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Abstract

A framework for the regularized estimation of non-
uniform dimensionality and density in high dimensional
data is introduced in this work. This leads to learning strati-
fications, that is, mixture of manifolds representing different
characteristics and complexities in the data set. The basic
idea relies on modeling the high dimensional sample points
as a process of Poisson mixtures, with regularizing restric-
tions and spatial continuity constraints. Theoretical asymp-
totic results for the model are presented as well. The pre-
sentation of the framework is complemented with artificial
and real examples showing the importance of regularized
stratification learning in computer vision applications.

1. Introduction
Recently, there has been significant interest in analyzing

the intrinsic structure of high dimensional data, this is com-
monly known as manifold learning, e.g., [4, 5, 7, 13, 14, 17,
21]. Often, points that live in a high dimensional space can
be parametrized by a number of parameters much smaller
than the ambient dimension. A representation (embedding)
of the data in a lower dimensional space is very helpful for
analysis and computations on the dataset.

Most of the works on manifold learning rely on the hy-
pothesis that all the points under analysis are samples of the
same manifold and thus there is a unique intrinsic dimen-
sion. However, this is often not a good assumption. It is
likely that, for example, a collection of image portraits of
the same person under varying pose and illumination, lies
on a manifold defined by a set of parameters related to the
variations in pose and illumination. On the other hand, let
us consider a set of images representing scanned digits. It
might happen that the images representing the digit ‘1’ can
be described with a different number of parameters than the
images for digit ‘3.’ Videos of diverse human motions con-
tain the same complexity variability. In these cases, it is im-
portant to detect that there are different complexities present
in the same point cloud data.

This problem, clustering-by-dimensionality and stratifi-
cation learning, has recently been addressed by some au-
thors. Barbará and Chen, [3], defined a hard clustering tech-
nique based on the fractal dimension (box-counting) which
also finds the number of clusters and the intrinsic dimension
of each cluster. Gionis et al., [9], propose a two-step algo-
rithm: First, they estimate the local correlation dimension
and density for each point; then, standard clustering tech-
niques are used to cluster the two-dimensional representa-
tion (dimension + density) of the data. Souvenir and Pless,
[19], compute a soft clustering based on Isomap [21]. After
clustering, each cluster dimensionality is estimated follow-
ing [14]. Huang et al., [12], cluster linear subspaces with an
algebraic geometric method based on polynomial differen-
tiation and a Generalized PCA (GPCA), [22], which finds
the number of linear subspaces and their intrinsic dimen-
sions. The work of Mordohai and Medioni, [16], estimates
the local dimension using tensor voting. A Poisson Mixture
Model (PMM) was introduced by Haro et al., [10], to simul-
taneously estimate non-uniform dimensionality and density
and use them for soft clustering. Cao and Haralick, [6],
propose a hard clustering by dimensionality: First, local di-
mensionality is computed via local PCA; and then, neigh-
boring points are clustered together if they have the same
dimension and if the error of representing the new cluster
as a combination of basis functions in a kernel-based fea-
ture space is small.

Among these clustering-by-dimensionality techniques,
only the one by Cao and Haralick includes spatial informa-
tion in order to obtain a regularized classification. Recently,
Lu and Vidal, [15], combined GPCA with an additional spa-
tial constraint in a k-means fashion. They showed that, by
adding this constraint, the classification is improved in the
intersection of the linear subspaces.

In this paper, we first extend the framework introduced
in [10] to include regularization and spatial constraints. We
show that these new constraints can be easily incorporated
within the PMM framework and come natural following a
new interpretation of the model in [10]. These constraints
can be adapted to either add spatial regularity in the classifi-
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cation or intra-class spatial compactness. Temporal regular-
ization is also possible, within the same approach, by defin-
ing the proper neighborhood in the constraint. The interest
in extending this particular model relies on its capability to
deal with non-linear manifolds and simultaneously estimate
the soft clustering and the intrinsic dimension and density
of each cluster. This collection of attributes is not shared by
any of the other above mentioned approaches. We complete
the novel contributions by presenting asymptotic results on
the proposed estimator and new examples for typical com-
puter vision data.

