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Abstract—Traffic Engineering (TE) has become a challenging
mechanism for network management and resources optimization
due to uncertain and difficult to predict traffic patterns. Recent
works have proposed robust optimization techniques to cope
with uncertain traffic, computing a stable routing configuration
that is immune to demand variations within certain uncertainty
set. However, using a single routing configuration for long-
time periods can be highly inefficient. Even more, the presence
of abnormal and malicious traffic has magnified the network
operation problem, claiming for solutions which not only deal
with traffic uncertainty but also allow to detect and identify faulty
traffic to take the appropriate countermeasures. In this paper,
we introduce the Reactive Robust Routing (RRR) for TE, an
approach that combines both proactive and reactive techniques
to tackle the problem. Based on expected traffic patterns, we
adapt the uncertainty set and build a multi-hour yet robust
routing scheme that outperforms the stable robust approach.
For the case of anomalous and unexpected traffic, we propose a
fast anomaly detection/isolation algorithm to detect and localize
abrupt changes in traffic flows and decide routing changes. This
algorithm is optimal in the sense that it minimizes the decision
delay for a given mean false alarm rate and false isolation
probability. We validate these proposals using real data from
two different backbone networks and we show how the RRR
can handle uncertain and highly dynamic traffic in an automatic
fashion, simplifying network operation.

Index Terms—Traffic Uncertainty, Multi-Hour Robust Rout-
ing, Anomaly Detection/Isolation, Reactive Robust Routing.

I. I NTRODUCTION

Traffic engineering (TE) represents a major issue for net-
work operators in today’s scenario. TE allows the optimization
of network resources usage through multiple mechanisms.
In this work, we focus on routing optimization over an
Autonomous System (AS). This optimization is becoming
increasingly difficult due to the dynamic nature of current
traffic. Traffic demands present two different components or
behaviors: on one hand, a stable and predictable component
due to usual traffic usage patterns (e.g. daily demand fluctua-
tion); on the other hand, an abrupt and unpredictable behavior
due to unexpected events, such as network equipment failures,
flash crowd occurrences, security threats (e.g. denial of service
attacks, virus propagation), external routing changes (e.g.
inter-AS routing through BGP) and new spontaneous overlay
services (e.g. P2P applications). We use the termvolume
anomaly [17] to describe these unexpected network events
(large and sudden link load changes). Recent works [2]–[5]

have proposed a new perspective to the routing optimization
under traffic uncertainty problem: theRobust Routing (RR)
approach. In a robust fashion of TE, demand uncertainty is
taken into account directly within the routing optimization,
computing a single routing configuration for all demands
within an uncertainty set. While this routing configuration
is not optimal for any single traffic matrix (TM) within the
set, it minimizes the worst case performance over the whole
set. In this sense, RR provides performance guarantees (i.e.
worst-case bounds) for all possible traffic variations within the
uncertainty set. The RR approach can be used as aproactive
technique to deal with dynamic traffic. It can handle changing
demands at a reasonable cost (with respect to an ideal but
illusive optimal adaptive routing) up to a certain limit (given
by the size of the uncertainty set). However, applying a RR
algorithm to address both traffic behaviors (usual traffic as
well as volume anomalies) is an inefficient strategy: a single
routing can not be suitable for both situations.

On the contrary, areactive approach could be used as a
complementary strategy to enhance RR performance, respond-
ing to abrupt and large traffic changes with an effective routing
reconfiguration. Volume anomalies may have an important
impact on the network performance, causing sudden situations
of strong network congestion. The early detection and isolation
of these anomalies allows to modify the routing as soon as pos-
sible, limiting their impact. In this work, we propose a signal
processing algorithm for fast load change detection/isolation.
Through out the paper, we use the term anomalyisolation to
refer to the identification and localization of an anomalous
flow among the network traffic.

A. Related Work

There is a large literature on traffic engineering with un-
certain traffic demands. Traditional algorithms rely on a small
group of expected TMs (representative traffic demands from
past observations) or estimated TMs to compute optimal and
reliable routing configurations. An extreme case is presented
in [11], where routing is optimized for a single estimated TM
and it is then applied for long-time periods (24hs periods).
Traffic uncertainty is characterized by multiple TMs in [12],
[13] (e.g. set of TMs from previous day, same day of previous
week, etc.), and different ways to find optimal routes for theset
are presented. Given the dynamic nature of present demands,



