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Abstract—Automatic ultrasound (US) image segmentation is a
difficult task due to the quantity of noise present in the images and
the lack of information in several zones produced by the acquisi-
tion conditions. In this paper, we propose a method that combines
shape priors and image information to achieve this task. In partic-
ular, we introduce knowledge about the rib-eye shape using a set
of images manually segmented by experts. A method is proposed
for the automatic segmentation of new samples in which a closed
curve is fitted taking into account both the US image information
and the geodesic distance between the evolving curve and the es-
timated mean rib-eye shape in a shape space. This method can be
used to solve similar problems that arise when dealing with US im-
ages in other fields. The method was successfully tested over a data-
base composed of 610 US images, for which we have the manual
segmentations of two experts.

Index Terms—Rib-eye, shape priors, ultrasound (US) segmenta-
tion.

I. INTRODUCTION

AUTOMATIC segmentation of ultrasound (US) images is
an important problem with particular difficulties. The US

images are very noisy and artifacts (e.g., bad defined bound-
aries, speckle noise) can appear due to errors in the acquisition
process. Many times, it is difficult, even for a human interpreter,
to decide the limits of a given region in these type of images.
At the same time, the nonintrusive US capability is very useful
in applications ranging from medical imaging to animal quality
assessment.

In this paper, we propose an automatic algorithm for US im-
ages segmentation in the context of quality meat assessment.
More precisely, we propose a shape prior based segmentation
algorithm to estimate the rib-eye area.
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Fig. 1. Left: Image of a carcass cross section in which we can see the rib-eye.
Right: Notable regions in a typical rib-eye US image. A: Hook (not always
present); B: skin; C: subcutaneous fat; D: limits between longissimus dorsi
muscle and the intercostal muscle.

The Yield Grade (YG) is a commonly used numerical repre-
sentation of the expected percentage of closely trimmed, bone-
less retail cuts of the animal’s round, loin, rib, and chuck [16].
The YG can be estimated through measurements in the still
alive animal. Among these measurements are the rib-eye area,
the subcutaneous fat and the intramuscular fat. Currently, these
measurements are made through US images taken from the an-
imal and analysed by experts [21]. There exists commercial soft-
ware (SW) [19], [22] for the semiautomatic estimation of these
measurements, but needs an expert to draw the rib-eye contour
on the US image. In [25], the authors show results of an algo-
rithm for the automatic estimation of the rib-eye area using US
images, but they do not explain the proposed method. In [2],
Cancela et al. proposed a method to solve this problem, that
inspired our approach. The shape prior used in [2] was an ad
hoc construction and, although the experimental database was
more limited, the results were encouraging. We have compared
that algorithm with the one proposed in this paper, using a much
more extensive database and attained significantly better results.

To the best of our knowledge, there are no works in the lit-
erature that present a robust, real time, automatic method for
the rib-eye area estimation using US images. The aim of this
work is to propose such an algorithm. Fig. 1 shows a typical US
image as well as the corresponding carcass cross section and
Fig. 8 shows two experts’ manual segmentations of the rib-eye
for some images.

The US images we work with are acquired in the field, often
under tough conditions. The ambient humidity, the movement
of the animal, and the experience of the operator, are among
the factors that affect image quality. Generally speaking, in US
images, density changes that are parallel to the US probe get
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the higher intensity values. Interface regions between tissues of
similar characteristics or that are perpendicular to the probe are
badly defined. Regions closer to the probe (the animal skin) have
better definition. This phenomenon is illustrated in Fig. 1. The
animal skin (region B) is well defined, as is the backfat marked
C. Region D corresponds to the intercostal muscle, which sep-
arates the longissimus dorsi muscle (the cross-section of this
muscle is the rib-eye) from the internal organs of the animal.
Note that some limits of the rib-eye are well defined, while
others are almost absent. The experts must be well trained in
order to manually trace the US images and produce good re-
sults. In fact, the experts use the knowledge of the rib-eye shape
to manually trace the US images.

