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Abstract—Despite a large body of literature and methods t. Similarly, the vectorY; = [y:(1),..,5:(1)]” represents the
devoted to the Traffic Matrix (TM) estimation problem, the value of the links aggregated traffic volume, where) repre-
inference of traffic flows volume from aggregated data still sents the total traffic volume in link= 1.l at timet. This ag-

represents a major issue for network operators. Directly aul . .
frequently measuring a complete TM in a large-scale networks gregated data is available through the standard and welkn

costly and difficult to perform due to routers limited capacities. SNMP protocol, so it will be usually referred to as the SNMP
In this paper we introduce and evaluate a new method to estinta measurements. In practice, times a discrete variable and

a TM from easily available link load measurements. The methd  the SNMP measurements consist of the cumulative number of
uses a novel statistical learning technique to unveil the tation bytes that enter or exit an IP network interface between two

between links traffic volume and origin-destination flows véume. tive ti f t We additi Ilv intced
By training a system based on Random Neural Networks, we consecutive imes or measurement. Ve aaditionally in u

provide a fast and accurate TM estimation tool that attains the link capacities vectof’ = [cy, ¢z, .., 1], wherec; stands
proper results without assuming any traffic model or particular ~ for the capacity of linki. The OD flows traffic and the SNMP

behavior. Using real data from an operational backbone netwrk, measurements are related through the routing mai;jxa

we compare this new method to the most well known and ; ., matrix in which element?;; is equal tol if OD flow
accepted TM estimation techniques, including in the evalu@gon . L .
j traverses linki, and0 otherwise:

some more accurate and up-to-date methods developed in rete
works. Results show that current TM estimation techniques an

still be improved. Y, =RX, (@)
Index Terms—Traffic Matrix Estimation, Statistical Learning,
Random Neural Networks. The computation ofY; from Y; represents a poorly-posed
problem, as the number of unknown OD flows is much larger
|. INTRODUCTION than the number of linksyn >> 1. This simple relation is

Knowing and understanding the traffic that flows througte basis of the celebrated TM Estimation (TME) problem,
a large-scale network represents a key issue in the desigfioduced in 1996 by Vardi [1].
and engineering of new network services and architectures.
A network-wide view of the traffic in a large-scale IP network
is typically described by a Traffic Matrix (TM). The TM The first approach to tackle the TME problem was to
represents the volume of traffic transmitted between evaity psearch for direct solutions, introducing additional imf@tion
of nodes in a network, also referred to as the origin-desitina to create additional constraints. This was achieved bys@aois
(OD) traffic flows. The measurement of the TM is a subject @nd Gaussian TM modeling assumptions in [1], [2], deriving
continuous debate between researchers, network opeaatrshigher order statistics of OD flows traffic as the additional
technology vendors. Some of them claim that the evolution cbnstraints. In [3], authors showed that the basic assompti
new access technologies and the development of opticadsicagnderlying these statistical models were not always jestjfi
networks is such, that the overheads incurred in the direntd that these methods performed badly when the underlying
measurement of the TM will become too costly and prohibitivessumptions were violated.
in the future. On the other hand, the progress in monitoring Additional spatial information about the TM was included
and measurement technology of the past years makes sdonte the problem, taking into account the network topology
others believe that the challenge of directly measuring tlad the routing process. This encouraged the application of
TM can be solved by improving equipment measuremegtavity models to the TME issue [4]. Authors in [5] made a
capabilities. Whatever the result of this struggle betwtegffic breakthrough in the TME problem with their Tomo-Gravity
increase and progress in measurement capabilities, netwapproach, combining network tomography methods [1] with
analysis requires efficient TM estimation methods that ugeavity models to highly improve accuracy.
both aggregated data and direct measurements to imprové further step was achieved by considering the strong
results. diurnal patterns found in the TM. Authors in [6] proposed

Let us formally introduce the TM estimation problema pure data-driven approach to analyze OD flows, using
Throughout the paper, the vectof;, = [z,(1),..,2.(m)]” a Principal Component Analysis (PCA) method to capture
represents the value of the TM at timewherexz, (k) stands spatial correlations in the TM. A dynamic model was adopted
for the traffic volume of each OD flowk = 1..m at time in [7] to capture the temporal correlation of the TM, using a

Il. STATE OF THEART



Kalman Filter for recursive estimation. These methodsmassu IIl. THE RNN FORTM ESTIMATION
that the TM can be directly measured during limited periods ) . ) )
of time for calibration purposes. Although accurate enoﬁmgh The RNN-TME method introduced in this work has its

that they can be highly unstable if the underlying models afaultiple Random Neural Networks to reconstruct OD flows
not periodically re-calibrated. volume X, from SNMP measuremeni$. From (1), we know

New methods have emerged in the last few years. In [1 at traffic volume at link and timet is a linear combination
: |OD flows volume at timet, y;(i) = R; X;, whereR; is

we have presented a novel TME method based on spatjal h ; h i ¢ hod i find
parsimonious modeling and Maximum Likelihood estimatioH'€ ¢-th row of /2. The main idea of our method is to fin
certain non-linear transfer-blogl(-) : R™ — R for each

techniques. This method presents quite accurate resuits 3

optimality properties on the estimate, but estimation rsrro OD flow &, such that:
are similar to those obtained by the Tomo-Gravity approach.

