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ABSTRACT

In this paper we propose a new method for detecting straight
line segments in digital images. It improves upon existing
methods by giving precise results while controlling the Aum
ber of false detections and can be applied to any digital @anag
without parameter setting. The method is a nontrivial exten
sion of the approach presented by Desolnetral. in [1].

At the core of the method is an algorithm to cut a binary se-
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guences into what we callmultisegmenta set of collinear S —;\— =—
and disjoint segments. We shall define a functional that mea- N TR |
sures the so called meaningfulness of a multisegment. This 1 / o m
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functional allows us to validate detections against an a con
trario background model and to select the best ones. The re-
sult is a global interpretation, line by line, of the image in
terms of straight segments which gives back accurately its
geometry. Comparisons with state of the art methods will bie:ig. 1. Up-Left: A digital image. Up-Right: All DMM 1-meaningful

performed (more examples are available on line). segments. Clearly there are many more printed segments than we be

. . . able to perceive, but all of them we do perceive are among tietseted seg-
Index Terms— Straight line segment detection, Number ments. Bottom-Left: DMML-meaningful segments after exclusion principle.

of False Alarms (NFA), Computational Gestalt Bottom-Right: Multisegment detections
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1. INTRODUCTION , , ,
from chain codes or lines to segments also involves some pa-

Straight segments give important information about the geg/ameters. Using fixed values usually leads to misinterpreta
metric content of images. These segments can be used as Idins. See Figs. 5.
level features to extract information from images or caneer In [1] Desolneux, Moisan and Morel proposed a segment
as a basic tool to analyze and detect more elaborate shapé@etection method (DMM) based on controlling the number
As features, they can help in several problems, as sterdo anaf false positives. The main idea is to count the number of
ysis [2], crack detection in materials [3], and image corapre aligned (gradient direction) points and find the segments as
sion [4]. outliers in a non-structured background model. This method
Straight segment detection is an old and recurrent probis based on a general principle of perception, according to
lem in computer vision. Faugeras and his collaborators inwhich an observed geometric structure becomes perceptuall
vestigated digital segments thoroughly and derived istere meaningful when the expectation of its number of occurrence
ing applications [5]. To detect segments, they split edgpsna is very small in the absence of causal relations [7]. DMM
into chains and do polygonal approximations. The most stargives a fairly good segment explanation of the scene. It has
dard segment detection method uses the Hough Transform [gmonstrated to give neither false positive nor false megat
to extract lines and then cuts them off into segments usipg gaHowever, we shall see that it very often missed the right in-
and length thresholds. In this paper we will call it HTM. terpretation when aligned segments are present (see Fig. 1
HTM have serious drawbacks. Various thresholds muspottom-left.)
be set. When correctly set, they can lead to good results, All segment detection methods have an implicit 1D bi-
but using fixed thresholds can lead to a significant number afiary sequence segmentation step. It turns out that many of
false positives or false negatives. Moreover, the stedebds  their drawbacks come from this segmentation step. HTM uses



fixed thresholds for gap and length. DMM gives the best exfor the background is needed; the objects are detected as out
planation in terms obnesegment. When collinear segmentsliers.
are present, this is not necessarily the perceptually bt i For segment detection, a suitable background model is
pretation. We propose to keep the DMM methodology but tane in which all gradient angles are independent and uni-
search for a more structured event, theltisegmenthatisto  formly distributed. It can be shown that this is the case for
say a set of collinear and disjoint segments. As in the DMMa Gaussian white noise image. Formally, an imagéom
approach, the best multisegment will be the least expented the background modédl, is a random image (defined on the
thea contrariomodel. We shall see that this more sophisti-grid I' = [1, N] x [1, M] C Z2) such that:(a) ¥m € T,
cated event results in a better interpretation of the image iAngle(V X (m)) is uniformly distributed ovef0, 2~]; (b) The
terms of straight segments, see Fig. 1 bottom-right. family {Angle(VX(m))},,cr is composed of independent
The dependence of the results of the proposed method aandom variables.
its parameters is very weak. In practice we fixed them once There are as many tesfs as there are potential segments
for the hundreds of images we tested. sinthe image. On & x N image, there ar&/* potential ori-
The method we propose here can also be seen as a unifiedted segments, starting and ending on a point of thelgrid
variational formulation: For each straight line and eactepe  Each test relies on the statistiéés, 2) which is the number
tial multisegment interpretation, a functional gives a maga  of aligned points in segmentand imager. The detection is
of meaningfulness. This measure allows to validate or not as follows: RejeciH, if k(s,z) > ks, acceptd, otherwise.
detection and, at the same time, to rank them and select ther this test, norH, is also denoted?,. Desolneuxet al.
best one. proposed to sekt; in order to control the number of false de-
The paper is organized as follows: Section 2 presents tHections. False detections are those that arise by chartbe on
DMM segment detector. Our algorithm is presented in Secunstructured background modgb.
tion 3. Finally, section 4 shows some results. They define the Number of False Alarms of a segment
s € S and an image;, as

2. MEANINGFUL SEGMENTS NFA(s, z) = #8 - Pp, [k(s, X) > k(s, )],

In [1], Desolneuxet al. presented an algorithm for straight whereX is a random image of, and#S is the number of
segment detection. The two key points of their approach arpotential segments in the image. When there is no ambiguity
the use of gradient orientation and a new framework to dealbout the image, we will use the notatiok(s) andNFA(s).
with parameter setting. NFA(s) is #S times thep-value of the tesk(s).

