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Abstract— The approach adopted in this paper for the problem of transient stabilization of multimachine
power systems sees the entire network as the (structure–preserving) interconnection of the network components,
described by well–known models. We first show that, under the assumptions of non-resistive loads and zero
transfer conductances on the lines, these models admit a Hamiltonian description and are, then, shown to be
cyclo–dissipative with storage functions akin to power. Our main contribution is the identification—in terms of
a Linear Matrix Inequality (LMI)—of a class of power systems with resistive loads and leaky lines for which we
can design generator excitation controllers that (locally) stabilize the desired equilibrium point. Since the LMI
depends explicitly on the controller gain, a decentralized control action can be easily computed. The proposed
technique is applied to a classical example.
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1 Introduction

Classical research on transient stabilization of
power system has relied on the use of reduced
network models that represent the system as an
n–port. Based on these models several excita-
tion controllers to enhance transient stability have
been reported. The various nonlinear controller
design techniques that have been considered in-
clude feedback linearization , damping injection,
as well as energy–shaping. In the recent paper
(Ortega et al., 2005) Interconnection and Damp-
ing Assignment Control is used to prove the exis-
tence of a nonlinear static state feedback law that
ensures asymptotic stability of the operating point
for a general n–machine system including transfer
conductances. Unfortunately, an explicit expres-
sion of the controller can be derived only for the
case n ≤ 3.

In this paper, we follow the dissipativity-
based approach first suggested in (Giusto, 2004).
By doing this, we abandon the n–port view of
the network and propose to leave its structure
in its original form. Instrumental towards this
end is the use of structure–preserving models, see
(Varaiya et al., 1985) for a tutorial review. These
models allow a more realistic treatment of the
loads and it fosters a more natural view of the
entire network as the power–preserving intercon-
nection of its components.

We first show that, under classical simplifying
assumptions, the different network components
admit an implicit Port-Controlled Hamiltonian
(PCH) description (Van der Schaft, 2000) and are,
therefore, cyclo–dissipative with respect to some

suitable defined supply rate (Willems, 1972).
Our main contribution is the LMI character-

ization of a class of power systems with nonlin-
ear (so-called ZIP) loads and leaky lines for which
we can design generator excitation (decentralized)
controllers that locally stabilize the desired equi-
librium point.

The structure of the paper is as follows.
Section 2 presents the mathematical model of the
various elements comprising the power system
and give their PCH representation. In Section
3 we derive their cyclo–dissipativity properties
under idealized assumptions. Section 4 contains
the design of the power–shaping excitation con-
troller. Section 5 includes the application of the
proposed technique to a classical example. We
wrap up the paper with some concluding remarks.

Notation All vectors in the paper are column
vectors, even the gradient of a scalar function:
∇x = ∂

∂x
. For any function f : Rn → R, we

denote ∇zi
f(z) := ∂f

∂zi
(z) and, for vector func-

tions g : Rn → Rn, we define the Jacobian
∇g(z) := [∇g1(z), . . . ,∇gn(z)]

>.

2 Structure–Preserving Modelling: A

PCH Representation

In this section we recall the well–known structure–
preserving model for n–machine power systems re-
ported in (Varaiya et al., 1985). Attached to each
bus there is a machine or a load, and the buses are
interconnected through transmission lines. Each
machine and its corresponding bus, have an asso-
ciated identifier i ∈ JM := {1, .., n}. Each load
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and its associated bus are denoted by l ∈ JL :=
{n+2, .., n+m+1}. Generic buses are denoted by
identifiers j or k with j, k ∈ JB := {1, .., n+m+1}.
Transmission lines are identified by the double
subindex jk ∈ Ω ⊂ JB × JB , indicating that the
line jk connects the bus j ∈ JB with the bus
k ∈ JB—the set avoids obvious repetitions, e.g.,
if jk ∈ Ω then kj /∈ Ω.1

All elements share as port variables the angle
θj and the magnitude Vj of the bus voltage phasor:

yj :=
[

θj Vj
]T
∈ R2. (1)

We also consider the presence of an infinite

bus represented by yn+1 =
[

θn+1 Vn+1
]T

=
[

0 V̄n+1
]T

, where V̄n+1 is constant. Associ-
ated to each bus are the active and reactive powers
entering the machine, the load or the transmission
lines, that will be denoted

uMi =

[

PM
i

QM
i

]

, uLl =

[

PL
l

QL
l

]

, ujk=

[

Pjk
Qjk

]

(2)

respectively. We take active and reactive pow-
ers as positive when entering their corresponding
component.

