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ABSTRACT
In this paper Geometric Programming is successfully applied
to the power optimization of CMOS operational amplifiers
using a model valid in all regions of inversion (weak, mod-
erate and strong), which assures a true globally optimal de-
sign. A complete transistor model presents some problems
on the formulation of the Geometric Program. We will show
in this paper that in the case of power optimization, a care-
ful analysis of the physical meaning of the conflicting model
equations, allow us to overcome these problems in a simple
and efficient way. The proposed algorithm is tested in sev-
eral cases for a Miller amplifier, showing how the optimum
inversion level spans all the inversion regions as the target
bandwidth changes.
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1. INTRODUCTION
Automatic analog circuit synthesis has been the subject

of active research since the late 1980s as a mechanism to
increase designers productivity [1]. One central idea in this
area is to apply optimization techniques to solve the cir-
cuit sizing problem while minimizing a cost function (power,
area, etc.) under a set of specification constraints.

According to how the circuit performance and constraints
are evaluated during optimization, the tools can be broadly
classified in simulation-based optimization and equation-based 
optimization [1–4]. 

We will focus here in equation based optimization, where
the circuit sizing problem is described through a set of equa-
tions that model the behavior of the amplifier and its build-
ing blocks (e.g. transistors). This results in a faster method,
at the expense of the additional burden of establishing the
equations. The result would be as accurate and general as
the applied equations are.

Until recently, equation based optimization tools consid-
ered only the strong inversion model for the MOS transistor,
hence neglecting part of the design space: weak inversion re-
gion and particularly the moderate inversion region where
the optimum trade-off between power and bandwidth usu-
ally lies [5].

Prior art regarding the optimization method applied in-
clude general-purpose methods as steepest descent, sequen-
tial quadratic programming and Lagrange multiplier meth-
ods. The main disadvantage of these methods is that they
only find locally optimal designs [2].

There are three main optimization methods that have
been used to search for a global optimal design: Branch and
bound, simulated annealing and convex optimization. The
Branch and bound method is extremely slow with computa-
tional effort growing exponentially with problem size. Sim-
ulated annealing is also very slow and does not guarantee in
practice (only in theory) a globally optimal solution [2].

On the other hand, convex optimization methods can com-
pute a globally optimal solution in a extremely efficient way,
reducing optimization time literally to seconds. Also, they
can cope with hundreds of variables and thousands of con-
straints. The disadvantage is that design equations must be
formulated in a posynomial form (see Section 2), which is
not always the case in analog design. These methods have
been used quite recently applied to the problem of CMOS
opamp design [2–4].

The first two works [2, 3] used a transistor model valid
only in the strong inversion region of operation. There-
fore, in spite of using a global optimization method, their
algorithms failed to obtain a true optimal design since they
didn’t include the whole design space available. That is, in-
cluding the weak inversion region and, specially, the moder-
ate inversion region where optimal designs usually are. This
was also observed in the third work [4], where a complete
model valid in all regions of inversion was used [6].

Nevertheless, when we use a complete model, there are
some problems in the formulation of the equations in a posyn-
omial form. To overcome these problems, [4] incorporates
a branch and bound algorithm to its convex optimization
method, and thus, looses part of its advantages.



We will show in this paper that in the case of power op-
timization, a careful analysis of the physical meaning of the
design equations that can not be posed in posynomial form,
allow us to overcome these problems in a simple and efficient
way.

2. GEOMETRIC PROGRAMMING

2.1 Introduction
A Geometric Program (GP) is a type of mathematical

optimization problem of the form:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m

gj(x) = 1, j = 1, . . . , p

(1)

where x ε R+
n

is a vector of n real positive variables and

fi(x) =
K

∑

k=1

ckx
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2 . . . xank
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1 xa2

2 . . . xan
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are real valued functions of x where ck ≥ 0 are non-negative
real numbers and aik are any real number. fi(x) is called
a posynomial function and gj(x) is called a monomial func-
tion.

It is well known that geometric programs like (1) can
be cast into convex form and thus, a global solution can
be found using recently developed interior-point methods.
These methods can solve GPs extremely efficiently and reli-
ably, even with hundreds of variables and thousands of con-
straints. Also, these methods guaranty a global solution or
will unambiguously detect that the problem is unfeasible [7].

