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Abstract: This paper studies the dissipativity properties of a class of power system
models, characterized by the absence of resistive loads and leaky lines. A Port-
Controlled Hamiltonian (PCH) representation is given for each component of the
network and its dissipativity properties are shown. The linear model around the
equilibrium is shown to meet a convex condition in the frequency domain, able to
be exploited in the stability analysis of interconnected systems. The application of
this property to a classical example shows that it can be computationally exploited
even in the case of non-idealized models. Copyright c© 2007 IFAC
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1. INTRODUCTION

Power systems dynamics is a complex phenomenon
characterized by nonlinear, high order differential–
algebraic equations (DAE) subject to topology
changes and parameter variation (Kundur 1994).
The proper concept of stability recognizes a set of
different approaches: transient stability, voltage (
long term) stability, structural stability, etc.

Typically, the power system stability results from
the dynamic interaction of several subsystems,
often operated or regulated by different entities
(utilities, states,etc.).

This paper addresses the study of some structural
properties of basic power system models and its
exploitation for the analysis of equilibrium sta-
bility. This approach recognizes antecedents in
(Varaiya et al. 1985) and references therein, and,
more recently (Giusto et al. 2006). However, the
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main objective of this paper is to exploit these
properties in order to analyze the stability of in-
terconnections of power systems trying to obtain
a set of dynamic conditions to be met by each sub-
system, sufficient to ensure the overall stability.

The structure of the paper is as follows. Section
2 presents the mathematical model of the various
elements comprising the power system and gives
their PCH representation. In Section 3 we derive
their dissipativity properties under idealized as-
sumptions. Section 4 introduces the corresponding
linear model around the equilibrium point and
shows how the dissipation inequality can be posed
as a convex condition in the frequency domain.
Section 5 presents the application of these proce-
dures to the analysis of a classical, two-area exam-
ple. We wrap up the paper with some concluding
remarks.



2. POWER SYSTEM MODELING

In this section we recall the well–known model for
n–machine power systems reported in (Varaiya et

al. 1985). All network components share as port
variables the angle θj and the magnitude Vj of the
bus voltage phasor:

yj :=
[

θj Vj

]T
∈ R

2. (1)

The system has n machines. Each machine and its
corresponding bus, have an associated identifier
i ∈ JM . The total number of buses, including the
n machines, is m. Generic buses are denoted by
identifiers j or k with j, k ∈ JB. Each load and its
associated bus are denoted by l ∈ JL ⊂ JB.

Attached to each bus there is a machine and/or
a load, and the buses are interconnected through
transmission lines. Transmission lines are identi-
fied by the double subindex jk ∈ Ω ⊂ JB × JB,
indicating that the line jk connects the bus j ∈ JB

with the bus k ∈ JB—the set avoids obvious
repetitions, e.g., if jk ∈ Ω then kj /∈ Ω. Ωj will
denote the set of buses linked to the bus j.

Associated to each bus are the active and reactive
powers entering the machine, the load or the
transmission lines, that will be denoted

uM
i =

[

PM
i

QM
i

]

, uL
l =

[

PL
l

QL
l

]

, ujk =

[

Pjk

Qjk

]

(2)

respectively. We denote ue
i :=

[

P e
i Qe

i

]⊤
the exter-

nal injection of active and reactive power at bus
i. We take active and reactive powers as positive
when entering their corresponding component.

Each generator is described by a set of third order
Differential Algebraic Equations (DAEs):

δ̇i = ωi

Miω̇i= Pmi
− Diωi + PM

i

τiĖi = −
xdi

x′
di

Ei +
xdi

− x′
di

x′
di

Vi cos(δi − θi) + EFi

PM
i = −

1

x′
di

EiVi sin(δi − θi) − Y2i
V 2

i sin 2(δi − θi)

QM
i =YVi

V 2
i −

1

x′
di

EiVi cos(δi−θi)−Y2i
V 2

i cos 2(δi−θi)

(3)

where we defined Y2i
:=

x′

di
−xqi

2xqi
x′

di

, YVi
:=

x′

di
+xqi

2xqi
x′

di

.

The state variables xi := col(δi, ωi, Ei) ∈ R
3

denote the rotor angle, the rotor speed and the
quadrature axis internal e.m.f., respectively, and
EFi

is the field voltage. The parameters are de-
noted as in (Varaiya et al. 1985), and they are
fairly standard. We will make the physically rea-
sonable assumptions Di > 0, xdi

− x′
di

> 0.