2.1 Synchronous Machines Model

Each synchronous machine is described by a set
of third order Differential Algebraic Equations
(DAEs), (Varaiya et al., 1985):

δ̇i = ωi
Miω̇i = Pmi

−Diωi − PM
i

τiĖi = −
xdi

x′
di

Ei +
xdi

−x′
di

x′
di

Vi cos(δi − θi) + EFi

PM
i = − 1

x′
di

EiVi sin(δi − θi)−

x′
di
−xqi

2xqi
x′

di

V 2i sin(2(δi − θi))

QM
i =

x′
di
+xqi

2xqi
x′

di

V 2i −
1
x′

di

EiVi cos(δi − θi)−

−
x′

di
−xqi

2xqi
x′

di

V 2i cos(2(δi − θi))

(3)
where the state variables xi := col(δi, ωi, Ei) ∈ R3
denote the rotor angle, the rotor speed and the
quadrature axis internal e.m.f., respectively, and
EFi

is the field voltage. The parameters are de-
noted as in (Varaiya et al., 1985), and they are
fairly standard. We will make the physically rea-
sonable assumptions Di > 0, xdi

− x′di
> 0.

For convenience, we will separate the field
voltage in two terms, EFi

= E?
Fi

+ vi, the first
one is constant and fixes the equilibrium value,
while the second one is the control action. Also
we define the constants

Y2i ,
x′di

− xqi

2xqi
x′di

, YEi
,

xdi

x′di
(xdi

− x′di
)
,

1To avoid cluttering we reserve the subindex i to vari-
ables ranging in the index set JM without explicit reference
to it. The same for indexes l ∈ JL and j, k ∈ JB .

YFi
,

1

xdi
− x′di

, YV i ,
x′di

+ xqi

2xqi
x′di

,

Ji ,





0 1
Mi

0

− 1
Mi

0 0

0 0 0



 , Ri ,







0 0 0
0 Di

M2

i

0

0 0 1
τiYFi






,

Bvi
,
[

0 0 1
τi

]T
, Bu(yi) ,

[

1 0
0 1

Vi

]

. (4)

We have the following simple fact, whose
proof follows from (1), (2) by direct substitution.

Fact 1 The synchronous machine model (3) de-
fines an operator ΣMi : (uMi , yi) described by the
implicit PCH system

{

ẋi = (Ji −Ri)∇xi
SMi (xi, yi) +Bvi

vi
0 = −∇yi

SMi (xi, yi) +Bu(yi)u
M
i

(5)

with storage function2 SMi : R3 × R2 → R,

SMi (xi, yi) ,
1

2
Miω

2
i −Pmiδi−

EiVi
x′di

cos(θi− δi)−

−
Y2i
2

V 2i cos 2(θi−δi)+
YEi

2
E2i−YFi

E?
Fi

Ei+
YV i
2

V 2i .

(6)

Denoting the DAE model (5) as an “implicit
PCH system” is done with some abuse of notation.
See (Van der Schaft, 2000) for a precise definition.

2.2 Loads Model

Loads are described by the standard ZIP model
(Kundur, 1994)

PL
l = PZl

V 2l + PIl
Vl + P0l

QL
l = QZl

V 2l +QIl
Vl +Q0l

, (7)

Fact 2 The ZIP load model (7) defines an op-
erator ΣLl : (uLl , yl) described by the implicit
(memory–less) PCH system

0 = −∇yl
SLl (yl) +Bu(yl)u

L
l −ΨLl (yl) (8)

with storage function SLl : R2 → R,

SLl (yl) , P0l
θl+

QZl

2
V 2l +QIl

Vl+Q0l
ln(Vl), (9)

where

ΨLl (yl) ,
[

PZl
V 2l + PIl

Vl 0
]T

.