2.2 Relaxed Problem
When all regions of inversion of the transistor are con-

sidered, some design equations are posynomial equality con-
straints (refered to as hi in the formulation below (4)). How-
ever, in a GP, contrary to what happens with inequality con-
straints, posynomials are not allowed in equality constraints,
only being allowed monomials. A posynomial equality con-
straints cannot be included in a GP since the equality sign
on them implies both a convex and a non-convex constraint.
However this can be partially overcome by a simple tech-
nique refered to dealing with the relaxed problem [7], as
explained hereafter.

Consider the following optimization problem, non treat-
able by GP:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m

hi(x) = 1, i = m + 1, . . . , l

gj(x) = 1, j = 1, . . . , p

(4)

where fi and hi are posynomials and gj are monomials.
We form the GP relaxation of the problem (4):

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m

hi(x) ≤ 1, i = m + 1, . . . , l

gj(x) = 1, j = 1, . . . , p

(5)

Figure 1: (gm/ID) curve (nMOS in 0.35µm).

by replacing the posynomial equalities with inequalities. This
problem is called relaxation since we have increased the set
of feasible points. Problem (5) is a GP, and thus can be
easily solved. Now, let x̄ be the optimal solution of (5). If
hi(x̄) = 1 ∀i, then x̄ is also an optimal solution of the origi-
nal problem (4). Of course, we might have k ε [m+1, l] such
that hk(x̄) < 1, in which case x̄ is not feasible for the orig-
inal problem. There are ways of dealing with these special
cases, however, they sometimes loose some of the advantages
of GP [7].

We will see next, that a key equation for analog design
in all regions of inversion is the one that links the (gm/ID)
ratio with the normalized current [5]. However, this equa-
tion imposes a posynomial equality constraint on any active
transistor in an CMOS analog design. This paper proposes
that on power optimization problems, we can work out the
problem relaxing the (gm/ID) ratio constraint and that the
relaxed problem, due to the physical meaning of the (gm/ID)
ratio will lead to a feasible solution for the original problem.

3. THE (gm/ID) RATIO AND POWER OPTI-
MIZATION USING GP

The (gm/ID) ratio is probably the most important char-
acteristic in analog design, since it gives the designer the
trade-off between performance and power-consumption [5].
It is present on almost any measure of analog performance:
gain, speed, noise, offset, etc. [8]. The larger the (gm/ID)
ratio, the more power efficient the transistor is. Using a
compact MOS model [6], it can be expressed as:

gm

ID

=
1

nφT

2
√

1 + if + 1
(6)

where n is the sub-threshold slope factor, φT is the thermal
voltage and if is the inversion coefficient, expressed in terms
of the normalized current in forward saturation:

if =
ID

1

2
nφ2

T µCox
W
L

(7)

if < 1 indicates weak inversion operation and if > 100
indicates strong inversion operation [6]. µCox, W and L
have their usual meanings. Figure 1 shows the (gm/ID)
ratio of NMOS transistors in a 0.35µm technology and the
inversion regions.



Figure 2: (gm/ID) curve. Shaded area: convex set
from constraint (9).

Equation (6) can be posed as a posynomial of (gm/ID)
and if as:

(

nφT

2

)2

(gm/ID)2if + (nφT ) (gm/ID) = 1 (8)

The problem with expression (8) is that it imposes a posyn-
omial equality constraint for each active transistor on any
optimization problem for analog design. Also, it is worth
noting that this problem does not depend on the model of
the transistor used, but it is intrinsic to the physics of the
transistor.

As we commented in Section 1, ways of dealing with this
problem have been presented in literature [4] by means of
a branch and bound algorithms. However, this algorithm is
extremely heavy in the computational effort involved, mainly
due to their“blind”nature that ignores the physical meaning
of the variables involved.

We propose to analyze the physical meaning of the (gm/ID)
ratio, in order to provide some insight on the problem and
obtain a more efficient algorithm in the particular case of
power optimization.

