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Abstract— In this work we prove that the problem of almost
global synchronization of the Kuramoto model of sinusoidally
symmetric coupled oscillators with a given topology could
be reduced to the analysis of the blocks of the underlying
interconnection graph.

I. I NTRODUCTION

A few decades ago, Y. Kuramoto introduced a
mathematical model of weakly coupled oscillators that
gave a formal framework to some of the works of A.T.
Winfree on biological clocks [1], [2], [3]. The model
proposes the idea that several oscillators caninteract in a
way such that the individual oscillation properties change
in order to achieve a global behavior for the interconnected
system. The Kuramoto model serves a a good representation
of many systems in several contexts such a biology,
engineering, physics, mechanics, etc. [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14].

Recently, many works on the control community have
focused on the analysis of the Kuramoto model, specially
the one with sinusoidal coupling. Theconsensusor
collective synchronizationof the individuals is particularly
important in many applications that need to represent
coordination, cooperation, emerging behavior, etc. Local
stability properties of the consensus have been initially
explored in [15], while global oralmost globaldynamical
properties were studied in [16], [17], [18]. In these works,
the relevance of the underlying graph describing the
interconnection of the system was hinted. In the present
article, we go deeper on the analysis of the relationships
between the dynamical properties of the system and the
algebraic properties of the interconnection graph, exploiting
the strong algebraic structure that every graph has.

In Section II we quickly review the relevant aspects
of the algebraic graph theory. After that, we summarize
the main results of different previous works on the
analysis of Kuramoto coupled oscillators. Section IV
contains the contributions of this article, showing how
we can interconnect synchronized systems keeping the
synchronization property and introducing an analysis
procedure for a kind of graphs. Finally, we present some
conclusions.
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II. A LGEBRAIC GRAPH THEORY

In this Section we review the basic facts on algebraic graph
theory that will be used along the article. A more detailed
introduction to this theory can be found in [19], [20]. A graph
consists in a set ofn nodesor vertices V G = {v1, . . . , vn}
and a set ofm links or edges EG = {e1, . . . , em} that
describes how the nodes are related to each other. Ifn =
1 the graph is calledtrivial . We say that two nodes are
neighbors or adjacent if there is a link inEG between them.
If all the vertices are pairwise adjacent the graph is called
completeand writtenKn. A walk is a sequencev0, . . . , vn

of adjacent vertices. If the vertices are different except the
first and the last which are equal (vi 6= vj for 0 < i < j

and v0 = vn) the walk is called acycle. A graph with no
cycle is calledacyclic. The graph isconnectedif there is a
walk between any given pair of vertices. Atree is an acyclic
connected graph and hasm = n − 1 edges. The graph is
oriented if every link has a starting node and a final node.
The topology of a oriented graph may be described by the
incidencematrix B with n rows andm columns:

Bij =







1 if edge j reaches node i

−1 if edge j leaves node i

0 otherwise

Observe that1 BT
1n = 0. The vertex spaceand theedge

spaceof G are the sets of real functions with domainV G

and EG respectively, which we sometimes will identify,
respectively, with the vectors setsRn and R

m. Thus, the
incidence matrixB can be seen as a linear transformation
from the edge space to the vertex space. The kernel ofB is
the cycle spaceof the graphG and its elements are called
flows. Every flow can be thought as a vector of weights
assigned to every link in a way that the total algebraic sum
at each node is zero. The cycle space is spanned by the flows
determined by the cycles: given a cyclev0, . . . , vn = v0, its
associated flowfC(e) is ±1 if e leaves somevi and reaches
vi±1 and 0 otherwise.

If the graph G is the union of two nontrivial graphs
G1 andG2 with one and only one nodevi in common, then
vi is called acut-vertexof G. A connected graph with more
than two vertices and no cut-vertex is called2-connected
and it follows that for every pair of nodes, there are at least
two different paths between them. Given a subsetV1 ⊂ V G,
its induced subgraphis 〈V1〉 with vertex setV1 and edge set
{e ∈ EG : e joins vertices ofV1}. The maximal induced

1By 1p we denote the column vector inRp with all its components equal
to 1.



subgraphs ofG with no cut-vertex, are called theblocksof
G. Every graph has the form of figure 1: a collection of
blocks joined by cut-vertices. For a complete graph, there is
only one block, the graph itself.

