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Abstract. Given the relevance of the singing voice in popular western music, a system able to

reliable identify those portions of a music audio file containing vocals would be very useful.

In this work, we explore already used descriptors to perform this task and compare the perfor-

mance of a statistical classifier using each kind of them, concluding that MFCC are the most

appropriate. As an outcome of our study, an effective statistical classification system with a

reduced set of descriptors for singing voice detection in music audio files is presented. The per-

formance of the system is validated using independent datasets of popular music for training,

validation and testing, reaching a classification performance of 78.5% on the testing set.

1. Introduction

One of the most memorable and representative features of a song in popular western music is the singing

voice melody. For this reason, a lot of research being carried out on Music Information Retrieval deals with

it (singer identification, singing voice separation, singing voice melody transcription, query by humming,

lyrics transcription, etc). This kind of research would benefit from a reliable segmentation of a song into

singing voice fragments. Furthermore, singing voice detection has many other applications in audio pro-

cessing, such as to generate “lyrics-centred” summaries of songs, or to apply a certain singing voice filter

(e.g. de-esser, de-breather) only to the automatically identified vocal fragments of a music audio file.

In this paper we address the problem of processing a music audio file and segmenting it into frag-

ments containing singing (with or without musical accompaniment) and purely instrumental (non-singing)

content, referred as vocal and non-vocal respectively. Contextual information must be considered when par-

titioning to ignore pauses (short non-vocal fragments) during a singing melody or to correct classification

errors. One of the most troublesome characteristics of the problem is the variability of music, both with

regards to the singing performance and to the accompaniment. In order to limit the scope of the problem,

in this work we focus on popular music (in particular music genres such as rock, pop, folk, funk and jazz).

To address the singing voice detection problem we can take advantage of the knowledge on re-

search fields such as musical instruments classification [Martin, 1999] [Herrera et al., 2006] and speech

processing [Rabiner and Schafer, 1978] [Chilton, 1999]. The former studies our ability to distinguish dif-

ferent musical instruments. Singing voice detection can be considered a particular case of musical instru-

ments classification in complex mixtures, so many features used in this field may be useful for character-

izing vocal and non-vocal portions of a song. Given the similarities between speech and singing voice it

is reasonable to apply techniques and descriptors used to segment and recognize speech to singing voice

problems. Speech/music discrimination, singing voice separation and singer identification are closely re-

lated problems, as many systems developed to perform these tasks try to identify those fragments of the

audio file containing vocals.

Although singing voices resembles speech to a certain extent there are significant differences be-

tween them that need to be taken into account. To sing a melody line with lyrics it is usually necessary to

stretch the voiced sounds and shrink the unvoiced sounds to match notes durations.1 For this reason, singing

voice is more than 90% voiced, where as speech is only aproximately 60% voiced [Cook, 1990]. The ma-

jority of the singing voice energy falls between 200 Hz and 2000 Hz, but in speech the unvoiced sounds

∗Supported by Comisión Sectorial de Investigación Cientı́fica, UdelaR.
1Vocal sounds are usually divided by speech researchers in voiced and unvoiced. The vibration of the vocal folds produces

quasi-periodic sound referred to as voiced. Those vocal sounds generated by the turbulence of air against the lips or tongue (such

as the consonants “s” or “f”) are known as unvoiced and its waveform appears random though with some limited spectral shaping

[Chilton, 1999].



are more common and tend to raise this energy limit up to 4000 Hz. Speech has a characteristic energy

modulation peak around the 4 Hz syllabic rate usually considered as an evidence of it presence in automatic

speech processing [Scheirer and Slaney, 1997]. With regards to pitch, the pitch contour of the singing voice

tends to be piece-wise constant with abrupt pitch changes in between, while in natural speech pitch slowly

drifts down with smooth pitch changes. Besides this, speech pitch is normally between 80 to 400 Hz

whereas singing has a wider pitch range that can reach 1400 Hz in a soprano singer [Li and Wang, 2005]

[Gerhard, 2002]. Morover, singing voice is highly harmonic, that means that the partials of the sound are

located at multiples of the fundamental frequency. Several musical instruments are also harmonic, so some

partials of the singing voice are overlapped with those from the accompainment. Additionally, a known

feature of operatic singing is the precense of an additional formant (resonance of the vocal tract), called

the singing formant, in the frequency range of 2000 to 3000 Hz, that enables the voice to stand out from

the accompainment [Sundberg, 1987]. However, the singing formant does not exist in many other types of

singing such as the ones in pop or rock.