In Section 2 we review the method proposed by Levina
and Bickel, [14], which gives a local estimation of the in-
trinsic point cloud dimension. Inspired by this technique,
a Poisson Mixture Model was proposed in [10], which si-
multaneously computes a soft clustering and estimates the
intrinsic dimension and density of each cluster. This ap-
proach is reviewed and extended to include spatial terms in
Section 3. Asymptotic results are presented here as well.
We show experiments with synthetic and real data in Sec-
tion 4, and finally, conclusions are presented in Section 5.

2. Local intrinsic dimension estimation
Levina and Bickel, [14], proposed a geometric and prob-

abilistic method which estimates the local dimension and
density of a point cloud data. This dimension estimator
is equivalent to the one proposed in [20]. Their approach
is based on the idea that if we sample an m-dimensional
manifold with T points, the proportion of points that fall
into a ball around a point xt is k

T ≈ f(xt)V (m)Rk(xt)m.
Here, the given point cloud, embedded in high dimensions
D, is X = {xt ∈ RD; t = 1, . . . , T}, k is the number
of points inside the ball, f(xt) is the local sampling den-
sity at point xt, V (m) is the volume of the unit sphere
in Rm, and Rk(xt) is the Euclidean distance from xt to
its k-th nearest neighbor (kNN). Then, they consider the
inhomogeneous process N(R, xt), which counts the num-
ber of points falling into a small D-dimensional sphere
B(R, xt) of radius R centered at xt. This is a binomial
process, and some assumptions need to be done to proceed.
First, if T → ∞, k → ∞, and k/T → 0, then we can
approximate the binomial process by a Poisson process.
Second, the density f(xt) is constant inside the sphere, a
valid assumption for small R. With these assumptions, the
rate λ of the counting process N(R, xt) can be written as
λ(R, xt) = f(xt)V (m)mRm−1. The log-likelihood of the
process N(R, xt) is then given by

L(m(xt), θ(xt)) =
∫ R

0

log λ(r, xt)dN(r, xt)−
∫ R

0

λ(r, xt)dr,

where θ(xt) := log f(xt) is the density parameter and the
first integral is a Riemann-Stieltjes integral [18]. The max-
imum likelihood estimators lead to a computation for the

local dimension at point xt, m(xt), depending on all the
neighbors within a distance R from xt [14]. In practice, it
is more convenient to compute a fixed amount k of nearest
neighbors. Thus, the local estimators at point xt are

m(xt)=

 1
k − 1

k−1∑
j=1

log
Rk(xt)
Rj(xt)

−1

(1)

θ(xt)= log
(
(k − 1)/

(
V (m(xt))Rk(xt)m(xt)

))
(2)

where V (m(xt)) = (2πm(xt)/2)/(m(xt)Γ(m(xt)
2 )), and

Γ(m(xt)
2 ) =

∫∞
0
tm(xt)/2−1e−tdt. If the data points be-

long to the same manifold, the authors propose to average
over all local estimators m(xt) in order to obtain a more ro-
bust estimator. However, if there are two or more manifolds
with different dimensions, the average does not make sense,
unless we first cluster according to dimensionality and then
we estimate the dimensionality for each cluster. Another
possibility is the simultaneous soft clustering and estima-
tion technique described in Section 3.

3. Dimensionality and density estimation with
simultaneous soft clustering

3.1. Poisson Mixture Model (PMM)

In [10], the authors proposed to study a stratification by
extending the Levina and Bickel’s technique. Instead of
modeling each point and its local ball of radius R as a Pois-
son process and computing the maximum likelihood (ML)
for each ball separately, all the possible balls are consid-
ered at the same time in the ML function. The probability
density function for all the point cloud is a mixture of Pois-
son distributions with different parameters (dimension and
density) in each class. This allows the presence of different
intrinsic dimensions and densities in the dataset. These are
automatically computed while being used for soft cluster-
ing.

