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Abstract. Traffic Engineering (TE) has become a challenging mechanism for network manage-
ment and resources optimization due to uncertain and difficult to predict traffic patterns. Recent
works have proposed robust optimization techniques to deal with traffic uncertainty, computing a
stable routing configuration that is immune to traffic variations within certain uncertainty set.
While this robust approach achieves routing reliability at low optimality loss, using a single rout-
ing configuration for long-time periods can be inefficient. Based on expected traffic patterns, we
show that it is possible to adapt the uncertainty set and build a multi-temporal yet robust routing
scheme that outperforms the stable approach. This work presents the study of robust routing in
a real network topology, exploring the tradeoffs between stable and multi-temporal robust routing.

1 INTRODUCTION

Traffic Engineering (TE) represents a major issue for Network Operators in today’s scenario.
TE allows the optimization of network resources usage through different mechanisms. In this
work, we focus on routing optimization over an Autonomous System (AS). This optimization is
becoming increasingly difficult due to the dynamic nature of current traffic. Traffic variations
present not only a slow predictable component due to normal traffic usage patterns (e.g. daily
demand fluctuation) but also an abrupt and unpredictable behaviour due to unexpected events,
such as network equipment failures, flash crowds occurrences, security threats (e.g. denial of
service attacks, virus propagation), external routing changes (e.g. inter-AS routing through
BGP) and new spontaneous overlay services (e.g. P2P applications). Traditionally considered
approaches are based on traffic matrix (TM) estimation and prediction. We classify them as sta-
ble routing and load-sensitive routing (dynamic routing from now on). They both present some
conception drawbacks that render them unsuitable for current scenario; the former proposes a
single-time solution that relies on seldom available traffic knowledge, the latter is complex to
implement and induces potential instabilities.

1.1 Stable routing optimization and traffic matrix estimation

Routing optimization depends on the underlying data transport mechanism; we will focus
on path-based routing such as MPLS. Assuming a single known value of the origin/destination
(OD) TM, the stable routing optimization consists in balancing the load over a certain number
of OD paths in order to minimize/maximize some performance criterion. This is a well known
multi-commodity flow problem, easily solved by linear programming techniques. However, even
though current networks perform flow measurements, these are not always conducted on all links
and egress/ingress points of the network and real TMs are normally unavailable. Moreover, in
order to avoid CPU router exhaustion, router vendors have implemented sampled versions of
flow-level measurement protocols, resulting in potentially large errors in volume estimation.
Thus, routing optimization is often computed for an estimated TM, resulting in a sub-optimal
routing configuration and, depending on the goodness of the estimation, highly inefficient for
the real TM.

109



P. Casas and S. Vaton

TM estimation consists in estimating the demand for each OD pair of the network from
routing and links’ information. Given a network topology defined by a set of n nodes and r

links, the traffic matrix demand d = {di,j} denotes the traffic flow between every node i and
node j (i 6= j) of the network. We re-arrange d as a column vector, d = {dk, k=1..m}, where dk

represents the traffic flow transmitted by OD pair k and m = n × (n − 1) is the number of OD
pairs. Link’s information yl represents the total traffic through link l in a certain period of time.
This information is available from router’s MIB variables and it is usually collected every 5’
periods via SNMP [7]. Traffic demands and links’ traffic are related through the routing matrix
R, a r × m matrix which element 0 6 rl,k 6 1 represents the fraction of OD demand k routed
through link l:

y = R × d. (1)

with y = {yl, l=1..r}. R represents the routing configuration at the time of link load mea-
surements (i.e. it is known). This system of linear equations is ill posed (m >> r), thus the
computation of demand d becomes in fact a problem of estimation. Different techniques are
applied to solve this estimation problem, a brief survey is presented in [6].

1.2 Dynamic routing under highly dynamic traffic

Previous stable routing computes a single-time routing configuration. Dynamic TE consists
in using this configuration during a certain period of time, re-computing a new configuration
when traffic changes become noticeable (i.e. it adapts the routing configuration to traffic vari-
ations). Dynamic TE assumes that traffic is stable and so, routing reconfiguration does not
occur very often. However, dynamic routing presents a great handicap: adapting to the highly
variable and unpredictable current traffic has an undeniable associated cost, that of potential
instabilities.

