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Abstract— : In this work we investigate how the ideas of almost global stability and density functions,

introduced in nonlinear control theory few years ago, can be extended to time-varying systems. We present some

direct extensions and formulate some questions that can guide the research.
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1 Introduction

In 2001, almost global stability (a.g.s.) and den-
sity functions were presented to the control com-
munity by A. Rantzer in (Rantzer, 2001a). It is
said that the origin is an almost global attractor if
almost all the trajectories1 converge to it. Is a con-
cept weaker than global asymptotical stability but
that can fit well in nonlinear control applications,
specially when it is combined with local asymptot-
ical stability and when global properties can no
be stated, for example, when there are multiple
isolated equilibria, a typical nonlinear situation.
For a.g.s., there is a class of functions that play a
role similar of Lyapunov functions for asymptot-
ical stability. For a system ẋ = f(x), a density
function ρ is a function in C1(Rn \ {0},Rn), in-
tegrable outside an arbitrary ball centered at the
origin and satisfying the first order condition

∇. [ρ.f ] (x) > 0 a.e.

The key result states that the existence of a den-
sity functions ensures the almost global stability
of the origin (Rantzer, 2001a). This result stand
as a starting point to several research directions
in control theory. Converse results were presented
in (Rantzer, 2002) and (Monzón, 2003), theoret-
ical properties were explored in (Angeli, 2003),
(Rantzer and Prajna, 2003), (Monzón, 2004b),
(Monzón, 2004a) and (Monzón, 2005) and control
applications were analyzed in (Rantzer and
Ceraggioli, 2001b), (Prajna and Rantzer and
Parrilo, 2004) and (Angeli, 2004). Several advan-
tages and drawbacks were found, leading to nice
applications in some cases and hard restrictions
in others.

In this work, we try to extend this new ideas to
time-varying systems of the form

ẋ = f(t, x) (1)

with f ∈ C1(R×Rn,Rn), f(t, 0) = 0 for all t. We
use time-dependent density functions and define
a time-varying concept of almost global stability.

1I.e., all the trajectories but a zero Lebesgue measure
set

We presents some results and finally we formulate
some questions that may help the research.

2 Time-varying systems

Consider the time-varying system of (1). By
Φ(t, t0, x), t ≥ t0, we denote the time t of the
trajectory solution of the system which at time
t0 starts at x. For a given set Z ⊂ Rn, Φ(t, t0, Z)
will refer to the time t of all the trajectories that
at t0 start at Z.

In order to extend dynamical properties from
time-invariant to time-variant systems, one must
take care of the influence of the initial time t0.
Usually, the word uniform denotes the case when
a property holds for every initial time.

In this section we introduce some results on al-
most global stability of time-varying dynamical
systems.

2.1 A Liouville-like result for time-varying sys-
tems

Consider a function ρ : R×Rn → [0, +∞) of class
C1. Let Z be a Borelian set of Rn and t > t0. We
want to measure the growth of the volume of Z
along the flux, weighted by ρ, i.e.

”
∫

Φ(t,t0,Z)

ρ(t, x)dx −

∫

Z

ρ(t0, x)

(we assume that both integrals are well defined).
Introduce the notation

ρt,t0(x) = ρ [t, Φ(t, to, x)] .

∣

∣

∣

∣

∂

∂x
Φ(t, t0, x)

∣

∣

∣

∣

Observe that
∫

Φ(t,t0,Z)

ρ(t, x)dx =

∫

Z

ρt,t0(x)dx

Let us investigate the dependence of ρt,t0(x) with
t.

∂

∂t
ρt,t0(x) = lim

h→0

1

h
. [ρt+h,t0(x) − ρt,t0(x)] =
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lim
h→0

1

h
.

[

ρ [t + h, Φ(t + h, to, x)] .
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− ρ [t, Φ(t, to, x)] .
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Since Φ(t + h, t0, x) = Φ [t + h, t, Φ(t, to, x)] and
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Φ(t, t0, x)
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∣

∣

we have

∂
∂t

ρt,t0(x) =
∣

∣

∂
∂x

Φ(t, t0, x)
∣

∣ . limh→0
1
h
.