this perspective is no longer suitable for current scenario[1]. A
different approach is provided by online reactive algorithms:
TeXCP [14] and MATE [15] both balance load in realtime,
responding to instantaneous traffic demands. Their main goal
is to avoid network congestion by adaptively balancing the
load among paths, based on measurement. Reactive routing
presents a desirable property, that of keeping routing adapted
to dynamic traffic. However, these adaptive algorithms present
poor performance under significant and abrupt traffic changes
[5]. A third category of algorithms consists in Stable Robust
Routing techniques [2]–[6]. In [2], the authors capture traffic
variations by introducing a polyhedral set of demands, ap-
plying linear programming techniques to compute an optimal
stable routing for all demands within this set. [4] applies this
robust technique to compute a robust MPLS routing config-
uration without depending on TM estimation, and discusses
corresponding methods for robust OSPF optimization. Obliv-
ious Routing [3] also defines linear algorithms to optimize
worst-case performance for different sizes of traffic uncertainty
sets, aiming to handle dynamic changes. [6] analyses the
use of robust routing through a combination of traffic matrix
estimation and its corresponding estimation error bounds,in
order to shrink the uncertainty set. The drawback of stable
robust routing is its inherent dependence on the definition of
the uncertainty set: larger sets allow to handle a broader group
of traffic demands, but at the cost of routing inefficiency; con-
versely, tighter sets produce more efficient routing schemes,
but subject to poor performance guarantees. In [5], the authors
introduce COPE, an approach to deal with this tradeoff in the
size of the uncertainty set, combining traditional algorithms
with oblivious routing. COPE optimizes routing for predicted
demands and bounds worst-case performance to ensure accept-
able efficiency under unexpected traffic events. Nevertheless,
COPE proposes a long-term stable routing configuration as
previous works do (24hs periods), losing the adaptability (and
hence the performance efficiency) of reactive routing. Besides,
it is possible not only to assure performance guarantees for
unexpected events, but to obtain optimal routings for this
traffic.

As regards anomaly detection in data networks, the prob-
lem has been extensively studied. In this section, we will
just overview those works that have motivated our signal-
processing based detection algorithm. Signal processing tech-
niques have been applied to the anomaly detection field [7]–
[9], [19]. The usual behavior of data flows is modeled by
several approaches: spectral analysis, time series analysis,
wavelets decomposition, etc. Anomalies correspond to devi-
ations from the usual behavior of the data flows. The general
flaw of these algorithms is the lack of stability over time
of the proposed traffic models, as well as the absence of
optimality conditions for the detection in most cases. A second
class of methods related to our model concerns statistical
hypotheses testing [17]–[19]. When data flows are paramet-
rically modeled, the design of optimal algorithms is possi-
ble. Nevertheless, non-parametric approaches are particularly
studied because of the lack of parametric models, and these

approaches are often suboptimal. The detection/isolationof
traffic anomalies problem was previously treated in [17], using
a TM decomposition on the Principal Component Analysis
(PCA) basis. However, this approach presents a major stability
problem: the PCA basis depends on the measurement period,
rendering it unstable over time.

B. Contributions of the Paper

In the final remarks of [4], the authors raised an interesting
reflection: ”it is not clear whether time-varying demands
should be addressed using proactive (e.g. robust routing)
or reactive (dynamic, adaptive) methods”. In this work, we
propose to use both proactive and reactive complementary
approaches to deal with current dynamic traffic demands, sep-
arately treating both traffic uncertainty sources. Forexpected
traffic fluctuations, we present a time varying approach of
RR that outperforms the currentstableapproach: theMulti-
Hour Robust Routing (MHRR) . The stable RR may be
costly. However, it is easy to control its cost by shrinking
the uncertainty set. We preserve the virtues of RR, but change
the routing configuration during time. The uncertainty set is
optimally divided into several uncertainty sub-sets that better
adapt to real traffic loads, and a stable robust routing scheme
is computed for each sub-set. The partitioning algorithm
allows to optimally calculate the exact times when routing
changes must be performed. For the case ofunpredictable
traffic behavior, we propose a novel volume anomaly detec-
tion/isolation algorithm to identify traffic problems and decide
routing changes. This algorithm allows both to detect the vol-
ume anomaly and to identify and localize the anomalous flow.
To overcome the stability problems of previous approaches,we
propose a non data-driven traffic model which remains stable
over time. The main contribution of this detection algorithm
relies on the well established conditions of optimality that it
presents, a feature generally absent in previous works.

Both proactive and reactive methods are combined into a
novel TE approach for dynamic traffic demands: theReactive
Robust Routing (RRR). This approach uses the MHRR
to handle typical changes in traffic demands and the de-
tection/isolation algorithm to deal with unexpected volume
anomalies. The RRR exploits the isolation ability of the detec-
tion/isolation algorithm to compute an adapted robust routing
configuration after the anomalous traffic detection, reducing its
impact on network performance during its prevalence. In addi-
tion, it also provides a simple yet effective method to automat-
ically detect the end of the anomaly, returning to the MHRR
configuration. Contrary to previous works in the field, our
proposal optimizes routing in a robust and adaptive fashionfor
every possible traffic demand (and not only for the common-
case traffic). A key feature of the RRR approach relies on
the fact that the whole routing configuration/reconfiguration
algorithm is completely automatic, an interesting property
that simplifies network operation by self-managing. All the
proposed algorithms in this work are validated using real
traffic data from two backbone networks, the Internet2 Abilene
backbone network and a private international Tier-2 network.



