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Abstract— In this work we prove that the problem of almost Il. ALGEBRAIC GRAPH THEORY

global synchronization of the Kuramoto model of sinusoidally . . . . .
symmetric coupled oscillators with a given topology couid In this Section we review the basic facts on algebraic graph

be reduced to the analysis of the blocks of the underlying theory that will be used along the article. A more detailed
interconnection graph. introduction to this theory can be found in [19], [20]. A ghep
consists in a set of nodesor vertices VG = {vy,...,v,}
] and a set ofm links or edges EG = {ey,...,e,} that

A few decades ago, Y. Kuramoto introduced &jescribes how the nodes are related to each other.
mathematical model of weakly coupled oscillators thaj ihe graph is calledrivial. We say that two nodes are
gave a formal framework to some of the works of A.Teighbors or adjacent if there is a link G’ between them.
Winfree on biological clocks [1], [2], [3]. The model |t 5j| the vertices are pairwise adjacent the graph is called
proposes the idea that several oscillators gdaract in a completeand writtenK,,. A walk is a sequencey, ..., v,
way such that the individual oscillation properties changgs adjacent vertices. If the vertices are different excégt t
in order to achieve a global behavior for the interconnecteglsi and the last which are equal; (£ v; for 0 < i < j
system. The Kuramoto model serves a a good representatigry vo = v,) the walk is called aycle A graph with no
of many systems in several contexts such a biologyyie s calledacyclic The graph isconnectedf there is a
engineering, physics, mechanics, etc. [4], [5], [6], [@],[ walk between any given pair of vertices.treeis an acyclic
[9], [10], [11], [12], [13], [14] connected graph and has = n — 1 edges. The graph is

orientedif every link has a starting node and a final node.

Recently, many works on the control community haverhe topology of a oriented graph may be described by the
focused on the analysis of the Kuramoto model, speciallycidencematrix B with n rows andm columns:

the one with sinusoidal coupling. The&onsensusor ] ) ,
collective synchronizationf the individuals is particularly 1 if edge j reaches node i
important in many applications that need to represent Bij=q -1 i edge j leaves node i
coordination, cooperation, emerging behavior, etc. Local 0 otherwise

stability properties of the consensus have been initiallypserve that BT1, = 0. The vertex spaceand theedge

explored in [15], while global omlmost globaldynamical = gpaceof 6 are the sets of real functions with domaifG:
properties were studied in [16], [17], [18]. In these worksgng ey respectively, which we sometimes will identify,
Fhe relevanpe of the underlying grlaph describing th?espectively, with the vectors seR” and R™. Thus, the
interconnection of the system was hinted. In the presefiicijence matrixB can be seen as a linear transformation
article, we go deeper on the analysis of the relationshiggym the edge space to the vertex space. The kernd if
between the dynamical properties of the system and thge cycle spaceof the graphG and its elements are called
algebraic propertle_s of the interconnection graph, explpi  fows Every flow can be thought as a vector of weights
the strong algebraic structure that every graph has. assigned to every link in a way that the total algebraic sum
. , . at each node is zero. The cycle space is spanned by the flows

In Section Il we quickly review the relevant aspectyeiermined by the cycles: given a cyalg . . ., v, = vo, its

of the algebraic graph theory. After that, we summarizgggaciated flowfo(e) is 1 if e leaves some; and reaches
the main results of different previous works on theUi:I:l and 0 otherwise.

analysis of Kuramoto coupled oscillators. Section IV

contains the contributions of this article, showing hows e graph G is the union of two nontrivial graphs

we can interconnect synchronized systems keeping ”8?1 and G5 with one and only one node in common, then

synchronization property and introducing an analysig s called acut-vertexof G. A connected graph with more

procedure for a kind of graphs. Finally, we present Somg . two vertices and no cut-vertex is call@econnected

conclusions. and it follows that for every pair of nodes, there are at least
This work was partially supported by CSIC-UDELAR two different paths between them. Given a suliget VG,
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I. INTRODUCTION



subgraphs of7 with no cut-vertex, are called thaocks of

we have thatBf)(1:i—1) = By f1 = 0;, (Bf)(i+1:n) =

G. Every graph has the form of figure 1: a collection ofByfs = 0,, ;41 and(Bf)(i) = wl fi +wlfo =0+0=0.
blocks joined by cut-vertices. For a complete graph, there i 0

only one block, the graph itself.