Let us consider J different Poisson distributions in the
mixture, each one with a (possibly) different dimension m
and density parameter θ. Let us denote by ψ the vector set
of parameters, ψ = {ψj = (πj , θj ,mj); j = 1, . . . , J},
where πj is the mixture coefficient for class j (the propor-
tion of distribution j in the dataset), θj is its density param-
eter (f j = eθj

), and mj is its dimension.
The observable event is, as in the Levina-Bickel ap-

proach, the number of points inside the ball B(R, xt) of
radius R centered at point xt, denoted by yt = N(R, xt).
The total number of observations is T ′ and Y = {yt; t =
1, . . . , T ′} is the observation sequence. Often, T ′ ≡ T , all
points in the dataset are considered. Let us also denote by
p(·) the probability density function and by P (·) the proba-
bility. The density function of the Poisson mixture model is



given by

p(yt|ψ) =
J∑

j=1

πjp(yt|θj ,mj).

Since the observations follow a Poisson distribution,

p(yt|θj ,mj) = e
R R
0 log λj(r) dN(r,xt)e−

R R
0 λj(r)dr,

where λj(r) = eθj

V (mj)mjrmj−1. If Y contains T
statistically independent variables (a standard assumption),
then the probability density function of the observation se-
quence is the product of the individual probability densities,
p(yt|ψ), and the log-likelihood is:

L(Y |ψ) = log p(Y |ψ) =
T∑

t=1

log p(yt|ψ). (3)

Let us consider the hidden-state information, that is, which
mixture (or expert) generates each observation. We denote
by Z = {zt ∈ C; t = 1, . . . , T} the set of hidden variables
and by C = {C1, C2, . . . CJ} the set of class labels. Then,
zt = Cj means that the j-th mixture generates yt. Using Z
we can write the complete data log-likelihood as

log p(Z, Y |ψ) =
T∑

t=1

J∑
j=1

δj
t log

[
p(yt|ψj)πj

]
, (4)

where a set of indicator variables δj
t , called membership

functions, is used in order to indicate the status of the hid-
den variables:

δj
t ≡ δ(zt, C

j) =

{
1 if zt = Cj ,

0 else.

The unknown parameters in (4) are: The membership func-
tion of an expert (class), δj

t , the mixture probabilities, πj ,
and the parameters of each expert, mj and θj . Usually,
problems involving a mixture of experts are solved by the
Expectation Maximization (EM) algorithm [8]. The EM is
based on the following decomposition of the log-likelihood
(3):

L(Y |ψ,H) =
T∑

t=1

J∑
j=1

hj(yt) log
[
p(yt|ψj)πj

]
−

T∑
t=1

J∑
j=1

hj(yt) log
[
hj(yt)

]
,

(5)

where H = {hj(yt) ≤ 1; t = 1, . . . , T, j = 1, . . . , J} and
hj(yt) is the probability that observation t belongs to mix-
ture j. Thus, the set H is also unknown. Since the member-
ship functions are indicator variables, the first term in (5) is

the expectation of (4) with respect to Z. Also notice that the
second term is the entropy of the membership functions.

An interesting interpretation of the EM algorithm is in-
troduced in [11], where the EM is seen as an alternate op-
timization algorithm of the log-likelihood (5). Then, the E-
step is nothing else than the maximization of L(Y |ψ,H)
with respect to H with the additional constraint that∑J

j=1 h
j(yt) = 1 for each observation t = 1, . . . , T . Thus,

the variables hj(yt) at step n + 1 of the optimization algo-
rithm are

hj
n+1(yt) =

p(yt|mj
n, θ

j
n)πj

n∑J
l=1 p(yt|ml

n, θ
l
n)πl

n

. (6)

In the same way, variables ψ are obtained by maximizing
L(Y |ψ,H) with respect to ψ with an additional constraint
for the mixture probabilities:

∑J
j=1 π

j=1. This gives equa-
tions (10)-(12) for the variables at step n + 1. In order
to compute mj

n+1 we have used the same approach as in
[14], by means of a k nearest neighbor graph. The PMM
approach just described is summarized in R-PMM Algo-
rithm, for the particular case of α = 0 (no regularization).

