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Abstract. The paper studies the problem of allocating bandwidth re-
sources of a Service Overlay Network, to optimize revenue. Clients bid for
network capacity in periodically held auctions, under the condition that
resources allocated in an auction are reserved for the entire duration of
the connection, not subject to future contention. This makes the optimal
allocation coupled over time, which we formulate as a Markov Decision
Process (MDP). Studying first the single resource case, we develop a re-
ceding horizon approximation to the optimal MDP policy, using current
revenue and the expected revenue in the next step to make bandwidth
assignments. A second approximation is then found, suitable for gener-
alization to the network case, where bids for different routes compete for
shared resources. In that case we develop a distributed implementation
of the auction, and demonstrate its performance through simulations.

1 Introduction

In recent years, many types of “overlay” networks have been proposed for the
Internet. These overlays include content delivery networks, peer-to-peer file shar-
ing, some voice-over-IP services, and testbed networks such as PlanetLab. A par-
ticular architecture called Service Overlay Network (SON) [6] has been proposed
to deploy value-added Internet services with end-to-end quality of service (QoS).
The basic components of the SON architecture are service gateways located in
domain boundaries, and a network of tunnels acquired from the underlying do-
mains with guaranteed bandwidth. Through this overlay, a client with good local
connectivity in one domain can secure a high QoS connection with a remote do-
main. The overlay operator invests in the infrastructure and leased bandwidth
to offer high-value services, for instance through distributed content servers; a
profitable sale of this capacity is thus essential. In this paper we study an access
control policy based on auctions for this purpose, where users bid for a service
connection and the network gives access to the best bids to maximize its payoff,
subject to the QoS constraints for the admitted clients.

Resource sharing policies based on auctions have been analyzed by different
previous works [7],[5],[8],[10],[3]. One main difference in our approach is that we
impose the condition that once bandwidth has been allocated in an auction, the
successful bidder is guaranteed to hold it for the duration of his/her connection.
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Previous work on auctions allows future bidders to compete with incumbent
ones, albeit given the latter some advantage. Our application scenario does not
allow this: consider selling video-on-demand content about 100 minutes long, in
auctions every 5 minutes. A consumer will not purchase the service if he/she
faces the risk of losing the connection close to the end of the movie.

Reserving bandwidth over multiple auctions means that the operator must
assume the risk of future bids. Optimizing revenue with this risk becomes a
stochastic dynamic optimization problem, that we formulate as a Markov de-
cision process (MDP) [1, 9]. The optimization involves a tradeoff between the
revenue of the current auction, and the expected value of bids the operator will
miss in future auctions if it runs out of resources. In Section 2 we analyze the
above problem in the case of a single link, and develop a series of approximations
to the optimal policy. The aim of our approximations is to allow a distributed
implementation of the policy over an arbitrary network topology, where bids
are received at the edge for end-to-end services, and the network optimizes the
overall revenue. This is described in Section 3, and the method is evaluated by
simulation. Conclusions given in Section 4.

2 Auctions for one link

In this section we consider auctions for one access link. We make a few simplifying
assumptions: all consumers bid for the same amount (unit) of bandwidth, and
the link has capacity for C such connections. Bids are collected for a period of
time T , and an auction is held; we assume for simplicity that the number N
of bids is given, and bids are drawn from a known probability distribution. We

denote by b
(1)
k ≥ b

(2)
k ≥ · · · ≥ b

(N)
k the ordered bids in decreasing order that

participate in the auction at time kT . The bids are for the entire duration of the
service, and this is a first-price auction: the admitted users will pay their bid.

Let ak represent the number of admitted connections in auction k. The rev-
enue from this auction is then

Ubk
(ak) :=

ak
∑

i=1

b
(i)
k . (1)

The function Ub(a) is defined above for integer values of a; it is also convenient
to extend it to a function of a ∈ R, by linear interpolation. The latter function
is increasing and concave in a. We also define U(a) = E[Ub(a)], where the ex-
pectation is over the distribution of the bids b; i.e., we replace the current bids
in (1) by their expectation. This is also increasing, piecewise linear and concave.

We will model the connection durations as independent exponential random
variables, of mean 1/µ. Therefore at the end of the period T each connection
has probability p := e−µT of remaining active for the following period. While in
practice one would have more deterministic information of the service duration,
the above allows for a Markovian treatment of the allocation problem.