As we said above, the larger the (gm/ID) ratio, the more
power efficient the transistor is. Therefore, we propose the
following idea for power optimization in analog design. If we
substitute equality constraint (8) for the following inequality

(

nφT

2

)2

(gm/ID)2if + (nφT ) (gm/ID) ≤ 1 (9)

we obtain a relaxed GP as in Section 2.2. On the optimiza-
tion side, this relaxation allows us to apply GP to the analog
design problem. On the circuit side, this relaxation means
that we have artificially increased the set of feasible transis-
tors (shaded area on Figure 2). If the algorithm selects a set
of (gm/ID) and if that doesn’t comply with equality (8), it
means that it has selected a transistor that doesn’t really
exist.

Nevertheless, we know that, the larger the (gm/ID) ra-
tio, the more efficient, in a power consumption sense, our
transistor will be. Thus, if we solve the relaxed geometric
program with only constraint (9) in it, it is reasonable to
assume that the optimization problem will always find its
solution with the largest (gm/ID) ratio posible, since those

Figure 3: Common-source amplifier circuit.

are the most efficient transistors for a given inversion in-
dex if . In other words, the optimal solution for the relaxed
GP should also satisfy the equality constraint (8), and thus,
will also be the optimal solution for the original nonrelaxed

geometric program.

4. PROOF OF CONCEPT: THE INTRINSIC
AMPLIFIER

4.1 Design Problem
To test our idea, we will begin with the most simple am-

plifier: the common-source amplifier (also known as intrinsic
amplifier), shown in Figure 3. Although this design prob-
lem is quite simple, and certainly we could do without GP
to solve it, its simplicity also gives a clear picture on how
the idea works.

Therefore, the objective will be to synthesize a common-
source amplifier with optimal power consumption that com-
plies with a gain-bandwidth product constraint for a given
capacitive load CL:

ωT =
gm

(CL + Cd)
≥ ωTmin (10)

This constraint can be posed as a posynomial of the design
variables ID, W, L, if , (gm/ID):

(CL + Cpd)ωTmin

(gm/ID)ID

+
CwdWωTmin

(gm/ID)ID

≤ 1 (11)

where the bias dependent extrinsic drain capacitance is taken
in its worst case (zero bias) as Cd = CwdW + Cpd (the in-
trinsic drain capacitance of the forward saturated transistor
is neglected).

Also, we must include the constraint that links current,
size and inversion level on any transistor,

ID

1

2
nφ2

T µCox
W
L

if
= 1 (12)

and equation (8), the posynomial equality constraint that
links (gm/ID) and if , which we will substitute by the in-
equality constraint (9) to form the relaxed GP.

Finally, we must also impose the technology bounds for
the transistor size: Wmin/W ≤ 1 and Lmin/L ≤ 1.

These are just an example of the basic constraints that
can be included in the design of a common-source amplifier.
Many others could also be included to take into considera-
tion other performance parameters (i.e. gain, noise, output
swing, etc.). Nevertheless, to clarify the proposed idea, we
will not include any of them at this time.



Figure 4: Synthesis of four common-source ampli-
fiers (0.35µm, 1pF load). Text labels show the gain-
bandwidth product and current consumption of each
amplifier.

4.2 Results
We used the relaxed GP from previous section to syn-

thesize four common source amplifiers in a 0.35µm CMOS
technology loaded by 1pF . Figure 4 shows the result of the
synthesis in a (gm/ID) - if plot. Text labels show the gain-
bandwidth product and the obtained current consumption
in each amplifier. GP assures that these solutions are the
global optimal solutions to the relaxed design problem. Also,
as we can see, all of them comply with the original posyn-
omial equality constraint (8), although only the posynomial
inequality constraint (9) was used in the synthesis. There-
fore these solutions are also the global optimal solutions to
the original non-relaxed design problem, as explained in sec-
tion 3.

These examples are no coincidence nor particular cases.
The fact that the optimal solution to the design problem will
comply with equality constraint (8) can be demonstrated as
follows:

Hypothesis: Let A be the optimal solution to the relaxed
design problem described in Section 4.1.

Thesis: A must be valid in the original, non-relaxed, de-
sign problem (i.e. complies with equality constraint (8)).

Proof: By absurd let’s assume that A, the optimal solu-
tion to the relaxed design problem, is not valid in the original
problem.