The approach proposed in this work is to build a statistical classifier trained on descriptors of

accompanied singing voices and accompaniments alone. Much effort is put in the study of descriptors

taking into account the great majority of those reported in previous work and comparing them in equivalent

conditions. The rest of this paper is organized as follows. In the next section the different approaches

proposed to address the singing voice detection problem are summarized. Section 3 describes the method we

applied for the selection of descriptors and the classification approach. Experimental results are presented

in section 4. The paper ends with a discussion on the present work and the main conclusions.

2. Previous work

The common procedure followed for partitioning a song into vocal and non-vocal portions is to extract fea-

ture paremeters from audio signal frames (near stationary block of samples) at each few tens milliseconds,

and then to classify them to one of each class using a threshold method or a statistical classifier.

Threshold methods tend to be simple but need descriptors that clearly discriminate between classes

in order to be successful. The methods proposed to classify audio frames into vocal and non-vocal apply

a threshold on only one descriptor [Maddage et al., 2004] [Shenoy et al., 2005] or compute different de-

scriptors and apply a set of thresholds on them [Zhang, 2002]. On the other hand, statistical classifiers

are trained using accompanied singing voices and pure instrumentals and can learn complex boundaries

between classes combining several descriptors. This has the drawbacks of a certain amount of time spent

on training and the difficulty of obtaining ground truth annotations. In the singing voice detection problem,

finding the exact boundaries over the entire song can be time-consuming, and sometimes could be difficult

in case of slow decays or masking. Moreover, special attention has to be paid to ensure generalization

beyond the training set avoiding overfitting. Several statistical classifiers have been explored to address the

problem of singing voice detection, such as Hidden Markov Models (HMM) [Berenzweig and Ellis, 2001]

[New et al., 2004], Gaussian Mixture Models (GMM) [Tsai and Wang, 2006] [Li and Wang, 2007], Artifi-

cial Neural Networks (ANN) [Berenzweig et al., 2002] [Tzanetakis, 2004] and Support Vector Machines

(SVM) [Maddage et al., 2003] [Maddage et al., 2004].

The short-term classification of each signal frame considers only local information so it is prone to

errors, and the classification obtained is typically noisy changing from one class to the other. For this rea-

son, usually long-term information is introduced, by smoothing the classification [Tsai and Wang, 2006] or

by partitioning the song into segments (much longer than frames) and assigning the same class to the whole

segment. This partitioning of the song is performed based on tempo [New et al., 2004] [Maddage et al., 2003],

chord change [Maddage et al., 2004] or spectral (timbre) change [Li and Wang, 2007]. More global tempo-

ral aspects of a song are also taken into account by modeling the song structure (intro, verse, chorus, etc)

by means of a HMM [New et al., 2004].

With regards to descriptors, research on musical instruments classification has demonstrated the

importance of temporal and spectral features [Martin, 1999] [Herrera et al., 2006], and the speech process-

ing field has contributed on well known techniques (such as Linear Prediction) to compute voice signal

attributes [Rabiner and Schafer, 1978] [Chilton, 1999]. A broad group of descriptors has been used for

the purpose of singing voice detection. Singing voice carries the main melody and the lyrics of a popu-

lar song, so it is is usually one of the most salient instruments of the mixture. Therefore, vocal frames

can be identified by an energy increase of the signal, and energy or power descriptors are often used