Recent works [1–4] have proposed a new perspective to the routing optimization under
traffic uncertainty problem: the Robust Routing (RR) approach. In a robust approach of
TE, demand uncertainty is taken into account directly into the routing optimization, computing
a single routing configuration for all demands within an uncertainty set. While this routing
configuration is not optimal for any single TM within the set, it minimizes the worst case
performance over the whole set. RR provides performance guarantees (i.e. worst-case bounds)
for all possible traffic variations within the uncertainty set. However, applying a single robust
configuration in the presence of highly variable traffic raises a difficult question: how should
this uncertainty set be defined? Larger sets cover a broader group of possible demands, but at
the cost of routing inefficiency. On the other hand, tighter sets produce more efficient routing
schemes, but subject to poor performance guarantees.

1.3 Contributions of the paper

We present a novel time varying perspective for RR that outperforms the current stable
approach: the Multi-Temporal Robust Routing (MTRR). We preserve the virtues of RR,
but change the routing configuration during time. The uncertainty set is optimally divided into
several uncertainty sub-sets that better adapt to real traffic loads, and a stable RR scheme is
computed for each sub-set. The partitioning algorithm allows to calculate the exact moments
when routing changes must be performed, simplifying the network operation. This proposal is
validated using real traffic data from the Internet2 Abilene backbone network [8].

The remainder of this paper is organized as follows. In Section 2, the robust routing approach
is introduced, analyzing its main features through real network examples. Section 3 presents
the theoretical background of the MTRR. An empirical evaluation of the MTRR in the Abilene
backbone network is presented in Section 4. Finally, Section 5 concludes this work.
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2 ROBUST ROUTING

Good TE policies must have the ability to deal with traffic uncertainty, providing reasonable
and ensured performance levels even in the case of unexpected events. A major progress in this
direction was achieved in [1] by applying robust optimization techniques to the routing under
traffic uncertainty problem. The idea is to take into consideration all possible traffic matrices
within some bounded set. [1] defines this set as a polytope, based on the intersection of several
half-spaces that result from some linear constraints imposed to traffic demands. An interesting
aspect of robust routing relies on the fact that, given a polytope, a single routing configuration
is computed, avoiding possible instabilities due to routing changes. In this sense, we refer to
robust routing as Stable Robust Routing (SRR).

2.1 Problem formulation

Let us consider a network topology defined by a set of n nodes and r unidirectional links with
capacities in C = (c1, c2, . . . , cr). For the sake of clarity, we will first describe the traditional
routing optimization problem, assuming a single, known traffic demand d. This optimization
consists in minimizing certain performance metric associated with demand d. Throughout
this work we consider maximum link utilization (MLU) as the routing performance criterion.
Overloaded links tend to cause QoS degradation (e.g. larger delays and packet losses, throughput
reduction, etc.), so MLU represents a reasonable measure of network performance. For a given
routing matrix R = {rl,k} and a traffic demand d, the MLU (umax) is defined as the maximum
of the ratio between link load and link capacity:

umax (C,d, R) = max
l∈{1...r}

X

k

rl,k · dk

cl

= max
l∈{1...r}

yl

cl

(2)

Let N = {1, . . . , m} be the set of OD pairs and L = {1, . . . , r} the set of links. Let P (k) be
the set of possible paths for OD demand k. Let xk

p be the proportion of traffic demand dk that

flows through path p ∈ P (k), 0 6 xk
p 6 1. Finally, let xk

l be the proportion of traffic demand

dk that flows through link l ∈ L, 0 6 xk
l 6 1. Table (1.a) presents the traditional multipath

routing optimization problem:

minimize umax (3) minimize umax (8)

subject to: subject to:
P

p∈P (k)

xk
p > 1 ∀ k ∈ N (4)

P

p∈P (k)

xk
p > 1 ∀ k ∈ N

P

p∈P (k), l∈p

xk
p 6 xk

l ∀ k ∈ N, ∀ l ∈ L (5)
P

p∈P (k), l∈p

xk
p 6 xk

l ∀ k ∈ N, ∀ l ∈ L

P

k∈N

xk
l .dk 6 umax · cl ∀ l ∈ L (6)

P

k∈N

xk
l .dk 6 umax · cl ∀ l ∈ L, ∀ d ∈ D (9)

xk
p > 0 ∀ p ∈ P (k), ∀ k ∈ N xk

p > 0 ∀ p ∈ P (k), ∀ k ∈ N

xk
l > 0 ∀ l ∈ L, ∀ k ∈ N xk

l > 0 ∀ l ∈ L, ∀ k ∈ N

umax 6 1 (7) umax 6 1

(a) (b)

Table 1: (a) Single routing optimization, (b) RR optimization.