We will use the following vector notation: given

Fig. 1. Representation of a graph as a union of blocks.

a n-dimensional vector θ̄ = [θ1, . . . , θn], then
θ̄(i : j) = [θi, . . . , θj ] and θ̄(i) = θi. Firstly, we present
some basic results. We include two different proofs for
Lemma 2.1, in order to show two distinct interpretations of
the same facts: one based on linear algebra, the other using
graph theory elements.

Lemma 2.1:Consider a graphG, with v a cut-vertex
betweenG1 andG2. Then, an edge space elementf : EG →
R is a flow onG, if and only if f | EG1

and f | EG2
are a

flows onG1 andG2 respectively.

Proof 1: Suppose that thei vertices ofG1 and itsk edges
come first in the chosen labelling. Suppose, also, thatv = vi,
thenB has the following form:

B =





W1 0(i−1)×(m−k)

wT
1 wT

2

0(n−i)×k W2





Where w1 and w2 are column vectors with appropriate
dimensions. With this notation, the incidence matrices ofG1

andG2 are, respectively

B1 =

[

W1

wT
1

]

, B2 =

[

wT
2

W2

]

.

Besides,B1 as incidence matrix, verifies1T
i B1 = 0, thus

1
T
i−1W1 + wT

1 = 0k, so

wT
1 = −1

T
i−1W1. (1)

Let f be a flow onG. Then, in order to prove thatf1 =
f |EG1

is a flow on G1, we must prove thatB1f1 = 0i,
i.e. W1f1 = 0i−1 and wT

1 f1 = 0. The former is true
becausef is a flow on G, thus Bf = 0n, but W1f1 =
(Bf)(1 : i − 1). While for the last, we have that, by (1),
wT

1 f1 = (−1
T
i−1W1)f1 = −1

T
i−1(W1f1) = 1

T
i−10i−1 = 0.

ExchangingG1 by G2 we obtain thatf |EG2
is a flow on

G2.
Conversely, iff1 andf2 are flows onG1 andG2 respectively,

we have that(Bf)(1 : i−1) = B1f1 = 0i, (Bf)(i+1 : n) =
B2f2 = 0n−i+1 and(Bf)(i) = wT

1 f1 + wT
2 f2 = 0 + 0 = 0.

�

Proof 2: Following [19] [Lemma 5.1, Theorem 5.2], given
a spanning treeT of G, we obtain a basis of the cycle space
in the following form: for each edgee ∈ E′ = EG \ ET

we have an unique cyclecyc(T, e) which determines a flow
fT,e. The setB of these flows is a basis of the cycle-space.
However, sincev is a cut-vertex, any cycle is included either
in G1 or in G2, so its associated flow is null either inEG1

or in EG2. If we regard a flow onG which is null in EG1

as a flow onG2, we can splitB into two setsB1 and B2

cycle-space basis ofG1 andG2 respectively. Thus the cycle-
space ofG is the direct sum of the cycle-spaces ofG1 and
G2.

�

Lemma 2.2:Let G be a graph,V1 ⊂ V G andG1 = 〈V1〉
the subgraph ofG induced by the verticesV1 with incidence
matrix B1. Let H : R → R be any real function,̄θ : V → R

an element of the vertex-space ofG andf = H(BT θ̄) then,
if

f1 = f |EG1
, θ̄1 = θ̄| V G1

it is true that
f1 = H(BT

1 θ̄1).

Proof: Suppose that thei vertices andk edges ofG1 come
first in the chosen labelling. Then, for someB′, B′′ and θ̄2,
we have that

BT θ̄ =

[

BT
1 0i×k

B′ B′′

] [

θ̄1

θ̄2

]

=

[

BT
1 θ̄1

B′θ̄1 + B′′θ̄2

]

.

Thus, (BT θ̄)(1 : k) = BT
1 θ̄1, and f1 = f(1 : k) =

H(BT θ̄)(1 :k) = H((BT θ̄)(1 :k)) = H(BT
1 θ̄1).