[Zhang, 2002] [Tzanetakis, 2004] [New et al., 2004] [Shenoy et al., 2005] [Maddage et al., 2003]. The tim-

bre of different instruments is partially dictated by its spectral characteristics and when new sounds enters

a mixture they usually introduce significant spectral changes. Among the descriptors computed to rep-

resent this are Mel Frequency Cepstral Coefficients (MFCC) [Tsai and Wang, 2006] [Li and Wang, 2007]



[Maddage et al., 2003], Linear Prediction Coefficients (LPC) (warped LPC or perceptually derived LPC)

[Berenzweig and Ellis, 2001] [Berenzweig et al., 2002] [Kim and Whitman, 2002] [Maddage et al., 2003],

Log Frequency Power Coefficients (LFPC) [New et al., 2004], and spectral Flux, Centroid and Roll-Off

[Zhang, 2002] [Tzanetakis, 2004]. The delta coefficients of the previous features or variances of them are

also used to capture temporal information [Berenzweig et al., 2002]. As stated previously singing voice is

highly harmonic, thus the harmonicity of the signal, usually computed as an Harmonic Coefficient (HC), is

used as a clue for singing voice detection [Chou and Gu, 2001] [Zhang, 2002] [Kim and Whitman, 2002].

Regarding harmonicity a pre-processing technique was proposed that consist in filtering the signal

by an inverse comb filter to attenuate the harmonic sounds in the mixture [New et al., 2004] [Shenoy et al., 2005].

Harmonic accompaniment instruments have a very regular harmonic structure and can be partially removed

by this filtering. Although being harmonic, singing voice has some features (vibrato, intonation) that deviate

the frequency of partials from perfectly harmonic and cause it to remain after filtering.

The following is a summary of the most relevant research work on singing voice detection in

chronological order. To our knowledge, the first work that focused and described the problem of locating the

singing voice segments in music signals was [Berenzweig and Ellis, 2001]. Posterior probability features

and their statistics are derived from an ANN trained on a phone classes database to work with speech. A

HMM with two states is used to discriminate singing from accompaniment. Close in time, an approach for

singing detection in speech/music discrimination is described in [Chou and Gu, 2001]. It employs a set of

features that comprises MFCC as well as HC, 4Hz modulation and energy based features to train a GMM.

Following this early work, new proposals for singing detection were suggested. Artist classifi-

cation is improved in [Berenzweig et al., 2002] by using only voice segments detected with a multi-layer

perceptron that is fed with Perceptual LPC (PLPC), plus deltas and double deltas. An harmonic sound

detector is presented in [Kim and Whitman, 2002] to identify vocal regions of an audio signal for singer

identification. It works under the hypothesis that most harmonic sounds correspond to regions of singing.

By means of an inverse comb filter bank, the signal is attenuated and the Harmonicity is computed as the

ratio between the total energy in a frame over the energy of the most attenuated signal. The automatic singer

identification system described in [Zhang, 2002] identifies the starting point of the singing voice in a song

using energy features, zero-crossing rate (ZCR), HC and Spectral Flux and classifying with a set of thresh-

olds. In [Maddage et al., 2003] a study which aims to establish if there are significant statistical differences

between vocal music, instrumental music and mixed vocal and instruments is described. Descriptors set

contains LPC, LPC derived Cepstrum, MFCC, Spectral Power, Short Time Energy and ZCR. Classification

performance of a SVM is shown to be superior to an ANN and a GMM.

Subsequent research explored some other descriptors and classification approaches. A technique

for singing voice detection is proposed in [Maddage et al., 2004]. Musical signals are segmented into beat-

length frames using a rhythm extraction algorithm, the Fast Fourier Transform (FFT) of each frame is

calculated, and after filtering to a narrow bandwith containing mostly voice, another FFT is applied (Twice

Iterated Composite Fourier Transform, TICFT). Based on a threshold on the energy of the TICFT, singing

voice frames are separated from instrumental frames. Performance is improved by some frame-correction

rules based on chord pattern changes. In [Tzanetakis, 2004] singing voice detection is performed by a boot-

strapping process that consists in manually annotating a few random fragments of the song being processed

to train a classifier. The feature set includes Mean Relative Energy, and Mean and Standard Deviation of