Then, we will build B, a solution to the relaxed prob-
lem, such that is valid in the original, non-relaxed, design
problem. We will build it in the following way: We will
take the same transistor (WB = WA, LB = LA) and the
same gain-bandwidth product (ωTB = ωTA) from solution
A. Therefore solution B complies with all constraints. From
eq. (11) we can write ωT as:

ωT =
(gm/ID)ID

CL + Cpd + CwdW
(13)

Both solutions share the same denominator since it only de-
pends on load capacitance, technology parameters and width
of the transistor. Therefore we can write the following rela-
tion between (gm/ID) ratio and drain current of each solu-

tion:

(gm/ID)AIDA = (gm/ID)BIDB (14)

Since solution B complies with equality constraint (8), we
can substitute (gm/ID)B by the expression given in eq. (6):

(gm/ID)AIDA =
2

nφT

IDB
√

1 + IDB

IS
+ 1

(15)

where IS is the normalization current (see eq. (7)) which is
constant since we built our transistors with the same size.
Since solution A doesn’t comply with the equality constraint
(8) we can write (gm/ID)A as:

(gm/ID)A = k
2

nφT

1
√

1 + IDA

IS
+ 1

(16)

where k is such that 0 < k < 1. Using (16) in (15) and doing
some algebra we can express IDB as

IDB = kIDA






1 −

(1 − k) IDA

IS

(√

1 + IDA

IS
+ 1

)2






(17)

It can be shown that the term between square brackets is
between 0 and 1, and since k is also less than 1, we have
found a solution B to both problems (the non-relaxed and
the relaxed problems) such that

IDB < IDA (18)

which is absurd since A is the optimal solution to the relaxed
design problem. Therefore, solution A, must be valid in the
original, non-relaxed, design problem. �

This demonstration is based on the fact that the gain-
bandwidth constraint is active (e.g. the solution has a gain-
bandwidth equal to the minimum imposed by the inequality
constraint). However, should exist another constraint that
causes the gain-bandwidth constraint to be in-active, the
solution might fail to be valid in the original, non-relaxed,
problem. For example, if we add a slew-rate (SR) constraint
that implies ωT > ωTmin, then the solution would not be
valid in the original problem.

Nevertheless, this“failure”of the optimization method can
be noticed immediately and thus, there is no risk of taking
for good the “false” transistor’s design. As mentioned above
there are ways of dealing with this, for instance, to adjust
the ωT constraint in order to turn it active. Also, the lit-
erature on GP proposes more elaborate methods, such as
“Tightening” [7], to obtain a valid solution on the original
problem from the relaxed solution. However, this methods
sometimes loose some of the advantages of GP.

Therefore the method proposed in this paper is able to
deal with a significant portion of power optimization prob-
lems where bandwidth is a limiting factor.

5. DESIGN EXAMPLE: THE MILLER AM-
PLIFIER

The Miller amplifier is one of the most common analog
building blocks and has been thoroughly analyzed in the
literature (e.g. [9]). In Figure 5 we show the circuit imple-
mentation of the Miller amplifier. It is well known that this
amplifier has a right-half-plane zero (due to Cm), a low-
frequency dominant pole and a high frequency pole due to



Figure 5: Miller amplifier circuit.

the output node. Also, the pole-zero doublet from the input
stage current mirror (M3a-M3b) must be taken into account
to avoid a degraded transient response [10].

We built a GP to synthesize a Miller amplifier with opti-
mal power consumption for a given gain-bandwidth product
and phase margin. Constraints on minimum dc gain, output
swing and maximum area were also included. Hershenson
et al. [2], deeply analyze these and some other Miller am-
plifier’s design equations and ways to pose them in posyno-
mial/monomial form in order to include them as constraints
in the optimization problem. In our case, though, we used
expressions for the intrinsic capacitances valid in all regions
of operation [6].

In order to take into consideration all regions of oper-
ation of the transistor, we included for each transistor a
constraint that links current, size and inversion level such
as (12). Also we included the constraint that links (gm/ID)
and if for each active transistor. The gm of other transistors
does not affect the circuit characteristics, hence considera-
tion of their (gm/ID) ratio is not required. In the Miller
amplifier, the only active transistors are M1a-M1b, M3a-
M3b and M2. In order to minimize systematic offset we
used (gm/ID)3 = (gm/ID)2 (which implies VGB2 = VGB3

), and therefore we only had to include two (gm/ID) ratio
constraints (one for transistors M1a-M1b and the other for
transistors M2 and M3a-M3b). Both constraints were re-
laxed and we will see that the solution to the relaxed GP
complies with the (gm/ID) ratio equality constraints, i.e.
the solution found provides the global optimum of the orig-
inal, non-relaxed, design problem.