2The use of the name “storage function” will be justified
in the next section.
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2.3 Transmission Lines Model

Transmission lines are modelled with the standard
lumped Π circuit (Kundur, 1994):

Pjk = GjkV
2
j −BjkVjVk sin(θj − θk)

−GjkVjVk cos(θj − θk)
Qjk = −(Bjk +Bc

jk)V
2
j +BjkVjVk cos(θj − θk)

−GjkVjVk sin(θj − θk)
(10)

where jk ∈ Ω. The active and reactive power
entering at node k, Pkj , Qkj can be obtained by
a simple change of indexes.

Fact 3 The transmission line model (10) defines
an operator Σjk : (ujk, ukj , yj , yk) described by an
implicit (memory–less) PCH system

0 = −∇yj
Sjk(yj , yk) +Bu(yj)ujk−Ψjk(yj , yk)

0 = −∇yk
Sjk(yj , yk) +Bu(yk)ukj−Ψjk(yk, yj)

(11)
with storage function Sjk : R2 × R2 → R,

Sjk(yj , yk) , −
(Bjk +Bc

jk)

2
(V 2j + V 2k )

+BjkVjVk cos(θj − θk), (12)

where

Ψjk(yj , yk) , −Gjk

[

−V 2j + VjVk cos(θj − θk)
Vk sin(θj − θk)

]

.

Remark 1 The terms ΨLl and Ψjk play the role
of a disturbance that, introducing sign–indefinite
terms in the derivative of the storage function,
hampers the establishment of the required cyclo–
dissipativity property of the respective subsys-
tems ΣLl and Σjk. Notice that ΨLl = 0 if the active
power can be modeled with constant impedance.
Notice also that Ψjk = Ψjk = 0 if and only if the
line conductance Gjk = 0.

2.4 Bus Equations

At each bus, we have

0 =
∑

k∈Ωj
Pjk + PM

j + PL
j

0 =
∑

k∈Ωj
Qjk +QM

j +QL
j

(13)

where Ωj := {k ∈ JB ; | ∃ jk ∈ Ω}, that is, Ωj
is the set of buses that are linked to the bus j
through some transmission line.

3 Cyclo–Dissipativity Properties

We adopt in the paper the dissipativity frame-
work proposed in (Willems, 1972), see also (Hill
and Moylan, 1980; Van der Schaft, 2000). To es-
tablish our results a slight variation of the classical
formulation is needed since the supply rate func-
tions that we consider are functions, not only of
the port variables (u, y), but also of ẏ. Another

difference with respect to the standard dissipativ-
ity framework is that our systems are character-
ized by DAEs, instead of ODEs and readout maps.
But this difference is unessential as we suppose
that the algebraic constraints can be solved for
the “link variables” (Hill and Mareels, 1990).

Definition 1 Consider a dynamical system Σ :
(u, y) represented by the DAEs

{

ẋ = F (x, y)
0 = G(x, y, u)

(14)

where x ∈ Rn is the state and (u, y) ∈ Rp × Rp
are the port variables. Let w : Rp × Rp × Rp → R
be locally integrable along trajectories of Σ. We
say that Σ is cyclo–dissipative with respect to the
supply rate w(u, y, ẏ) if and only if there exists a
differentiable function S : Rn → R, called storage
function, such that, ∀t2 ≥ t1

S(x(t2))− S(x(t1)) ≤

∫ t2

t1

w(u(t), y(t), ẏ(t))dt.

The distinction between cyclo–dissipative and
dissipative systems is the non–negativity of the
storage function. See (Hill and Moylan, 1980) for
a deep discussion about this topic.