Spectral Centroid, Roll-off, Flux and Pitch. Different classifiers are tested, being Logistic Regression and

ANN those which performed best. In the work described in [New et al., 2004] , based on the observation

that a more regular harmonic structure is present in non-vocal sections as compared to vocal sections, a

key estimation is performed to attenuate the harmonics of the spectrum and LFPC are computed. The en-

ergy distribution of the LFPC shows that vocal segments have relatively higher energy values in the higher

frequency bands. Classification is done with a multi-model HMM that models the different sections of

a typical song structure (intro, verse, chorus, bridge, outro). A classification refinement is provided by

a verification step based on classification confidence and an automatic bootstrapping process (similar to

that proposed in [Tzanetakis, 2004]). The work in [Shenoy et al., 2005] also addresses the singing voice

segmentation problem by estimating the key of the song in order to perform an inverse comb filtering to

attenuate the harmonic sounds. Singing voice is retained after filtering due to vibrato and intonation. The

energy in different frequency sub-bands is computed and the highest energy frames are classified as vocal.

Most recent works use MFCC as feature vectors and GMM as classifiers. A vocal/non-vocal

detection algorithm is proposed in [Tsai and Wang, 2006] applied to singer recognition. The class of each

frame is hypothesized according to log-likelihoods and the final decision is made at homogeneous segments.

In [Li and Wang, 2007], the problem of singing voice separation from music accompaniment is addressed

and a singing voice detection procedure is used. The audio is partitioned by detecting large spectral changes,

and segments are classified according to the log-likelihoods of all the frames of a portion.



3. Method

3.1. Databases

Independent datasets of popular music recordings were used for training, validation and testing. Audio of all

datasets is stereo at a sampling rate (fs) of 44.1 kHz. The training database was build extracting short audio

excerpts from music recordings and manually classifying them into vocal and non-vocal. Three different

excerpt-length sets were constructed of 0.5, 1 and 3 seconds length. Each set contains 500 instances of each

class. Music utilized belongs to a music genres database comprising alternative, blues, classical, country,

electronic, folk, funk, heavy-metal, hip-hop, jazz, pop, religious, rock and soul. In addition, approximately

25% of pure instrumental and a capella music was also added. The validation database consists of 63

fragments of 10 seconds that were manually annotated. Music was extracted from Magnatune2 recordings

belonging to similar genres as the ones used for training. Once the features and the classifier were set and

its parameters finely tuned, an independent evaluation was conducted on a testing database of 46 manually

annotated songs, for a total duration of 3 hours. Music in this set comprises 7 different singers performing

in genres that were used for training and validation.

3.2. Descriptors implemented

Based on the existing literature the following timbre descriptors were implemented: Mel Frequency Cepstral

Coefficients (MFCC), Perceptually derived LPC (PLPC), Log Frequency Power Coefficients (LFPC) and

Harmonic Coefficient (HC). In addition, a general purpose musical instruments classification feature set was

built, including Spectral Centroid, Roll-off, Flux, Skewness, Kurtosis and Flatness. Pitch was also included,

being the only non-spectral feature reported that was considered relevant (4Hz modulation is appropriate

for speech but not for singing [Chou and Gu, 2001], ZCR strongly correlates with the Spectral Centroid

[Herrera et al., 2006] and other power or energy features can be regarded as variants of spectral descriptors

such as LFPC).

Audio signal is processed in frames of 25 ms using a Hamming window and a hop size of 10

ms. Considering that the majority of energy in the singing voice falls between 200 Hz and 2000 Hz

[Kim and Whitman, 2002], the frequency range is established in 200 Hz to 16 kHz for all spectral de-

scriptors.

Implementation of MFCC derives 13 coefficients from 40 mel scale frequency bands for each

signal frame. An FFT is applied to each signal frame and the magnitude spectrum is obtained by taking the

absolute value. After that, the magnitude spectrum is processed by a filter bank whose center frequencies

are spaced according to the mel scale. Then, energy on each band is computed and the logarithm is taken.