{

ρ [t + h, Φ(t + h, t, z)] .
∣

∣

∂
∂x

Φ(t + h, t, z)
∣

∣ − ρ [t, z]
}

where z = Φ(t, t0, x). Simplifying the nota-
tion we get

∂
∂t

ρt,t0(x) = limh→0
1
h
. {ρt+h,t(z) − ρt,t(z)}

.
∣

∣

∂
∂x

Φ(t, t0, x)
∣

∣

(2)
Then, we only need to calculate the expression

∂

∂t
ρt,t0(x)

∣

∣

∣

∣

t0

= lim
h→0

{ρt0+h,t0(z) − ρt0,t0(z)} (3)

By the chain rule we know that
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ρ(t, x).
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ρ(t, x).
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Φ(t, t0, x)
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+∇ρ(t, x).f(t, x).
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∣

∣
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Φ(t, t0, x)
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+ ρ(t, x).
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Φ(t, t0, x)
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Then
∂

∂t
ρ(t, x).
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Φ(t, t0, x)
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t0

=

∂

∂t
ρ(t0, x)+∇ρ(t0, x).f(t0, x)+ρ(t0, x).∇.f(t0, x) =

∂

∂t
ρ(t0, x) + ∇. [ρ.f ] (t0, x)

and
∂

∂t
ρ(t, x).

∣

∣

∣

∣

∂

∂x
Φ(t, t0, x)

∣

∣

∣

∣

∣

∣

∣

∣

τ

=

[

∂

∂t
ρ(τ, z) + ∇. [ρ.f ] (t0, z)

]

.
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∣
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with z = Φ(τ, t0, x). We have the following chain
of identities

∫

Φ(t,t0,Z)

ρ(t, x)dx −

∫

Z

ρ(t0, x) =

∫

Z

ρt,t0(z)−ρt0,t0(z)dz =

∫

Z

dz

∫ t

t0

∂

∂τ
ρτ,t0(z)dτ =

∫

Z
dz

∫ t

t0

{[

∂
∂t

ρ(τ, z) + ∇. [ρ.f ] (τ, z)
]

.
∣

∣

∂
∂x

Φ(τ, t0, z)
∣

∣

}

dτ =
∫ t

t0

dτ

∫

Φ(τ,t0,Z)

[

∂

∂τ
ρ(τ, x) + ∇. [ρ.f ] (τ, x)

]

dx

The following Proposition resumes the previous
result.

Proposition 2.1 Consider the dynamical system
ẋ = f(t, x) and a function ρ : R×Rn → [0, +∞)
of class C1. Let Z be a Borelian set of Rn and t >
t0 such that ρ is integrable in Z and Φ(τ, t0, Z),
t0 ≤ τ ≤ t. Then

∫

Φ(t,t0,Z)

ρ(t, x)dx −

∫

Z

ρ(t0, x) =

∫ t

t0

∫

Φ(τ,t0,Z)

[

∂

∂t
ρ(τ, x) + ∇. (ρ.f) (τ, x)

]

dxdτ

�

For the particular case of an autonomous system
and a constant ρ we recover the classical Liouville
result (Arnold, 1974); for an autonomous system
and a function ρ independent of time, we have the
result of (Rantzer, 2001a); for a control system of
the form

ẋ = f(x, u)

and a function ρ independent of time, we obtain
the result of (Angeli, 2004).

2.2 Time-varying a.g.s.

The result of Proposition 2.1 has many interesting
direct consequences when the expression

∂

∂t
ρ(τ, x) + ∇. (ρ.f) (τ, x)

has positive sign almost everywhere. First of all,
observe that if ρ and a given Borelian set Z satisfy
the hypothesis of Proposition 2.1 and

Φ(t, t0, Z) ⊂ Z

then Z has zero Lebesgue measure.

Proposition 2.2 Consider the system ẋ =
f(t, x) such that f(t, 0) = 0 for all t and 0 is a lo-
cally stable2 equilibrium point. Let ρ : Rn \ {0} →
[0, +∞) of class C1 such that

∂

∂t
ρ(τ, x) + ∇. (ρ.f) (τ, x) > 0 (4)

2Not necessarily uniformly stable.
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for almost every point x ∈ Rn, t ∈ R. Moreover,
assume that ρ(t, x) is integrable for fixed t over
{‖x‖ > ǫ} for every ǫ > 0. Then, the origin is al-
most globally stable in the sense that for every ini-
tial time t0, the set of points that are not asymp-
totically attracted by the origin has zero Lebesgue
measure.

