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Abstract—Traffic Engineering (TE) has become a challenging have proposed a new perspective to the routing optimization
mechanism for network management and resources optimizath  ynder traffic uncertainty problem: tHRobust Routing (RR)
due to uncertain and difficult to predict traffic patterns. Recent approach. In a robust fashion of TE, demand uncertainty is

works have proposed robust optimization techniques to cope . . S . S
with uncertain traffic, computing a stable routing configuration taken into account directly within the routing optimizatjo

that is immune to demand variations within certain uncertainty COmputing a single routing configuration for all demands
set. However, using a single routing configuration for long- within an uncertainty set While this routing configuration
time periods can be highly inefficient. Even more, the presere s not optimal for any single traffic matrix (TM) within the

of abnormal and malicious traffic has magnified the network  get it minimizes the worst case performance over the whole
operation problem, claiming for solutions which not only deal . . .
with traffic uncertainty but also allow to detect and identify faulty set. In this sense, RR prOV|de§ perforlmanc.e guargrjtees (e
traffic to take the appropriate countermeasures. In this pagr, Worst-case bounds) for all possible traffic variations witie

we introduce the Reactive Robust Routing (RRR) for TE, an uncertainty set. The RR approach can be used @®active
approach that combines both proactive and reactive techniges technique to deal with dynamic traffic. It can handle chaggin

to tackle the problem. Based on expected traffic patterns, we demands at a reasonable cost (with respect to an ideal but

adapt the uncertainty set and build a multi-hour yet robust . = . - . . s
routing scheme that outperforms the stable robust approach illusive optimal adaptive routing) up to a certain limit ygn

For the case of anomalous and unexpected traffic, we propose aPy the size of the uncertainty set). However, applying a RR
fast anomaly detection/isolation algorithm to detect and dcalize ~algorithm to address both traffic behaviors (usual traffic as
abrupt changes in traffic flows and decide routing changes. Tls  well as volume anomalies) is an inefficient strategy: a singl
algorithm is optimal in the sense that it minimizes the deci®n routing can not be suitable for both situations.

delay for a given mean false alarm rate and false isolation on th t ti h id b d
probability. We validate these proposals using real data fom n the contrary, aeactive approach cou e used as a

two different backbone networks and we show how the RRR COmplementary strategy to enhance RR performance, respond
can handle uncertain and highly dynamic traffic in an automaic  ing to abrupt and large traffic changes with an effectiveingut

fashion, simplifying network operation. reconfiguration. Volume anomalies may have an important
__Index Terms—Traffic Uncertainty, Multi-Hour Robust Rout- jmpact on the network performance, causing sudden sitstio
ing, Anomaly Detection/Isolation, Reactive Robust Routig. - . .
of strong network congestion. The early detection and iggia
of these anomalies allows to modify the routing as soon as pos
l. INTRODUCTION sible, limiting their impact. In this work, we propose a sifjn
Traffic engineering (TE) represents a major issue for ngirocessing algorithm for fast load change detection/igmia
work operators in today’s scenario. TE allows the optimarat Through out the paper, we use the term anonisdjation to
of network resources usage through multiple mechanismefer to the identification and localization of an anomalous
In this work, we focus on routing optimization over arflow among the network traffic.
Autonomous _System (AS). This opt|m!zat|on is becomlng‘_ Related Work
increasingly difficult due to the dynamic nature of current
traffic. Traffic demands present two different components or There is a large literature on traffic engineering with un-
behaviors on one hand, a stable and predictable componergrtain traffic demands. Traditional algorithms rely on am
due to usual traffic usage patterns (e.g. daily demand fluctgmoup of expected TMs (representative traffic demands from
tion); on the other hand, an abrupt and unpredictable behavpast observations) or estimated TMs to compute optimal and
due to unexpected events, such as network equipment filureliable routing configurations. An extreme case is present
flash crowd occurrences, security threats (e.g. denialrefcge in [11], where routing is optimized for a single estimated TM
attacks, virus propagation), external routing changeg. (eand it is then applied for long-time periods (24hs periods).
inter-AS routing through BGP) and new spontaneous overldyaffic uncertainty is characterized by multiple TMs in [12]
services (e.g. P2P applications). We use the tewlume [13] (e.g. set of TMs from previous day, same day of previous
anomaly [17] to describe these unexpected network eventgeek, etc.), and different ways to find optimal routes forgbe
(large and sudden link load changes). Recent works [2]-[alle presented. Given the dynamic nature of present demands,