The elements of these vectors are highly correlated so a Discrete Cosine Transform (DCT) is applied to

finally obtain the MFCC.

Some psychoacoustic concepts are introduced in the PLP analysis technique that make it more

consistent with human hearing in comparison with conventional LP analysis. PLP coefficients are obtained

by a critical band integration of the signal, followed by equal loudness weighting and intensity to loud-

ness conversion. Finally, a Linear Prediction analysis of order 12 is applied. Both MFCC and PLPC are

implemented using [Ellis, 2005]3.

To derive LFPC the signal frames are passed through a bank of 12 band-pass filters spaced loga-

rithmically, and the coefficient for each band is obtained by computing the power of the band divided over

the band bandwith and expressed in decibels [New et al., 2004], as follows,

LFPCt(m) = 10 log
10

∣

∣

∣

∣

St(m)

Nm

∣

∣

∣

∣

, St(m) =

fm
∑

k=fm−1

Xt(k)2, m = 1, 2, . . . , 12

where t is the frame number, m indicates the band number, St(m) is the power of the band, Nm is the

number of spectral components in the band, Xt(k) is the kth spectral component of the signal frame, and

fm are the indexes of the band boundaries corresponding to frequencies spaced logarithmically from 200Hz

to 16kHz as represented in figure 1.

Implementation of HC follows the procedure described in [Chou and Gu, 2001], where temporal

and spectral autocorrelation of the signal frame are computed (TA and SA respectively), and the HC is

obtained as the maximum of the sum of the autocorrelation functions, HCt = maxτ [ TAt(τ) + SAt(τ) ],
where t is the frame number, and τ is the temporal delay. Temporal and spectral autocorrelation functions

2http://magnatune.com/
3http://www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/



Figure 1: Frequency bands used for LFPC computation.

are calculated as,
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where xt(n) is a signal frame ofN samples,Xt(k) is the magnitude spectrum of the signal frame computed
by anM point FFT, x̄t(n) and X̄t(k) are the zero mean versions of xt(n) and Xt(k), and kτ = M

τfs

is the

frequency bean index that corresponds to the time delay τ .

Spectral Flux, Roll-off, Centroid, Skewness, Kurtosis and Flatness are implemented based on

[Herrera et al., 2006]. The Spectral Flux (SFX) is a measure of local spectral change, and it is computed as

the spectral difference of two consecutive frames as,

SFXt =

M

2
∑

k=1

(

X̂t(k) − X̂t−1(k)
)2

where X̂t(k) is the energy normalized magnitude spectrum of the signal frame. Spectral Roll-off is com-
puted as the frequency index R below which the majority of the spectral energy is concentrated (γ = 0.85
is used),

R
∑

k=1

Xt(k)2 ≤ γ

M

2
∑

k=1

Xt(k)2.

The rest of the spectral descriptors consider the spectrum as a distribution, which values are the frequencies

and the probabilities are the normalized spectral amplitude, and compute measures of the distribution shape.

The Spectral Centroid is the barycenter or center of gravity of the spectrum and is computed as,

SC =

∑

M

2

k=1
k Xt(k)

∑

M

2
−1

k=0
Xt(k)

.

The Skewness is a measure of the asymmetry of a distribution around its mean, while the Kurtosis is a

measure of the flatness of a distribution around its mean. They are computed as the normalized moments of

order 3 and 4 respectively by,

SS =

√

M
2

∑

M

2
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(Xt(k) − X̃t)

3

(
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2
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2

, SK =
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4

(

∑

M

2
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(Xt(k) − X̃t)2

)2
− 3.

where X̃t is the mean value of the magnitude spectrum Xt(k). The Spectral Flatness is a measure of how
flat or similar to white noise the spectrum is. It is computed as the ratio of the geometric mean to the

arithmetic mean of the spectrum,

SF =

M

2

√

∏

M

2

k=1
Xt(k)

1
M

2

∑

M

2

k=1
Xt(k)

.