The remainder of this paper is organized as follows. In
Section II, we recall the basic aspects of the robust routing
approach. Section III presents the theoretical backgroundand
empirical evaluation of the MHRR. The proposed algorithm
and traffic model for anomaly detection/isolation are intro-
duced and validated in section IV. Section V presents the
Reactive Robust Routing, showing the automatic interaction
between the proactive and the reactive components through
complete real and simulated examples. Finally, Section VI
concludes this work.

II. ROBUST ROUTING

Let us consider a network topology defined by a set
of n nodes andL = {1, . . . , r} links with capacities in
C = (c1, c2, . . . , cr). The TM demandd = {di,j} denotes
the traffic flow between every nodei and nodej (i 6= j)
of the network. We re-arranged as a column vector,d =
{dk, k=1..m}, wheredk represents the traffic flow transmitted
by OD pair k (OD-flow k) and m = n × (n − 1) is the
number of OD pairs. LetN = {OD1, . . . , ODm} be the set of
OD pairs. Link’s informationyl represents the total traffic (i.e.
aggregated OD flows) through linkl in a certain period of time.
This information is available from router’s MIB variables and
it is usually collected every 5’ periods via SNMP [20]. Traffic
demands and links’ traffic are related through the routing
matrix R, a r × m matrix R = {rl,k} where0 6 rl,k 6 1
represents the fraction of OD demandk routed through linkl:

y = R × d. (1)

with y = {yl, l=1..r}. Routing optimization depends on
the underlying data transport mechanism; we will focus on
path-based routing such as MPLS. This optimization consists
of minimizing certain performance metric associated with
traffic demand. Throughout this work we consider maximum
link utilization (MLU) as the routing performance criterion.
Overloaded links tend to cause QoS degradation (e.g. larger
delays and packet losses, throughput reduction, etc.), so MLU
represents a reasonable measure of network performance. The
are many other performance metrics that could be used instead
of MLU, like path’s end-to-end delay or mean link utilization;
setting the focus too strictly on the MLU can often lead to
longer average traffic paths and thus adversely affect the mean.
However, we use the MLU as it is the most commonly applied
criterion and it represents an easy to understand performance
metric. For a given routing matrixR = {rl,k} and a traffic
demandd, the MLU (umax) is defined as the maximum of
the ratio between link load and link capacity:

umax (C,d, R) = max
l∈{1...r}

∑

k

rl,k · dk

cl

= max
l∈{1...r}

yl

cl

(2)

Let P (k) be the set of possible paths for OD demandk.
Let xk

p be the proportion of traffic demanddk that flows
through pathp ∈ P (k), 0 6 xk

p 6 1. Finally, let xk
l be

the proportion of traffic demanddk that flows through link
l ∈ L, 0 6 xk

l 6 1. We defineD as the uncertainty set
where traffic demand may vary. This set can be defined in
different ways, depending on the available information: link

load measurements and historical routing, a set of previously
observed TMs{d1,d2, . . . ,do}, TM time seriesd(t), etc. [2]
defines this set as apolytope, based on the intersection of
several half-spaces that result from linear constraints imposed
to traffic demand. The Robust Routing Optimization Problem
(RROP) consists of minimizingumax, considering all demands
within D (3). The RROP can be efficiently solved by linear
programming techniques, applying a combined column and
constraint generation method [2]. In a traditional robust rout-

minimize umax

subject to: (3)∑
p∈P(k)

xk
p > 1 ∀ k ∈ N

∑
p∈P(k), l∈p

xk
p 6 xk

l ∀ k ∈ N, ∀ l ∈ L

∑
k∈N

xk
l .dk 6 umax · cl ∀ l ∈ L, ∀ d ∈ D

xk
p , xk

l > 0 ∀ l ∈ L, ∀ p ∈ P (k), ∀ k ∈ N

umax 6 1

ing application, the obtained routing configuration is applied
during long-term periods of time (i.e. daily routing). In this
sense, we refer to robust routing asStable Robust Routing
(SRR).

III. M ULTI -HOUR ROBUST ROUTING

In [1] we present the advantages of the SRR with respect
to traditional routing approaches: SRR offers stability
guarantees against traffic uncertainty and traffic time-
variations at a reasonable cost. However, considering a
single routing scheme for long-time periods is conservative
and results in sub-optimal performance. We propose a
simple approach to shrink and adapt the uncertainty set
along time that outperforms the SRR. Based on rough
knowledge of traffic variations (i.e. considering expected
traffic behavior), we propose to optimally divide the
uncertainty set and build a multi-hour routing configuration,
considering a single SRR configuration for each sub-set.
Daily traffic changes can be seen as a time variation of

time

t1

tj

tτ

Dt

time

20:00

8:00

21:00

DA

DB

(a) (b)

Fig. 1. (a) Daily variation of the polytopeDt, (b) time partitioning ofDt.

the uncertainty set. At each timet, the routing matrixR

and the link load valuesy(t) = yt define an instantaneous
uncertainty setD(t) = {d ∈ R

m, R × d 6 yt, d > 0}. The
continuous union of infinite instantaneous uncertainty
sets along time t defines the daily uncertainty set
Dt =

{
(d, t) ∈ R

m+1, d ∈ ∪ t16t6tτ
D(t), t1 6 t 6 tτ

}
.