For convenience, we will separate the field voltage
in two terms, EFi

= E⋆
Fi

+ vi, the first one is

constant and fixes the equilibrium value, while the
second one is the control action.

We have the following simple fact, whose proof
follows from (1), (2) by direct substitution.

Fact 1. The model (3) defines an operator ΣM
i :

(uM
i , yi) described by the implicit PCH system. 2 .
{

ẋi = (Ji − Ri)∇xi
SM

i (xi, yi) + Bvi
vi

0 = −∇yi
SM

i (xi, yi) + Bu(yi)u
M
i

(4)

with storage function SM
i : R

3 × R
2 → R,

SM
i (xi, yi) :=

1

2
Miω

2
i − Pmiδi −

EiVi

x′
di

cos(θi − δi)−

−
Y2i

2
V 2

i cos 2(θi − δi) +
YEi

2
E2

i − YFi
E⋆

Fi
Ei +

YV i

2
V 2

i .

We defined the coefficients YEi
, YFi

from the
model parameters. The matrices are built anal-
ogously, see (Giusto et al. 2006), and satisfy Ji =
−J⊤

i ∈ R3×3, Ri = R⊤
i ≥ 0 ∈ R3×3, Bvi

∈ R1×3.
Matrix Bu(yi) and the term Bu(yi)ui are given by

Bu(yi) :=





1 0

0
1

Vi



 ; Bu(yi)ui =





Pi

Qi

Vi



 . (5)

Denoting the DAE model (4) as an “implicit PCH
system” is done with some abuse of notation. See
(Van der Schaft 2000) for a precise definition.

Loads are described with constant active power
and by the standard ZIP model (Kundur 1994)
for reactive power:

PL
l = P0l

QL
l = QZl

V 2
l + QIl

Vl + Q0l

, (6)

Fact 2. The model (6) defines a (memory–less)
PCH operator ΣL

l : (uL
l , yl) given by

0 = −∇yl
SL

l (yl) + Bu(yl)u
L
l (7)

with storage function SL
l :

SL
l (yl) := P0l

θl +
QZl

2
V 2

l + QIl
Vl + Q0l

ln(Vl).

Transmission lines are modeled with the standard
lumped Π circuit (Kundur 1994). Power entering
at bur j is given by

Pjk =BjkVjVksin(θj−θk)
Qjk = (Bjk−Bc

jk)V
2

j −BjkVjVkcos(θj−θk),
(8)

for all jk ∈ Ω. The transfer conductances were
neglected; the power entering at node k, Pkj , Qkj

can be obtained by a simple change of indexes.

2 All vectors in the paper are denoted column vectors, even
the gradient of a scalar function: ∇x = ∂

∂x
.



Fact 3. The model (8) defines the implicit (memory–
less) PCH operator Σjk : (ujk, ukj , yj , yk):

Σjk :

{

0=−∇yj
Sjk(yj , yk) + Bu(yj)ujk

0=−∇yk
Sjk(yj , yk) + Bu(yk)ukj

(9)

with storage function Sjk given by

Sjk(yj , yk) :=
Bjk−Bc

jk

2
(V 2

j +V 2
k )−BjkVjVkcos(θj−θk).

At each bus, we have the corresponding Kirchoff
law, which can be written ( see equation (5)):

ΣB
j : 0 = Bu(yj)[

∑

k∈Ωj

ujk + uM
j + uL

j − ue
j ]. (10)

We are now in position to use the external power
injections to model the interactions between ad-

jacent subsystems. The system interacts with its
environment trough the pairs (ue, y), i.e. the com-
plex power and the voltage phasor, at the frontier
buses. This description is very attractive from an
engineering point of view, but the convenience in
working with a symmetrical interconnection lead
us to describe the power injections in function
of the voltage phasors at the frontier buses. Be
Ωe the set of frontier buses, i.e., the buses where
the interconnection with adjacent subsystems is
done, and denote me its cardinality. In each bus
j ∈ Ωe, the interaction with the adjacent area is
described by Σja, (see equation (9)). Thus, ue

j is a
function on the variables θj , Vj and the variables
θa, Va of the frontier bus of the adjacent area. We
will denote zj := ya = [θa, Va]⊤ these variables to
avoid confusion with any internal bus.

The equation (9) allows us to write the term
Bu(yj)u

e
j , ∀j ∈ Ωe in equation (10):

Bu(yj)u
e
j = −∇yj

Se
j (yj , zj) (11)

where the function Se
j : R

2 × R
2 → R is given by

Se
j (yj , zj) , Sja(yj , zj).