A low value indicates a tonal signal, while for a noisy signal the value is close to 1. It is typically computed

for several frequency bands. We used the following four overlapped frequency bands: 200 to 1000 Hz, 800

to 2500 Hz, 2000 to 3500 Hz and 2500 to 5000 Hz.

Reliable pitch estimation in polyphonic music signals remains up to the moment a very complex

open problem, so for the sake of simplicity pitch estimation is performed by applying a monophonic fun-

damental frequency estimation algorithm based on [A. de Cheveignè, H. Kawahara, 2002]. This has the



drawback of an unreliable estimation, noisy and prone to octave errors due to the many sounds present at

the same time. The implemented algorithm uses the Difference Function (DF), a variation of the autocorre-

lation function that calculates the difference between the signal frame and a delayed version of it,

DFt(τ) =

N−τ
∑

n=1

(xt(n) − xt(n + τ))
2
.

For a periodic signal this function is zero at values of τ multiples of the signal period, while in case of

quasiperiodic signal it has minimuns close to zero. The pitch of the signal is estimated as the inverse of the

delay value of the first minimun.

As stated previously, the audio signal is processed in overlapped frames, so the audio features

computed describe the signal at each 10 ms. To take into account descriptors information over several

consecutive frames, an audio fragment is considered, of 0.5, 1 or 3 seconds. Mean, median, standard

deviation, skewness and kurtosis are extracted for this fragments. Additionally, deltas and double deltas are

computed for each descriptor coefficient and the same statistical measures are calculated.

3.3. Validation procedures

To compare descriptors, in order to select them, classification performance on the training dataset is con-

sidered. The training database is composed of audio excerpts, each of them labelled as belonging to either

one class. Performance is computed as the percentage of correctly classified instances using 10-fold cross-

validation (CV). Different classifiers provided by [Witten and Frank, 2005]4 were considered and, after

detailed comparisons, SVM was selected (see table 3).

The validation database is used to adjust system parameters such as the fragment length to be

used to process the music audio file, or the classifier options. It is also used for evaluating the inclusion of

different post-processing strategies to the system. On the other hand, testing database provides an indepen-

dent dataset to test the final system performance. In both cases, music audio files manually labelled must

be processed. The adopted procedure divides the file into 50% overlapped fragments, descriptors for each

fragment are computed at each 10 ms and statistical measures over the whole fragment are calculated. After

that, each fragment is classified as vocal or non-vocal. Finally, vocal and non-vocal regions of the audio

file are build considering that the class of each fragment extends from its center to half hop-size on either

side (due to overlapping). Performance is computed as the percentage of time that the classification and

the manual annotation coincides. It is important to note that, due to the rough discretization of the audio in

fragments, even in a correctly classified case there is always a small divergence between the annotated and

the computed boundaries (see figure 2).

Figure 2: Singing voice detection example. Manual annotation (dashed line) versus automatic detec-
tion (solid line) is shown at the top. Audio signal is divided into 50% overlapped fragments
of 1 second length. The classification of the fragments into vocal (upper) and non-vocal
(lower) is depicted at the bottom. This rough discretization of the audio in fragments pro-
duces a small divergence between the annotated and the computed boundaries of the vocal
regions. Although this example could be considered a correctly classified case, perfor-
mance computed as the percentage of time that the classification and the manual annota-
tion coincides is 93.3%.