3.2. Regularized and spatially constrained PMM

The PMM algorithm seeks a soft clustering according
to dimensionality and density, but does not (explicitly) take
into account spatial information. Adding regularization is
the goal of this section. Regularization helps to improve the
classification in noisy data and points lying close to mani-
fold edges (see results in Figure 1). This is done inspired by
the work in [1] for the neighborhood EM (NEM), where the
authors extend the EM algorithm adding spatial constraints.
This neighborhood spatial information is introduced as a pe-
nalization term in the log-likelihood, following Hathaway’s
EM interpretation [11]. In our context, we complete (5)
with a spatial term S(H),

F (ψ,H) = L(Y |ψ,H) + αS(H), (7)

where α is a parameter that controls the tradeoff between
the spatial term and the likelihood. Its value is also related
to the amount of noise in the data. Then, function F is max-
imized with an alternate optimization technique. Since the
new term, S, only depends on H , the optimization proce-
dure results in a EM-type algorithm with a modified mem-
bership probability that not only depends on the likelihood
but also on the spatial criteria. The NEM algorithm uses
(note the similitude with MRFs, see below)

SNEM (H) =
T∑

t=1

J∑
j=1

hj(yt)
∑
s∼t

hj(ys),

where s ∼ t indicates that there is a neighborhood rela-
tionship between observations s and t. By maximizing this



term, we want, for each observation t, as many neighbors
as possible with high probability of belonging to the same
class as observation t, thus regularizing the classification.
However, we will use a more general expression for S(H)
based on a dissimilarity measure, D, between every obser-
vation and other observations in the sequence,

S(H) = −
T∑

t=1

J∑
j=1

hj(yt)D(t, j,X,H). (8)

The expression (8) provides a generic framework for intro-
ducing constraints in the soft classification, besides the ones
already present in the PMM model, namely dimensionality
and density. One possibility, as in the NEM algorithm, is to
introduce spatial regularity. Then, as dissimilarity measure
we use DR defined as:

DR :=
∑
s∼t

(1− hj(ys))2.

Different neighborhoods definitions in DR result in differ-
ent kinds of regularization. A natural choice is the man-
ifold neighborhood, for that, we can define as neighbors
the k nearest neighbors. However, for specific applications
one might be interested in other neighborhoods, e.g., pixel
neighborhoods or contiguous frames in video applications
(see experiment in Figure 6).

We could also impose spatial intra-class compactness
with the definition of a proper dissimilarity function,

DC :=

∣∣∣∣∣∣xt −Xj
c,t

∣∣∣∣∣∣2
2

2
J

∑J
k=1

∣∣∣∣xt −Xk
c,t

∣∣∣∣2
2

,

where Xj
c,t is the weighted centroid of class j without con-

sidering point xt:

Xj
c,t =

∑T
s=1,s 6=t h

j(ys)xs∑T
s=1,s 6=t h

j(ys)
.

We study the effect of parameter α in Figures 2 and 3. Ob-
serve that, for a small value of the regularization parameter
α, both DR and DC as D in (8) produce spatial regulariza-
tion over the clustering with the original PMM. If we use a
large value of α all the points will be classified in the same
cluster. However, for intermediate values of α, the effect
of (8) in the classification process is very different in both
cases. If we use DR, the regularization is stronger (com-
pared to lower values of α). On the other hand, the use of
DC will produce a k-means classification.

As noted in [1], the EM algorithm with additional con-
straints can be seen as finding the Gibbs distribution with
energy −F (ψ,H). In the particular case where the ad-
ditional constraint is neighborhood dependent, SNEM (H)

and S(H) withDR, the Gibbs distribution defines a Markov
Random Field.