Figure 1(a) explains this idea. Assuming this set is an



union of polytopes, [10] provides a theoretical study of
the optimal partitioning ofDt, using a partitioning hyper
plane. [10] proves that this is a NP-hard problem, except
for the case where a partitioning direction is previously
fixed. We define a partitioning hyper plane by its direction
vector α and a valuew: α.d = w. In the MHRR approach,
we consider a particular direction for partitioning: thetime
direction. In that case,w represents the time of the day. We
define h + 1 hyperplanes at times{w1, w2, .., wh+1}. The
intersection betweenDt and the half-spaces defined by these
partitioning hyperplanes results inh uncertainty sub-sets
Di = {Dt ∩ {d, α.d > wi} ∩ {d, α.d 6 wi+1}} , ∀i = 1, ., h.
Let Di be the smallest single-time set that contains all
demandsd(t) ∈ Di, wi 6 t 6 wi+1 (see figure 1(b)). A SRR
configurationRi

robust is computed for each sub-setDi. Each
routing configuration is finally applied at each time interval.
The optimal values of routing changesw∗ = {w∗

2 , . . . , w∗
h}

are the solution for the following optimization problem (w1

and wh+1 are fixed a priori, as they define the considered
time interval of analysis):

w∗(Dt) = argmin
w

{
max
i=1..h

umax(Di)

}
(4)

whereumax(Di) is the solution for (3) for polytopeDi. [10]
presents a simple algorithm to approximately solve (4) (within
an arbitrary precision), using a generalization of a simple
dichotomy methodology. The MHRR presents a trade-off
between performance and routing stability. The more intervals
we use, the more adapted the routing becomes. However,
the number of intervals should be bounded as many routing
changes may lead to instabilities and performance degradation.
In a general case, 2 sub-sets are enough to handle the usual
daily variation.

MHRR Evaluation

We present a comparative analysis between SRR and
MHRR in Abilene, an Internet2 backbone network. Abilene
consists of 12 router-level nodes and 30 OC192 links (2
OC48). The used router-level network topology and traffic
demands are available at [26]. Traffic data consists of 6-
month traffic matrices collected every 5’ via Netflow from the
Abilene Observatory [27]. The time-variation of the polytope
is not a simple homothety [1]; in this sense, we will show
that a routing configuration change during the day improves
routing performance. LetRo be the historical routing matrix of
Abilene, not necessarily optimal (Ro is available at [26]). We
consider a single time partitioning (i.e. 2 routing intervals),
w1 = 20:00, w2 = w∗ and w3 = 21:00, wherew∗ is
the solution for (4). For each time interval, we consider the
smallest polytope that includes all possible realizationsover
that period:

DA,B = {d ∈ R
m, Ro × d 6 yA,B, d > 0} (5)

where yA = y20:00−w∗

max and yB = yw∗−21:00
max (maximum

values for each link). In this way,DA includes all traffic
demands between 20:00 andw∗ and DB betweenw∗ and
21:00 (see figure 1(b)). For each polytope, we compute a

SRR configuration,RA
robust andRB

robust. In order to compare
stable and multi-hour approaches, we apply both routing
configurations during the whole evaluation period. We include
the routing performance obtained withRo (curve historical
routing) to appreciate the time variation of traffic loads.
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Fig. 2. Routing performance, stable vs. multi-hour robust routing.

Figure 2(a) compares the routing performance (MLU) be-
tween these two RR configurations. PolytopeDA is well
suited for smaller loads, soRA

robust performs better during the
first half of the day, when network load is lower. However,
when traffic increases, demands that do not belong toDA

produce higher link utilizations than those obtained with
RB

robust. The MHRR consists of computing the time when
routing must be changed (w∗ ≈ 8:00 in this case), using the
corresponding routing configuration depending on the time of
the day (RA

robust beforew∗ and RB
robust after). The MHRR

approach presents a performance improvement of15% with
respect to the SRR approach beforew∗, reaching a near20%
of over-efficiency afterw∗. We repeat the same evaluation
but considering a traffic demand that drastically changes (i.e.
a large time-variation of the polytope, caused by a volume
anomaly). Figure 2(b) presents an abrupt change in MLU
(almost 14 times higher) at time 18:00. In this case, we
assume that this change is known in advance (note that in the
general case, it is not possible to predict these abrupt changes).
The optimal moment for changing routing isw∗ ≈ 18:00.
The MHRR approach definitely outperforms the SRR in this
experience, presenting a MLU between10% and60% smaller
during the whole evaluation period.