�

III. A LMOST GLOBAL SYNCHRONIZATION

Oscillators have been studied by engineers for a long time
[21]. The state of an oscillator can be described by its phase
angleθ. Consider now the Kuramoto model ofn sinusoidally
coupled oscillators [6]

θ̇i =
∑

j∈Ni

sin(θj − θi) i = 1, . . . , n (2)

whereNi is the set ofneighborsof agenti. Each phaseθi

belongs to the interval[0, 2π), so the system evolves on the
compactn-dimensional torusT n. The value of a phase must
be considered modulo2π. Consider the graphG, with nodes
{v1, . . . , vn} and edges{e1, . . . , em}, that describes how the
individual oscillators, oragents, interact between each other.
The nodevi represents thei-th oscillator, with phaseθi.
Consider an arbitrary orientation of the links ofG and let
the matrixB, with n rows andm columns, be an incidence
matrix for G. We will work with symmetric interaction: if



i ∈ Nj thenj ∈ Ni. In this case, as is explained in [15], the
expression (2) can be compactly written as

θ̇ = −B sin
(

BT θ̄
)

(3)

Equation (3) does not depend on the choice ofB. As was
done by Kuramoto, we may represent the agents as running
points on a circumference or as unit phasors, as in Example
3.1 [1], [17].

Since the system dynamic depends only on the phase
differences, it is invariant under translations parallel to
vector 1n. We say the systemsynchronizesor reaches
consensusif the individual phases converge to a state where
all the phases are identical. Of course, a consensus point is
an equilibrium point of the system and actually we have a
synchronization set, due to the invariance property. This also
applies to every equilibrium point. We will also work with
partial consensusequilibria, when most of the phases take
the value 0 (taking a suitable reference) and the remaining
phases take the valueπ. Other equilibria will be referred as
non-synchronized. If̄θ is an equilibrium point of (3) with
underlying graphG, we will use the expression:̄θ is an
equilibrium ofG.

Example 3.1:Consider the graph shown at the left of
Figure 2. A non-synchronized equilibrium point is given by

θ̄ =

























169.04
59.96
−49.13
130.87
−120.04
−10.96
−30.04
149.96
























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Fig. 2. Phasor representation of the equilibrium pointθ̄ of system (3) of
Example 3.1. The underlying graph is shown at the left.

△
We are concerned on whether or not all the trajectories

converge to the synchronization set. Since the system has
many equilibria, we can only expect thatmost of the trajec-
toriespresents this property. Following the ideas of [22], we
say that the system has thealmost global synchronization
property if the set of trajectories that do not converge to the

synchronization set has zero Lebesgue measure onT n. If the
system is described by a graphG, we will shortly say theG
is a.g.s.. In [15], it was proved that the synchronization set is
locally stable. First results on almost global properties were
presented in [16], [18]. There, it was proved that the complete
graphKn and the tree graphs always are a.g.s. These results
were proved in two steps: firstly, using LaSalle’s result on
asymptotical behavior of trajectories in a compact invariant
set, it was shown that the onlyω-limit sets are the equilibria
of the system; secondly, Jacobian linearization was used to
locally classify the equilibria2 [23]. At an equilibrium point
θ̄, a first order approximation is given by the symmetric,
n × n, matrix

AG = −B diag
[

cos(BT θ̄)
]

BT (4)

Observe thatAG always has a zero eigenvalue with corre-
sponding eigenvector1, due to the invariance property of the
system. In this work, we try to extend our knowledge of the
family of a.g.s. graphs.

IV. SYNCHRONIZING INTERCONNECTION

From equation (3) we see that a phase angleθ is an
equilibrium point if and only ifsin(BT θ) is a flow onG.
Thus it should be possible that this equilibrium points could
be obtained from the equilibrium points of the blocks of the
graphs. In fact, this is exactly what happens. Furthermore,
the stability of these equilibrium points depends only on the
stability of the associated equilibrium points of the blocks.
First, we study the existence problem, which will follow
directly from Lemma 2.1, and then we study the stability
properties.