The maximization of F (Equation (7)), is obtained as
in [1], with an alternate optimization technique which re-
sults in an EM-type algorithm. Maximizing (7) with re-
spect to H , with S(H) defined in (8) – with the constraints∑J

j=1 h
j(yt) = 1 for each observation t = 1, . . . , T , by

means of Lagrange multipliers – results in the following ex-
pression for the membership probabilities:

hj(yt) =
p(yt|mj , θj)πj

ne
−αD(t,j,X,H)∑J

l=1 p(yt|ml, θl)πle−αD(t,l,X,H)
. (9)

Since the only term in (7) which depends on ψ is
L(Y |ψ,H), the optimal values of ψj = {(πj , θj ,mj) for
j = {1, . . . , J} do not change with respect to the original
PMM algorithm. The regularized version of the PMM al-
gorithm is summarized in the R-PMM Algorithm.

R-PMM Algorithm Regularized Poisson Mixture Model

REQUIRE: The point cloud data, J (number of desired classes), k
(scale of observation) and α (regularization parameter).
ENSURE: Regularized soft clustering according to dimensionality
and density.

1. Initialization of ψ0 = {πj
0,m

j
0, θ

j
0} to any set of values

which ensures that
PJ

j=1 π
j
0 = 1.

2. Iterations on n,
For all j = 1, . . . J , compute:

• 1st step: Compute, for all t = 1, . . . , T ,

hj
n+1(yt) =

p(yt|mj
n, θ

j
n)πj

ne
−αD(t,j,X,Hn)PJ

l=1 p(yt|ml
n, θl

n)πl
ne−αD(t,l,X,Hn)

,

where Hn = {hj
n(yt); j = 1, . . . , J, t = 1, . . . , T}.

• 2nd step: Compute

πj
n+1 =

1

T

TX
t=1

hj
n(yt), (10)

mj
n+1 =

24PT
t=1 h

j
n(yt)

Pk−1
j=1 log Rk(yt)

Rj(yt)PT
t=1 h

j
n(yt)(k − 1)

35−1

,

(11)

θj
n+1 = log

TX
t=1

hj
n(yt)(k − 1)

− log

 
V (mj

n)

TX
t=1

hj
n(yt)Rk(yt)

mj
n

!
.

(12)

Until convergence of ψn, that is, when ||ψn+1 − ψn||2 < ε, for a
certain small value ε.



Remark. If we write the estimators (11) and (12) as func-
tions of the estimators (1) and (2), we obtain

mj
n+1 =

[
T∑

t=1

hj
n(yt)m(xt)−1/

T∑
t=1

hj
n(yt)

]−1

,

f j
n+1 = eθj

n+1 =

[
T∑

t=1

hj
n(yt)f(xt)−1/

T∑
t=1

hj
n(yt)

]−1

,

where f(xt) = eθ(xt). Notice that the estimators in
the PMM (and R-PMM) approach are the inverse of the
weighted average of the inverse estimators of Levina-
Bickel. The weight at each point is the probability
of the membership function. In the particular case of
one unique class, J = 1, we obtain the global di-
mension estimator proposed by MacKay and Ghahramani
(http://www.inference.phy.cam.ac.uk/mackay/dimension/).

As proved in [2], if α is small enough, (7) has a guar-
anteed global maximum for a fixed value of ψ, and the ad-
ditional term S(H) does not affect the convergence of the
EM-type algorithm. It can be shown that, for the case of
DR, the corresponding bound on α is

αR <
1

2 maxt,j

∑
s∼t(1− hj(xs))

.

Notice that αR < 1/(2k) in the worst case scenario. In the
case of DC , the bound has a more complicated expression,
and in the worst case scenario

αC <
[
4(J − 1)(T − 1) max

s
||xs||1 max

t
B(t)

]−1

,

whereB(t) =
(

maxj

(
||xt−Xj

c,t||1PT
s=1,s 6=t hj(xs)

)
maxj D′

C(t,j)PJ
k=1D′

C(t,k)/J

)
,

and D′C(t, j) = ||xt − Xj
c,t||22. The EM suffers from local

maxima, this can be alleviated running the algorithm
several times with different initializations. Different
random subsets of points, from the original point cloud,
may be used in each run. We have experimented with
both approaches and the results are always similar if we
initialize all the probabilities equally, that is, πj

0 = 1/J
for j = 1, . . . , J , which is the initialization we have used
in the experiments here presented. We also normalize the
distances, the maximum distance between a pair of points
in the dataset is one.