IV. D EALING WITH UNEXPECTEDEVENTS

The proposed MHRR approach offers a robust and efficient
routing configuration, given a rough knowledge of the daily
uncertainty set. However, in the presence of volume anomalies
it is no longer possible to apply the MHRR as the daily
uncertainty set is unknown. For those cases, we propose a
fast volume anomaly detection/isolation algorithm to quickly
identify faulty traffic. This detection allows to decide as soon
as possible the moment when routing configuration must be
changed. The goal of the algorithm is to detect/isolate an addi-
tive changeθ in the time series of traffic demandd(t) from a
sequence of link load measurementsy(t) = R × d(t). We use
link loads as input to avoid relying on seldom available traffic
demands. In this work, we focus on detecting and isolating a



“localized” anomaly1, θ = θ (δ1,i, . . . , δi,i, . . . , δm,i)
T , where

δi,j = 0 if i 6= j andδi,i = 1 (this corresponds to a changeθ in
OD flow i). The isolation of the anomalous traffic is possible
since an anomaly in a given OD flow typically spans multiple
links. Real traffic demands follow anon-observablemodel
from link load measurements: sincer < m, it is impossible
to retrieved(t) from y(t) without additional assumptions on
the traffic demand. To overcome this difficulty, we propose
a parsimonious linear model for non-anomalous traffic. This
model renders traffic demands observable and therefore, it
allows to separate usual from anomalous traffic.

A. Stochastic Traffic Model for Anomaly Detection

We assume that the stochastic process of the OD traffic
demandd(t) obeys the following linear model:

d(t) = λ(t) + ξ(t) (6)

where λ(t) ∈ R
m is the mean traffic demand andξ(t)

is a white Gaussian noise with covariance matrixΣ(t) that
represents the model error. The processλ(t) represents the
“regular” part of the OD TM which can be correctly modeled
when the behavior of the network is anomaly-free. We propose
to parameterize this vector by exploiting the stationarityof the
spatial distribution of the TM. One of the few invariants of
Internet traffic is that a small percentage of flows contribute
to a large proportion of total traffic [4], [16]. Hence, if we
assume that the traffic distribution between the different OD
couples is spatially stationary in the absence of an anomaly,
the order of increasing OD flows remains constant during
long time periods. The proposed traffic model takes advantage
of the stationary property of this ordering. We propose to
classify OD flows in three different classes, depending on
their volume: large OD flows, small OD flows and medium-
size OD flows. The sorted components can be interpreted as a
discrete increasing signal. The curve obtained by interpolating
this discrete signal is assumed to be a continuous curve, hence
it can be parameterized by using a polynomial approximation.

Figure 3 shows the OD flows, sorted in the increasing
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Fig. 3. Approximation of real OD flows by the spline-based model.

order of their volume of traffic, as a function of the time

1If several OD flows are simultaneously corrupted, the detection/isolation
algorithm produces an alarm and identifies only one faulty ODflow. The al-
gorithm can be extended to detect simultaneous anomalies, but the complexity
(no operations) grows highly as the number of hypotheses increases, see IV-B.

t. Since data are vectors of finite dimension, we propose to
use the following method to design a discrete spline basis:
(i) we choose a continuous spline basis; (ii) we discretize all
these splines according tom points uniformly chosen on the
interval [1; m] and (iii) we rearrange all these discrete signals
according to previous sorting order. We finally obtain the
following linear model for the anomaly-free traffic demand:

d(t) = Sµ(t) + ξ(t) (7)

where S = (s1 s2 . . . sq) is a m × q known matrix with
columnssj and q is small with respect tom. The vectors
si, which correspond to the rearranged discrete spline, form a
set of known basis vectors describing the spatial distribution
of the traffic andµ(t) = (µ1(t) . . . µq(t))

T is the unknown
time varying parameter vector which describes the OD flow
intensity distribution with respect to the set of vectorssi. The
model for the anomaly-free link traffic is given by:

y(t) = Hµ(t) + ζ(t), (8)

where H = RS and ζ(t) = Rξ(t). In this way, we can
describe the usual behavior of traffic demands from simple
link measurements. The computation of the rank ofH is not
simple since it depends on the routing matrixR. In practice,
since the number of columns ofH is very small, the product
RS and its rank can be computed very fast. Therefore, we
will assume thatH is full column rank. Finally, the covariance
matrix Σ is unknown. The remedy consists of computing an
estimateΣ̂ of Σ. Results on the estimation of̂Σ can be found
in [22].