We will use the following vector notation:

Fig. 1. Representation of a graph as a union of blocks.

a n-dimensional vector 6 = [01,...,0,], then

,0;] and 6(i) = 6,. Firstly, we present

Proof 2: Following [19] [Lemma 5.1, Theorem 5.2], given

given a spanning tre& of GG, we obtain a basis of the cycle space

in the following form: for each edgec E'= EG\ ET

we have an unigque cycleyc(T, e) which determines a flow
fr.e. The setB of these flows is a basis of the cycle-space.
However, sincev is a cut-vertex, any cycle is included either
in G or in G4, so its associated flow is null either i G,
orin EG,. If we regard a flow orG which is null in EG;

as a flow onG,, we can splitB into two sets53; and B2
cycle-space basis @f; andG, respectively. Thus the cycle-
space ofG is the direct sum of the cycle-spaces®f and
Go.

O

some basic results. We include two different proofs for Lemma 2.2:Let G be a graph}, C VG and Gy = (V1)
Lemma 2.1, in order to show two distinct interpretations ofhe subgraph ofr induced by the vertice®; with incidence
the same facts: one based on linear algebra, the other uslAgtrix Bi. Let H : R — R be any real functiong : V. — R

graph theory elements.

Lemma 2.1:Consider a graph’, with v a cut-vertex
betweenz; andGs. Then, an edge space elemgnt EG —
R is a flow onG, if and only if f| g, and f| gq, are a
flows onG; and G, respectively.

Proof 1: Suppose that thevertices ofG; and itsk edges
come first in the chosen labelling. Suppose, also,thatv;,
then B has the following form:

Wy 0G—1)x (m—k)
B = wT wl
Om—-i)xk Wa

Where w; and wo are column vectors with appropriate

dimensions. With this notation, the incidence matrice& of
and G, are, respectively

| W [ wd
Bl_[wd, BQ_[WQ |
Besides,B; as incidence matrix, verifies! B; = 0, thus
15wy +wf =0y, so

wi =17, W;. 1)

Let f be a flow onG. Then, in order to prove thaf; =
flea, is a flow on Gy, we must prove tha3; f; = 0,
i.e. W1f1 = 0,1 and wle1 =
becausef is a flow onG, thus Bf = 0, but W f; =

an element of the vertex-space@fand f = H(BT9) then,
if
0 =0| va,

fl :f|EG17

it is true that B
fi=H(B6).

Proof: Suppose that thé vertices and: edges ofG; come
first in the chosen labelling. Then, for som#®, B” and,,
B0, ]

we have that
0] _[ i
0o o B, + B"0,

L
Thus, (BTO)(1 : k) = BT, and f; = f(1 : k) =
H(BT8)(1:k) = H((BT@)(1:k)) = H(BTa,).

O

IIl. ALMOST GLOBAL SYNCHRONIZATION

Oscillators have been studied by engineers for a long time
[21]. The state of an oscillator can be described by its phase
angled. Consider now the Kuramoto model ofsinusoidally
coupled oscillators [6]

éz‘ = Z sin(9j —91> 1= 1,...,’[1
JEN;
where \V; is the set ofneighborsof agent:. Each phasé;

belongs to the interveD, 27), so the system evolves on the
compactn-dimensional torug ™. The value of a phase must

)

0. The former is true be considered moduldr. Consider the graptir, with nodes

., em }, that describes how the

{v1,...,v,} and edgege, ..

(Bf)(1:4—1). While for the last, we have that, by (1), individual oscillators, omgents interact between each other.

wlfy = (1L W) fy = 1L (Wi f1) =17 ,0,_, = 0.
ExchangingG; by G, we obtain thatf|gq, is a flow on
Go.

Conversely, iff; and f, are flows onG; andG, respectively,

The nodew; represents theé-th oscillator, with phasé;.
Consider an arbitrary orientation of the links 6f and let
the matrix B, with n rows andm columns, be an incidence
matrix for G. We will work with symmetric interaction: if