A. Existence

If θ1 : V G1 → R is in the vector space of a subgraphG1

of G, we will regard it also as its unique extension to the
vector space ofG which is null elsewhere ofG1. The same
for an element of the edge space.

Proposition 4.1:Consider the graphG with a cut-vertex
v betweenG1 andG2. If θ̄ is an equilibrium point ofG, then
θ̄1 = θ̄|V G1

and θ̄2 = θ̄|V G2
are equilibrium points ofG1

andG2 respectively. Conversely, if̄θ1 andθ̄2 are equilibrium
points ofG1 andG2 respectively, there exists a real number
α, such that̄θ′2 = θ̄2 + α is an equilibrium point ofG2 and
θ̄ = θ̄1 + θ̄′2 is an equilibrium point ofG.

Proof: Let B, B1, B2, etc. like in Lemma 2.1. If̄θ is an
equilibrium point ofG, thenf = sin(BT θ̄) is a flow onG,
thus, by Lemma 2.1,f1 = f |V G1

is a flow on G1. Thus,
it is enough to prove thatf1 = sin(BT

1 θ̄1), which follows
from Lemma 2.2, takingH(x) = sin(x) and noticing that
G1 is an induced subgraph ofG. The case forG2 follows
by the symmetry betweenG1 andG2.

2Almost global synchronization could be proved via density functions
only for the cases of 2 and 3 agents [17].



Now, assume that̄θ1 and θ̄2 are equilibrium points ofG1

and G2 respectively. Letα = θ̄1(v) − θ̄2(v), θ̄′2 = θ̄2 + α,
θ̄ = θ̄1 + θ̄′2 and f = sin(BT θ̄). Then, by Lemma 2.2,
f1 = f |EG1

= sin(BT
1 θ̄1) and f2 = f |EG2

= sin(BT
2 θ̄′2).

On the other hand, due to the invariance of the system
we have remarked on Section III, the vectorθ̄′2 is also an
equilibrium point ofG2, and then,f1 and f2 are flows in
G1 andG2 respectively. Therefore, by Lemma 2.1,f1 + f2

is a flow onG, but f = f1 + f2, becauseEG1 ∩ EG2 = ∅.

�

B. Stability analysis

We will relate the stability properties of the graphG with
a cut-vertex with the stability properties of the subgraphs
G1 and G2 joined by it. Since every equilibrium ofG
defines an equilibria forG1 and G2, we wonder whether
or not the dynamical characteristics of these equilibria are
or not the same. We will use Jacobian linearization. The
zero eigenvalue is always present due to the invariance of
the system by translations parallel to1n. We always refer
to the transversal stabilityof the equilibrium set. If the
multiplicity of the zero eigenvalue is more than one, Jacobian
linearization may fail in classifying the equilibria. Due to
space reasons, we present the study of this particular problem
in a different article. So, in this work, we assume that we
always have a single null eigenvalue.

Theorem 4.1:Consider the graphG, with a cut-vertexv
joining the subgraphsG1 and G2 of graphG. Let θ̄ ∈ R

n

be an equilibrium point ofG. Then,θ̄ is locally stable if and
only if θ̄1 = θ̄|V G1

and θ̄2 = θ̄|V G2
are locally stable and

coincide inv (= V G1 ∩ V G2).

Proof: Recall that the first order approximation of the
system around an equilibrium point is given by

AG = −B diag
[

cos(BT θ̄)
]

BT .

Suppose thatG1 has i vertices, that they come first in the
chosen labelling and thatv is the last of them (v = vi). Then,
a direct calculation gives

AG = A1 + A2, (5)

with

A1 =

[

AG1
0i×(n−i)

0(n−i)×i 0(n−i)×(n−i)

]

and

A2 =

[

0(i−1)×(i−1) 0(i−1)×(n−i+1)

0(n−i+1)×(i−1) AG2

]

.