In this paper, we propose a solution to this problem with an
automatic algorithm inspired by the experts’ approach. The idea
is to evolve a curve in the image in such a way that its final po-
sition corresponds to the segmentation of the rib-eye. The curve
evolution is driven by two terms, one uses features taken from
the image, while the other includes a priori knowledge about the
shape of the curve. The rib-eye shape is a closed simple curve,
codified in the shape space framework proposed in [11]. In this
framework, the shape is a point in a given manifold, in which
the distance between shapes is the length of the geodesic path
between the corresponding points in the manifold. The shape
prior is the mean rib-eye shape, learned as the Karcher mean of
a subset of the expert marked database, plus the principal vari-
ations from this mean shape. The shape step moves the current
curve along the geodesic path towards the mean shape, while
the image step deforms the curve locally in order to fit the well
defined regions in the US image. The algorithm was tested on a
set of 610 chosen US images, taken under very different condi-
tions. The results are encouraging.

This paper is organized as follows. First, we briefly describe
the general scheme of the algorithm. The following three
sections explain the central parts of the proposed solution:
the image correction step, the shape correction step, and the
initial condition algorithm. Next, we discuss the algorithm’s
performance on a large set of real images. Finally, we conclude
and propose some future work.

II. GENERAL DESCRIPTION OF THE ALGORITHM

The goal of the algorithm is to emulate the experts’ method-
ology. From experience they have learned the typical shape of
the rib-eye and its possible variations. To detect the rib-eye, they
fit a known shape to the features present in the image, mostly the
borders parallel to the probe. As seen in Fig. 1, this knowledge
is essential to interpolate the curve in those regions with insuffi-
cient data. In order to incorporate the shape knowledge, we learn
it using a set of expert traced curves.

Fig. 2 illustrates the proposed solution. We place an initial
curve , represented by a set of equidistant sampled points,
the control points, in a given image. Given the difficulty of min-
imizing an energy functional combining information from dif-
ferent domains (image and shape space), we use an alternative
method. The curve is iteratively deformed by two successive
steps: image correction and shape correction. The process stops
when a given condition is attained. The first step is related to
the image and tries to move the curve towards the well defined

Fig. 2. Block diagram of the proposed automatic algorithm.

boundaries of the US image. The second step is related to the
knowledge that we have about the rib-eye shape.

In recent years, several authors have proposed shape prior
segmentation algorithms [7], [12], [18]. The general idea is al-
ways to include some a priori information about the shape in
the segmentation algorithm in order to limit the space of pos-
sible solutions. Chen et al. [6] proposed a shape prior segmenta-
tion method using the curve representing the boundary of an ob-
ject as the shape representation. The method introduces a shape
prior in the Geodesic Active Contour framework proposed by
Caselles et al. [3]. Rousson and Paragios [18] used a signed dis-
tance function as a shape representation. Several authors have
used this shape representation in order to introduce the shape
priors in their proposals [4], [7], [23]. Paragios [17] use a prob-
abilistic level set distance map. Other shape distances have also
been used, such as the Hausdorff distance in [5]. We use the
framework proposed by Klassen et al. [11], to define a shape
space , where we can measure the similarity between shapes
as well as model the statistics of the rib-eye’s shape. This frame-
work is well adapted to the case of simple closed curves, without
landmarks, as is the case in our application. We can think of the
shape of each closed curve as a point in an infinite-dimensional
manifold . Distances between shapes are defined as the length
of the geodesic paths between points in .

Two experts manually segmented the set of 610 US images
taken from animals belonging to ten different farms. With a
subset of these curves (the training set) we estimate a mean
shape as the point in which minimizes the sum of the
squared geodesics distances to all the training set shapes
(points in ). The initial condition step roughly fits the mean
shape to the data and produces an initial curve . From there
on, the current curve is deformed. The shape related step
moves along a geodesic path in towards , a distance
dependent on the probability of the shape of according to
the learned model. The image related step then locally deforms

in such a way that it passes through the well defined regions
(muscle limit), where the discontinuities are more important.
This produces a new curve , which maps to a new point
in , from where a new geodesic path to is generated and the
whole process is repeated. The curve are expected to converge
to a solution which is a good approximation to the experts’
manual segmentation.