i € Nj thenj € NV,. In this case, as is explained in [15], thesynchronization set has zero Lebesgue measutE"otf the
expression (2) can be compactly written as system is described by a graph we will shortly say the7
i — _Bsin (BTé) 3) isa.g.s.. In [15],'it was proved that the synchronizatipn setis
locally stable. First results on almost global properties were
Equation (3) does not depend on the choiceBofAs was presented in [16], [18]. There, it was proved that the complete
done by Kuramoto, we may represent the agents as runnigtgphK,, and the tree graphs always are a.g.s. These results
points on a circumference or as unit phasors, as in Exampkere proved in two steps: firstly, using LaSalle’s result on
3.1 [1], [27]. asymptotical behavior of trajectories in a compact invariant
set, it was shown that the only-limit sets are the equilibria
Since the system dynamic depends only on the phagéthe system; secondly, Jacobian linearization was used to
differences, it is invariant under translations parallel tdocally classify the equilibri&[23]. At an equilibrium point
vector 1,,. We say the systensynchronizesor reaches 0, a first order approximation is given by the symmetric,
consensus# the individual phases converge to a state where x n, matrix
all the phases are identical. Of course, a consensus point is . =
an equ?librium point of the system and actually we hgve a Ag = —Bdiag [cos(B"0)] B )
synchronization set, due to the invariance property. This algdbserve thatd; always has a zero eigenvalue with corre-
applies to every equilibrium point. We will also work with sponding eigenvectar, due to the invariance property of the

partial consensugquilibria, when most of the phases takesystem. In this work, we try to extend our knowledge of the
the value O (taking a suitable reference) and the remainifgmily of a.g.s. graphs.

phases take the value Other equilibria will be referred as

non-synchronized. I is an equilibrium point of (3) with IV. SYNCHRONIZING INTERCONNECTION
underlying graphG;, we will use the expressiont is an From equation (3) we see that a phase arfjlis an
equilibrium of G. equilibrium point if and only ifsin(B74) is a flow onG.

Thus it should be possible that this equilibrium points could
Example 3.1:Consider the graph shown at the left ofbe obtained from the equilibrium points of the blocks of the
Figure 2. A non-synchronized equilibrium point is given bygraphs. In fact, this is exactly what happens. Furthermore,

. the stability of these equilibrium points depends only on the

169.04 - . e i

59.96 stability of the associated equilibrium points of the blocks.

_49.13 First, we study the existence problem, which will follow
~ 130 '87 directly from Lemma 2.1, and then we study the stability
0= _126.04 properties.

—10.96 A. Existence

—30.04 L

149.96 If 6; : VG1 — R is in the vector space of a subgragh

] - of G, we will regard it also as its unique extension to the

The angles are measured in degrees. vector space o6 which is null elsewhere of?;. The same

) for an element of the edge space.

Proposition 4.1: Consider the grapli with a cut-vertex
v between; andG,. If 4 is an equilibrium point of7, then

7 6, = 0lyg, andf, = 0|y, are equilibrium points o7,
andG5, respectively. Conversely, &, andd, are equilibrium
points of G; and G, respectively, there exists a real number

A a, such thatfy = 6, + « is an equilibrium point of; and

6 = 6, + 0, is an equilibrium point ofG.

5
Proof: Let B, B;, B, etc. like in Lemma 2.1. 1f is an
equilibrium point ofG, then f = sin(B79) is a flow onG,
thus, by Lemma 2.1f; = f|v¢, is a flow onG;. Thus,
A itis enough to prove that; = sin(B{6,), which follows
We are concerned on whether or not all the trajectoridio™ Lemma 2.2, takingd () = sin(z) and noticing that
converge to the synchronization set. Since the system hgs IS an induced subgraph @f. The case foi; follows
many equilibria, we can only expect thabst of the trajec- PY the symmetry betwee@; andG.
tories presents this property. Following the ideas of [22], we
say that the system has tlémost global synchronization 2Almost global synchronization could be proved via density functions
property if the set of trajectories that do not converge to thenly for the cases of 2 and 3 agents [17].

Fig. 2. Phasor representation of the equilibrium poifitof system (3) of
Example 3.1. The underlying graph is shown at the left.