In this section it will be shown that, in the
absence of control action and disturbance terms,
each device of our power systems model is cyclo-
dissipative with respect to the supply rate func-
tion w : R2 × R2 × R2 → R:

w(u, yj , ẏj) , u>B>
u (yj)ẏj = P θ̇ +

Q

Vj
V̇j , (15)

with the u defined in (2) for each of the elements.
It is interesting to note that in (Ortega et al.,

2003) we have identified classes of nonlinear RLC
circuits that are dissipative with respect to sup-
ply rates of the form V̇ >I or İ>V—which is in the
spirit of the results that follow. This antecedent
and the fact that several terms of the storage func-
tion can be interpreted in terms of reactive power
motivated the paper’s title.

To establish the cyclo–dissipativity properties
we make the following (temporary) assumption.

Assumption A1. The field voltage of the syn-
chronous machines are constant: EFi

= E?
Fi
;

the ZIP model for the loads fulfills PZl
= 0,

PIl
= 0; and the transfer conductances are

zero: Gjk = 0, ∀ jk ∈ Ω.

The following two propositions can be demon-
strated from the PCH-like models derived in pre-
vious section. Proofs are omitted by brevity.

Proposition 1 If Assumption A1 holds the syn-
chronous machine model ΣMi , the loads model ΣLl
and the transmission lines model Σjk, equations

320 of 323



(5), (8), (11) are cyclo–dissipative with respect to
their respective supply rate functions w(ui, yi, ẏi).
More precisely,

dSMi (xi, yi)

dt
≤ w(uMi , yi, ẏi),

dSLl (yl)

dt
≤ w(uLl , yl, ẏl),

dSjk(yj , yk)

dt
= w(ujk, yj , ẏj) + w(ukj , yk, ẏk).

Finally, the bus equations (13) may be written

0 =
∑

k∈Ωj

w(ujk, yj , ẏj)+w(uMj , yj , ẏj)+w(uLj , yj , ẏj)

An immediate corollary of Proposition 1 is the
following well–known result, (Varaiya et al., 1985).

Proposition 2 Let x := col(x1, . . . , xn), y :=
col(y1, . . . , yn, yn+2, . . . , y(n+m+1)) and define

S0(x, y) :=
∑

i

SMi (xi)+
∑

l

SLl (yl)+
∑

jk∈Ω

Sjk(yj , yk).

If Assumption A1 is satisfied then,

dS0(x, y)

dt
= −

∑

i

[Diω
2
i + YFi

τiĖi
2
] ≤ 0.

4 Main Stabilization Result

It is clear that, when the simplifying Assumption
A1 is violated, the cyclo–dissipativity properties
are lost and Proposition 2 is not verified any-
more. To the best of our knowledge, no global
energy function is known for power system mod-
els in such conditions. The main message of this
paper is that, with the addition of field control
action vi, it is possible to assign to the non–ideal
linearized system a storage function that, under
some conditions captured by an LMI, achieves a
minimum at the desired equilibrium point hence
qualifies as a bona fide Lyapunov function to as-
sess stability of the equilibrium. Towards this end,
it is convenient to group all the algebraic con-
straints of (5), (8), (11), (13) into the function
g : R3n × R2(n+m) → R2(n+m):

g(x, y) := ∇yS0(x, y) + Ψ(y), (16)

where Ψ : R2(n+m) → R2(n+m) is given by Ψ(y) :=
col(Ψj(y)) with

Ψj(y) =
∑

k∈Ωj

Ψjk(yj , yk) + ΨLj (yj).

A compact description of the system is ob-
tained defining S : R3n × R2(n+m) → R :

S(x, y) := S0(x, y) + y>Ψ(y?), (17)

with y? ∈ R2(n+m) the equilibrium value of the
link variables y, and the block–diagonal matrices

J := diag{Ji}, R := diag{Ri}, Bv := diag{Bvi
}.

This allows us to rewrite the overall system as
{

ẋ = (J −R)∇xS(x, y) +Bvv
0 = −∇yS(x, y)−Ψ(y) + Ψ(y?).

(18)

Notice the presence of the control action v =
col(vi) and the “non-dissipative” terms −Ψ(y) +
Ψ(y?).

