be performed.
The isolation ability of the proposed algorithm can be highly

exploited in order to recompute routing in a more efficient way.
The impact of routing re-configuration on end-to-end traffic
must be explored, especially considering the imposed QoS
restrictions in the current end-user Internet-services scenario.
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APPENDIX - ELIMINATION OF NON -ANOMALOUS TRAFFIC

Non-anomalous trafficHµ(t) is eliminated by projecting the
measurement vectory(t) on the null space ofH . By using the
invariant properties of the Gaussian law, the general covariance matrix
in (10) is reduced to the identity one. Let us define the matrix
W = (w1, .., wr−q) of size r × (r − q) composed of eigenvectors
w1, .., wr−q of the projection matrixP⊥

H = Ir − H(HT H)
−1

HT

corresponding to eigenvalue1. The matrixW satisfies the following
conditions:W T H = 0, WW T = P⊥

H and W T W = Ir−q. The
matrix W can be considered as a linear rejector that eliminates the
non-anomalous traffic. Under hypothesisH

j
t0

, the sequenceW T
y(t)

can be modeled asW T
y(t) = W T ζ(t)+ θj W T

rj , j = 1, .., m.

SinceW T ζ(t) is a correlated Gaussian vector with covariance matrix
Σ̃ = W T RΣRT W , each vectorW T

y(t) is normalized by using the
square root matrix̃Σ

1
2 , z(t) = Σ̃−

1
2 W T

y(t) ∼ N ( θj vj , Ir−q),
with vj = Σ̃−

1
2 W T

rj .