4http://www.cs.waikato.ac.nz/ml/weka/



3.4. Selection of descriptors

As stated previously, for each descriptor coefficient (as well as deltas and double deltas), mean, median,

standard deviation, skewness and kurtosis are computed. Adding irrelevant attributes to a dataset is not

practical and often confuses a machine learning system [Witten and Frank, 2005]. Thus, feature selection

is performed to discard less significant descriptors among each category (e.g. MFCC). For this task a

correlation-based feature subset selection method provided by [Witten and Frank, 2005] is applied. How-

ever, automatic selection is not reliable when the number of features is not sufficiently small compared

to the available observations, as spurious correlations between features are more likely. In those cases, a

selection procedure is applied that is motivated by practical considerations concerning the inclusion of the

selected features on the final system. It would be desirable to relieve the system of computing whole groups

of attributes (double deltas for instance) if their contribution is not so relevant. However this is not gener-

ally ensured when appling automatic selection or dimensionality reduction techniques. For this reason, the

selection firstly determines the individual classification performance of a SVM classifier for each group of

statistical attributes (e.g MFCC medians). Then a procedure similar to backward elimination is applied, that

is, starting with the full set and deleting a group of attributes one at a time, trying to leave out as much as

possible without reducing classification performance significantly. Individual performance of each group is

used as a clue for selecting those to eliminate. As a result of this feature selection, each attribute category

is finally represented by a reduced set of descriptors.

3.5. Classification strategy

In order to select a statistical classifier for the system, different methods provided by [Witten and Frank, 2005]

were applied to the training set, and 10 times 10-fold CV classification performance was compared. The

best performing classification model is finally incorporated into our singing detection system. Frame length

used by the system is selected by comparing the performance of the selected model trained with the different

training sets (of 0.5, 1 and 3 seconds excerpt length) and applied to the validation dataset.

Some post-processing strategies were considered to improve classification performance of the sys-

tem based on classification confidence and contextual information. The first one is motivated by the fact that

in some cases a fragment lies over a transition between vocal and non-vocal. For this reason, if a frame has

a low classification confidence (based on probability estimates for each class) it is subdivided into two new

fragments and each of them is re-classified. In case of a transition each new fragment could be classified

to a different class (see figure 3). Additionally, two simple context rules are proposed. If a low probability

fragment is surrounded by elements of the same class re-classification is avoided. On the other hand, if one

of the half size fragments produced by re-classification is surrounded by elements of the other class, it is

deleted.

4. Results

4.1. Selection of descriptors

Descriptors selection results are summarized in table 1. The selected features and the total number of

coefficients for each category are presented. MFCC and PLPC set includes delta coefficients, while LFPC

set includes delta and double delta coefficients. The only discarded type of descriptor in the Spectral set was

Flux. The complete Spectral set includes: Centroid mean and median, Roll-off mean, median and standard

deviation, Skewness mean and median, Kurtosis mean and median and Flatness mean, median and standard

deviation.

Category Performance # Coefficients Features selected

MFCC+D 84.5% 52 median, stdev

LFPC+D+DD 78.7% 72 median, stdev

Spectral 76.0% 21 whole set without Flux

PLPC+D 70.8% 78 median, stdev, skewness

HC 63.6% 2 mean, median

Pitch 59.1% 3 mean, stdev, kurtosis

Table 1: Feature selection results and 10 times 10-fold CV classification performance of a SVM on the
training dataset of 1 second length audio excerpts. Performance is measured as percentage
of correct decisions.

Descriptor sets are ranked in table 1 according to the performance obtained with a SVM using

10 times 10-fold CV over the training set (note that random guess rate is 50% in this task). The results



Figure 3: Post-processing based on classification confidence. An audio frame with low probability
estimates for each class is subdivided into two new fragments and each of them is re-
classified. In this example, fragment centered on second 8 lies over a transition between
non-vocal and vocal and its probability estimates fall below a threshold of 0.7. The fragment
is divided and each new portion is correctly classified. Classification is improved after post-
processing (from 84.2% to 86.5%) as it is shown in the manual anotation versus automatic
detection comparison at the top.

of paired t-tests (corrected resampled t-test [Witten and Frank, 2005]) comparing the performance of the

various feature categories show that there are statistically significant differences between the MFCC set and

each of the other sets (at a significance level of p < 0.05). The confussion matrix of the classification model
based on MFCC features over the training set is presented in table 2.

classified as

vocal non-vocal

class
vocal 428 72

non-vocal 77 423

Table 2: Confusion matrix of the classification on the training dataset of 1 second length audio ex-
cerpts using MFCC descriptors, obtained by 10-fold CV. The rows of the matrix correspond
to the ground-truth of the audio excerpt and the columns indicate the hypothesis.