Let xk denote the number of connections active at t = kT−, i.e. before the
k-th auction. The system admits ak new connections, 0 ≤ ak ≤ C − xk, taking
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the total to xk + ak. By the next auction period, t = (k + 1)T−, the number
of active connections xk+1 follows then a binomial distribution with parameters
xk + ak and p. Specifically, P [xk+1 = i|xk, ak] =

(

xk+ak

i

)

pi(1 − p)xk+ak−i. We
are ready to state our design objective.

Optimal revenue problem: Maximize limn
1
n

∑n−1
k=0 E[Ubk

(ak)].

Here the expectation is over two sources of randomness: the vector of bids
bk and the departure process. The constraints are 0 ≤ ak ≤ C − xk where xk

follows the binomial transition dynamics defined above. We can also consider
the discounted version: Maximize

∑∞

k=0 ρkE[Ubk
(ak)], where 0 < ρ < 1.

Both of these are Markov Decision Processes (MDPs) [2, 9]. The state at time
k is sk = (xk, bk), i.e. the current occupation and the incoming bids. Based on
this state, the action ak = a(sk) decides how many bids to accept. Solving the
MDP requires finding the policy a(s) that results in a minimum cost. In the
discounted case ρ < 1, this policy satisfies the Bellman equation

V ∗(x0, b) = max
a∈As

{Ub(a) + ρE[V ∗(x1, b
′)]} , (2)

where V ∗ is the value function and the expectation is taken over the binomial
distribution of x1|(x0, a) and the distribution of the next bid b′. The state-
dependent constraints are As = {0 ≤ a ≤ C − x0}. For ρ = 1, V ∗ satisfying (2)
is no longer the optimal cost, but (2) still characterizes the optimal action a(s).

It is in general difficult to solve the Bellman equation; a commonly used
strategy is the value iteration Vm+1(x0, b) := maxa∈As

{Ub(a) + ρE[Vm(x1, b
′)]};

starting with an arbitrary V0(s), Vm(s) converges to V ∗(s), and the correspond-
ing maximizing action converges to the optimal action [2].

Receding horizon approximation. We will use initial steps of the value iter-
ation to approximate the optimal policy. Starting from V0 ≡ 0, we have

V1(x0, b) = max
a≤C−x0

Ub(a) = Ub(C − x0). (3)

This first step gives the “myopic” policy a = C − x0, that sells all available
capacity disregarding the future. To improve on it, we take a second step in the
value iteration:

V2(x0, b) = max
a≤C−x0

{Ub(a) + ρE[V1(x1, b
′)]}

= max
a≤C−x0

{Ub(a) + ρE[Ub′(C − x1)]}

= max
a≤C−x0

{Ub(a) + ρEx1
U(C − x1)]}. (4)

In (4), the expectation over the random bid b′ is included in U defined above; the
remaining expectation is over x1 ∼ Bin(x0 + a, p). The policy (4) can be given a
receding horizon interpretation: the decision considers the current revenue plus
the expected revenue of looking one step ahead, assuming all available capacity
will be sold off at that time. This decision is then applied recursively; thus the
future is taken into account at a limited level of complexity.
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The first term in (4) increases with a. To characterize the second, we rewrite
it as follows. Consider the function W (i) = U(C)−U(C−i), piecewise linear and
convex in i. Indeed, the increments W (i + 1) − W (i) = E[b(C−i)], (expectation
of the (C − i)-th largest offer) are increasing in i. Now define W (x) = E[W (x1)],
where x1 ∼ Bin(x, p), again linearly interpolated for non-integer x. The next
statement follows from a stochastic comparison argument, omitted for brevity.

Proposition 1. W (x) is increasing and convex in x.

With this notation, our one-step ahead optimization can be rewritten as

max
a≤C−x0

Ub(a) − ρW (x0 + a), (5)

a convex optimization problem. In it, W (x0 +a) plays the role of a cost function

that makes the decision at the current time “internalize” the impact on future
decisions. W (x0 + a) measures the expected loss of revenue in the auction at
time T from having left x0 + a occupied circuits at time t = 0+.