The first step of DMM is illustrated in Fig. 2. The gra- The smaller theNFA(s) the more meaningfus is, i.e,
dient of the input image is computed and only its orientatiorthe less likely it is to appear in an image drawn from g
is kept. In Fig. 2 this information is codified by dash anglesmodel. Rejectingdy if and only if NFA(s) < e gives what
Given a segment, one counts the numbealigned points  Desolneuxet al. call thes-meaningful segments_ets call
i.e, points having the gradient orthogonal to the segment up\FA(c) = Ex, > s InFa(s, x)<e» I-€. the expected num-
to a certain precisiofi. All potential straight segments on the ber ofe-meaningful segments detected under fhighypoth-
image must be tested; those that satisfy a threshold oriteri esig. It can be proved [7] thalFA(¢) < e. In this way,e
based on their lengthand their number of aligned poinkts  controls the average number of false detections.

are kept as detections. The dependence of the method ©is very weak. Actu-
ally k, is translated of/log ¢ whenevek # 1. In practice we

=L, fix e = 1 once for all. This corresponds to accept, on average,
INESUVAIE o S - :
ARG i hraylinis S one false detection per image on the background model.
TNZET ,\\ Computations can be done explicitly. If the angle toler-
EU \§§§§I§ S anced is set to the valué = 27rp, the probability that a given
SHEOR point have the gradient aligned with a segmeng.isAs the

gradient is independent at different image poikts, follows
Fig. 2. Left: One segment shown over the level-line orientation fleld @ binomial law of parametelgs) andp. On anN x N image,
points up o a angula olerantes counted for sach segment. The segment 21 125 EA(s) = %« B(l(),k(s). p), where 5(l, k. p)
shown receives votes among. ' stgnds for the binomial tail, that is, the probability foriad>
mial of parametergandp to be larger thark.

The detection is posed as a hypothesis testing problem. In chlg.'l querX:?m shows thbtm?rz]arlmgful Segme”ts .
the classical framework statistical models for the backgth on the Image. € segments that we perceive are among
and for the objects to be detected are needed_- In DMM they inote thatNFA (c) is not the same aSFA (s). NFA(c) is not attached
proposed ara contrario approach: Only a statistical model to any segment, but to the method itself.




them. But there are a lot more. Whenever a segment has a Given a lineL, ann-multisegment with support i is an
central part with many-aligned points, it is systematically n-tuple(sy,..., s,) of n disjointsegments; containedn L.
detected as meaningful because its aligned central plrt stlhe set of all.-multisegments with support ibis M(n, L).
makes it very unlikely to appear by chance. A similar ar-Given an image: and amm-multisegmentsi, ..., s,), letus
gument explains why redundant parallel and slightly sidnte define the vectok(sy, ..., s,,z) € R™ such that each com-
detections occur near a good one. ponent is the number of-aligned pixels in the correspond-

In order to get rid of these redundant detections an exing segment. Usuall¥(s1,...,s,, ) is simply denoted by
clusion principle was proposed [7]. The value of tREA is  k(s1,...,s,) When there is no ambiguity about the image
used as a measure of quality of the segment to select the bdsirmally,k(sq1,. .., s,) = (k(s1), ..., k(sn)).
ones. The segment with the low@§FA owns its points and An expression for the multisegmeNFA (sq,. .., s,) can
prevents other segments from using them. TherNBa is  be found by the same steps as in the single segment case. The
recomputed for all remaining segments and the procedure &contrarioframework still holds:H is chosen the same way
repeated until there are no more meaningful segments. Fig.ds before, induced by Gaussian white noise images.
bottom-left shows the results. In the case of a single segmentthe test had the form
B(I(s),k(s),p) < awith @ equal toZ5. The segments of
a multisegment are not overlapping, which guarantees inde-
pendent events. The test associated to a multisegmentédias th

. . form [T, B(l(s;), k(s;),p) < a. Now we define:
On Fig. 1 one can see the inaccuracy of segment extremities [Ti=y B(s:), k(si).p) < e

detected by DMM. The horizontal lines of the windows areDefinition 1. For ann-multisegmentss, ..., s, ) in M(n, L)
detected as a long segment instead of three smaller ones. TI. is the support line) and an image itsNFA (s1, . .., s,, )
problem arised from the way the exclusion principle was usei defined as
to select the segments. Fig. 3 shows a numerical example of

3. MULTISEGMENTS

n

the problem. (L
p e ( ;n))B“(Sl)”“(Sl)vm [T+ 1) BUs3), k(s:), )
Segment A Segment B =2
10 pixels, all aligned points 10 pixels, all aligned points

where#L stands for the total number of lines in andi(L)
is the length ofL.. NFA(s4,. .., s, «) will be abbreviated by
NFA(sq,...,s,) when there is no ambiguity abowut

NFA(C)=6E-2 NFA(C)=6E-2

Segment C, 30 pixels, 20 aligned points, NFA(C)=9E-7 . . .
We call e-meaningful multisegmerat multisegment such

Fig. 3. The problem of selecting segments by exclusion principleg-Se thatNFA(s1,...,s,) < . The following proposition shows

ments A and B have 10 aligned points, each. In an 512 by 512 imtage i that the previous definition is coherent with the theory.
NFA is 6 - 10—2. Segment C includes segments A and B and a gap of 10

non-aligned points. ItNFA is9 - 10~7. Segment C has the loweNFA Proposition 1. Forall n > 0,

and will be selected by the exclusion principle applied gnsents.