Proof:

Consider an arbitrary initial time t0, and
arbitrary positive number r and the set

Z = {z ∈ Rn | ∃x ∈ Rn and t ≥ t0, with

z = Φ(t, t0, x) and lim supτ≥t0
‖Φ(τ, t0, x)‖ ≥ r

}

By construction the set Z contains all the trajec-
tories that starting at time t0 have superior limit
greater or equal than r. Then, if x /∈ Z, we know
that

‖Φ(t, t0, x)‖ < r t → +∞

We will show that Z has zero Lebesgue measure.
By construction we have

Φ(t, t0, Z) ⊂ Z

From the local stability hypothesis, we obtain a
positive δ satisfying

‖Φ(t, t0, x)‖ < r ∀‖x‖ < δ ∀t ≥ t0

Then Z ∩ B(0, δ) = ∅, ρ(t, x) is integrable on Z
for fixed t and then Z has zero Lebesgue measure.

�

Consider the linear time-varying system

ẋ = A(t).x A : R → Rn×n (5)

It is well known that the solution of this system
is given by

Φ(t, t0, x) = Φ(t, t0).x

where the transition matrix Φ(t, t0) satisfy the lin-
ear differential equation (Zadeh, 1963)

d

dt
Φ(t, t0) = A(t).Φ(t, t0) Φ(t0, t0) = In×n

and it is also true the identity

d

dt
|Φ(t, t0)| = tr [A(t)] . |Φ(t, t0)|

Then the asymptotical behavior of the trajectories
is totally determined by Φ(t, t0). For the partic-
ular case of a piecewise continuous bounded A(t)
we have that the almost global stability of the ori-
gin is equivalent to global asymptotical uniform
stability (Zadeh, 1963) and it is also equivalent
to the existence of a quadratic Lyapunov function

V (t, x) = xT P (t)x, with P (t) a C1 matrix func-
tion, uniform definite positive3 and such that

Ṗ (t) + A(t)T P (t) + P (t)A(t) = −Q(t)

where Q(t) is a continuous bounded uniform pos-
itive definite matrix function (Khalil, 1996).

Proposition 2.3 Let the system

ẋ = A(t).x

with A(t) piecewise continuous bounded and as-
sume that the origin is a globally asymptotically
stable equilibrium point. Then, there exists a C1

function ρ : R × [Rn \ {0}] → [0, +∞) such that
for all real t

∂

∂t
ρ(t, x) + ∇. (ρ.f) (t, x) > 0 a.e.

Proof:

The proof follows the same ideas of the invariant
case (Rantzer, 2001a). From the asymptotical
properties of the system, we know the existence
of a quadratic time-varying Lyapunov func-
tion V (t, x) = xT P (t)x, with P (t) continuous,
differentiable, bounded, such that

Ṗ (t) + A(t)T P (t) + P (t)A(t) = −Q(t)

with xT Q(t)x ≥ γ (|x‖), and

0 ≤ α (|x‖) ≤ V (t, x) ≤ β (|x‖)

α, β and γ class K functions. We affirm that

ρ(t, x) = [V (t, x)]−α

solves our problem, for big enough α. Note that

∇ρ(t, x) = −α. [V (t, x)]
−(α+1) ∇V (t, x)

∇. [A(t).x] = tr [A(t)]

∇V (t, x).A(t).x = xT
[

A(t)T P (t) + P (t)A(t)
]

x

Then

∂
∂t

ρ(t, x) + ∇. [ρ(t, x).A(t)x] =

[V (t, x)]
−(α+1)

xT [α.Q(t) +tr [A(t)] .P ] x
(6)

Since tr A(t) is bounded and P (t) and Q(t) are
bounded positive definite functions, we always can
take α so big in order to obtain positive definition
of (6) and the integrability of ρ(t, x) in the domain
‖x‖ ≥ 1.

�

3By this we mean that there are class K functions α, β

such that(Khalil, 1996)

0 ≤ α(‖x‖) ≤ xT P (t)x ≤ β(‖x‖)

.
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3 Conclusions

In this work we have introduced the concept of
monotone Borel measures in the context of al-
most global stability of dynamical systems. We
have shown that for an almost global asymptoti-
cal system we can find a monotone Borel measure
(increasing or decreasing) and this idea comple-
ments the direct result of (Rantzer, 2001a) and
the particular converse result of (Monzón, 2003).
We think that this approach can guide us to
a new set of results, like the ones presented in
(Monzón, 2004a).
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