this perspective is no longer suitable for current scerfaiicA  approaches are often suboptimal. The detection/isolatfon
different approach is provided by online reactive algangh traffic anomalies problem was previously treated in [17ihgs
TeXCP [14] and MATE [15] both balance load in realtimea TM decomposition on the Principal Component Analysis
responding to instantaneous traffic demands. Their maih g¢@CA) basis. However, this approach presents a major gyabil
is to avoid network congestion by adaptively balancing thgroblem: the PCA basis depends on the measurement period,
load among paths, based on measurement. Reactive routigigydering it unstable over time.
presents a desirable property, that of keeping routing tedap o
to dynamic traffic. However, these adaptive algorithmsemes B- Contributions of the Paper
poor performance under significant and abrupt traffic change In the final remarks of [4], the authors raised an interesting
[5]. A third category of algorithms consists in Stable Rabuseflection: "it is not clear whether time-varying demands
Routing techniques [2]—-[6]. In [2], the authors capturdfita should be addressed using proactive (e.g. robust routing)
variations by introducing a polyhedral set of demands, apr reactive (dynamic, adaptive) methods”. In this work, we
plying linear programming techniques to compute an optimpfopose to use both proactive and reactive complementary
stable routing for all demands within this set. [4] applieist approaches to deal with current dynamic traffic demands, sep
robust technique to compute a robust MPLS routing configfately treating both traffic uncertainty sources. Erpected
uration without depending on TM estimation, and discusstgffic fluctuations, we present a time varying approach of
corresponding methods for robust OSPF optimization. GbliRR that outperforms the currestable approach: theMulti-
ious Routing [3] also defines linear algorithms to optimizélour Robust Routing (MHRR). The stable RR may be
worst-case performance for different sizes of traffic utedaty  costly. However, it is easy to control its cost by shrinking
sets, aiming to handle dynamic changes. [6] analyses tihe uncertainty set. We preserve the virtues of RR, but ahang
use of robust routing through a combination of traffic matrithe routing configuration during time. The uncertainty set i
estimation and its corresponding estimation error bouirds, optimally divided into several uncertainty sub-sets thettdy
order to shrink the uncertainty set. The drawback of staldelapt to real traffic loads, and a stable robust routing sehem
robust routing is its inherent dependence on the definition is computed for each sub-set. The partitioning algorithm
the uncertainty set: larger sets allow to handle a broadrngr allows to optimally calculate the exact times when routing
of traffic demands, but at the cost of routing inefficiencynco changes must be performed. For the caseaumpredictable
versely, tighter sets produce more efficient routing sclieméraffic behavior, we propose a novel volume anomaly detec-
but subject to poor performance guarantees. In [5], theaasithtion/isolation algorithm to identify traffic problems andadde
introduce COPE, an approach to deal with this tradeoff in tlieuting changes. This algorithm allows both to detect thie vo
size of the uncertainty set, combining traditional aldoris ume anomaly and to identify and localize the anomalous flow.
with oblivious routing. COPE optimizes routing for predidt To overcome the stability problems of previous approaches,
demands and bounds worst-case performance to ensure-acq@pipose a non data-driven traffic model which remains stable
able efficiency under unexpected traffic events. Neversiseleover time. The main contribution of this detection algarith
COPE proposes a long-term stable routing configuration sdies on the well established conditions of optimalityttita
previous works do (24hs periods), losing the adaptabitityd( presents, a feature generally absent in previous works.
hence the performance efficiency) of reactive routing. @esi Both proactive and reactive methods are combined into a
it is possible not only to assure performance guarantees favel TE approach for dynamic traffic demands: Reactive
unexpected events, but to obtain optimal routings for thRRobust Routing (RRR). This approach uses the MHRR
traffic. to handle typical changes in traffic demands and the de-
As regards anomaly detection in data networks, the praection/isolation algorithm to deal with unexpected vo&im
lem has been extensively studied. In this section, we wdhomalies. The RRR exploits the isolation ability of theedet
just overview those works that have motivated our signaion/isolation algorithm to compute an adapted robustingut
processing based detection algorithm. Signal processitiy: t configuration after the anomalous traffic detection, reuigidis
nigues have been applied to the anomaly detection field [#fpact on network performance during its prevalence. In-add
[9], [19]. The usual behavior of data flows is modeled btion, it also provides a simple yet effective method to awdtm
several approaches: spectral analysis, time series @alyisally detect the end of the anomaly, returning to the MHRR
wavelets decomposition, etc. Anomalies correspond to-deebnfiguration. Contrary to previous works in the field, our
ations from the usual behavior of the data flows. The genepbposal optimizes routing in a robust and adaptive fasfaon
flaw of these algorithms is the lack of stability over timesvery possible traffic demand (and not only for the common-
of the proposed traffic models, as well as the absence aafse traffic). A key feature of the RRR approach relies on
optimality conditions for the detection in most cases. Aoset the fact that the whole routing configuration/reconfigumati
class of methods related to our model concerns statistieddjorithm is completely automatic, an interesting propert
hypotheses testing [17]-[19]. When data flows are param#tat simplifies network operation by self-managing. All the
rically modeled, the design of optimal algorithms is possproposed algorithms in this work are validated using real
ble. Nevertheless, non-parametric approaches are particu traffic data from two backbone networks, the Internet2 Aisle
studied because of the lack of parametric models, and thésekbone network and a private international Tier-2 nekwor