All problem constraints are linear. Constraints (4) express the multipath property of the
routing (each OD flow can be transmitted through different paths, and every flow must be
completely routed). Constraints (5) simply define the link traffic proportions xk

l . While these
additional variables are not necessary, they are introduced for an easier comprehension of the
problem formulation. As a side effect, routing {rl,k} = {xk

l } is directly obtained. Constraints (6)
define the concept of umax. Finally, constraint (7) specifies that routing must be stable. From
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an algorithmic point of view, this is an easy to solve linear programming problem. However,
as we previously stated, real values of traffic demand are not always available, and all we can
expect is to find this real value within some bounded uncertainty set.

Let us now consider the robust case, where traffic demand d belongs to certain polytope of
traffic demands D. The Robust Routing Optimization Problem (RROP) consists in minimizing
umax, considering all demands within the polytope D. Table (1.b) presents the RROP formula-
tion. At first sight, it looks like a really difficult problem. Indeed, traffic demand’s uncertainty
largely modifies the traditional problem; constraints (9) are no longer linear and the polytope D

is generally an infinite set. However, the problem can be efficiently solved by linear programming
techniques, applying a column and constraints generation method [1].

The uncertainty set D can be defined in different ways, depending on the available in-
formation: link load measurements and historical routing, a set of previously estimated TMs
{d1, d2, . . . ,do} (average or peak values of traffic in the past), TM time series d(t), etc. We
present an analysis of SRR advantages over traditional routing methods, considering two dif-
ferent definitions for D. The study is performed in Abilene, an Internet2 backbone network.
Abilene consists in 12 router-level nodes and 30 OC192 links (2 OC48). The used router-level
network topology and traffic demands are available at [9]. Traffic data consists in 6-month traffic
matrices collected every 5’ via Netflow from the Abilene Observatory [8].

2.2 Robust routing with instantaneous traffic measurements

We first consider the problem of TM estimation. Let Ro be the historical routing matrix of
Abilene, not necessarily optimal (Ro is available at [9]). Given a single instantaneous scenario
(e.g. a 5’ sample), we consider the current links’ load vector yo. We define the uncertainty set
D as all the TMs which are consistent with routing and link load measurements:

D = {d ∈ R
m

, Ro × d = yo, d > 0} (10)

We compare the traditional and SRR approaches considering three different scenarios: ideal
scenario: real traffic demand d∗ is completely known; traditional scenario: traffic demand is
estimated (TM estimations are available in [9], we consider the tomogravity estimation [6]);
robust scenario: all we know is that d∗ belongs to D. In the ideal scenario, routing is optimized
for the real traffic demand d∗, obtaining a MLU u∗

max. Both routing configuration and u∗
max are

the solution for the traditional optimization problem (3). In the traditional scenario, routing

configuration is optimized for an estimated traffic demand d̂. This routing configuration is the
solution of problem (3), when demand’s value d is d̂. Let us call this routing configuration

R̂. We use R̂ to route the real demand d∗, obtaining a value of MLU ûmax (according to

(2), ûmax = umax(C,d∗, R̂)). The reader should note that real traffic matrix d∗ could be in
fact any point of D. In this sense, we compute the worst case MLU for the estimated routing
configuration R̂ within the uncertainty set D:

û
wc
max = max

d∈D
umax

“

C,d, R̂
”

In the robust scenario, a robust routing configuration is computed for D, according to problem
(8). The obtained routing configuration and MLU are called Rrobust and urobust wc

max respec-
tively. The value urobust wc

max represents the worst case performance for D (directly from (8),
umax (C,d, Rrobust) 6 urobust wc

max , ∀ d ∈ D). Finally, we compute the MLU urobust
max that results

from routing the real demand d∗ with Rrobust:

u
robust
max = umax (C,d∗

, Rrobust)

We repeat the same evaluation for different times of the day. For each of them, ideal,
traditional and robust routing performances are compared. Table 2 summarizes the results of this
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comparison. For simplicity, we take u∗
max = 1 as reference. Let us consider the obtained results

for the 14:00 time of day (column 14:00). If the value of the traffic demand were known, the MLU
would be u∗

max. In practice, it is difficult to perfectly know the value of the traffic demand, so an
estimation is used. If the routing is optimized for the estimated value d̂ (traditional scenario),

then the performance of that routing R̂ when the traffic demand value is d∗ is 1.07u∗
max. Thus,

the performance degradation due to the estimation is 7%, which is reasonable provided that the
links’ utilization is not too large. This means that the estimate is sufficiently close to the true
value of the demand to make load balancing possible and efficient (at least in the case of the
Abilene dataset [9]). But in theory, the only thing we can be sure of is that d∗ belongs to the

uncertainty set D and nothing proves with certainty that d∗ is close to the estimated value d̂.
If we take into consideration that the traffic demand takes any value in D, then the MLU can
reach 5.75u∗

max in the worst case and this is obviously a risk that nobody would be ready to
take.