B. Volume Anomaly Detection/Isolation

The detection/isolation of a volume anomaly at timet0 can
be treated as a hypothesis testing problem where the null
hypothesisH0

t0
= {the OD flows are anomaly-free at time

t0} is tested againstm alternativesHj
t0

= {the j-th OD flow
presents an anomalous additional amount of trafficθ from the
time t0}. The change detection algorithm has to compute a pair
(T, ν), whereT is the alarm time at which aν-type change
(ν ∈ {1, 2, . . . , m}) is detected and isolated, based on link
traffic observationsy1,y2, ... The hypothesis testing can be
written as

H0 : y(t) ∼ N (H µ(t), RΣRT ) , t = 1, 2, . . . , (9)

Hj
t0

:





y(t) ∼ N (H µ(t), RΣRT ), t = 1, . . . , t0 − 1,

y(t) ∼ N (H µ(t) + θj rj , RΣRT ) ,

θj,1 6 |θj | 6 θj,2 , t = t0, t0 + 1, . . .

(10)

whererj, 16j6m denotes the normalizedj-th column ofR and
0 < θj,1 < θj,2 < +∞ are some known bounds on the change
intensity of thej-th OD flow (these bounds are introduced
for technical reasons but they can be chosen arbitrarily). As
we show in the Appendix, we can simplify this problem by
eliminating the non-anomalous traffic. In this case, hypothesis
(10) can be rewritten as

Hj
t0

:






z(t) ∼ N (0, Ir−q) , t = 1, . . . , t0 − 1,

z(t) ∼ N (θjvj , Ir−q) ,

θj,0 6 |θj | 6 θj,1 , t = t0, t0 + 1, . . .

(11)



where vj is a known vector andz(t) are the normalized
residuals obtained fromy(t) after filtering the non-anomalous
traffic. The vectorvj corresponds to the signature in the
residuals of a change in OD flowj. We use the optimal
recursive algorithm(Tr, νr) proposed in [25] to solve (11) :

Tr = min
16k6m

{Tr(k)}, νr = arg min
16k6m

{Tr(k)}

Tr(k)= inf

{
t > 1 : min

06j 6=k6m
[gt(k, j) − hk,j ] > 0

}
(12)

with gt(k, j) = gt(k, 0) − gt(j, 0). The recursive functions
gt(k, 0) are defined by

gt(k, 0) = (gt−1(k, 0) + zt(k, 0))+ (13)

zt(k, 0) = log
fk(z(t))

f0(z(t))
(14)

g0(k, 0) = 0 for every1 6 k 6 m andgt(0, 0) = 0 for all t.
f0 represents the probability density function of anomaly-free
traffic measurements.fk is the probability density function
of residualsz(t0), z(t0 + 1), .. after a change of typek. The
thresholdshk,j are chosen by the following formula:

hk,j =

{
hd if 1 6 k 6 m andj = 0
hi if 1 6 k, j 6 m andj 6= k

where hd is the detection threshold andhi is the isolation
threshold. For given boundsγ and β, this algorithm is
asymptotically optimal, i.e. it reaches the lower bound of the
maximum mean delay for detection [25]. The choice of the
detection and isolation thresholdshd andhi is discussed (with
practical comments and simulations) in [24].

C. Validation

We demonstrate the ability of the detection/isolation algo-
rithm to detect and identify a volume anomaly in SNMP link
flow data from two different networks (different not only in
the topology but also in the behavior of traffic demands): a
large Tier-2 network (50 nodes, 168 measured links and 2450
non-zero OD flows, sampled at a 10 minute rate) and Abilene
(the Abilene dataset consists of Netflow traces, so we use the
supplied routing matrix to retrieve link loads). Figure 4 shows
the typical realizations of the decision functionsgt(i, 0) and
st(i) = min06i6=k6m[gt(i, k)− hi,k] vs the elapsed time. The
functionsst(i) are used to “monitor” the OD flows; when the
function st(i) exceeds0, OD flow i is declared faulty. It is
assumed that the anomaly in the Tier-2 network begins at time
3660, and at time1070 in Abilene. Note that after this time,
several decision functionsgt(i, 0) rapidly grow. Each function
gt(i, 0) is associated with OD flowi and when this function
grows, it means that OD flowi is suspected of carrying an
abnormal amount of traffic. Contrary togt(i, 0), only decision
function st(159) (st(87) in Abilene) associated to faulty OD
flow 159 (87 respectively) grows and finally exceeds the
threshold. Hence, the functionsst(i) permit us to isolate
the faulty OD flow among all the OD flows associated to
functionsgt(i, 0) that have rapidly grown. At time3660 (1070
respectively), an alarm is raised and the algorithm selectsthe
faulty OD flow 159 (87 respectively). The decision function
st(i) needs only1 observation (10 minutes in the Tier-2
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Fig. 4. Typical realizations of decision functions for a Tier-2 network (a,b)
and Abilene (c,d).

network or5 minutes in Abilene, but this is the smallest delay
than can be achieved given these sampling-rates) to detect and
isolate the faulty OD flow. An interesting observation of this
evaluation is that the detection/isolation algorithm achieves
good results in both networks, even though the respective
traffic demand behaviors are completely different between
these two networks.