In order to formulate the control problem we
need to define the set Dg ∈ R3n × R2(n+m):

Dg , {(x, y)|∇yS(x, y) + Ψ(y)−Ψ(y?) = 0}.

Assumption A4. There exists an isolated open
loop equilibrium (x?, y?) of the system 18.

Assumption A5. ∇yg(x
∗, y∗) is non–singular.

As a consequence of Assumption A5 and
the Implicit Function Theorem there exists, lo-
cally around (x?, y?), a function ŷ(x) such that
g(x, ŷ(x)) = 0. Consequently, we can write

ẏ = M(x, y)ẋ (19)

with M(x, y) ∈ R2(n+m)×3n.

Energy Shaping Problem: Consider the sys-
tem (18) satisfying Assumptions A4 and A5.
Find a control law v = v̂(x, y), and a function
Sa : R3n ×R2(n+m) → R, such that, for some
set D ⊂ R3n × R2(n+m), with (x?, y?) ∈ D,

Sd(x, y) := S(x, y) + Sa(x, y) (20)

satisfies

C1. (x?, y?) = argmin(x,y)∈D∩Dg
Sd(x, y),

C2. dSd(x,y)
dt

≤ 0, ∀(x, y) ∈ D ∩ Dg.

Consequently, (x?, y?) is a stable closed–loop
equilibrium with Lyapunov function Sd(x, y).

We propose the control action

v = K∇xS(x, y), K ∈ Rn×3n (21)

with K to be determined. Let us compute

dSd
dt

=
dSa
dt

+∇>
x Sẋ+∇>

y Sẏ =
dSa
dt

+

[

∇xS
∇yS

]>[
J −R+BvK

M(x, y)(J −R) +M(x, y)BvK

]

∇xS.

where we have used (19). We will investigate the
negativity of this function around the equilibrium
point, when (21) is replaced by its linear approx-
imation and we choose

Sa(δ, ω) =
1

2

[

δ − δ?

ω

]>

P

[

δ − δ?

ω

]

(22)
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where P = P T , is a matrix to be computed.
We show that the existence of matrices P and

K ensuring conditions C1 and C2 above are satis-
fied, can be recasted as a LMI feasibility problem.

We define the matrices

M? := M(x?, y?); Kψ :=
∂Ψ

∂y
(x?, y?)

F :=
∂2S

∂x2
(x?, y?) +

∂2S

∂x∂y
(x?, y?)M?,

with which we obtain the linear approximations

ỹ 'M?x̃, ∇xS ' F x̃, ∇yS) ' −KψM
?x̃,

where (̃·) denotes incremental variables. Now, in
view of the definition of x̃, there exists a constant
matrix U such that [δ̃T ω̃T ]T = U x̃ and thus

dSa
dt

= x̃>U>PU ˙̃x = x̃>U>PU(J −R+BvK)F x̃

= x̃>U>PU(J −R)F x̃,

since UBv = 0. We also define the (fixed) matrices

W :=−M>K>
ΨM(J−R)F , V :=

[

B>
vM

>KΨM
F

]

,

Z :=

[

U
U(J −R)F

]

.

Using this notation it can be written

dSd
dt

'
1

2
x̃>Q(P,K)x̃,

Q(P,K) := F>[−2R+BvK+K>B>
v ]F+W+W>

−V>
[

0n K
K> 03n

]

V + Z>

[

02n P
P 02n

]

Z.

(23)
Let us check now positivity of the low order

approximation of Sd(x, y). By construction

∇xSd(x
?, y?) = 0, ∇ySd(x

?, y?) = 0.

On the other hand, the Hessian evaluated at the

equilibrium, that is, ∂
2Sd(x,M

?x)
∂x2 |x? , is also a linear

function of P that we denote H(P )

∂2S(x,M?x)

∂x2
|x? + U>PU =: H(P ). (24)

We are in position to present our main stabi-
lization result whose proof follows from the calcu-
lations above and Lyapunov’s direct method.