Day Time 02:00 08:00 14:00 20:00

ûmax 1.18 1.03 1.07 1.07

u
robust
max 1.07 1.14 1.15 1.13

û
wc
max 4.71 4.87 5.75 5.01

u
robust wc
max 1.10 1.15 1.16 1.14

Table 2: Routing performance under traffic uncertainty, relative to u∗
max.

Now let us suppose that this uncertainty is taken into account preventively in the optimiza-
tion of the routing (robust scenario). In that case, the MLU when the traffic demand value is d∗

is 1.15u∗
max; compared to the performance of the traditional approach, the robust routing “cost”

is 1.15 − 1.07 = 0.08, i.e. a 8% performance degradation. But the MLU in the SRR case will
always be bounded by 1.16u∗

max, whatever the value of d in D. Compared to the 5.75u∗
max worst

case performance of the traditional approach, it is clear that the robust approach offers a guar-
antee against the uncertainty on the traffic demand value, for a cost which remains reasonable
(8%).

2.3 Robust routing with time-varying demands

Robust optimization can also be used to handle time-varying demands. In this case, the
uncertainty set will be defined on the basis of historical traffic information, bounding all possible
time-realizations of link loads by some upper-bound yUB:

D = {d ∈ R
p
, Ro × d 6 yUB , d > 0} (11)

An obvious example for this upper-bound would be the link capacities, yUB = C. A more
interesting upper-bound could be the peak-usage-hour traffic load yUB = ypeak, or even more,
some preventive threshold could be considered for unexpected traffic variations yUB = β.ypeak,
with β > 1.

We compare once again the traditional and robust routing approaches, but taking into ac-
count the considerations in 1.2. In this experience, we consider an unexpected abrupt change
in link’s load due to an external routing modification. Figure (1.a) presents this abrupt modi-
fication. We consider three different scenarios: in the traditional scenario, unexpected changes
are not considered in advance. Single traffic matrix estimation is conducted (close to 14:00, see

figure 1), and routing optimized for this estimation (R̂) is then applied to the real traffic demand
d∗, during the whole evaluation period. In the robust scenario, an upper-bound based on peak
links’ load is considered (yUB = y00:00 − 24:00

max ). Routing is optimized for this uncertainty set
(Rrobust) and is then applied to route real traffic demands. Both approaches are compared to
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the ideal scenario, where real traffic is completely known and routing optimization is performed
at each time interval (an optimal dynamic routing).
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Figure 1: (a) Daily traffic links’ load, (b) Routing evaluation.

Figure (1.b) presents the routing performance evaluation. Before the abrupt change, traffic
remains almost constant and MLU is similar for all scenarios, with the same slight differences as
before. However, performance degradation for the traditional approach reaches approximately
60% after the arrival of the unexpected event, against a 10% degradation for SRR (both with
respect to the ideal scenario). The traffic demand that is responsible for this abrupt modification
in links’ utilization belongs to the considered uncertainty set D, so the RR configuration is
prepared to handle it.

3 MULTI-TEMPORAL ROBUST ROUTING

Previous analysis shows that the SRR approach offers stability guarantees against traffic
uncertainty and traffic time-variations at a reasonable cost. However, we show that considering
a single routing scheme for long-time periods is conservative and results in sub-optimal perfor-
mance. We propose a simple approach to adapt the uncertainty set that outperforms the SRR.
Based on rough knowledge of traffic variations (considering expected traffic behaviour), we pro-
pose to divide the uncertainty set and build a multi-temporal routing configuration, considering
a single SRR configuration for each sub-set.

time
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19:00

DA

DB

(a) (b)

Figure 2: (a) Daily variation of the polytope, (b) Time partitioning of the polytope.

Daily traffic changes can be seen as a time variation of the uncertainty set. At each time inter-
val tj , the routing matrix R and the link load values ytj define an instantaneous uncertainty
set Dtj =

˘

d ∈ R
m, R × d 6 ytj , d > 0

¯

. The union of several instantaneous uncertainty sets

along time t defines the daily uncertainty set Dt =
˘

(d, t) ∈ R
m+1,d ∈ ∪τ

j=1Dtj , t1 6 t 6 tτ

¯

.
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Figure (2.a) explains this idea. Assuming this set is the union of several polytopes, [5] provides
a theoretical study of the optimal partitioning of Dt, using a partitioning hyper plane. [5] proves
that this is a NP-hard problem, except for the case where a partitioning direction is previously
fixed.