It is now straightforward to determine the optimal policy a(x0, b). To opti-
mize over a we plot the derivatives of Ub(a) and ρW (x0 + a) (marginal utilities
and costs) and look for a crossing point. This is depicted in Figure 1. The
marginal utilities are just the current bids in decreasing order. The marginal
costs represent the value of leaving one more free circuit for the next auction.
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Fig. 1. Marginal utility versus marginal cost

The increasing marginal costs wi = ρ(W (i) − W (i − 1)) act as successive
thresholds for accepting bids. The acceptance policy is the value a such that for
i = x0 + a we have b(1) ≥ b(2) ≥ · · · ≥ b(a) ≥ wi > b(a+1). In words: to accept
a bids, the lowest one must exceed wi for i = x0 + a. To accept one more, we
require a more demanding threshold wi+1 on this (smaller) bid3.

From the binomial distributions j1 ∼ Bin(i, p), j2 ∼ Bin(i − 1, p) and some
combinatorics we obtain for the thresholds the expression

wi = ρ[E(W (j1)) − E(W (j2))] = ρ p

i−1
∑

l=0

E(b(C−l))
(

i−1
l

)

pl(1 − p)i−1−l. (6)

Based on knowledge of ρ, p, and the distribution of bids, this expression could
be calculated offline and used for carrying out auctions with the policy (4).

Examples: we evaluate the previous results in a few simple cases (for ρ = 1).

3 Since b’s are random, the curves of Fig. 1 will generically cross at a single point.
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For C = 1, there is a single link cost w1 = pE(b(1)), that acts as an admission
threshold for bids received when the circuit becomes empty. For instance in the
case of N bids, uniformly distributed in [0, bmax], we have w1 = p N

N+1bmax.

If the link has capacity C = 2, there are two marginal costs: w1 = pE(b(2))
for occupying the first connection, and w2 = p(E(b(2))(1 − p) + E(b(1))p) for
occupying the second. Again, for uniform in [0, bmax] bids this becomes

w1 = p
N − 1

N + 1
bmax; w2 = p

(N − 1)(1 − p) + Np

N + 1
bmax.

We now compare by simulations our receding horizon policy with the optimal
infinite-horizon MDP, in the case of one circuit (C = 1). In this simple case, the
latter is also a threshold policy on the bids, but the optimal threshold does not
have a simple formula; we computed it numerically through the value iteration
algorithm from [4]. On the left in Figure 2 we show the acceptance thresholds
for both policies: we see the infinite horizon threshold is more demanding. On
the right we show the average utility obtained empirically by simulation of these
two policies. Results are very similar. Therefore, in this case we have managed
to extract almost the optimal utility just be looking one-step ahead with the
policy. On the other hand, if we apply the myopic policy that always fills the
link, the right-hand side plot shows there is a clear loss in utility.

Fig. 2. Optimal MDP, receding horizon and myopic policies. C = 1, p = 0.1.

A further approximation

Our ultimate goal is to perform an auction over a general network, where
bids appear at different routes and are coupled by scarce resources at links.
The stochastic calculations involved in (6) appear difficult to generalize, so we
adopt a second approximation, replacing the function W (x) in (5) by something
easier to compute. Namely, define φ(x) = W (E[x1]) for x1 ∼ Bin(x, p). Since
W (·) is convex, this underestimates the one-step cost from before, φ(x) ≤ W (x).
Nevertheless, if C is large the binomial distribution will be concentrated around
its mean and the error is moderate. In return, we have the simple expression
φ(x) = W (px) = U(C) − U(C − px). This is still piecewise linear and convex,
but easier to compute. The second approximation to the optimal policy is given
by maxa≤C−x0

Ub(a) − ρφ(x0 + a).
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Equivalently, we can rewrite the above as the convex program

max Ub(a) + ρU(z),

subject to x0 + a ≤ C, p(x0 + a) + z ≤ C. (7)

At the optimum, the slack variable z will satisfy the constraint with equality,
i.e. z = C − p(x0 + a) is the expected allocation in the next interval.

3 The network case

In the following, l indexes the network links, r the routes across the network. R
denotes the routing matrix, Rlr = 1 iff route r includes link l. c = (cl) is the
vector of link capacities. We describe the allocation decision at time t = 0.