The last method that we highlight was recently introduced n

in [11], where a three-layerg feed-forward Artificial Nera  ©t(k) = fi (Ve(8x)) = fi (e(9k), ve(95), - e (03%))  (2)
Network (ANN) model is used to learn the relation between . .

links traffic and OD flows traffic. This method is appealing, "€ VeCtorY(dx) contains the traffic volume of the;
but presents a major conception drawback: statisticahiegr "KS ;’Vh'crll are crossed by OD flow, where vectord, =
with ANNs provides results which are very sensitive to th&dk: 0%, -, 0;*) has the indexes of they elements in thek-
particular definition of the neural network topology [1314], th column of R that are different from zero. The non-linear

turning current implementation of the method highly unkgabtransfer-blockf;(-) “extracts” the volume of OD flowk from
and difficult to calibrate. the trace that this flow leaves in thg links. We use the term

transfer-block instead of function becaugg(-) can not be
formally defined as it. It is easy to see that, in theory, thaesa
Contributions of the Paper values of links volume can result from different combinatio
of different OD flows traffic. However and as we will see in
In this paper we develop a new method to estimate the Tide results, this does not happen in practice. Computirig
from easily available links traffic measurements. Our méth@an be simply thought as computing a pseudo-inverse matrix
draws on the main ideas of [11], but improves the technigfi@m routing matrix R, for a particular element of the TM.
by using a new kind of neural network, introduced in recembhdeed, we will show in the evaluations that the structure of
years by E. Gelenbe [16]: the Random Neural Network (RNNJj,(-) is strongly related to the characteristics ®f The idea
As we will see and as it has been shown in many previod$ the method is then to learm individual transfer-blocks
applications [12], RNNs are a very powerful tool to capturg (-) from measurements, one for each OD flow of the TM,
the intrinsic model behind the data. Using a three-layewsale using a single RNN model to build each block.
network topology as the one considered in [11], we show The RNN model can be described as a merge between the
that ANNs performance is highly dependent on the numbgiassical ANN model and queuing networks. RNNs are, as
of neurons in the topology, while results obtained with RNNANNs, composed of a set of interconnected neurons. Each
are remarkably stable. neuron exchanges impulse signals with other neurons ahd wit
Using the real topology and real TMs from an Internetthe environment, and has a potential associated with itghvhi
backbone network, we compare the performance of this névan integer random variable. The potential of neufoat
method against two classical and very well known TMEme ¢ is denoted byg, (). If the potential of neuron is
methods, namely the Gravity and the Tomo-Gravity methodstrictly positive, the neuron isxcited in this state, it randomly
We also include three modern algorithms in the comparatigends signals according to a Poisson process withreate
evaluation, developed in [6], [10]. Our analysis shows th#is model, neurons exchang®sitive and negativesignals.
the RNN-based method is more accurate than current meth@tie probability that a signal sent by neurbgoes to neuron
ologies for large-scale TME, but that the learning techeiqy as a positive/negative signal is denoted ]lq'sl/pl The
is highly dependent on the particular characteristics @ tlsignal leaves the network with probability. When a neuron
routing matrix. receives a positive signal, its potential is increased bif it;
The remainder of this paper is organized as follows. ligceives a negative signal or if it sends a signal, its p@tent
section Il we present the new TME technique, based ¢lgcreases by 1. The lowest potential is 0. The flow of positive
Random Neural Networks. In this section we also evidence tAgd negative signals arriving from the environment to neuro
stability problems of ANNs for TME w.r.t. RNNs. Section IV is also a Poisson process of ratg and \; respectively.
presents the evaluation of the RNN-based method in differdrinally, instead of working with branching pf0b3b|||t|®$
large-scale networks, comparing its performance agahest @ndp; ;, we use the neural netwonke|ght5w = Tlpz ; and
one attained by the rest of the algorithms in an operationaJ; = r;p; ;, in analogy to standard ANNs In this context,
Internet2 backbone network. Finally, section V concludegs t let us defmepl as the limit probability in which neuron is
work. excited, which corresponds to a strictly positive potdntia