Now, assume tha#;, and d, are equilibrium points ofG;  First of all, we consider the case with and#, stable and
and G respectively. Letw = 61 (v) — 02(v), 05 = 0+,  01(i) = 02(7). Then, Ag, and Ag, are stable and equation
6 = 0, + 0, and f = sin(BTH). Then, by Lemma 2.2, (5) holds ford = [f;,05(2 : n —i)]. So, Ag is the sum
fi = flea, = sin(BT0,) and f, = f|pc, = sin(BL0,). of two semidefinite negative matrices which gives rise a
On the other hand, due to the invariance of the systesemidefinite negative one. Besides, the kerneldef has
we have remarked on Section llI, the vecljris also an dimension 1, since ifAcw = 0 thenw” Agw = 0, thus,
equilibrium point of G, and then,f; and f, are flows in  w?” Ajw + wT Asw = 0. But, w’ Ayw = wi Ag,w; and
G, and G, respectively. Therefore, by Lemma 2.4, + fo  w? Asw = wl Ag,ws for w1 = wlve, andws = w|yg,.
is a flow onG, but f = f; + f2, becauseE Gy N EGy = 0. Thenw! Ag, w1 +wl Ag,ws = 0. That can happen if only if
0 wl Ag,w; = 0 andwl Ag,ws = 0. But the kernels ofd,
and Ag, are spanned byt; and 1, ;11 respectively, thus
B. Stability analysis wy = al; andwy = f1l,_4. But wi (i) = we(1) = w(i),
We will relate the stability properties of the graphwith ~ thusa =/ andw = al,. This proves the stability ofi.
a cut-vertex with the stability properties of the subgraphs L _
G, and G joined by it. Since every equilibrium of; ~NOW, we focus on the case witlf, or ¢ unstable.
defines an equilibria fo; and G2, we wonder whether W€ analyze the first case, since the other is similar.
or not the dynamical characteristics of these equilibria ar>UPPOSe thatlg, has a positive eigenvalue with associated
or not the same. We will use Jacobian linearization. Th§!genvectorus, thus
zero eigenvalue is always present due to the invariance of
the system by translations parallel 19. We always refer
to the transversal stabilityof the equilibrium set. If the Define the vector
multiplicity of the zero eigenvalue is more than one, Jaaobi {
w

w?Alel > 0.

linearization may fail in classifying the equilibria. Due t
space reasons, we present the study of this particulargrrobl

in a different article. So, in this work, we assume that werhen,
always have a single null eigenvalue.

w1 (%) 1n—; wi(4)1n—it1

wy _[w@i-n ]
|- |

T T N2 T
w' Agw = wy Ag,w1 + wi(1)*1n—i11" Ag, In—it1

Theorem 4.1:Consider the graplds, with a cut-vertexv
joining the subgraphg&’; and G, of graphG. Let § € R"
be an equilibrium point ofs. Then,d is locally stable if and
only if §, = 0lye, andf, = 0|y, are locally stable and O
coincide inv (= VG, NVGy).

which actually isw{ Ag,w; > 0 since Ag,1n_i41 = 0.
Then,d is unstable.

We are now ready to state and prove the main result of

Proof: Recall that the first order approximation of thethIS article.

system around an equilibrium point is given by ) _
Theorem 4.2:Consider the grapliz, with a cut-vertexv;

Ag = —Bdiag [cos(B"8)] BT joining the subgraph&; and G>. Then,G; and G2 have
the almost global synchronization property if and onhGif

Suppose thaty; hasi vertices, that they come first in the does

chosen labelling and thatis the last of them( = v;). Then,

a direct calculation gives _ _ o )
Proof: First of all, let# be an equilibrium point ofG.

Ag = Ay + As, (5)  According to Theorem 4.19 is stable only ifd; = 0|y ¢,

with andd, = 0|y, are too.

If G; and G, are a.g.s., the only locally stable set is
the consensus, and since they have a vertex in common, the
only locally stable equilibria of7 is also the consensus and
Ay = [ OG-1)x(i-1) | OG-1)x(n—i+1) } . G is a.g.s.

O(n—i+1)x(i-1) | Acs

Al = [ AGl ‘ Oix(n—i) :|

O(n—i)xi | O(n—i)x(n—i)
and

In the other direction, if9; is a locally stable equilibrium
of Gy, we chosed = [A,6,(i)1,_;] and we construct a
stable equilibrium forG (as we have mentioned before, a
consensus equilibrium is always locally stable [15]). 8inc
G is a.g.s.,d, and sof,, must be consensus equilibrium
points.

Observe that these matrices partiatiyerlap so the matrix
A takes the form:

Ay

Aa,

]




Theorem 4.2 has many direct consequences. We point out
some of them, with a brief hint of the respective proofs.

Proposition 4.2: Consider a graphG with a bridge e,
between the nodes; and v; and letG; and G be the
connected components 6f\ {ex}. Then,G is a.g.s. if and
only if G, and G4 are.