The stopping condition is based on the movement of the curve
during the evolution process. The stop condition test is per-
formed after both steps of each iteration are completed. The al-
gorithm stops when the mean absolute difference between the
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Fig. 3. Normal mapping of a curve C is obtained by the unroll of a band along
the curveC . Left: Band defined by a given curve. Right: Binarized normal map-
ping of that region.

control points of and is less than one pixel by control
point or when it reaches a fixed number of iterations.

III. IMAGE CORRECTION STEP

A. Normal Mapping

It is important to permit strong local deformations of the
curve in order to deform the curve toward the data of the
images. To do so, we work on a band around the curve and
allow for deformations in the normal direction to the curve.
This allows us to account for the image information used by
the experts when manually tracing the curves. It also restricts
the use of the image information to those regions that matter in
this process. To this end, we define a normal mapping (NM) as
a coordinate transformation, dependent on a curve . The idea
is to unroll the band around the curve in such a way that the
horizontal coordinate is the arc length of the curve and the
vertical coordinate is the distance to the curve.

Let us denote by the coordinates in the NM space of a
point in the band. The vertical coordinate is the distance
from that point to the curve . In other words, points in a
vertical direction in NM, , are in the normal direction to

in the image. In this space, the curve is the horizontal axis.
The coordinate transformation is depicted in Fig. 3. For details
about the NM, please refer to [2].

B. Learning the Confidence of the Image Information Along
the Rib-Eye Limits

Analyzing an US image, like the one in Fig. 1, we can see
that the rib-eye limits are well defined near the skin, at the top
of the image. The bottom region is less well defined and in the
lateral regions there is almost no data.

To learn the regularity of the presence of borders we study
the gray level information in the neighborhood along the expert
traced curves. To achieve this aim, we took the expert marked
curves on 180 US images from the training set, and applied the
normal mapping to each one. Once in the NM space, we register
the images and estimate their vertical gradients. We proceed
next to pixel-wise average this set of images. Let us call
the mean NM image, and the mean NM gradient image.
The first row in Fig. 4 shows . Regions with
are well contrasted. This means that for most of the images, the
edges in these sections of the rib-eye’s contour are well defined.

Fig. 4. Mean gray-level image I of 180 images in the NM space. Weight
function F along the curve.

In fact, these regions correspond to the upper side of the rib-eye.
Using these two images, we produce a weight function

(1)

where is a normalization factor, is a Gaussian filter, and
is the arc length. The weight function is illustrated in the second
row of Fig. 4. This precalculated function is used to modulate the
confidence we have in the image information along the rib-eye
contour.

C. Image Correction

In the image correction step of the algorithm, at iteration ,
each control point of is moved along the normal direction
by a magnitude that depends on the image in the neighborhood
band. In this case, it depends on a weighted average of pixel
properties along the normal to . The weight takes in account
the presence of bright regions roughly parallel to .

A band of width around is mapped using the NM trans-
formation. We apply to the NM transformed image a Gaussian
filter in the horizontal direction and a derivative kernel in the
vertical direction. Note that these two operations are equivalent
to a Gaussian filter in a direction parallel to the curve, and a
derivative filter normal to the curve. The resulting image is then
binarized, as shown in Fig. 3, right. The columns in the NM
space must be moved up and down in such a way that the central
horizontal line intersects the white horizontal regions as much
as possible. The idea is that must be attracted by the bright
regions in the image, which correspond to the discontinuities in
the tissue captured by the scanner. This procedure allows impor-
tant local deformations of in the normal direction. For each
control point of (that lies on the central horizontal
line of the NM) we estimate the new “displacement” value
as a weighted mean of each point in that vertical line, points
that satisfy with . The weights combine the
area of the connected component in which lies;

is the length of the maximal horizontal segment in that
connected component and , as a regularization term. The ex-
pression for the displacement is

(2)

where is a global parameter estimated during the learning
process. The local weight function , is either constant or the
learned one as described in Section III-B. In the latter, must
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be appropriately positioned on . Due to the simplicity of the
rib eye’s contour, this can be done by choosing the starting point
of the parametrization of in the same position as in the curves
used to estimate .