The power system model results from the models
already presented (equations (4), (7), (9), (10),
and (11)), and some notational convention.

Let x the state vector of the system, y the link
variables, and z the input variables defined as x :=
coli∈JM

(xi), y := colj∈JB
(yj), z := colj∈Ωe

(zj).

Denote N := 3n and define the function S : R
N ×

R
2m × R

2me → R :

S(x, y, z) :=
∑

i

SM
i (xi, yi)+

∑

l

SL
l (yl)+

+
∑

jk∈Ω

Sjk(yj , yk) +
∑

j∈Ωe

Se
j (yj , zj). (12)

It is possible, through the use of the Hamiltonian
description of each component, to get a compact
description of the system. Towards this end, it is
convenient to group all the algebraic constraints
of (4), (7), (9), (10), (11). Define the function
g : R

N × R
2m × R

2me → R
2m:

g(x, y, z) := ∇yS(x, y, z). (13)

The algebraic constraint –once one eliminates the
internal power exchanges– yields

g(x, y, z) = 0.

The introduction of the block–diagonal matrices:

J := diag{Ji}, R := diag{Ri}, Bv := diag{Bvi
},

J = −J⊤, R = R⊤ ≥ 0 allows us to compact the
model and rewrite the overall system as

Σ(x, y, z) :

{

ẋ = (J − R)∇xS(x, y, z) + Bvv
0 = ∇yS(x, y, z).

.(14)

Notice the control action v = col(vi).

We need to define the set D ∈ R
N × R

2m × R
2me

where the solutions of the DAE are unique and
well defined (Hill and Mareels 1990):

D , {(x, y, z)|g(x, y, z) = 0 and

∇yg(x, y, z)is nonsingular}.

3. DISSIPATIVITY PROPERTIES

Equations (4), (7), (9), (10) constitute a set of
PCH models for the network components. The
subjacent dissipativity property was already es-
tablished for these models in (Giusto et al. 2006),
following the lines of (Willems 1972), (Hill and
Moylan 1980).

To establish the dissipativity properties of model
(14) we make the following assumption.

Assumption A1. The field voltages of the syn-
chronous machines are constant: EFi

= E⋆
Fi

.

Define the function wz
j : R

2 × R
2 × R

2 → R:

wz
j (yj , zj, żj) := ∇⊤

zj
Se

j (yj , zj)żj ,

and wz : R
2m × R

2me × R
2me → R:

wz(y, z, ż) :=
∑

Ωe

wz
j (yj , zj, żj).

Proposition 1. If Assumption A1 holds, then for
all (x, y, z) ∈ D satisfying (14), the following
dissipation inequality holds:

dS(x, y, z)

dt
≤ wz(ye, z, ż) ∀t.



Proof: Compute

dS(x, y, z)

dt
= ∇⊤

x Sẋ + ∇⊤
y Sẏ + ∇⊤

z Sż =

−∇⊤
x SR∇xS + ∇⊤

z Sż ≤ ∇⊤
z Sż =

= ∇⊤
z [

∑

Ωe

Se
j (yj , zj)]ż = wz(y, z, ż).

4. INPUT-OUTPUT PROPERTIES FOR
SMALL SIGNAL MODELS

In this section we will study how the properties
considered in Section 3 particularize for small
signal models. The equilibrium point, denoted
x⋆, y⋆, z⋆, will be supposed interior to D. We
denote (̃·) := (·) − (·)⋆ the incremental variables.

With the help of the Hessian of function S at the
equilibrium point:

H =
∂2S(x, y, z)

∂(x, y, z)2
|⋆,

we can define H : R
N × R

2m × R
2me → R :

H(x̃, ỹ, z̃) :=
1

2





x̃
ỹ
z̃





⊤

H





x̃
ỹ
z̃



 , (15)

and obtain the linear model, valid in a neighbor-
hood of the equilibrium point:

{

˙̃x = (J − R)∇x̃H(x̃, ỹ, z̃) + Bvv
0 = ∇ỹH(x̃, ỹ, z̃).

(16)

Denote ye := colj∈Ωe
(yj) the vector of link vari-

ables associated to the frontier buses. The matri-
ces Wyz,Wzz ∈ R2me×2me :

Wyz :=
∂2

∑

Se
j (yj , zj)

∂ye∂z
|⋆, (17)

Wzz :=
∂2

∑

Se
j

∂z2 |⋆, will be very useful to describe
the interactions with the adjacent areas. In fact,
we define a quadratic supply rate function:

w̃z
e : R2me × R2me × R2me → R :

w̃z
e(ỹe, z̃, ˙̃z) := (ỹe⊤Wyz + z̃⊤Wzz) ˙̃z.