If a graph has abridge i.e., an edge whose removal Fig. 5. Two graphs connected by a tree
disconnect the graph, the behavior of the system depends
only on the parts connected by the bridge. Indeed, the bridge
together with its ends vertices form a block, which isin fact ~ Proposition 4.3:If G is a tree, it is always a.g.s.
complete graph and its vertices are cut-vertices of thetgrap
as is shown in figure 3. Since any complete graph is a.g.s.,The proof was done using a colouring technique at all
the a.g.s. character of the original graph depends on tlez otlihe equilibria. Now, we have two alternatives proofs. The
blocks. first one using Theorem 4.3. We observe that a the blocks

of a tree are allK,, and then, they are a.g.s. The second
one is applying iteratively Proposition 4.2, since evenkli
of a tree is a bridge.

If we have a graph witharboricities like the one
shown in figure 6, we can neglect the trees in order to prove
the a.g.s. property.

Corollary 4.1: A graph with the structure shown in figure

6 is a.g.s. if and only iiG; is.
Fig. 3. A graph with a bridge.

Theorem 4.3:A graph G is a.g.s. if and only if every
block of G is a.g.s.

The graphG can be partitioned into its blocks. The@,
can be thought as a collection of subgraphs connected by —
cut-vertices. An iterative use of Theorem 4.2 leads us to the
result. Observe that Theorem 4.3 reduces the characterizat
of the family of a.g.s. graphs to the analysis of 2-connected
graphs. As an application, consider the case where we
connect two a.g.s. graphs through another a.g.s. graph. InTo conclude this section, we present two general methods
this way, we construct a new a.g.s. graph. Figures 4 andfér constructing a.g.s. systems.
illustrate the situation.

Fig. 6. A graph witharboricities

Proposition 4.4:1f G is a tree and we build a new graph
K replacing some (or every) edges @fby an a.g.s. graph,
then K has the almost global synchronizing property.

Proposition 4.5:1f G is a tree and we build a new graph
K replacing some (or every) nodes @fby an a.g.s. graph,
then K has the almost global synchronizing property.

These conclusions directly follow from the previous result
Fig. 4. Two graphs connected by an a.g.s. graph. and are illustrated in figure 7. In [16] it was proved that
the complete and the tree graphs are a.g.s., while non
a.g.s. graphs, like the cycles with more than 4 nodes, were
found. Using this fact, we can prove the following sufficient
condition for a.g.s. that partially characterizes the fgrof
all a.g.s. graphs.

In [16], it was proved the next result



Fig. 7.

Situation of Proposition 4.5.

global synchronization analysis of a system with a given
interconnection grapld; can be reduced to the analysis of
the blocks ofG. In other words, the general a.g.s. problem
may be restricted to the analysis of 2-connected graph
topologies. This reduction procedure can be also used to glue
synchronized systems in order to get a bigger synchronized
system. The gluing can be done using cut-vertices or bridges.
We have built a family of a.g.s. graphs that includes both the
trees and the complete graphs: all whose blocks are complete
graphs. We will try to find more a.g.s. classes of graphs and
extended the results to Kuramoto models with non sinusoidal

interaction functions.

Proposition 4.6:1f G is a graph such that all its blocks
are complete graphs, theh is a.g.s. "
V. EXAMPLE .
Consider two Kuramoto systems with complete underlying[
interconnection graphg?; = K3 and G, = K; (both  [3]
a.g.s.). Starting from arbitrary initial conditions, each syste
quickly reaches a consensus state. At tife= 3 seconds, [5]
we connect the two systems through a bridge between an

arbitrary pair of agents. Now, the whole systems reaches
new consensus state. Observe that this convergency is slower
than the previous. Figure 8 shows the results obtained frory]

the simulation. They perfectly agree with Proposition 4.2.

8]

El
T=3 seconds

(20]

(1]

= (12]

[13]

[14]

¥ 6 e 10 12 W [19]

t (seconds)

Fig. 8. Two systems connected by a bridge. The connection takes pIaE@]
at timeT = 3 seconds.

[17]

VI. CONCLUSIONS [18]

In this work we have studied how some algebraic proper-
ties of the underlying graph describing the interconnection
of a symmetric Kuramoto model impose restrictions on th 28}
dynamical behavior. In particular, we have tried to advanc
toward a characterization of the a.g.s. graphs. We focus 1]
the particular case of the existence of a cut-vertex between
two subgraphs. We proved that the interconnection by a CYby)
vertex of almost global synchronized systems preserves that
property. In particular, we have established that the almo&]
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