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ABSTRACT

In this paper we propose a new method for detecting straight
line segments in digital images. It improves upon existing
methods by giving precise results while controlling the num-
ber of false detections and can be applied to any digital image
without parameter setting. The method is a nontrivial exten-
sion of the approach presented by Desolneuxet al. in [1].
At the core of the method is an algorithm to cut a binary se-
quences into what we call amultisegment: a set of collinear
and disjoint segments. We shall define a functional that mea-
sures the so called meaningfulness of a multisegment. This
functional allows us to validate detections against an a con-
trario background model and to select the best ones. The re-
sult is a global interpretation, line by line, of the image in
terms of straight segments which gives back accurately its
geometry. Comparisons with state of the art methods will be
performed (more examples are available on line).

Index Terms— Straight line segment detection, Number
of False Alarms (NFA), Computational Gestalt

1. INTRODUCTION

Straight segments give important information about the geo-
metric content of images. These segments can be used as low-
level features to extract information from images or can serve
as a basic tool to analyze and detect more elaborate shapes.
As features, they can help in several problems, as stereo anal-
ysis [2], crack detection in materials [3], and image compres-
sion [4].

Straight segment detection is an old and recurrent prob-
lem in computer vision. Faugeras and his collaborators in-
vestigated digital segments thoroughly and derived interest-
ing applications [5]. To detect segments, they split edge maps
into chains and do polygonal approximations. The most stan-
dard segment detection method uses the Hough Transform [6]
to extract lines and then cuts them off into segments using gap
and length thresholds. In this paper we will call it HTM.

HTM have serious drawbacks. Various thresholds must
be set. When correctly set, they can lead to good results,
but using fixed thresholds can lead to a significant number of
false positives or false negatives. Moreover, the step thatleads

Fig. 1. Up-Left: A digital image. Up-Right: All DMM1-meaningful
segments. Clearly there are many more printed segments than we would be
able to perceive, but all of them we do perceive are among thesedetected seg-
ments. Bottom-Left: DMM1-meaningful segments after exclusion principle.
Bottom-Right: Multisegment detections

from chain codes or lines to segments also involves some pa-
rameters. Using fixed values usually leads to misinterpreta-
tions. See Figs. 5.

In [1] Desolneux, Moisan and Morel proposed a segment
detection method (DMM) based on controlling the number
of false positives. The main idea is to count the number of
aligned (gradient direction) points and find the segments as
outliers in a non-structured background model. This method
is based on a general principle of perception, according to
which an observed geometric structure becomes perceptually
meaningful when the expectation of its number of occurrences
is very small in the absence of causal relations [7]. DMM
gives a fairly good segment explanation of the scene. It has
demonstrated to give neither false positive nor false negative.
However, we shall see that it very often missed the right in-
terpretation when aligned segments are present (see Fig. 1
bottom-left.)

All segment detection methods have an implicit 1D bi-
nary sequence segmentation step. It turns out that many of
their drawbacks come from this segmentation step. HTM uses



fixed thresholds for gap and length. DMM gives the best ex-
planation in terms ofonesegment. When collinear segments
are present, this is not necessarily the perceptually best inter-
pretation. We propose to keep the DMM methodology but to
search for a more structured event, themultisegment, that is to
say a set of collinear and disjoint segments. As in the DMM
approach, the best multisegment will be the least expected in
the a contrario model. We shall see that this more sophisti-
cated event results in a better interpretation of the image in
terms of straight segments, see Fig. 1 bottom-right.

The dependence of the results of the proposed method on
its parameters is very weak. In practice we fixed them once
for the hundreds of images we tested.

The method we propose here can also be seen as a unified
variational formulation: For each straight line and each poten-
tial multisegment interpretation, a functional gives a measure
of meaningfulness. This measure allows to validate or not a
detection and, at the same time, to rank them and select the
best one.

The paper is organized as follows: Section 2 presents the
DMM segment detector. Our algorithm is presented in Sec-
tion 3. Finally, section 4 shows some results.