The remainder of this paper is organized as follows. llmad measurements and historical routing, a set of prelyious
Section 1, we recall the basic aspects of the robust routingpserved TMgd*, d?,...,d°}, TM time seriesd(t), etc. [2]
approach. Section Il presents the theoretical backgraunmtd defines this set as polytope based on the intersection of
empirical evaluation of the MHRR. The proposed algorithreeveral half-spaces that result from linear constraintsosed
and traffic model for anomaly detection/isolation are intrdo traffic demand. The Robust Routing Optimization Problem
duced and validated in section IV. Section V presents tfBROP) consists of minimizing,,..., considering all demands
Reactive Robust Routing, showing the automatic interactiovithin D (3). The RROP can be efficiently solved by linear
between the proactive and the reactive components throygbgramming techniques, applying a combined column and
complete real and simulated examples. Finally, Section ¢bnstraint generation method [2]. In a traditional robwstt¥
concludes this work.

Il. ROBUST ROUTING ST;T:;'?E e 3)
Let us consider a network topology defined by a set szk zp > 1 VkeN
of n nodes andL = {1,...,r} links with capacities in f ( )11; <ot VEkeEN VieL
C = (c1,¢2,...,¢). The TM demandd = {d; ;} denotes | rer(), icp
the traffic flow between every nodeand nodej (i # 7) > @ik Stmasca VIEL, VAED
of the network. We re-arrangd as a column vectord = %NI;-, zk >0 VIELVpePk),VkeN
{dk, k=1..m}, Wheredy, represents the traffic flow transmitted Umaz <1

by OD pair k& (OD-flow k) andm = n x (n — 1) is the
number of OD pairs. LelV = {ODy,...,0D,,} be the set of
OD pairs. Link’s informationy; represents the total traffic (i.e.
aggregated OD flows) through lirikn a certain period of time.
This information is available from router's MIB variablesda
it is usually collected every 5’ periods via SNMP [20]. Treffi I1l. M ULTI-HOUR ROBUST ROUTING
demands and links’ traffic are related through the routing
matrix R, ar x m matrix R = {r; 1} where0 < r; < 1
represents the fraction of OD demahdouted through link:

ing application, the obtained routing configuration is agxpl
during long-term periods of time (i.e. daily routing). Inigh
sense, we refer to robust routing S&ble Robust Routing
(SRR).

In [1] we present the advantages of the SRR with respect
to traditional routing approaches: SRR offers stability
guarantees against traffic uncertainty and traffic time-

y=Rxd. (1) variations at a reasonable cost. However, considering a
with y = {y. 1—1.,}. Routing optimization depends onsingle routing_ scheme fqr long-time periods is consereativ
the underlying data transport mechanism; we will focus Gi'd results in sub-optimal performance. We propose a
path-based routing such as MPLS. This optimization comsi§imPle approach to shrink and adapt the uncertainty set
of minimizing certain performance metric associated withlong time that outperforms the SRR. Based on rough
traffic demand. Throughout this work we consider maximufflowledge of traffic variations (i.e. considering expected
link utilization (MLU) as the routing performance criterio traffic behavior), we propose to optimally divide the
Overloaded links tend to cause QoS degradation (e.g. lar§gcertainty set and build a multi-hour routing configuratio
delays and packet losses, throughput reduction, etc.),ldd Mcor_15|der|n_g a single SRR configuration fqr each_sqb-set.
represents a reasonable measure of network performanee. Paily traffic changes can be seen as a time variation of
are many other performance metrics that could be used thstea
of MLU, like path’s end-to-end delay or mean link utilizatio
setting the focus too strictly on the MLU can often lead to
longer average traffic paths and thus adversely affect ttemme
However, we use the MLU as it is the most commonly applied
criterion and it represents an easy to understand perfaenan
metric. For a given routing matri® = {r;;} and a traffic
demandd, the MLU (u,,q4.) is defined as the maximum of
the ratio between link load and link capacity:

Tk d

Umaz (C, d, R) = lefgll?i} k %lk = le%%ﬁ} Z—ll (2) Fig. 1. (a) Daily variation of the polytop®;, (b) time partitioning ofD;.
Let P(k) be the set of possible paths for OD demahd the uncertainty set. At each timg the routing matrix R
Let a:’; be the proportion of traffic demand, that flows and the link load valuey(t) = y' define an instantaneous
through pathp € P(k), 0 < zf < 1. Finally, let z; be uncertainty setD(¢t) = {d € R™,Rxd <y', d > 0}. The
the proportion of traffic demand,, that flows through link continuous union of infinite instantaneous uncertainty
l € L,0 < 2z} < 1. We defineD as the uncertainty setsets along timet defines the daily uncertainty set
where traffic demand may vary. This set can be defined iy = {(d,t) eR™M de Uy e, D), t1 <t < tT}.
different ways, depending on the available informationkli Figure 1(a) explains this idea. Assuming this set is an