NFA(e) 2 Ej, [num. ofs-meaningfub-multisegments< ¢

In [8] Delon et al. addressed a similar problem for his-
togram modes detection and explained why big modes can Let us use this neFA to analyze the numerical exam-
occlude little ones when using a similar detection prireipl ple of Fig. 3. NFA now depends o#gtL in a multiplicative
In [9] Caoet al. tackled this issue and showed that the propeway. One must knowtL in order to decide whether or not a
way to decide whether or not a clust€rshould be refined given multisegment is-meaningful but does not require this
into two disjoint sub-cluster€’; andCy is not only to com-  information in order to compare two multisegments. There
pare the meaningfulness (measured in terms of NFA)'of are 4 interesting multisegments to explain Fig. 3: just sagm
(resp. Cs) against the meaningfulness 6fbut also to look A, just segment B, just segment C, and the 2-multisegment
at the meaningfulness of the group formed @y andC>;  formed by A and B, denoted (A,B). Lets fi¥ L = 1. The
against the meaningfulness 6f. Our work is inspired by multisegmentNFA values areNFA(A) = NFA(B) = 1.6 -
their method. 10710, NFA(C) = 2.3-10~* andNFA (A, B) = 10- 10719,

The general idea is to use a more global criterion to seThis last configuration gives the best global interpretatio
lect straight segments. Instead of the one to one straight se  The core of the algorithm just takes a binary sequence
ment comparison, used in [1], we propose to compare differef points (aligned/not-aligned) in one line and gives thsetbe
ent interpretations for a whole line in terms of sets of seginterpretation in terms of multisegments.
ments. This interpretation as a sequence of non-overlgppin A priori one has to test all potential multisegments on
segments on a line is what we calfraultisegmentlt remains  the sequence to select the best interpretation. This number
to measure the quality of a multisegment,NBA, and then is huge. The number of tests can be reduced by considering
select the best one. the runs (see Fig(4) for the notion of run) of all aligned



points of the sequence. It can be shown that only the multi-

segments with segments that start and end with a run are ing -
teresting. Moreover, a dynamic programming algorithm can w

__‘_,...----"“.‘:.
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provide the result with complexit@(r3), if r is the number

of runs on the line. The details will be published elsewhere. §
The whole algorithm tests all lines on the image. For each &8
line it keeps the best multisegment interpretation. Then th S5

exclusion principle is applied to avoid redundancy.

4. RESULTS

In white noise images, the numbersefeaningful detections
is controlled, being usually much smaller than
Fig. 4 shows the performance on two synthetic binary se-

quences. Note that the multisegment approach gives the cor-i\

rect interpretations in both cases. The multisegmentpnéer
tation captures the structure when it is presgnt and ex-
plains the data as a noisy line when no structure is present

e

pa—y L

(f). The two threshold algorithm used in HTNt) and(g),
fails to give the right interpretation of both situationghgut
parameter tuning. The DMM approadhl) and (%), fails to
get the small segmentd) due to the too local nature of their

Fig. 5. A comparison of the segments detected using HTM, DMM and
multisegments.(a): Image of a building.(b): Segments found by HTM.
One can see many false positivg¢s): Segments found by DMM. Note that
some segments that are accidentally aligned on the image, amd fs a

exclusion principle.

large segment(d): Segments found by the multisegment algorithm.
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Fig. 4. Segmentation of two binary sequencés) A sequence of length
128 with 64 aligned points grouped inforuns; and its interpretations with
multisegmentgb), HTM (c) and by DMM(d). (e) Binary sequence gener-
ated by randomly drawing4 out of 128 points with a uniform law over all
possible such subsets; and its interpretation with multiesgs(f), HTM
(g) and DMM (h).
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Fig. 5a) shows an image of a building. The segments5]
found by HTM are shown orfb). For this experiments we
have used the HTM implementation of the XHoughtool pack-
age, freely available on the Internet, without tuning any pal€l
rameters. One can see many false positives. Some of them
can be corrected fixing the thresholds. HTM ignores the gral]
dient orientation of the points, this produces severakfdis-
tections. The DMM algorithm gives essentially good detec-
tions(c). Some segments on the image are accidently alignedf!
On those cases, DMM found a large segment instead of the
smaller aligned ones. The multisegments result is shown on
(d). This approach obtains the structure of aligned segment£’]

More experiments can be found onlinerat p: / / ww.
cm a. ens- cachan. fr/ Utilisateurs/gronmpone/ multi.htm
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