3.3. Asymptotic analysis

Levina and Bickel show in [14] that under the assump-
tions T → ∞, k → ∞, and k/T → 0, that is when the
Poisson approximation is correct, the mean and variance of
the dimension estimator (1) (with k − 2 instead of k − 1 in
the denominator) are

E[m(xt)] = m, Var[m(xt)] =
m2

k − 3
.

We can apply the same type of analysis to the PMM model
in the particular case of hard clustering, that is

hj(yt) =

{
1 if j = argmaxih

i(yt),
0 else.

We assume, in addition, that all the points that belong to
class j are well classified. Then, we obtain the following
results

E[mj ] = m̄j +
m̄j

(k − 1)Nj − 1
,

Var[mj ] = m̄2
jO

(
1

(k − 1)Nj − 4

)
,

where m̄j is the correct intrinsic dimension of class j and
Nj is the amount of points classified as class j. The ba-
sic lines of the analysis are as follows: We use the fact
that Rk/Rj is distributed, under the Poisson assumption,
as a Uniform(0,1) distribution, the log of such a distribution
is an Exponential(1), and then, the sum of (k − 1) Expo-
nential(1) distributed variables is a Gamma(k − 1,1). Now,
for the case of PMM, we use the fact that the sum of Nj

Gamma(k − 1,1) distributions is a Gamma((k − 1)Nj ,1)
and then we use the properties of an inverse Gamma dis-
tribution. The analysis of the density estimator θj is the
subject of current research.

4. Experimental results
We now present experimental results with synthetic and

real data for the proposed Regularized PMM (R-PMM). We
fixed α experimentally and found that the same value of
α gives good results for different experiments of the same
kind and with the same amount of noise. In some cases, the
same value of α is good for different experiments, as it can
be noticed in the experiments here presented.

First, we work with synthetic point cloud data formed by
300 samples of a 1D spiral and 800 of a 2D plane, both in
3D embedding space. We compare the results for the PMM
algorithm, the R-PMM with DR, and the R-PMM with DC ,
Table 1 and Figure 1. All the cases where computed with
two classes (J = 2) and 30 neighbors (k = 30). We also
study the robustness to noise by adding Gaussian noise of
standard deviation σ = 0.66 to 50 randomly picked samples
of the spiral. Table 1 shows, for each algorithm, the ob-
tained values for the mixture model parameters and also the
quantitative result of the classification. Both the PMM and
R-PMM are able to separate the manifolds. We also applied
[14] and [7], and obtained dimensions of 1.68 and 1.46 re-
spectively. These approaches consider that all the points are
samples of the same manifold and give an estimated dimen-
sion which is an average of the actual dimensions. In Fig-
ure 1, we color each point according to the class it belongs
to (the class whose membership probability is the largest).



Estimated parameters
PMM R-PMM DR R-PMM DC

m 1.91 1.10 1.91 1.09 1.91 1.08
θ 5.21 3.34 5.20 3.33 5.19 3.32
π 0.74 0.26 0.74 0.26 0.75 0.25

points in each class
Plane 790 10 798 2 800 0
Spiral 22 278 21 279 23 277

Table 1. Estimated parameters and clustering results of a 1D spiral
(with noise in 50 points) and a 2D plane (k = 30, J = 2).

Notice how, for the two R-PMM versions and roughly for
the PMM, the classification is robust to noise. As expected,
the R-PMM algorithm (in its two versions) gives a more
spatially regularized classification than the PMM algorithm:
Observe that the points located at the edges of the plane and
the missclassified points in the spiral in Fig. 1(a) are well
classified in Fig. 1(b) and 1(c).