union of polytopes, [10] provides a theoretical study OBRR configuration?2, . andRZ, .. In orderto compare
the optimal partitioning ofD;, using a partitioning hyper stable and multi-hour approaches, we apply both routing
plane. [10] proves that this is a NP-hard problem, excepbnfigurations during the whole evaluation period. We idelu
for the case where a partitioning direction is previouslithe routing performance obtained witR, (curve historical
fixed. We define a partitioning hyper plane by its directiorouting) to appreciate the time variation of traffic loads.
vector o and a valuew: a.d = w. In the MHRR approach,

we consider a particular direction for partitioning: thime S

. . . « - Historical Routing .o * ' Historical Routing .
direction In that casey represents the time of the day. V e« Fsaeramtues N O e s | 4T e

-6~ Multi-Hour Robust Routing

-©- Multi-Hour Robust Routing

°
=

define h + 1 hyperplanes at time§w,,ws,..,wn4+1}. The
intersection betweef®; and the half-spaces defined by the
partitioning hyperplanes results ih uncertainty sub-set
]D)l:{]D)tﬂ{d,oad>wl}ﬂ{d,ad<wl+1}},w:1,,h .
Let D, be the smallest single-time set that contains A"

demandsl(t) € D;, w; <t < wiy1 (see figure 1(b)). A SRF

o
@
&
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o
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ConflgurationRiobust is Computed for eaCh Sub_sﬂl. Each 22:00 2:00 G.O%me(hcll?r.so)ﬂ 14:00 20:00 5:00 9:00 13.00Time(1h7(;g(rls) 21:00 1:00
routing configuration is finally applied at each time intdrva (a) Expected daily behavior (b) Anomalous unexpected event
The optimal values of routing changes” = {w3, ..., w};} Fig. 2. Routing performance, stable vs. multi-hour robuastting.

are the solution for the following optimization problemw(

a}nd whﬂ—l are fixed a.priori, as they define the considered Figure Z(a) compares the routing performance (MLU) be-
time interval of analysis): tween these two RR configurations. Polytope, is well
» - . suited for smaller loads, sB, ., performs better during the
w (D) = arg i {fllla)% u““””(Di)} ) first half of the day, when network load is lower. However,
whereu,ma. (D;) is the solution for (3) for polytop®;. [10] when trafﬁ_c increases, _(_jem_ands that do not belgng)pp _
presents a simple algorithm to approximately solve (4)Himit prgduce higher link utlllzgtlons than thpse obt:_;uned with
an arbitrary precision), using a generalization of a simpfrotusi- Thé MHRR consists of computing the time when
dichotomy methodology. The MHRR presents a trade-diputing must be changedu( ~ 8:00 in this case), using the
between performance and routing stability. The more irisry COresponding routing configuration depending on the tifne o

we use, the more adapted the routing becomes. HoweVBE day @ruy.., beforew® and Rf, ., after). The MHRR

the number of intervals should be bounded as many routifgProach presents a performance improvements6f with
changes may lead to instabilities and performance degeadat "€SPect to the SRR approach befarg, reaching a neaz0%

In a general case, 2 sub-sets are enough to handle the uSfidtver-efficiency afterw”™. We repeat the same evaluation
daily variation. but considering a traffic demand that drastically changes (i

a large time-variation of the polytope, caused by a volume

MHRR Evaluation anomaly). Figure 2(b) presents an abrupt change in MLU

We present a comparative analysis between SRR a@most 14 times higher) at time 18:00. In this case, we
MHRR in Abilene, an Internet2 backbone network. Abilen@ssume that this change is known in advance (note that in the
consists of 12 router-level nodes and 30 OC192 links @eneral case, itis not possible to predict these abruptyesn
0C48). The used router-level network topology and traffithe optimal moment for changing routing is* ~ 18:00.
demands are available at [26]. Traffic data consists of §he MHRR approach definitely outperforms the SRR in this
month traffic matrices collected every 5’ via Netflow from th&xperience, presenting a MLU betwesits and60% smaller
Abilene Observatory [27]. The time-variation of the polyéo during the whole evaluation period.
is not a simple homothety [1]; in this sense, we will show
that a routing configuration change during the day improves
routing performance. LeR,, be the historical routing matrix of
Abilene, not necessarily optimaRy(, is available at [26]). We
consider a single time partitioning (i.e. 2 routing intdsya
w; = 20:00, wy = w* and ws3 = 21:00, wherew* is
the solution for (4). For each time interval, we consider t
smallest polytope that includes all possible realizatiowsr

IV. DEALING WITH UNEXPECTEDEVENTS

The proposed MHRR approach offers a robust and efficient
routing configuration, given a rough knowledge of the daily
uncertainty set. However, in the presence of volume an@sali
it is no longer possible to apply the MHRR as the daily