IV. SHAPE CORRECTION STEP

The rib-eye shape information must be codified in such a way
that encodes the experts’ knowledge and is useful to the seg-
mentation algorithm. In this context, the rib-eye shape is de-
fined as the geometric property of this closed simple curve that
is invariant to translations, rotations and scale. Given a curve,
we need to quantify its shape, so that similarities between geo-
metric shapes of different curves can be measured. There exist
many shape descriptors in the literature [8], [10], [20]. We use
the framework proposed by Klassen et al. [11], in which shapes
are considered points in a given manifold, that allows for statis-
tical analysis directly on this manifold.1 This representation will
be used to model the rib-eye shape. In the following, we review
the principal ideas. More information on this approach can be
found in [11] and references therein.

A. Shape Space Formulation

1) Definition of the Shape Space: We consider only simple
closed planar curves. The shape of a curve is the geometrical
property invariant to position, orientation, and scale. A curve is
parameterized with respect to the arc length by the parametriza-
tion . To achieve invariance with respect to scale,
the curve is scaled in such a way that the perimeter is . Rep-
resenting the curve with a direction function gives
position invariance. The value of is the angle between the
tangent vector to the curve in and the horizontal axis. Di-
rection functions of simple closed curves with rotation index 1
can be decomposed in the following way:

for all (3)

where (a direction function of the unit circle) and
is a periodic function with period , that is square integrable in
one period. Let be the space of periodic square integrable
functions, with the usual inner product. The space is the
set of functions that can be written as in (3). Our set of shapes
is a subset of .

Given a curve with direction function we can define its mean
value as . We impose to have
rotation invariance. Let be the set of direction functions with
mean value and produced by closed curves of perimeter

(4)
Even if invariant to translations, rotations and scales, the ele-
ments in are not yet shapes. This is due to the different pos-
sible parametrizations of a curve. Let us consider the operator

defined by . Although

1There is some discussion about the precise characterization of this shape
space formulation [24]. In this paper, we use this formulation and show that for
our dataset, this framework gives good results.

and are different points in (the preshape space), they cor-
respond to the same shape. Since the orbits with
represent all arc length parametrizations of , we can define an
equivalence relation in

exists such that (5)

The set of the classes of equivalence of is the shape space .
According to [11], is a complete submanifold of co-dimension
three.

2) Geodesic Paths: Both the preshape space and the shape
space have a geometrical structure that allows geodesic paths
to be defined between two points [11]. The distance between two
such elements is then defined as the length of the geodesic path
between them. The problem of finding geodesics in reduces to
the problem of finding geodesics in that are orthogonal to the
equivalence classes. These geodesics in project onto geodesics
in . This problem can be solved using a shooting method [11].
Let be an element of and a direction vector, where

is the tangent space of at . We will denote the
geodesic flux from in the direction a certain time by

.
3) Discrete Shape Representation: In practice, we have

discrete representations of the curves. A curve is then
represented by ordered points of with coordinates

. Let be a
sampled curve. The spacing between samples is set to

, where is the
number of samples. In practice, the used curves do not usu-
ally satisfy this condition. Therefore, a preprocessing step is
required. We denote by the estimated direction function,
computed as where

are the coordinates of the sampled points. Next, the
mean value must be set equal to by adding a constant
value, obtaining a single representation of this curve

(6)

B. Shape Statistics

Following the experts’ approach, we want to include the
knowledge of the typical rib-eye shape and its more probable
variations in our segmentation algorithm. This is done by
studying the shape statistics of the database of marked US
images, and then finding a parametric model that fits the data.

Two experts manually segmented 610 US images of animals
from ten farms. This gives us a set of more than 1200 curves. The
shape characteristics of the rib-eye are learned from 168 of the
experts’ traced curves. The marks are all simple closed curves.
The framework proposed by Mio et al. [15] is used to analyze
the data and fit a normal model to it. We assume the set of curves
(or points in ) has a normal multivariate probability density
function (PDF) centered around a mean shape and with energy
proportional to .