4.2. Classification strategy

Different classifiers were considered using the MFCC feature set on the training database comparing 10-

fold CV classification performance. Table 3 shows the results obtained with a SVM trained using the

Sequential Minimal Optimization method, a backpropagation ANN, a decision tree classifier implementing

the well-known C4.5 algorithm and two different K-Nearest Neighbors (KNN).

Based on the classification performance on the validation set, 1 second turned out to be the most

suitable fragment length. Results obtained were 73.3%, 74.2% and 73.0%, for 0.5, 1 and 3 seconds re-

spectively. According to these results, our singing detection system was built with a SVM model using the

MFCC feature set and a fragment length of 1 second.

The post-processing strategies proposed were added to the system one at a time in order to evaluate

them on the validation database. Results obtained are reported in table 4.

Classifier SVM ANN KNN-3 KNN-1 C4.5

Performance 85.1% 82.6% 76.5% 73.5% 73.1%

Table 3: Performances of different classifiers after 10-fold CV on the training database of 1 second
length audio excerpts using the MFCC set.



Post-processing none re-classify add rule 1 add rule 2

Performance 75.7% 76.3% 76.6% 76.8%

Table 4: Evaluation of the post-processing strategies on the validation dataset using the MFCC de-
scriptors. Performance is computed as the percentage of time that the classification and the
manual annotation coincides.

Post-processing none all

Performance 77.6% 78.5%

Table 5: Performance of the system on the testing dataset with no post-processing and performing
all the post-processing strategies proposed, computed as the percentage of time that the
classification and the manual annotation coincides.

Finally the system was used to process the testing set achieving a performance similar to that

obtained in the validation set. Table 5 shows the results with no post-processing and considering all the

post-processing strategies.

5. Discussion and conclusions

Analysis of the results obtained indicate that those descriptors that model the spectral content of the audio

signal were the most appropriate for the problem (MFCC, LFPC, Spectral, PLPC). It is interesting that such

a simple descriptor as LFPC outperformed all other features sets but MFCC, and that the general purpose

Spectral outperformed PLPC. The results confirm that HC is not able to discriminate singing voice sounds

from other harmonic musical instruments. The poor performance obtained with the Pitch descriptors is

due to the utilization of a monophonic fundamental frequency estimation algorithm. We plan to apply

other pitch estimation methods in our future work that could deal with polyphonic audio and to develop

pitch descriptors that exploit singing voice pitch contour distinctive features such as intonation. Regarding

MFCC, the feature selection performed points out that considering delta coefficients can boost performance

(2% on the training set). However, they are generally not used when applying MFCC to this type of

problem [Li and Wang, 2007] [Tsai and Wang, 2006]. Classification performance decreased significantly

in validation and testing compared to 10-fold CV on the training set, which is not surprising because of the

different origins and data variances of the databases. Additionally, the developed system roughly divides

the audio file in fragments, so given our validation approach, we can take these results as worst-case or

lower-bound estimations of the system performance.

We have studied the singing voice detection problem in music audio files by a statistical classifi-

cation approach and we have compared, under equivalent conditions, the performance of several types of

acoustic descriptors reported to be used for the problem. The results obtained confirm the usefulness of

MFCC for this problem. As an outcome of our study, an effective singing voice detection system to process

popular music audio files with a reduced set of descriptors has been developed. It is difficult to compare

the performance achieved with other research work because there is no standard dataset for evaluation, but

results obtained are promising and similar to the ones reported. Although our primary intention was to

compare already used descriptors for this task, we have attempted to combine different descriptors as well

as different classifiers. The overall classification performance was not improved so the results are not in-

cluded. Also some other descriptors were tested without success. Our future work will follow this direction

as it is reasonable to expect better results by combining different sources of information.
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