Hencertainty set is unknown. For those cases, we propose a
fast volume anomaly detection/isolation algorithm to glyic
identify faulty traffic. This detection allows to decide a8

that period: . ) : .
. as possible the moment when routing configuration must be
Dap = {deR™ R,xd<yap, d=0} (5) changed. The goal of the algorithm is to detect/isolate ati+ad
wherey, = y2000-v" andyp = y¥ ~219 (maximum tive changed in the time series of traffic demant(t) from a

values for each link). In this wayD, includes all traffic sequence of link load measuremep(g) = R x d(t). We use
demands between 20:00 ang® and Dp betweenw* and link loads as input to avoid relying on seldom availableficaf
21:00 (see figure 1(b)). For each polytope, we computedemands. In this work, we focus on detecting and isolating a



“localized” anomaly, 8 = 6 (01,35 vsOiynen ,5m,i)T, where ¢. Since data are vectors of finite dimension, we propose to
d;; =0if i # j andd, ; = 1 (this corresponds to a chan@é  use the following method to design a discrete spline basis:
OD flow 7). The isolation of the anomalous traffic is possibl@§) we choose a continuous spline basis; (i) we discretize a
since an anomaly in a given OD flow typically spans multiplthese splines according t@ points uniformly chosen on the
links. Real traffic demands follow aon-observablenodel interval[l;m] and (iii) we rearrange all these discrete signals
from link load measurements: sinee< m, it is impossible according to previous sorting order. We finally obtain the
to retrieved(t) from y(¢) without additional assumptions onfollowing linear model for the anomaly-free traffic demand:
the traffic demand. To overcome this difficulty, we propose -

a parsimonious linear model for non-anomalous traffic. This d(t) = Su(t) +£() ()
model renders traffic demands observable and thereforewhere S = (si1s2...s;) is am x ¢ known matrix with

allows to separate usual from anomalous traffic. columnss; and ¢ is small with respect ton. The vectors
_ _ _ si, Which correspond to the rearranged discrete spline, form a
A. Stochastic Traffic Model for Anomaly Detection set of known basis vectors describing the spatial distidbut
We assume that the stochastic process of the OD traffit the traffic andu(t) = (ui(t) ... uq(t))" is the unknown
demandd(t) obeys the following linear model: time varying parameter vector which describes the OD flow
B intensity distribution with respect to the set of vectsysThe
d(®) = A() +£(1) ©6) model for the anomaly-free link traffic is given by:
where A(t) € R™ is the mean traffic demand angl¢)
is a white Gaussian noise with covariance mafri§) that y(t) = Hp(t) +¢(2), 8)

represents the model error. The procegs) represents the where H = RS and {(t) = RE&(t). In this way, we can

“regular” part of the OD TM which can be correctly modeledlescribe the usual behavior of traffic demands from simple

when the behavior of the network is anomaly-free. We propobek measurements. The computation of the rankiofs not

to parameterize this vector by exploiting the stationasitthe simple since it depends on the routing matfix In practice,

spatial distribution of the TM. One of the few invariants okince the number of columns &f is very small, the product

Internet traffic is that a small percentage of flows contebutRS and its rank can be computed very fast. Therefore, we

to a large proportion of total traffic [4], [16]. Hence, if wewill assume thaf{ is full column rank. Finally, the covariance

assume that the traffic distribution between the differeBt Omatrix X is unknown. The remedy consists of computing an

couples is spatially stationary in the absence of an anomaéystlmateE of ¥. Results on the estimation a&f can be found

the order of increasing OD flows remains constant during [22].

long time periods. The proposed traffic model takes advantag

of the stationary property of this ordering. We propose t8- Volume Anomaly Detection/Isolation

classify OD flows in three different classes, depending onThe detection/isolation of a volume anomaly at tigecan

their volume: large OD flows, small OD flows and mediumbe treated as a hypothesis testing problem where the null

size OD flows. The sorted components can be interpreted c’ﬁy@othesisHO {the OD flows are anomaly-free at time

discrete increasing signal. The curve obtained by intet@ ¢, is tested against alternativesi], = {the j-th OD flow

this discrete signal is assumed to be a continuous curveehepresents an anomalous additional amount of tr#&ffiom the

it can be parameterized by using a polynomial approximatiofine,}. The change detection algorithm has to compute a pair
Figure 3 shows the OD flows, sorted in the increasin(gr, v), whereT is the alarm time at which a-type change

d() (v € {1,2,...,m}) is detected and isolated, based on link
traffic observationgyy,y-,... The hypothesis testing can be
written as
- Ho : y(t) ~N(Hp(t),RER"), t=1,2,...,  (9)
- | y(t) ~ N(H p(t), RERT), t =1,... 1o — 1,
- Hi, : § v(t) ~N(Hp(t)+0;r;, RERT), (10)