The mean shape is computed as the Karcher mean, in-
trinsic to the manifold. It is estimated as the point in
that locally minimizes the function , given by

, where is the length of the
geodesic path between and . This intrinsic mean always
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exists, and is unique if the points are sufficiently
close [11]. Under this hypothesis, we find with a gradient
descent algorithm.

The shape space in which we work is infinite dimensional
and nonlinear. The nonlinearity is avoided by working in , the
tangent space to the manifold at . The idea is to fit the normal
PDF in . The shape representatives in are the vectors
such that the geodesic from in the direction reaches in
unit time. So we have that for . The
tangent space is still infinite dimensional. To overcome this
problem, we approximate by the finite-dimensional subspace
spanned by . Let be its dimension, and

an orthonormal basis of it. If the shapes under
consideration are close enough, this approximation is valid.

Let be the coordinates of the vector . In the coordi-
nate space we estimate the parameters of a multivariate normal
model with mean and covariance matrix . The eigenvectors
and eigenvalues of give us the principal directions of the vari-
ation of the shapes and the variance in each direction. The PDF
can be written as

Finally, the framework presented in [15] defines an associated
energy function. Given a shape , let be a vector in that
satisfies . The energy of the shape is calculated
as

(7)

where are the coordinates of the projection of on the basis
, is the component of in the normal space

in , and is a positive real number. The energy increases as
the probability of the shape decreases. Note that both and

are positive definite matrices, so is strictly positive
for every not equal to zero. The vector has zero en-
ergy and corresponds to the mean shape . Given that is an
approximation of the tangent space, it is possible that lies out-
side of . The second term in the energy penalizes that situation.

C. Rib-Eye Shape

Before fitting the Gaussian model to the set of manually de-
tected curves, we must be sure that the data fulfills the hy-
potheses under which the model is valid. In particular, we want
to study if there is any correlation between the shape of the
rib-eye and the farms. We use a portion of the expert marked
database to answer this question.

It is necessary to make some decisions about what curves
should be considered before continuing this analysis. Usually,
the rib-eye presents a fat intrusion, called hook, which appears
in the upper left region of the image. This can be seen in Fig. 1.
It represents, on average, less than 2% of the rib-eye area, and
sometimes it is absent. Therefore, some experts do not take it
into account. Given the small influence of the hook in terms
of area, we decided to analyze its influence on the shape. We
compared models that fit several sets of shapes with and without
hook. The curve without hook is obtained by considering the
convex hull for this section of the curve.

Fig. 5. Comparison of six farm mean shapes. Above, mean shapes computed
considering the hook and the corresponding direction functions � versus ar-
clength. Below, mean shapes and their direction functions computed without
hook.

We found that most of the shape variation is concentrated at
the hook. Fig. 5 show a comparison between the mean shapes
for data from six of the farms, both with and without hook. The
mean shapes show different hooks, as one can tell from the top
image in Fig. 5. In order to compare the covariance matrices of
each cluster, we compared their eigendecomposition, the model
has more variance when considering the hook. This suggests
that it is a good strategy to work in a sort of multiresolution ap-
proach, as is done by the experts. First, try to fit a global rib-eye
shape without the hook. Next, if the hook is present, try to find it.
This last part is work in progress and will be reported elsewhere.

To see the effect of the principal variation modes we calculate
the geodesic flux for a time proportional to the square root of
the eigenvalue in the direction of the corresponding eigenvector.
The most important variation is associated with the width of the
rib-eye. The others, less important, are oscillatory perturbations
around the mean shape. This experiment seems to show that
there are not significative differences among farms. Using the
convex hull in the hook region allows the entire dataset to be fit
by a general simple Gaussian model.

D. Shape Correction

As mentioned earlier, a subset of 168 curves without hook
was used to train the algorithm. As a result, we have the pa-
rameters of the normal PDF: the mean shape and the covari-
ance matrix . We develop two different ways to integrate this
a priori knowledge into the segmentation algorithm. The main
idea is to correct the control points of , at iteration , so that
the shape of is closer to .