V. REACTIVE ROBUST ROUTING

Both proactive and reactive methods (the MHRR and the
anomaly detection/isolation algorithm respectively) arecom-
bined into a single approach we refer to as the Reactive
Robust Routing (RRR). This approach provides anautomatic
method for robust routing configuration/reconfiguration, based
on the monitoring of the network state. The RRR exploits the
isolation ability of the detection/isolation algorithm tocompute
a new robust routing configuration after the detection of an
anomalous OD flow; at the same time, it detects the end of
the anomaly (if there is any) and returns to the usual MHRR
routing.

A. Routing Reconfiguration

We propose a simple method that exploits both the RR ap-
proach and the isolation ability of previous detection/isolation
algorithm to compute the new routing scheme to apply after
the detection step. The idea of this reconfiguration is to
minimize the impacts of the detected anomaly on the network
performance. We assume that before the detection of the
anomalous traffic, a stable RR configurationRA

robust is applied,
computed on the basis of the historical routingRo and the link
loadyo that results from the MHRR algorithm (RA

robust is ob-
tained from (3), usingD = {d ∈ R

m, Ro × d 6 yo, d > 0}).
After the detection and isolation of the faulty OD flowk, the
anomalous-free traffic demandd takes the valued’ = d + θ,
with θ = θ.δk, where δk = (δ1,k, . . . , δk,k, . . . , δm,k)T ,



δi,k = 0 if i 6= k and δk,k = 1. We can expand the
uncertainty setD in the directions of the routed OD flow
k (with respect toRo, i.e. the routing configuration that
definedD), obtaining anexpanded uncertainty setD’ ={
d’ ∈ R

m, Ro × d’ 6 yo + Roθ, d’ > 0
}

. The reader should
bear in mind that the type of anomalies we deal with generally
originate outside the network and propagate between origin-
destination nodes (e.g. external routing changes, flash crowds,
denial of service attacks); this justifies the relevance of the
uncertainty set expansion with respect toRo. Said in other
words, we detect and identify which is the anomalous OD
flow, an then we consider a bigger uncertainty set that takes
into account the abrupt change of this OD flow. The new RR
schemeR’

robust is the solution for (3), usingD’ . To avoid
the estimation of the unknown anomalous volumeθ, we can
expandD to the limits of links’ capacities, in the direction
of OD flow k : D” =

{
d’ ∈ R

m, Ro × d’ 6 τ , d’ > 0
}

,
whereτi = yoi

if roi,k
= 0 andτi = ci if roi,k

> 0. While the
outcome of this approach may result in routing inefficiency,it
avoids the estimation errors ofθ (i.e. we build a more robust
routing).
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Fig. 5. Reactive Robust Routing - routing reconfiguration after the detection
af a large and abrupt traffic change.

Figure 5 presents the evaluation of the RRR approach in the
presence of a sudden and abrupt load change. We consider
the same situation of figure 2(b), comparing the routing
performance of the MHRR and the RRR respectively. As in
section III, we assume the daily uncertainty set is completely
known for the case of the MHRR (i.e. the abrupt change is
known in advance). For the RRR, the anomaly is automatically
detected and the new routing configuration is computed and
immediately applied, based on the expansion of the uncertainty
set. We can appreciate that the routing performance of the RRR
is slightly worst than the one obtained with the MHRR (less
than 2%). Nevertheless, the RRR represents a real scenario,
where the anomaly can not be forecasted and has to be detected
to compute an accurate rerouting.

B. Back to the MHRR scenario

After the anomaly detection and the robust routing re-
configuration, we must provide a way to detect the end of
the anomaly, in order to return to the MHRR situation. This
detection can be easily achieved by using a simplified version

of our detection algorithm: suppose that we detect and isolate
a ktype anomaly at timet0 (i.e. OD flow k is declared as
anomalous). For every timet > t0, we only monitor OD
flow k to detect a change in the distribution of the residuals,
showing the end of the anomaly (remember that in this work
we have only considered “localized” anomalies, i.e. anomalies
in a single OD flow at a time). As we focus on a single
OD flow, the multi-hypotheses test (9), (10) becomes a single
hypothesis test, where the null hypothesisH0 = {the k-th
OD flow presents an anomalous additional amount of traffic}
is tested againstH1 = {the OD flow k is anomaly-free}.
Instead of using a sequential probability test, we propose to
apply a simple Neyman-Pearson test [23] at each timet. The
Neyman-Pearson test represents the most powerful test for a
two simple-hypothesis test [23]:

∆(z(t)) = log
f0(z(t))

fk(z(t))
− h > 0 (15)

where the decision levelh is defined according to the tolerated
false alarm. If∆(z(t)) < 0, the decision test chooses hy-
pothesisH0. When∆(z(t)) > 0, the test decides hypothesis
H1, pointing out the end of the anomaly. To conclude this
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Fig. 6. Reactive Robust Routing performance under a simulated DoS attack.