6‘]'71 < |9J| < 6‘]'727 t=to,to+1,...
wherer;, 1<;j<m denotes the normalizedth column ofR and
0 <01 <02 < +oo are some known bounds on the change
intensity of thej-th OD flow (these bounds are introduced
for technical reasons but they can be chosen arbitrarilg). A
we show in the Appendix, we can simplify this problem by

order of their volume of traffic, as a function of the timgliminating the non-anomalous traffic. In this case, hypsth
(10) can be rewritten as

1//;7 ¥y

=
Large flows
Medium-size flows

( )
"7/17) Small flows

Fig. 3. Approximation of real OD flows by the spline-based elod

Lif several OD flows are simultaneously corrupted, the disefsolation z(t) ~ N(O I—,), t=1 to — 1
algorithm produces an alarm and identifies only one faulty f@@. The al- j =q R ’
gorithm can be extended to detect simultaneous anomaliehé complexity Hto : Z(t) ~ N(ejvja Ir—q) ) (11)

(n° operations) grows highly as the number of hypotheses isessee 1V-B. Oj0<10;] <61, t=to,to+1,...



where v; is a known vector and(t) are the normalized &
residuals obtained from(t) after filtering the non-anomalous »
traffic. The vectorv; corresponds to the signature in the: _ 10
residuals of a change in OD floy. We use the optimal=_ Anomaly Regins = - :\'Trm i
. . . = evel of alarm
recursive algorithn{T,, v,.) proposed in [25] to solve (11) : - 0
T, = min (L0}, v = arg win {T,(k)} : &A >ﬂ"@<>—
0 /\ -15
TT(k) :inf {t 2 1 . min [gt(k’j) _ hk7J:| 2 0} (12) 3460 3480 3500 3520 3?;:%;5:0(?;??‘)3600 3620 3640 3660 3460 3480 3500 3520 E&I—Siﬁéﬁfo(lisissfﬁuo 3620 3640 3660
0g#ksm (a) Recursive functiony: (i, 0) (b) Decision functions ()
with g.(k,7) = ¢:(k,0) — ¢:(j,0). The recursive function: " :
gt(k, O) are defined by * *© Alarm on OD flow 87 ‘
+ N T telotaem
9:(k,0) = (gi-1(k,0) + 2(k,0)) (13) _= . 1
t <* Anomaly begins =, Q
a(kh,0) = log 228 (14) ==
fo(z(t)) °
go(k,0) = 0 for everyl < k < m andg,(0,0) = 0 for all ¢. o
fo represents the probability density function of anomagef 2 i
traffic measurementsf; is the probability density functior "% =% 8" A e
of residualsz(ty),z(to + 1), .. after a change of typé. The (c) Recursive functiory (i, 0) (d) Decision functions (7)
threShOIdShkvj are chosen by the foIIowmg formula: Fig. 4. Typical realizations of decision functions for a F&network (a,b)
b - { hg if1<k<m andj =0 and Abilene (c,d).
Fi hi 1<k, j<m andj#k network or5 minutes in Abilene, but this is the smallest delay

where hq is the detection threshold and is the isolation than can be achieved given these sampling-rates) to detdct a
threshold. For given bounds and $3, this algorithm is isolate the faulty OD flow. An interesting observation ofsthi
asymptotically optimal, i.e. it reaches the lower boundhaf t evaluation is that the detection/isolation algorithm aeks
maximum mean delay for detection [25]. The choice of thgood results in both networks, even though the respective
detection and isolation thresholtls andh; is discussed (with traffic demand behaviors are completely different between
practical comments and simulations) in [24]. these two networks.

C. Validation V. REACTIVE ROBUST ROUTING

We demonstrate the ability of the detection/isolation algo pgth proactive and reactive methods (the MHRR and the
rithm to detect and identify a volume anomaly in SNMP linlgnhomaly detection/isolation algorithm respectively) acen-
flow data from two different networks (different not only ingined into a single approach we refer to as the Reactive
the topology but also in the behavior of traffic demands): Robust Routing (RRR). This approach providessatomatic
large Tier-2 network (50 nodes, 168 measured links and 24gfthod for robust routing configuration/reconfiguratiomséd
non-zero OD flows, sampled at a 10 minute rate) and Abileg@ the monitoring of the network state. The RRR exploits the
(the Abilene dataset consists of Netflow traces, so we use {Bglation ability of the detection/isolation algorithm¢ompute
supplied routing matrix to retrieve link loads). Figure 08i$ 3 new robust routing configuration after the detection of an
the typical realizations of the decision functioggi,0) and anomalous OD flow; at the same time, it detects the end of

s¢(i) = mino<izr<m[9¢(i, k) — hik] vs the elapsed time. Thethe anomaly (if there is any) and returns to the usual MHRR
functionss, (i) are used to “monitor” the OD flows; when therouyting.