1) Using the Mean Shape: is represented by its
control points

(8)

The shape correction step is as follows.
a) Find the shape space representation, , of .
b) Estimate the geodesic path between and the mean

shape , represented by , where .
c) Move along the geodesic path from towards , by:

with .
d) Go back to the image space, i.e. find . Knowing

, we must fix the correct scale, orientation and po-
sition for the new curve. This is done by registering the
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Fig. 6. Left: Histogram of the energy for 100 expert traced curves. Right: Map-
ping functionF as a function of the curve energy, used to weight the amount
of progress along the geodesic path in the shape correction step.

image shape defined by with the control points of
. For this, we use the approach presented in [13].

2) Using the Statistics: The basic idea is to use the energy de-
fined in (7) to decide the amount of progress along the geodesic
path from towards . We include here again the a priori
knowledge. The idea is to progress more for curves with low
probability of being a rib-eye

with

where , . Note
that we control the weight of the shape correction step modu-
lating the amount of time in the geodesic flux . Fig. 6
shows the energy distribution for 100 expert marked curves. The
idea is that for energy values close to most of the experts’ marks,
the shape correction step must play a less important role. The
weight of the shape correction factor must increase as the en-
ergy of the curve under consideration is far from the experts’
mean energy. A threshold guarantees a shape correction factor
never greater than half of the total geodesic path to . is a
piecewise linear function (see Fig. 6).

V. INITIAL CONDITION

To avoid local minima and obtain quick convergence, it is im-
portant to have a good initialization. The main idea is to fit the
mean shape in the image to be segmented, and use that curve
as the starting point. We must find its right position, orientation
and scale. The initial condition algorithm is as follows. For tech-
nical details, refer to [1].

a) Preprocess the image. A region of interest (ROI) window
is applied to eliminate the scanner artifacts such as the
date, scale, animal ID (see Fig. 3). The ROI is defined
manually once for all the images taken with the same
equipment (scanner and probe). Then the following op-
erations are applied to the ROI:
• anisotropic diffusion in order to reduce speckle noise;
• high-pass filtering, with a very low cutoff frequency, is

applied to compensate for the slow bright variations in
the image;

• binarization using a global threshold proportional to the
gray level variance in the ROI;

• elimination of small regions and labeling.
The parameters for the steps described above are fixed for
all the US images acquired with the same equipment. Let

be this preprocessed image (an example is in Fig. 7).
The big regions of the binarized image roughly delimit the
rib-eye.

Fig. 7. Left: Preprocessed image, expert traced curve (green and red). Right:
Ppoints of the rib-eye contour determined by the intersection between the rays
and the regions in the image I .

b) Fix a seed point inside the large regions, approximately
equidistant to all of them, to define the initial position of
the curve.

c) Determine points of the rib-eye contour. This is done
drawing rays at equally spaced angles originating from

(see Fig. 7). The curve is defined by the intersections
between these rays and the regions in . The aim is for
each ray to find one point of the rib-eye’s contour. As seen
in Fig. 7, for some rays, this is difficult. This can be due
to the absence of intersection or to multiple intersections
between the ray and the binarized regions. In both cases
we use the information of neighbor rays in order to main-
tain the curve continuity.

d) The marked points determine a noisy curve for which the
position is roughly close to the rib-eye borders. We correct
this initial estimation by fitting the mean shape curve to
this set of points as in [13].

VI. EXPERIMENTAL RESULTS

A. Measurements

To analyze the performance of the algorithm we must define
similarity measures between two (closed) curves: the ground
truth (in this case, the expert traced curve) and the curve

produced by the segmentation algorithm. Let us denote by
the inner region of . Let be the area of .