Figures 2 and 3 show the evolution, according to α, of
the classification of the R-PMM with DR and DC respec-
tively. As it can be observed, the classification with DC is
less sensible to the choice of parameter α since it is stable
for a larger range of values. For intermediate values of α,
DC produces a k-means kind of classification while DR in-
creases the regularization by diffusing the membership val-
ues h.

(a) PMM (b) R-PMM
(DR, α = 0.25)

(c) R-PMM
(DC , α = 50)

Figure 1. Clustering of a 1D spiral and a 2D plane (k = 30, J =
2). Gaussian noise of σ = 0.66 is added to 50 of the 300 points of
the spiral. Points colored according to their classification.

(a) α = 0.1 (b) α = 1 (c) α = 1.5

(d) α = 2 (e) α = 3 (f) α = 8

Figure 2. Clustering of a 1D spiral and a 2D plane (DR, k = 30,
J = 2). Evolution of the classification as parameter α increases.

As a test of the performance with real data, we first work
with the MNIST database of handwritten digits,1 which has
a test set of 10.000 examples. Each digit is an image of

1http://yann.lecun.com/exdb/mnist/

(a) α = 25 (b) α = 100 (c) α = 250

(d) α = 500 (e) α = 1000 (f) α = 1500

Figure 3. Clustering of a 1D spiral and a 2D plane (DC , k = 30,
J = 2). Evolution of the classification as parameter α increases.
Observe how, for intermediate values of α, it produces a k-means
classification.

Estimated parameters
m 8.5 13.68
θ 10.11 6.20
π 0.50 0.50

points in each class
One 1061 74

Three 0 1010

Table 2. Estimated parameters and clustering results of the mixture
of digits ‘1’ and ‘3’ (R-PMM DC , α=50, J=2, k=10).

28 × 28 pixels and we treat the data as 784-dimensional
vectors. We analyze the mixture of digits one and three,
some examples of those scanned digits are in Figure 4. The
obtained results are in Table 2. Levina-Bickel’s technique
gives a dimension value of 11.62 and Costa-Hero’s 9.42.
Like in the synthetic examples, these methods give a dimen-
sion in between the two different dimensions present in the
point cloud. With the R-PMM algorithm, we are able to sep-
arate the points (images) corresponding to each digit, both
sets have different dimensionality and density. We have ob-
served that some other digits do have the same dimension-
ality, as expected.

Figure 4. Examples of images of scanned digits (28×28 pixels).
We use each image as a point in a 784 dimensional space where
we cluster by dimensionality and density (see results in Table 2).

We also analyze images from the Yale Face Database
B,2 which contains images of 10 subjects under 585 view-
ing conditions (9 poses and 65 illumination conditions), see
Fig. 5. Each image has a size of 640×480 pixels. For com-
putational reasons we subsampled the images by a factor of
ten and use each 64 × 48 image as a vector in a high di-

2http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html



Estimated parameters
Experiment A: Sub. 5 and 6 B: Sub. 5, 6 and 7

m 4.11 2.78 4.11 3.11
θ 5.16 2.73 4.77 2.60
π 0.89 0.11 0.81 0.19

points in each class
Subject 5 580 5 575 10
Subject 6 0 65 0 65
Subject 7 - - 1 64

Table 3. Estimated parameters and clustering results of the mixture
of subject 5 (all poses, all illuminations) and subjects 6 and 7 (one
pose, all illuminations) in the Yale Face Database B (R-PMM with
DR, α=0.25, k=35, J=2). Experiment A (left): Subjects 5 and
6. Experiment B (right): Subjects 5, 6 and 7.