Define column vectors x0, a, and z, whose coordinates per route r denote
respectively the rate xr

0 from previous occupation, the rate allocation ar at the
current auction, and the expected allocation zr in the following auction (t = T ).
We also define the piecewise linear utility Ubr (ar) based on current bids (1), and
the utility Ur(z

r) based on expected bids. Let pr = e−µrT be the probability
that a connection active at t = 0 will remain active at t = T ; P = diag(pr) is
the corresponding diagonal matrix. Thus, P (a + x0) is the expected input rate
vector at t = T−. The network generalization of (7) is

max
∑

r

[

Ubr(ar) + ρUr(z
r)

]

,

subject to R(a + x0) ≤ c; RP (a + x0) + Rz ≤ c. (8)

This optimization can also be rewritten as one for the current allocation a with
a convex cost function φ(x0 +a) that represents the optimization in z. However,
here the cost function would be coupled over the network. A better way to solve
(8) is by duality. Consider the Lagrangian L(a, z, α, β) given by

L =
∑

r

[

Ubr (ar) + ρU r(z
r)

]

+ αT (c − R(a + x0)) + βT (c − Rz − RP (a + x0))

=
∑

r

[Ubr (ar) − (qr + prvr)ar] + [ρU r(z
r) − vrzr] + αT (c − Rx0) + βT (c − RPx0).

Here, α and β are the vectors of Lagrange multipliers (prices) for each of the
two constraints, and we have defined the aggregate prices per route q = RT α,
v = RT β. We can solve the convex program through a dual, gradient projection
algorithm similar to those used in the congestion control literature [11], but with
additional prices. The algorithm takes the following form (in continuous time):

ar = argmax
ar

[Ubr (ar) − (qr + prvr)ar]; α̇ = [R(a + x0) − c]+α ;

zr = argmax
zr

[ρU r(z
r) − vrzr]; β̇ = [RP (a + x0) + Rz − c]+β .

An important difference with the congestion control case is that here the algo-
rithm should take place in the control plane prior to the allocation of resources.
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Despite this difference, we can still obtain a distributed computation by message
passing between the network links, and a broker entity at the ingress node of
route r. The maximization for ar amounts simply to comparing the bids with
the threshold price qr + prvr. Solving for zr involves the expected bids, and the
price vr/ρ. We must allow time after closing the auction for this distributed
algorithm to settle on an allocation vector a.

It is useful to compare this algorithm with an implementation of the myopic
policy which optimizes the first term in (8); the latter would involve only the
variables a, α, but a very similar overhead in terms of message passing.

Simulations.
To evaluate the proposed algorithm we present some simulation studies, car-

ried out on a flow-level simulator we developed in Java.
First, we compare the one-step ahead policy (7) with the myopic one (3) in

a single link case, with C = 30 circuits. Auctions take place every T minutes,
and bids arrive periodically with fixed intensity λ, totalling N = λT bids per
auction. Bids are independent and uniformly distributed in [0, 1]; rejected bids
are discarded. Job duration is exp(µ) with 1/µ = 100 minutes.

We simulate both policies and compare the respective revenues, for several
values of T which is a critical design parameter: enlarging T will allow more bids
per auction, hence better ones, but decrease the auction rate. Results are shown
in Fig. 3 for two different values of λ. In both cases, the one-step ahead policy
outperforms the myopic one, as expected; and as remarked before, the gain is
achieved with minor extra overhead.
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Fig. 3. One link situation: 30 circuits, offer arrival rate λ = 0.5 (left) and λ = 2 (right).
Dotted lines are 5% confidence intervals.

Our second study uses the linear network topology of Fig. 4. In this case, users
in the long route 1 should pay more to be allocated a circuit, since it occupies
two links. We used N = 10 uniform bids with mean 1 for the short routes, and
with mean b̄ for route 1. Fig. 4 shows the mean number of connections admitted
by the auction algorithm, for several values of b̄. If b̄ = 1, the users in route 1
starve, but for b̄ ≈ 2 all routes receive a comparable fraction of resources.
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Fig. 4. Linear network, allocation as a function of the mean bid b̄ of route 1.

4 Conclusions

In this work we proposed an auction mechanism to assign resources in over-
lay networks. We formulated the problem of maximizing operator revenue, and
found near-optimal policies that can be computed via convex optimization, and
allow a distributed implementation over a network. In future work we will study
some natural extensions: random numbers of bids per auction, bidding for het-
erogeneous services which consume different amounts of bandwidth, learning
an unknown distribution of bids over time, and multiple-step extensions to the
receding horizon policy. We will also study the strategic aspects of the auction.
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