Observe that these matrices partiallyoverlap, so the matrix
A takes the form:

A =
AG1

AG2

First of all, we consider the case with̄θ1 and θ̄2 stable and
θ̄1(i) = θ̄2(i). Then,AG1

andAG2
are stable and equation

(5) holds for θ̄ = [θ̄1, θ̄2(2 : n − i)]. So, AG is the sum
of two semidefinite negative matrices which gives rise a
semidefinite negative one. Besides, the kernel ofAG has
dimension 1, since ifAGw = 0 then wT AGw = 0, thus,
wT A1w + wT A2w = 0. But, wT A1w = wT

1 AG1
w1 and

wT A2w = wT
2 AG2

w2 for w1 = w|V G1
and w2 = w|V G2

.
ThenwT

1 AG1
w1+wT

2 AG2
w2 = 0. That can happen if only if

wT
1 AG1

w1 = 0 andwT
2 AG2

w2 = 0. But the kernels ofAG1

and AG2
are spanned by1i and 1n−i+1 respectively, thus

w1 = α1i and w2 = β1n−i. But w1(i) = w2(1) = w(i),
thusα = β andw = α1n. This proves the stability ofAG.

Now, we focus on the case with̄θ1 or θ̄2 unstable.
We analyze the first case, since the other is similar.
Suppose thatAG1

has a positive eigenvalue with associated
eigenvectorw1, thus

wT
1 AG1

w1 > 0.

Define the vector

w =

[

w1

w1(i)1n−i

]

=

[

w1(1 : i − 1)
w1(i)1n−i+1

]

.

Then,

wT AGw = wT
1 AG1

w1 + w1(i)
2
1n−i+1

T AG2
1n−i+1

which actually iswT
1 AG1

w1 > 0 since AG2
1n−i+1 = 0.

Then, θ̄ is unstable.

�

We are now ready to state and prove the main result of
this article.

Theorem 4.2:Consider the graphG, with a cut-vertexvi

joining the subgraphsG1 and G2. Then,G1 and G2 have
the almost global synchronization property if and only ifG

does.

Proof: First of all, let θ̄ be an equilibrium point ofG.
According to Theorem 4.1,̄θ is stable only ifθ̄1 = θ̄|V G1

and θ̄2 = θ̄|V G2
are too.

If G1 and G2 are a.g.s., the only locally stable set is
the consensus, and since they have a vertex in common, the
only locally stable equilibria ofG is also the consensus and
G is a.g.s.

In the other direction, ifθ̄1 is a locally stable equilibrium
of G1, we choseθ̄ = [θ̄1, θ̄1(i)1n−i] and we construct a
stable equilibrium forG (as we have mentioned before, a
consensus equilibrium is always locally stable [15]). Since
G is a.g.s.,θ̄, and so θ̄1, must be consensus equilibrium
points.

�



Theorem 4.2 has many direct consequences. We point out
some of them, with a brief hint of the respective proofs.

Proposition 4.2:Consider a graphG with a bridge ek

between the nodesvi and vj and let G1 and G2 be the
connected components ofG \ {ek}. Then,G is a.g.s. if and
only if G1 andG2 are.

If a graph has abridge, i.e., an edge whose removal
disconnect the graph, the behavior of the system depends
only on the parts connected by the bridge. Indeed, the bridge
together with its ends vertices form a block, which is in facta
complete graph and its vertices are cut-vertices of the graph,
as is shown in figure 3. Since any complete graph is a.g.s.,
the a.g.s. character of the original graph depends on the other
blocks.

G1

G2

Fig. 3. A graph with a bridge.

Theorem 4.3:A graph G is a.g.s. if and only if every
block of G is a.g.s.

The graphG can be partitioned into its blocks. Then,G

can be thought as a collection of subgraphs connected by
cut-vertices. An iterative use of Theorem 4.2 leads us to the
result. Observe that Theorem 4.3 reduces the characterization
of the family of a.g.s. graphs to the analysis of 2-connected
graphs. As an application, consider the case where we
connect two a.g.s. graphs through another a.g.s. graph. In
this way, we construct a new a.g.s. graph. Figures 4 and 5
illustrate the situation.

G1

G2Gags

Fig. 4. Two graphs connected by an a.g.s. graph.

In [16], it was proved the next result

G1

G2

Fig. 5. Two graphs connected by a tree

Proposition 4.3: If G is a tree, it is always a.g.s.