section, we present in figure 6 an evaluation of the complete
RRR approach under the presence of a volume attack (e.g.
single DoS attack). We introduce an artificial sudden and large
volume change in OD flow 63 of the Abilene dataset. This
artificial traffic is put on top of the usual daily traffic between
times 1125 and 1350. The first step of the RRR consists of
computing the MHRR, using an expected daily uncertainty set.
The optimal division (4) results inw∗ = 1230. The evaluation
begins at time 1020, when the MHRR decides to apply
the SRRRA

robust (SRR A in fig. 6). The detection/isolation
algorithm continuously monitor the network state, and at time



t0 = 1125 detects and localizes an anomalous behavior in OD
flow 63 (figure 6(a)). After the detection (and before the new
sampling of link loadsy(t0 + 1), i.e. a 5’ time-window) the
new routing configuration is computed, according to V-A. At
time t = t0 +1 the new routing configuration is deployed and
the anomaly-end detection phase begins. It is important to note
that the matrixH = RS as well as theusual-traffic rejector
(see the Appendix) must be recomputed after the change of
the routing matrixR (in fact, the same re-computation must
be conducted every time the routing matrix changes, restarting
the detection algorithm to avoid transient effects). The decision
test∆(z(t)) remains negative for every timet > t0, until time
t’ = 1350, when the positive value of∆(z(t’ )) shows the end
of the anomalous behavior in OD flow 63. At this time, the
RRR comparest′ with w∗ in order to decide which routing to
apply, whether SRRRA

robust or RB
robust (RA

robust if t’ < w∗

or RB
robust if t’ > w∗). Once the new routing configuration

is established, the anomaly detection/isolation algorithm starts
again to search for anomalous behaviors. The performance
improvements of the RRR are evident, up to a40% wrt the
MHRR and near50% wrt the traditional SRR approach.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we address the routing optimization under
traffic uncertainty problem. We provide a solution that not only
deals with current dynamic traffic demands in a robust and effi-
cient way but also detects and isolates large-volume anomalous
traffic, improving network operation. We extend the robust
routing paradigm by introducing the notion of time-varying
uncertainty set, setting up a multi-hour robust routing scheme.
We show that this approach achieves better resource utilization
than previous stable robust proposals in different scenarios.
We introduce an original linear spline-based parsimonious
model to parameterize usual traffic behavior from widely
available link load measurements. Compared to many other
traffic models, ours remains stable along time, a necessary
condition to achieve reliable results. Based on this model,we
present a statistical algorithm to detect and isolate volume
anomalies in network traffic. This algorithm presents well-
established conditions of optimality, unavailable in previous
proposals in the field. We apply this algorithm to cope with
sudden and large traffic changes in current dynamic demands,
complementing the multi-hour robust scheme. We propose a
simple method that exploits both the RR approach and the
isolation ability of previous detection/isolation algorithm to
compute the new routing scheme to apply after the detection
step. The idea of this reconfiguration is to minimize the
impacts of the detected anomaly on the network performance.
All these algorithms are merged into a new proposal for
robust and reactive routing optimization, the Reactive Robust
Routing. The RRR approach deals with traffic uncertainty in
a completely automatic fashion, simplifying network manage-
ment.

We believe that the RRR represents a first step towards
a dynamic and robust routing policy, but many important
issues remain open for further study. A deep evaluation of

the impact of routing re-configuration on end-to-end traffic
must be conducted, especially considering the imposed QoS
restrictions in the current end-user Internet-services scenario.
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APPENDIX - ELIMINATION OF NON -ANOMALOUS TRAFFIC

Non-anomalous trafficHµ(t) is eliminated by projecting the
measurement vectory(t) on the null space ofH . By using the
invariant properties of the Gaussian law, the general covariance matrix
in (10) is reduced to the identity one. Let us define the matrix
W = (w1, .., wr−q) of size r × (r − q) composed of eigenvectors
w1, .., wr−q of the projection matrixP⊥

H = Ir − H(HT H)
−1

HT

corresponding to eigenvalue1. The matrixW satisfies the following
conditions:W T H = 0, WW T = P⊥

H and W T W = Ir−q. The
matrix W can be considered as a linear rejector that eliminates the
non-anomalous traffic. Under hypothesisH

j
t0

, the sequenceW T
y(t)

can be modeled asW T
y(t) = W T ζ(t)+ θj W T

rj , j = 1, .., m.

SinceW T ζ(t) is a correlated Gaussian vector with covariance matrix
Σ̃ = W T RΣRT W , each vectorW T

y(t) is normalized by using the
square root matrix̃Σ

1
2 , z(t) = Σ̃−

1
2 W T

y(t) ∼ N ( θj vj , Ir−q),
with vj = Σ̃−

1
2 W T

rj .