Proposition 3 Assume the LMI

Q(P,K) < 0, H(P ) > 0,

is feasible for some P = P> and K, where
Q(P,K) and H(P ) are defined by (23) and (24),
respectively. Then, a solution to the energy shap-
ing problem is provided by the control v = KF x̃
and function Sa(δ, ω) given by (22).

Since the computation of a stabilizing control
law is formulated as an LMI on P and the con-
troller matrix K, several interesting performance
requirements can be considered. We mention only
two: decentralized control action and pole alloca-
tion in a prescribed region in the complex plane.

Decentralized control

The implementation of the control law (21) re-
quires full information of the overall system in
each machine, which is not realistic in industrial
applications. If we wish enforce the use of only
local information xi, yi in the control law vi we
must restrict our matrix K to be block diagonal.
This restriction can be easily added to Proposition
3. Details are omitted by brevity.

Pole placement

There is a vast set of convex regions which admit
an LMI formulation (Chilali and Gahinet, 1996).
The requirement that all eigenvalues of the closed
loop system belong to the region defined by

R(α, r) := {λ ∈ C|Re(λ) < −α, |λ| < r} (25)

is equivalent to the feasibility of a LMI that can
be easily considered with Proposition 3.

5 A Benchmark Simulation Example

We consider here the classical 3-machines, 9-buses
system considered in (Sauer and Pai, 1998) and
depicted in Figure 1. We assume that the ac-
tive components of the loads have constant power
characteristics and the reactive components have
constant impedance. Since this system has no in-
finite bus, the procedure we described in previous
sections had to be slightly modified in order to
cope with the non-isolated equilibrium point. The
details are fairly standard, see (Willems, 1974),
and they are omitted. Computations were done
with the software package PSAT (Milano, 2005).
The LMI condition in Proposition 3 was the tool

Load C
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¥
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¨
§
¥
¦

¨
§
¥
¦

¨
§
¥
¦

¨
§
¥
¦

¨
§
¥
¦

¨
§
¥
¦

¨
§
¥
¦

.

G1 G2

G3
Load A Load B

¨
§
¥
¦

Figure 1: Three-machines, nine-buses system.

for the synthesis of the controller gain K. The
parameters of the region R(α, r) were chosen α =
0.008 and r = 25. An additional constraint on the
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controller gain, namely ‖K‖ < 10, was also im-
posed. A decentralized control law was also com-
puted. The pole patterns of the open and closed
loop systems are given in Table 1.

A zero eigenvalue, associated with the mani-
fold of equilibrium points, is present in all cases.

Table 1: Pole patterns.
Open loop full control dec. control
−0.29± j11.5 −2.23± j10.9 −0.39± j12.4
−0.13± j8.2 −1.39± j8.0 −0.24± j8.6
−0.19 −11.54 −0.18
−0.16 −1.71 −0.17
−0.01 −0.17 −0.04
−0.01 −0.01 −0.01

Figure 2 depicts the transient response of the
linearized open and closed–loop systems to an
initial condition ω1(0) = 0.05. Closed–loop re-
sponses for both full and decentralized controller
are shown. As it can be seen, the full controller is
able to significantly improve the system’s stabil-
ity and provide damping. The damping factors of
the electromechanical modes were increased ap-
proximately 8 and 11 times. The decentralized
controller also increased the damping of the elec-
tromechanical modes by 25 and 75 percent. How-
ever its performance is relatively modest in com-
parison with the full controller. This is not un-
expected because the decentralized scheme, albeit
more realistic, uses only local variables for each
machine.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time, seconds

Figure 2: Speed ω1. Open loop (dotted), decentral-
ized control (dashed), full control (continuous).

6 Conclusions

We have provided a solution to the transient sta-
bilization problem structure–preserving models of
power systems. The analysis is based on the linear
approximation and shows that a linear state feed-
back controller ensures stability of the equilibrium
provided an LMI is feasible. The LMI is given in

terms of the controller gain and the weighting ma-
trix of the added energy function. The usefulness
of the technique for synthesis was illustrated with
its application to a classical example.
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