2. MEANINGFUL SEGMENTS

In [1], Desolneuxet al. presented an algorithm for straight
segment detection. The two key points of their approach are
the use of gradient orientation and a new framework to deal
with parameter setting.

The first step of DMM is illustrated in Fig. 2. The gra-
dient of the input image is computed and only its orientation
is kept. In Fig. 2 this information is codified by dash angles.
Given a segment, one counts the number ofaligned points,
i.e., points having the gradient orthogonal to the segment up
to a certain precisionθ. All potential straight segments on the
image must be tested; those that satisfy a threshold criterion
based on their lengthl and their number of aligned pointsk,
are kept as detections.
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Fig. 2. Left: One segment shown over the level-line orientation field(or-
thogonal to the gradient orientation field). Right: The number of aligned
points up to an angular toleranceθ is counted for each segment. The segment
shown receives4 votes among7.

The detection is posed as a hypothesis testing problem. In
the classical framework statistical models for the background
and for the objects to be detected are needed. In DMM they
proposed ana contrario approach: Only a statistical model

for the background is needed; the objects are detected as out-
liers.

For segment detection, a suitable background model is
one in which all gradient angles are independent and uni-
formly distributed. It can be shown that this is the case for
a Gaussian white noise image. Formally, an imageX from
the background modelH0 is a random image (defined on the
grid Γ = [1, N ] × [1,M ] ⊂ Z

2) such that:(a) ∀m ∈ Γ,

Angle(∇X(m)) is uniformly distributed over[0, 2π]; (b) The
family {Angle(∇X(m))}m∈Γ is composed of independent
random variables.

There are as many testsTs as there are potential segments
s in the image. On aN×N image, there areN4 potential ori-
ented segments, starting and ending on a point of the gridΓ.
Each test relies on the statisticsk(s, x) which is the number
of aligned points in segments and imagex. The detection is
as follows: RejectH0 if k(s, x) > ks, acceptH0 otherwise.
For this test, non-H0 is also denotedHs. Desolneuxet al.
proposed to setks in order to control the number of false de-
tections. False detections are those that arise by chance onthe
unstructured background modelH0.

They define the Number of False Alarms of a segment
s ∈ S and an imagex, as

NFA(s, x) = #S · PH0
[k(s,X) > k(s, x)],

whereX is a random image onH0 and#S is the number of
potential segments in the image. When there is no ambiguity
about the imagex, we will use the notationk(s) andNFA(s).
NFA(s) is #S times thep-value of the testk(s).

The smaller theNFA(s) the more meaningfuls is, i.e.,
the less likely it is to appear in an image drawn from theH0

model. RejectingH0 if and only if NFA(s) 6 ε gives what
Desolneuxet al. call theε-meaningful segments. Lets call
NFA(ε) = EH0

∑

s∈S
1NFA(s,X)6ε, i.e., the expected num-

ber ofε-meaningful segments detected under theH0 hypoth-
esis1. It can be proved [7] thatNFA(ε) 6 ε. In this way,ε
controls the average number of false detections.

The dependence of the method onε is very weak. Actu-
ally ks is translated of

√
log ε wheneverε 6= 1. In practice we

fix ε = 1 once for all. This corresponds to accept, on average,
one false detection per image on the background model.

Computations can be done explicitly. If the angle toler-
anceθ is set to the valueθ = 2πp, the probability that a given
point have the gradient aligned with a segment isp. As the
gradient is independent at different image points,k(s) follows
a binomial law of parametersl(s) andp. On anN×N image,
one has:NFA(s) = N4 · B

(

l(s), k(s), p
)

, whereB(l, k, p)
stands for the binomial tail, that is, the probability for a bino-
mial of parametersl andp to be larger thank.