mensional space. First, we analyze the point cloud formed
by the 585 images of subject 5 (varying pose and illumina-
tion) together with the 65 images of subject 6 in the first
pose only and under varying illuminations. The numeri-
cal results and confusion matrix using the R-PMM algo-
rithm with DR (α = 0.25) are presented in Table 3 (left).
Note how both subjects are well separated, and the set of
images of subject 5 has a dimension one unity larger than
the dimension for subject 6, since we do not consider the
pose variation for this subject. The obtained dimension in
this last case is close to three, this result is consistent with
[15, 22]. As a second example, we add images of subject
7 (one pose under varying illumination) to the dataset used
in the previous experiment. The results are presented in Ta-
ble 3 (right). The set of images corresponding to subjects
6 and 7 are classified in the same class because they have
lower complexity/dimensionality (only one pose) than the
manifold of images corresponding to subject 5. Since the
R-PMM clusters data according to dimensionality and den-
sity, we can not separate images of subjects 6 and 7 even if
we set three classes in the algorithm. When J = 3, 56%
of images of subject 5 are classified as one class, the other
44% are classified as a second class, and all the images of
subject 6 and 7 (except for one) are classified together as a
third class.

Figure 5. Examples of images of subjects 5, 6, and 7 of the Yale
Face Database B. See results in Table 3.

Finally, we used the R-PMM framework to study differ-
ent human activities in video, using public available data. 3

We created a point cloud with the frames of four videos cor-
responding to four different activities: Walking, jumping,
waving, and jumping in place, all performed by the same

3http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html

person in a static background (see some frame examples in
Figure 6). Each frame contains 144 × 180 pixels, and we
subsampled each frame by a factor of 3 and used 48 × 60
dimensional vectors. This is mainly to speed up compu-
tations, actually the classification results are very similar
without the subsampling process. The confusion matrix
with the classification results using the PMM and the R-
PMM algorithm (with DR and α = 10) are presented in
Figure 6. In video applications, one may be interested in
temporal regularization. For that, we consider a temporal
neighborhood in DR, more concretely we take into account
the 6 previous and 6 posterior frames in the regularization
term. Although there are four different activities and we
selected J = 4 classes in the algorithm, the classification
is roughly done in three classes: waving, jumping in place,
and walking and jumping while advancing (these two activ-
ities have the same dimensionality/complexity and density
as detected by our proposed framework).

Regarding the computational time, the most expensive
part is the kNN-graph. For the experiment B with Yale faces
(Fig. 5, 715 points of dimension 3072) the execution takes
34.58s while 27.22s of the total time is spent in the compu-
tation of the kNN-graph. In the video experiment (Fig. 6,
401 points of dimension 2880) the total time and the kNN-
graph time are, respectively, 10.67s and 8.04 (CPU: Pen-
tium 4, 1.80 GHz).

5. Conclusions
In this work we introduced a framework for the simulta-

neous and regularized/constrained estimation of the intrin-
sic dimensionality and density of high dimensional point
cloud data, as the basis for complexity/density based soft-
clustering. We showed that regularization and spatial con-
straints can be naturally introduced in this approach. The
experiments show the importance of adding regularization
in the classification. With the proper dissimilarity function
and neighborhood type, we are able to add spatial or tempo-
ral regularity in the classification or intra-class spatial com-
pactness. Other type of constraints are possible under the
same proposed framework. Asymptotic theoretical results
were also presented.

We would like to follow this direction of work and study
other constraints which can be useful for stratification learn-
ing. One possibility is to define a dissimilarity function
which leads to separate manifolds that share the same di-
mensionality and density. This will define a new constraint
that will also help in the classification process when there is
an intersection of two manifolds (and where the algorithm
fails at the present stage). Since the density depends on the
dimension, we are intrinsically giving more importance to
the dimension criterion in our framework. The control of
the relative importance of these two criteria needs also to
be addressed. Results in these directions will be reported



PMM R-PMM (DR, α = 10)
C1 C2 C3 C4 C1 C2 C3 C4

Wave 106 8 0 0 109 5 0 0
Jump in place 0 127 0 0 0 127 0 0

Walk 0 2 5 81 0 0 0 88
Jump 0 0 5 67 0 0 0 72

Figure 6. Clustering of activities in video. Above: One frame of each different activity. Below: Confusion matrices for the PMM and the
R-PMM algorithm (DR, J = 4, k = 20), taking the 6 previous and 6 posterior frames as neighbors in DR, which results in a temporal
regularization. Note the importance of regularization. We work with 48× 60 dimensional vectors.

elsewhere.
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