function s, (i) exceeds), OD flow i is declared faulty. It is ) _ _

assumed that the anomaly in the Tier-2 network begins at tifile Routing Reconfiguration

3660, and at timel070 in Abilene. Note that after this time, We propose a simple method that exploits both the RR ap-
several decision functiong (i, 0) rapidly grow. Each function proach and the isolation ability of previous detectiori4on
g+(1,0) is associated with OD flow and when this function algorithm to compute the new routing scheme to apply after
grows, it means that OD flow is suspected of carrying anthe detection step. The idea of this reconfiguration is to
abnormal amount of traffic. Contrary to(7, 0), only decision minimize the impacts of the detected anomaly on the network
function s;(159) (s:(87) in Abilene) associated to faulty OD performance. We assume that before the detection of the
flow 159 (87 respectively) grows and finally exceeds th@nomalous traffic, a stable RR configurati®fl,, ., is applied,
threshold. Hence, the functions (i) permit us to isolate computed on the basis of the historical routiRgand the link
the faulty OD flow among all the OD flows associated ttoady, that results from the MHRR algorithnR(} , . is ob-
functionsg, (¢, 0) that have rapidly grown. At tim8660 (1070 tained from (3), usind® = {d € R™, R, x d < y,, d > 0}).
respectively), an alarm is raised and the algorithm selibets After the detection and isolation of the faulty OD flowy the
faulty OD flow 159 (87 respectively). The decision functionanomalous-free traffic demantitakes the valuel = d + 6,

s:(i) needs onlyl observation {0 minutes in the Tier-2 with 8 = 0.5y, where dx = (1., 0k ks Omk) L,



dir = 01if i # k and 65, = 1. We can expand the of our detection algorithm: suppose that we detect andtisola
uncertainty setD in the directions of the routed OD flowa kype anomaly at timet, (i.e. OD flow k is declared as

k (with respect toR,, i.e. the routing configuration thatanomalous). For every timé > ¢y, we only monitor OD
defined D), obtaining anexpanded uncertainty setD" = flow k to detect a change in the distribution of the residuals,
{d eR™ R, xd <y,+ R,0, d >0}. The reader should showing the end of the anomaly (remember that in this work
bear in mind that the type of anomalies we deal with generallye have only considered “localized” anomalies, i.e. andesal
originate outside the network and propagate between erigin a single OD flow at a time). As we focus on a single
destination nodes (e.g. external routing changes, flashds,o OD flow, the multi-hypotheses test (9), (10) becomes a single
denial of service attacks); this justifies the relevancehef thypothesis test, where the null hypothegis = {the k-th
uncertainty set expansion with respect By. Said in other OD flow presents an anomalous additional amount of traffic
words, we detect and identify which is the anomalous OB tested against{; = {the OD flow k is anomaly-fre¢.
flow, an then we consider a bigger uncertainty set that takestead of using a sequential probability test, we propose t
into account the abrupt change of this OD flow. The new R&oply a simple Neyman-Pearson test [23] at each tinTehe
schemeR, , .., is the solution for (3), usingD’. To avoid Neyman-Pearson test represents the most powerful test for a
the estimation of the unknown anomalous volutheve can two simple-hypothesis test [23]:

expandD to the limits of links’ capacities, in the direction fo(z(t))

of OD flow k: D' ={d eR™, R, xd <r,d >0}, Alz(t) = log oy —h>0 (15)
wherer; = yoi_lf To,, = 0andr; = ¢; 'f. Toik > 0..Wh|.Ie. the where the decision levél is defined according to the tolerated
outcome of this approach may result in routing inefficienity, t51se alarm. IfA(z(t)) < 0, the decision test chooses hy-

avoids the estimation errors éf(i.e. we build a more robust pothesisH,. WhenA(z(t)) > 0, the test decides hypothesis

routing). ‘H1, pointing out the end of the anomaly. To conclude this
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Figure 5 presents the evaluation of the RRR approach in the
presence of a sudden and abrupt load change. We conside
the same situation of figure 2(b), comparing the routing
performance of the MHRR and the RRR respectively. As in
section Ill, we assume the daily uncertainty set is complete ¥ sttt S
known for the case of the MHRR (i.e. the abrupt change is Time ¢ (min)
known in advance). For the RRR, the anomaly is automatically (c) Reactive Robust Routing.
detected and the new routing configuration is computed anig. 6. Reactive Robust Routing performance under a sielBDS attack.
immediately applied, based on the expansion of the unogytai
set. We can appreciate that the routing performance of tHe RRection, we present in figure 6 an evaluation of the complete
is slightly worst than the one obtained with the MHRR (lesBRR approach under the presence of a volume attack (e.g.
than 2%). Nevertheless, the RRR represents a real scenagiongle DoS attack). We introduce an artificial sudden anglar
where the anomaly can not be forecasted and has to be deteetddme change in OD flow 63 of the Abilene dataset. This
to compute an accurate rerouting. artificial traffic is put on top of the usual daily traffic betere