Fig. 1 upper-right shows the1-meaningful segments found
on the image. All the segments that we perceive are among

1Note thatNFA(ε) is not the same asNFA(s). NFA(ε) is not attached
to any segment, but to the method itself.



them. But there are a lot more. Whenever a segment has a
central part with manyp-aligned points, it is systematically
detected as meaningful because its aligned central part still
makes it very unlikely to appear by chance. A similar ar-
gument explains why redundant parallel and slightly slanted
detections occur near a good one.

In order to get rid of these redundant detections an ex-
clusion principle was proposed [7]. The value of theNFA is
used as a measure of quality of the segment to select the best
ones. The segment with the lowestNFA owns its points and
prevents other segments from using them. Then theNFA is
recomputed for all remaining segments and the procedure is
repeated until there are no more meaningful segments. Fig. 1
bottom-left shows the results.

3. MULTISEGMENTS

On Fig. 1 one can see the inaccuracy of segment extremities
detected by DMM. The horizontal lines of the windows are
detected as a long segment instead of three smaller ones. This
problem arised from the way the exclusion principle was used
to select the segments. Fig. 3 shows a numerical example of
the problem.

Segment C,  30 pixels,  20 aligned points,  NFA(C)=9E−7

10 pixels, all aligned points
Segment A

NFA(C)=6E−2
10 pixels, all aligned points
Segment B

NFA(C)=6E−2

Fig. 3. The problem of selecting segments by exclusion principle. Seg-
ments A and B have 10 aligned points, each. In an 512 by 512 image its
NFA is 6 · 10−2. Segment C includes segments A and B and a gap of 10
non-aligned points. ItsNFA is 9 · 10−7. Segment C has the lowestNFA
and will be selected by the exclusion principle applied to segments.

In [8] Delon et al. addressed a similar problem for his-
togram modes detection and explained why big modes can
occlude little ones when using a similar detection principle.
In [9] Caoet al. tackled this issue and showed that the proper
way to decide whether or not a clusterC should be refined
into two disjoint sub-clustersC1 andC2 is not only to com-
pare the meaningfulness (measured in terms of NFA) ofC1

(resp. C2) against the meaningfulness ofC but also to look
at the meaningfulness of the group formed byC1 and C2

against the meaningfulness ofC. Our work is inspired by
their method.

The general idea is to use a more global criterion to se-
lect straight segments. Instead of the one to one straight seg-
ment comparison, used in [1], we propose to compare differ-
ent interpretations for a whole line in terms of sets of seg-
ments. This interpretation as a sequence of non-overlapping
segments on a line is what we call amultisegment. It remains
to measure the quality of a multisegment, itsNFA, and then
select the best one.

Given a lineL, ann-multisegment with support inL is an
n-tuple(s1, . . . , sn) of n disjointsegmentssi containedin L.
The set of alln-multisegments with support inL isM(n,L).
Given an imagex and ann-multisegment(s1, . . . , sn), let us
define the vectork(s1, . . . , sn, x) ∈ R

n such that each com-
ponent is the number ofp-aligned pixels in the correspond-
ing segment. Usuallyk(s1, . . . , sn, x) is simply denoted by
k(s1, . . . , sn) when there is no ambiguity about the imagex.
Formally,k(s1, . . . , sn) = (k(s1), . . . , k(sn)).

An expression for the multisegmentNFA(s1, . . . , sn) can
be found by the same steps as in the single segment case. The
a contrarioframework still holds:H0 is chosen the same way
as before, induced by Gaussian white noise images.

In the case of a single segments, the test had the form
B

(

l(s), k(s), p
)

6 α with α equal to ε
#S

. The segments of
a multisegment are not overlapping, which guarantees inde-
pendent events. The test associated to a multisegment has the
form

∏n

i=1 B
(

l(si), k(si), p
)

6 α. Now we define:

Definition 1. For ann-multisegment(s1, . . . , sn) inM(n,L)
(L is the support line) and an imagex, itsNFA(s1, . . . , sn, x)
is defined as

#L
(

l(L)

2n

)

B(l(s1), k(s1), p)

n
∏

i=2

(l(si)+1)B(l(si), k(si), p)

where#L stands for the total number of lines inx, andl(L)
is the length ofL. NFA(s1, . . . , sn, x) will be abbreviated by
NFA(s1, . . . , sn) when there is no ambiguity aboutx.