If Assumption A1 holds, v ≡ 0 and the dissipation
inequality is easily recovered with the help of
definitions (15) and (12):

d

dt
H ≤ ∇⊤

zH ˙̃z =
[

ỹe⊤ z̃⊤
] ∂2

∑

Se
j (yj , zj)

∂(ye, z)2
|⋆

[

0
˙̃z

]

=

= (ỹe⊤Wyz + z̃⊤Wzz) ˙̃z = w̃z
e(ye, z, ˙̃z). (18)

Equation (16) also determines an input-output
relationship between input z̃ and output ỹe for

v ≡ 0. Denote Σ(s) the transfer matrix: ye(s) =
Σ(s)z(s); being s the Laplace variable.

Under mild conditions, the dissipation inequality
(18) implies a frequency-dependent inequality pre-
cisely stated in next proposition.

Proposition 2. If Assumption A1 holds and Σ(jω) ∈
RL∞, then the transfer matrix Σ(jω) satisfies

[

I
Σ(jω)

]∗

Πd(jω)

[

I
Σ(jω)

]

≥ 0 ∀w ∈ R (19)

Πd(jω) := |h(jω)|2
[

0 −jωW⊤
yz

jωWyz 0

]

(20)

for all function h(s) real rational stable and
strictly proper.

Proof: The proof rests on a classical argument 3

that consists in considering a perfect sinusoidal
input z̃(t) with angular frequency ω and arbitrary
spatial direction:

z̃(t) = Re(z0e
jωt), z0 ∈ C2me .

Obtain the sinusoidal functions x̃(t) and ỹe(t)
such that the triple (z̃, x̃, ỹe) satisfies (16). Nat-
urally, ỹe(t) = Re(Σ(jω)zoe

jωt) and the supply
rate function w̃z

e(t) is given by

w̃z
e(t) = (ỹe⊤Wyz + z̃⊤Wzz) ˙̃z =

d

dt

1

2
z̃⊤Wzz z̃+

+Re(z⊤o Σ(jω)⊤ejωt)WyzRe(jωzoe
jωt).

If the dissipation inequality (18) is integrated in
one period T = 2Π

ω
, ω 6= 0:

to+T
∫

t0

w̃z
e(t)dt =

T

4
z∗0jω[Σ(jω)⋆Wyz −W⊤

yzΣ(jω)]z0 ≥ 0

Thus, since z0 is arbitrary, it is necessary that
[

I
Σ(jω)

]⋆ [

0 −jωW⊤
yz

jωWyz 0

] [

I
Σ(jω)

]

≥ 0 ∀ω.

The inclusion of the case ω = 0 is immediate since
Πd vanishes. The factor |h(jω)|2 is incorporated in
order to ensure the boundedness of Πd for all ω.
222

Remark 1. Notice that the dependence of Πd on
the system parameters is restricted to the power
flow through the transmission lines linking with
the adjacent systems, see equation (17).

Remark 2. Equations (19), (20) describe a frequency-
weighted passivity condition for system Σ.

3 In fact, Proposition 2 can be seen as a special case of the
classical KYP lemma.



5. APPLICATIONS

Previous sections showed the existence of a mul-
tiplier Πd that satisfies the condition (19) for
the linearized models of a class of power system
models. This Section is intended to examine the
use of Πd for stability analysis of power systems.

Following subsection briefly introduces the anal-
ysis of feedback system through the use of multi-
pliers and the concept of Integral Quadratic Con-
straints (IQC) (Megretski and Rantzer 1997). The
discussion is restricted to linear models.

In subsection 5.2, the application of this technique
of analysis to a classical example will be discussed.
It is shown that the presence of resistive losses in
generators and transmission lines can be easily ac-
commodated through the use of additional degrees
of freedom in the multiplier Π.

5.1 Frequency-weighted stability analysis of linear

feedback interconnections

Denote G⋆H the operator (e, f) → (v, w) defined
by the standard feedback interconnection

{

v = Gw + f
w = Hv + e

. (21)

G and H are two linear, time-invariant operators
with transfer functions G(s), H(s) ∈ RL2me×2me

∞ .

Define, to facilitate the notation, the function
σ : RL2me×2me

∞ × RL4me×4me
∞ and matrix T :

σ(H, Π):=

[

I2me

H

]∗

Π

[

I2me

H

]

; T :=

[

0 I2me

I2me
0

]

.