6. RESULTS
The GP from previous section was used to synthesize

five Miller Amplifiers with different gain-bandwidth prod-
uct specifications. Figure 6 shows the (gm/ID) - if plots
for the two active transistors (M1a-M1b and M2). In all
cases the solution for both transistors comply with the orig-
inal non-relaxed problem, as we predicted. Table 1 shows
the detailed results for the particular case of the 1MHz am-
plifier.

It is interesting to note that all optimal solutions lie on
the moderate inversion region of operation for both active
transistors. Only the slowest and fastest designs lie on the
near-weak inversion and near-strong inversion regions re-

(a)

(b)

Figure 6: Synthesis of five Miller amplifiers. (gm/ID)
- if plot for (a) Differential pair M1a-M1b transis-
tors and (b) Output M2 transistor. Text labels show
the gain-bandwidth product, load capacitance and
total current consumption of each amplifier.

Specs. Result
fT ≥ 1MHz 1MHz

PM ≥ 65o 66o

(gm/ID)1 2 ≤ (gm/ID)1 ≤ 27 20.7
(gm/ID)2 2 ≤ (gm/ID)2 ≤ 25 23.3
VDSsat2,4 ≤ 300mV 130mV, 300mV

Cm ≥ 0.1pF 0.45pF
IDD minimize 8.3µA
ID1 - 0.15µA
ID2 - 8.0µA

W (µm) L (µm) W (µm) L (µm)
M1 ≥ 0.4 ≥ 0.35 2.5 0.35
M2 ≥ 0.4 ≥ 0.35 57.7 0.35
M3 ≥ 0.4 ≥ 1 2.9 1
M4 ≥ 0.4 ≥ 2 26x0.4 2
M5 ≥ 0.4 ≥ 2 0.4 2

Table 1: Detailed results for the optimized 1MHz
Miller amplifier.



spectively. This is not unexpected and shows the need of
a model valid in all regions of inversion for analog design.
Also, this is particularly important when using optimization
tools as in our case. If a model not valid in all regions of
inversion is used, as in the case of reference [2], a suboptimal
solution will be found in spite of using a global optimization
method.

7. CONCLUSION
Geometric programming was successfully applied to the

power optimization of CMOS operational amplifiers, using
a model valid in all regions of inversion, which assures a true
globally optimal design.

The (gm/ID) ratio is a key parameter in analog design.
However, when using it in a GP, it imposes a posynomial
equality constraint for each active transistor, which is not
acceptable. Previous solutions to this problem used more
complex mathematical tools, such as branch and bound algo-
rithms [4], which are extremely slow and the computational
effort involved grows exponentially with problem size.

We showed how when we analyzed the physical meaning of
the (gm/ID) ratio, we founded a much simpler solution. The
relaxed GP enlarges the set of feasible points of the problem
in order to transform the posynomial equality constraints
in posynomial inequality constraints. Our analysis of the
(gm/ID) ratio allowed us to foresee that usually the solution
would be in the original set of feasible points, i.e. would
comply with the posynomial equality constraint. This was
explained and demonstrated by means of a simple example:
the common-source amplifier. Then we showed how to apply
the idea to a more “classical” example: the Miller amplifier.
In all cases, the solution from the relaxed GP was a feasible
solution of the original GP.

In both examples, most solutions lied on the moderate in-
version region. This is particularly important since it showed
the need of a model valid in all regions of inversion in or-
der to avoid suboptimal solutions, even when using global
optimization methods.

It is worth noting that not every performance constraint
in any possible opamp architecture can be posed as a valid
GP constraint (e.g. settling time constraint with a second
order model, as shown in [4]). However, there is one con-
straint that can not be posed as a valid GP constraint which
is always unavoidably present in CMOS analog design prob-
lems: the relation between the (gm/ID) ratio and the bias
current of the transistor. In this paper we presented a sim-
ple and efficient way to overcome this problem for power
optimization.
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