We define the following measures.
• Intersection to union area ratio:

• Area difference. Although the goal of the algo-
rithm is to segment the rib-eye by finding a curve
as similar as possible to the expert’s traced curve,
the important measurement in terms of meat quality
is the rib-eye area. The area error is measured as:

B. Comparison Between Experts

Analyzing the experts’ manual segmentations gives us an idea
of the difficulty of the problem, as well as the level of perfor-
mance we should expect from the algorithm. Table I, shows the
measurements and for the images marked by both ex-
perts. Note that for the (shape oriented) indicator , the ex-
perts agree in 60% of the cases to a 10% error range. Concerning
the area indicator , the experts agree to 5% error in 52% of
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TABLE I
COMPARISON BETWEEN EXPERTS’ DETECTIONS. PERCENTAGE OF IMAGES

FOR WHICH THE MEASUREMENTS ARE IN THE ERROR RANGES

Fig. 8. Examples of experts’ marks. From top left to bottom right, the M
values are 0.068, 0.14, 0.15, and 0.23.

TABLE II
AUTOMATIC ALGORITHM VERSUS EXPERTS. PERCENTAGE OF IMAGES

FOR WHICH THE MEASUREMENTS ARE IN THE ERROR RANGES

the marks. These results are in agreement with inter expert vari-
ability measurements reported elsewhere [9]. Fig. 8 illustrates
the first four ranges of Table I. More than 98% of the ex-
perts’ marks are inside these ranges. Therefore, we consider a
good detection if .

C. Results

We compare the performance of the proposed automatic al-
gorithm with the experts’ manual segmentation. Table II sum-
marizes the results over the set of 610 images. The algorithm
parameters were fixed once, and no tuning was made for each
image.

The SW is written in C++. Tests were performed on a
2.8-GHz Xeon under WindowsXP. The mean time for the seg-
mentation of an US image is 5.1 s. Convergence is reached on
average in 24 iterations. Only in 15% of the cases the algorithm
reaches the maximum number of iterations. Image dimensions
are 360 400 pixels. In both cases the more rigorous measure

Fig. 9. Some results. Green curves for Expert 1, yellow curves for Expert 2,
and magenta curves for automatic algorithm.

performs well for more than 84% of the images. Com-
paring the algorithm results with the expert’s segmentation
closer to the automatic solution, we obtain a for
90% of the images. This means that in 90% of the cases, the
detection agrees with at least one expert. The performance for
the measurement is naturally better as can be seen in the
first ranges.

The initial condition plays an important but not a critical role.
Using a fixed initialization (the mean shape centered in the ROI),
the against the Expert 1 drops from 88% to 82%.

We consider the results for which , to be outliers.
The percentage of outliers is 1.5% for Expert 1 and 1% for Ex-
pert 2. The outliers are generated by several reasons. Very poor
image quality, sometimes the curve is caught by a local min-
imum due to bad initialization, or the algorithm is attracted by
other structures present in the US image. Improvements to the
algorithm that can handle these situations are the object of cur-
rent work. Fig. 9 contains several examples of the automatic seg-
mentation for some US images along with the experts’ manual
segmentation for comparison.

VII. CONCLUSION

In this paper, we have presented a shape prior segmentation
method applied to the automatic measure of rib-eye area in US
images. The proposed method is an iterative two-step algorithm
composed of an image and a shape steps. The algorithm deforms
a curve using image information and a shape prior in such a way
that the final curve fits the existing boundary structures of the
rib-eye in the US image and has the shape of a likely rib-eye.
The algorithm is not formulated in a variational way; however,
it gives good results in real time. As part of our ongoing cur-
rent work, we are studying a variational formulation to compare
both approaches. The proposed method is general and can be
applied to other applications, when the target shape is a 2-D
simple closed curve. The algorithm’s performance allows for
real time measurement of the rib-eye area from US images. We
present extensive experiments with real data. The automatic re-
sults are in good agreement with the expert marked curves on
the same images. There are many possible improvements to the
algorithm. We are currently studying other ways to model the
shape prior knowledge. For example, in [14], the framework is
extended to allow stretching of the shapes. This can facilitate the
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inclusion of the hook in the shape prior. Furthermore, the shape
of the rib-eye can be learned in a nonparametric fashion, instead
of modeling it by a Gaussian. We are also carrying on extensive
validation over an expert marked image data base composed of
several thousand of US images.
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