) times 1125 and 1350. The first step of the RRR consists of
B. Back to the MHRR scenario computing the MHRR, using an expected daily uncertainty set

After the anomaly detection and the robust routing réFhe optimal division (4) results in* = 1230. The evaluation
configuration, we must provide a way to detect the end bkgins at time 1020, when the MHRR decides to apply
the anomaly, in order to return to the MHRR situation. Thithe SRR R4 (SRR A in fig. 6). The detection/isolation

robust

detection can be easily achieved by using a simplified versialgorithm continuously monitor the network state, and raeti

Maximum Link Utilization

o
=
T

o
w
T




to = 1125 detects and localizes an anomalous behavior in Gbe

flow 63 (figure 6(a)). After the detection (and before the nemust be conducted, especially considering the imposed QoS

impact of routing re-configuration on end-to-end traffic

sampling of link loadsy(to + 1), i.e. a 5’ time-window) the restrictions in the current end-user Internet-servicenaio.

new routing configuration is computed, according to V-A. At
time ¢ =ty + 1 the new routing configuration is deployed and
the anomaly-end detection phase begins. It is importanbte n .
that the matrixd = RS as well as thausual-traffic rejector [2
(see the Appendix) must be recomputed after the change gf
the routing matrixR (in fact, the same re-computation must
be conducted every time the routing matrix changes, rasgart 4
the detection algorithm to avoid transient effects). Theisien
testA(z(t)) remains negative for every time> ¢,, until time 2
t = 1350, when the positive value ol (z(t')) shows the end 6]
of the anomalous behavior in OD flow 63. At this time, the
RRR compares$’ with w* in order to decide which routing to (8l
apply, whether SRRRA, . or RE, (RA, L ift <w* [g
or RE, . if t > w*). Once the new routing configuration
is established, the anomaly detection/isolation algorigharts
again to search for anomalous behaviors. The performarité
improvements of the RRR are evident, up tal@% wrt the (15
MHRR and nea0% wrt the traditional SRR approach.

VI. CONCLUSIONS AND FUTURE WORK (3]
In this paper, we address the routing optimization und&r!
traffic uncertainty problem. We provide a solution that nioliyo  [15]
deals with current dynamic traffic demands in a robust and effig,
cient way but also detects and isolates large-volume armrmal
traffic, improving network operation. We extend the robut”
routing paradigm by introducing the notion of time-varying!él
uncertainty set, setting up a multi-hour robust routingeseh. |19
We show that this approach achieves better resource titiiza
than previous stable robust proposals in different scesari 20)
We introduce an original linear spline-based parsimoniouzsl]
model to parameterize usual traffic behavior from widelys;
available link load measurements. Compared to many other
traffic models, ours remains stable along time, a necessgmy
condition to achieve reliable results. Based on this moael,
present a statistical algorithm to detect and isolate velun[1
anomalies in network traffic. This algorithm presents well25]
established conditions of optimality, unavailable in po&s [
proposals in the field. We apply this algorithm to cope witk7]
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sudden and Iarge traffic Changes in current dynamic demandﬁppEme ELIMINATION OF NON-ANOMALOUS TRAFFIC

complementing the multi-hour robust scheme. We propose a

simple method that exploits both the RR approach and the,
isolation ability of previous detection/isolation alghin to

All these algorithms are merged into a new proposal f&P
robust and reactive routing optimization, the Reactive uRbb

con

on-anomalous trafficH u(t) is eliminated by projecting the

asurement vectoy(¢) on the null space offf. By using the
invariant properties of the Gaussian law, the general ¢avee matrix
compute the new routing scheme to apply after the detectiion(10) is reduced to the identity one. Let us define the matrix
step. The idea of this reconfiguration is to minimize th& =
impacts of the detected anomaly on the network performané&e. --
rrespondlng to eigenvalue The matrixWW satisfies the following
ditions: WTH =
matrix W can be considered as a linear rejector that eliminates the

w,_q) Of sizer x (r — g) composed of eigenvectors

(le--v
1HT

,w,_, of the projection matrixPy = I, — H(H"H)~

0, Ww”T = Pg andW™W = I,_,. The

Routing. The RRR approach deals with traffic uncertainty ifbn-anomalous traffic. Under hypotheﬂg the sequencéV Ty ( )

a completely automatic fashion, simplifying network magag can be modeled ad’ "'y (¢) =
SlnceWTC( t) is a correlated Gaussian vector with covariance matrix

ment.

WTC()+0 w’ rj, j=1,.

We believe that the RRR represents a first step towards= W' RER"W, each vectolV "'y (t) is normalized by using the

a dynamic and robust routing policy, but many importarfquare root matrix.?,

a(t) = S2WTy(t) ~ N(60;v5,Tr—q),

issues remain open for further study. A deep evaluation Wfth v; = soEwT rj.