The following proposition is a particular formula-
tion of the IQC theorem, (Megretski and Rantzer
1997), specialized for our special case. The well-
posedness of the interconnection is assumed.

Proposition 3. Let G(s), H(s) ∈ RH2me×2me
∞

such that the operator G⋆H is also stable. Assume
the existence of a multiplier Π(jω) ∈ RL4me×4me

∞

such that

i. σ(H(jω), Π(jω)) ≥ 0 ∀ω
ii. there exists ǫ > 0 such that

σ(G(jω), TΠ(jω)T ) ≤ −ǫI, ∀ω ∈ R, (22)

iii.

[

0
I

]∗

Π(jω)

[

0
I

]

≤ 0, ∀ω ∈ R. (23)

Then, the feedback interconnection G ⋆ H is sta-
ble for all linear, time invariant, stable operator
satisfying

σ(H(jω), Π(jω)) ≥ 0 ∀ω (24)

The proof is straightforward by writing G ⋆ H as
the interconnection of a nominal stable system
G ⋆ H with the block ∆ := H − H and applying
the IQC theorem.

Remark 3. Denote SΠ the set of operators H ∈
RH2me×2me

∞ satisfying (24). It is easy to see that
condition (23) implies the convexity of SΠ.

5.2 Analysis of a two-area system

Consider the system depicted in Figure 1, (Kun-
dur 1994) . The system is partitioned in two areas,
linked by the transmission line 7 − 9. The model
has the same parameters than (Kundur 1994)
(included the non-zero machine resistances and
transfer conductances ). The generators are mod-
eled with constant excitation and the loads have
constant power. This system is unstable in these
conditions. The overall active power was scaled
by 60% and a small positive damping coefficients
Di were introduced in all machines to ensure a
marginal small signal stability.

Linear models for both areas were computed with
the program PSAT (Milano 2005). Super-indexes
α, β are used to discriminate the quantities of each
area. Σα has the variables y9 as inputs, and y7 as
outputs. The situation is the opposite for Σβ.

Πd is defined from the Hessian of the storage
function associated to the line linking both areas,
equations (17), (20). Thus, Wα

yz = (Wβ
yz)

⊤ and

Πβ
d = |h|2

[

0 −jωWα
yz

jω(Wα
yz)

⊤ 0

]

= −TΠα
d T =⇒

σ(Σβ , Πβ
d ) = −σ(Gβ , TΠα

d T ). (25)

Property (25) and the fact of that Πd satisfies (23)
constitute an interesting basis for the application
of Proposition 3. However, the positiveness of con-
dition (19) is not strict and Proposition 3 cannot
directly be applied to Πα

d . This difficulty can be
easily solved. We can computationally obtain a
suitable multiplier Π1 of the form Π1 = Πα

d + Π0,
with Π0 = Π⊤

0 constant, such that conditions i
to iii of Proposition 3 are met by systems Σα

and Σβ. Since Πα
d was analytically computed a

priori, the computation of Π1 is a convex problem,
see (Megretski and Rantzer 1997). The addition
of term Π0 is intended to impose the strict sign
definition at ω = 0 and to suitably accommo-
date the non-dissipative perturbations associated
to resistive losses. It is worth to note that this
was possible in spite of the very poorly damped
modes of the systems, which exhibits damping
factors smaller than 1.6%, see Figure 2. Figure
3 shows the eigenvalues of σ(Σα(jω), Π1(jω)) and
σ(Σβ(jω), TΠ1(jω)T ) for h(s) = 50

s+50
.
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Fig. 1. Two-area system.
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Fig. 2. Singular value plots for areas Σα and Σβ.
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Fig. 3. Frequency condition for area α (continu-
ous) and β (dashed).

In this way, convex sets SΠ1
and SΠ2

are de-
termined for the respective areas Σα,Σβ which
characterizes a robustness condition. Excitation
controllers can be designed to meet these con-
straints, at least in the frequency band where the
electromechanical modes are significant.

6. CONCLUDING REMARKS

Dissipative properties of a class of structure-
preserving power system models have been pre-
cisely stated and demonstrated. The use of this

structural property for stability analysis of power
system interconnections was illustrated through
the use of frequency weighted multipliers and the
IQC theorem to a classical two-areas example.
Dissipativity provides us with a convex frequency
domain condition which is met with independence
of the value of a broad set of parameters. The ex-
ploitation of these structural properties for control
purposes is currently under research.
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