We define a partitioning hyper plane by its direction vector α and a value w: α.d = w. In the
MTRR approach, we consider a particular direction for partitioning: the time direction. In that
case, w represents the time of the day. We define s + 1 hyper planes at times {w1, w2, .., ws+1}.
The intersection between Dt and the half-spaces defined by these partitioning hyper planes
results in s uncertainty sub-sets Di = {Dt ∩ {d, α.d > wi} ∩ {d, α.d 6 wi+1}} ,∀i = 1, .., s. A
SRR configuration Ri

robust is computed for each sub set Di. Each routing configuration is finally
applied at each time interval. The optimal values of routing changes w∗ = {w∗

2 , . . . , w∗
s} are the

solution for the following optimization problem (w1 and ws+1 are fixed a priori):

w∗(Dt) = arg min
w

n

max
i=1..s

umax(Di)
o

(12)

where umax(Di) is the solution of (8) for polytope Di. [5] presents a simple algorithm to approx-
imately solve (12), using a dichotomy methodology. The MTRR presents a trade-off between
performance and routing stability. The more intervals we use, the more adapted the routing
becomes. However, the number of intervals should be bounded as many routing changes may
lead to instabilities and performance degradation.

4 MTRR EVALUATION

We present a comparative analysis between SRR and MTRR in the same previously used
network topology [9]. Abilene nodes are distributed over different time zones and therefore,
links’ traffic is not synchronized. Said in other words, the time-variation of the polytope is
not a simple homothety, so a routing configuration change during the day can improve routing
performance. We consider a single time partitioning (i.e. 2 routing intervals), w1 = 22:00, w2 =
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Figure 3: Routing performance, stable vs. multi-temporal robust routing.

9:00 and w3 = 19:00. For each time interval, we consider the smallest polytope that includes all
possible realizations over that period:

DA,B = {d ∈ R
m

, Ro × d 6 yA,B, d > 0}

where Ro is the historical routing matrix of Abilene, yA = y22:00−9:00
max and yB = y9:00−19:00

max

(maximum values for each link). In this way, DA includes all traffic demands between 22:00
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and 9:00 and DB between 9:00 and 19:00. Figure (2.b) shows these two polytopes with respect
to the daily uncertainty set Dt. For each polytope, we compute a SRR configuration, RA

robust

and RB
robust. In order to compare stable and multi-temporal approaches, we apply both routing

configurations during the whole evaluation period.
Figure (3.a) compares the routing performance (MLU) between these two RR configurations.

The obtained results show that the polytope DA is well suited for smaller loads (see the his-
torical routing curve), so RA

robust performs better during the first half of the day, when network
loading is lower. However, when traffic increases, demands that do not belong to DA produce
higher link utilizations than those obtained with RB

robust. The MTRR consists in computing
the moment when routing must be changed (w∗

2 = 9:00 in this case), using the corresponding
routing configuration depending on the time of the day (RA

robust before w∗
2 and RB

robust after). In
this experience, the MTRR approach presents a performance improvement of almost 15% with
respect to the SRR approach during the evaluation period. We now consider traffic demands
that drastically change (i.e. a large time-variation of the polytope, caused by an unexpected
event). Figure (3.b) presents an abrupt change in MLU (almost 14 times higher) at time 18:00.
In this case, we assume that this change is known in advance (note that in the general case, it is
not possible to predict these abrupt changes). The optimal moment for changing routing is w∗

= 18:00. The MTRR approach definitely outperforms the SRR in this experience, presenting a
MLU between 10% and 60% smaller during the whole evaluation period.

5 CONCLUSIONS AND FUTURE WORK

This paper addressed the routing optimization under traffic uncertainty problem. We pre-
sented a general overview of the different traffic engineering approaches for routing optimization,
analyzing the tradeoffs between stable and dynamic routing and discussing their weaknesses
facing current highly variable traffic demands. We explored the robust routing paradigm, an
approach that considers uncertainty within the routing optimization to enhance reliability. Us-
ing a data set from a real network, we showed that this routing approach achieves robustness
at low optimality loss in different situations. We introduced a simple multi-temporal robust
routing approach that outperforms previous stable robust routing when considering traffic time
variations. Taking advantage of traffic patterns, we split the uncertainty set into different time-
consecutive sub-sets and compute a stable robust routing configuration for each of them. We
believe that this approach represents a first step towards a dynamic and robust routing policy.

This preliminary work does not evaluate the challenges of changing routing configuration
and its impact on end-to-end traffic. The use of an automatic methodology for detecting traffic
variations and updating the robust routing configuration should also be explored, considering
the application of the MTRR in a real network deployment.
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