The proof was done using a colouring technique at all
the equilibria. Now, we have two alternatives proofs. The
first one using Theorem 4.3. We observe that a the blocks
of a tree are allK2, and then, they are a.g.s. The second
one is applying iteratively Proposition 4.2, since every link
of a tree is a bridge.

If we have a graph witharboricities, like the one
shown in figure 6, we can neglect the trees in order to prove
the a.g.s. property.

Corollary 4.1: A graph with the structure shown in figure
6 is a.g.s. if and only ifG1 is.

G1

Fig. 6. A graph witharboricities.

To conclude this section, we present two general methods
for constructing a.g.s. systems.

Proposition 4.4: If G is a tree and we build a new graph
K replacing some (or every) edges ofG by an a.g.s. graph,
thenK has the almost global synchronizing property.

Proposition 4.5: If G is a tree and we build a new graph
K replacing some (or every) nodes ofG by an a.g.s. graph,
thenK has the almost global synchronizing property.

These conclusions directly follow from the previous results
and are illustrated in figure 7. In [16] it was proved that
the complete and the tree graphs are a.g.s., while non
a.g.s. graphs, like the cycles with more than 4 nodes, were
found. Using this fact, we can prove the following sufficient
condition for a.g.s. that partially characterizes the family of
all a.g.s. graphs.



Fig. 7. Situation of Proposition 4.5.

Proposition 4.6: If G is a graph such that all its blocks
are complete graphs, thenG is a.g.s.

V. EXAMPLE

Consider two Kuramoto systems with complete underlying
interconnection graphsG1 = K3 and G2 = K5 (both
a.g.s.). Starting from arbitrary initial conditions, each system
quickly reaches a consensus state. At timeT = 3 seconds,
we connect the two systems through a bridge between an
arbitrary pair of agents. Now, the whole systems reaches a
new consensus state. Observe that this convergency is slower
than the previous. Figure 8 shows the results obtained from
the simulation. They perfectly agree with Proposition 4.2.

0 2 4 6 8 10 12 14
−2

−1

0

1

2

3

4

t (seconds)

θ

T=3 seconds 

Fig. 8. Two systems connected by a bridge. The connection takes place
at timeT = 3 seconds.

VI. CONCLUSIONS

In this work we have studied how some algebraic proper-
ties of the underlying graph describing the interconnection
of a symmetric Kuramoto model impose restrictions on the
dynamical behavior. In particular, we have tried to advance
toward a characterization of the a.g.s. graphs. We focus on
the particular case of the existence of a cut-vertex between
two subgraphs. We proved that the interconnection by a cut-
vertex of almost global synchronized systems preserves that
property. In particular, we have established that the almost

global synchronization analysis of a system with a given
interconnection graphG can be reduced to the analysis of
the blocks ofG. In other words, the general a.g.s. problem
may be restricted to the analysis of 2-connected graph
topologies. This reduction procedure can be also used to glue
synchronized systems in order to get a bigger synchronized
system. The gluing can be done using cut-vertices or bridges.
We have built a family of a.g.s. graphs that includes both the
trees and the complete graphs: all whose blocks are complete
graphs. We will try to find more a.g.s. classes of graphs and
extended the results to Kuramoto models with non sinusoidal
interaction functions.
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Congresso Brasileiro de Autoḿatica, Bahia, Brazil, 2006, pp. 470–
475.

[19] N. Biggs,Algebraic Graph theory. Cambridge University Press, 1993.
[20] D. Cvetkovic, M. Doob and H. Sachs,Spectra of graphs: theory and

applications. New York: Academic Press, 1979.
[21] B. van der Pol, “The nonlinear theory of electrical oscillations,”Proc.

of the Institute of Radio Engineers, vol. 22, no. 9, pp. 1051–1086,
1934.

[22] A. Rantzer, “A dual to Lyapunov’s stability theorem,”Systems and
Control Letters, vol. 42, no. 3, pp. 161–168, March 2001.

[23] H. Khalil, Nonlinear Systems, Prentice-Hall, Ed. Prentice-Hall, 1996.

https://www.researchgate.net/publication/224303275