We call ε-meaningful multisegmenta multisegment such
thatNFA(s1, . . . , sn) < ε. The following proposition shows
that the previous definition is coherent with the theory.

Proposition 1. For all n > 0,

NFA(ε)
def
= EH0

[num. ofε-meaningfuln-multisegments] 6 ε

Let us use this newNFA to analyze the numerical exam-
ple of Fig. 3. NFA now depends on#L in a multiplicative
way. One must know#L in order to decide whether or not a
given multisegment isε-meaningful but does not require this
information in order to compare two multisegments. There
are 4 interesting multisegments to explain Fig. 3: just segment
A, just segment B, just segment C, and the 2-multisegment
formed by A and B, denoted (A,B). Lets fix#L = 1. The
multisegmentNFA values areNFA(A) = NFA(B) = 1.6 ·
10−10, NFA(C) = 2.3 ·10−14 andNFA(A,B) = 10 ·10−19.
This last configuration gives the best global interpretation.

The core of the algorithm just takes a binary sequence
of points (aligned/not-aligned) in one line and gives the best
interpretation in terms of multisegments.

A priori one has to test all potential multisegments on
the sequence to select the best interpretation. This number
is huge. The number of tests can be reduced by considering
the runs (see Fig.4(a) for the notion of run) of all aligned



points of the sequence. It can be shown that only the multi-
segments with segments that start and end with a run are in-
teresting. Moreover, a dynamic programming algorithm can
provide the result with complexityO(r3), if r is the number
of runs on the line. The details will be published elsewhere.
The whole algorithm tests all lines on the image. For each
line it keeps the best multisegment interpretation. Then the
exclusion principle is applied to avoid redundancy.

4. RESULTS

In white noise images, the number ofε-meaningful detections
is controlled, being usually much smaller thanε.

Fig. 4 shows the performance on two synthetic binary se-
quences. Note that the multisegment approach gives the cor-
rect interpretations in both cases. The multisegment interpre-
tation captures the structure when it is present(b), and ex-
plains the data as a noisy line when no structure is present
(f). The two threshold algorithm used in HTM,(c) and(g),
fails to give the right interpretation of both situations without
parameter tuning. The DMM approach,(d) and(h), fails to
get the small segments(d) due to the too local nature of their
exclusion principle.

Fig. 4. Segmentation of two binary sequences.(a) A sequence of length
128 with 64 aligned points grouped into7 runs; and its interpretations with
multisegments(b), HTM (c) and by DMM(d). (e) Binary sequence gener-
ated by randomly drawing64 out of 128 points with a uniform law over all
possible such subsets; and its interpretation with multisegments(f), HTM
(g) and DMM (h).

Fig. 5(a) shows an image of a building. The segments
found by HTM are shown on(b). For this experiments we
have used the HTM implementation of the XHoughtool pack-
age, freely available on the Internet, without tuning any pa-
rameters. One can see many false positives. Some of them
can be corrected fixing the thresholds. HTM ignores the gra-
dient orientation of the points, this produces several false de-
tections. The DMM algorithm gives essentially good detec-
tions(c). Some segments on the image are accidently aligned.
On those cases, DMM found a large segment instead of the
smaller aligned ones. The multisegments result is shown on
(d). This approach obtains the structure of aligned segments.

More experiments can be found online athttp://www.

cmla.ens-cachan.fr/Utilisateurs/grompone/multi.htm.

(a) (b)

(c) (d)

Fig. 5. A comparison of the segments detected using HTM, DMM and
multisegments.(a): Image of a building.(b): Segments found by HTM.
One can see many false positives.(c): Segments found by DMM. Note that
some segments that are accidentally aligned on the image, are found as a
large segment.(d): Segments found by the multisegment algorithm.
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