input neurond is equal ton,. This value is highly optimized
pi = hm Pr(q (i) > 0) (3) in large-scale networks, so it is generally very small. For
example, in our datasets, the mean number of links traversed
Similar to the classical Jackson’s result for open queuitty every OD flow is belows. The number of output neurons
networks, E. Gelenbe proved in [16] that this RNN modés O = 1. The number of hidden neurorf$ is not a-priori
allows a simple system of equations with unique solutign fixed, and there is no foolproof method for setting it [14]0To
given the rates\;” and); of incoming signals. In a traditional many degrees of freedom may cause over-fitting problems,
statistical learning application, a RNN witN interconnected and too few may reduce thexpressivgpower to capture the
neurons can be seen as a black-box, where the incoming sigmaderlying model. A convenient heuristic to choddein an
ratesAT = (A{, A7, ., A%) andA™ = (A[,)\;,..Ay) are ANN s that the total number of weights is rouglify'10 [15].
the inputs, and the probabilities of neuron excitempnt  The number of weights in a RNN is twice that of an ANN
(p1, p2, .., pn) are the outputs. As in most RNN applications(negative weights), and thus this relation reduce%'f6.
we shall consider thaX; is 0 for every neuron. In this context, Using RNNs for TME has a paramount advantage w.r.t.
this black-box has a certain transfer-blotk) that relates the ANNs as regards the choice @f. Similar to [13], we shall

N inputs with theN outputs: evidence the strong sensitivity of the three-layers fewdrérd
ANN model used in [11] to the number of hidden neurdhs
p=1 ()Q“) (4) We shall use real TMs and the real topology of the Abilene

network, an Internet2 backbone network at the US. Abilene
where f(-) depends on the number of neurons the consists ofl2 PoPs connected b§0 very-high-speed links,
connection topology of the RNN, and the neural networndm = 132 OD flows. Traffic consists 0§’ sampled TMs,
weightsw = {w;";,w;;}. The weightsw are thus the free collected via Netflow [19]. We use exactly the same neural
parameters of the RNN model, which can be calibrated etwork topology and the same learning/estimation schemes
build a non-linear transfer-block(-) as the one we need.  for both the ANN and the RNN models.

In general, som&\;” in (4) are set td), and only a subset e take8 consecutive days of traffic from Abilene and
of p is used as output. In our application (2), each blodvide it into two disjoint datasets. THearningdataset is used
fx(-) hasny inputs and one single output. The, inputs in the calibration of the models and it is compose@shours
correspond to the traffic volume of tidg links that are crossed of direct OD flow measurements, representing a tota&sf
by OD flow k. The output is the OD flow volume; (k). The patterns. Thevalidationdataset is used to verify the properties
calibration of each blockfi(-) is performed by supervisedof the estimation methods and it is composedi ofveek of
learning, using dearning datasetomposed of” input-output  traffic, which accounts foR016 measurements. As a global
pairs {Y;(dx),z:(k)}, t = 1,..,T. We do not provide the indication of the accuracy of the RNN/ANN-TME estimates,

details of the learning algorithm in this paper, but we refege use the relative root mean squared error RRMSE
the interested reader to [17].

Given that the output of the RN, is a probability, we - .
must scale the value of OD flow volumeg(k) to be consistent RRMSE1) — \/Z — (k) vieT )
with the RNN model. We do this by simply normalizing(k) M mt(k)Q ' vl
k=1

by the smallest link capacity of the; links that it crosses,
defined aSsmin. In other words, we suppose that the routing The RRMSHEt) index has been used in previous works
process is always stable, in the sense thét) < ¢;, Vi = [7], [8] as a summary of the relative TM estimation error
.l and V¢, even in the occurrence of strong congestioproduced at every timeé In this sense, we shall refer to the
situations. We shall usg (k) = xt(k)/c%nm as the normalized RRMSK?t) as thetemporal estimation error. The valud/
volume of OD flowk, with 0 < z,(k) < 1. In a similar way, corresponds to the number of OD flows that are compared in
and even if the inputs in the model can take any arbitratje RRMSE¢) index. Small-volume OD flows are well known
positive value, i.e > 0, we use links utilization values to be hard to estimate [5], [8], and are generally not comsitie
Ui(61) = Yi(8x)/C(8x) as input instead of; (dy). in (5), simply because they have little impact on Traffic
As in most applications of neural networks for learning pulengineering tasks, and so are generally less important to
poses, we use a three-layers feed-forward network topploggtimate. Following previous works [5], [8], we shall gealbr
which simplifies the RNN model and speeds-up computatiorexclude from the RRMSE) index about5% of the total
In such a topology, the set éf neurons is divided into three traffic, corresponding to these small OD flows.
subsets: a set aof input neurons, a set dff hidden neurons, Figure 1 depicts the cdf of the RRM&# for the2016 TMs
and a set ofD output neurons. Input neurons receive positivie the validation dataset, varying the mean number of hidden
signals from the environment and send signals to hiddeeuronsH between4 and 9. H is the rounded average of
neurons. Hidden neurons do no interact with the environméntden neurongd;, used to build each transfer-block,(-),
and only send signals to output neurons. Output neurons only, H = round (1/m>_," | Hy). Using the rule presented
send signals to the environment. It is easy to see that in thisove with/ = 4 andT = 288 gives an expected value &f
topology, the number of weights &7 (7 +1). The number of around6, which justifies our choice of limits 4 and 9. Figure
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Fig. 1. RRMSE() cdf, H = 4,...,9 in Abilene.
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1(a) shows that changing around 6 has little impact on the 0 200 400 600 800 (m;gggre;igfs) 1400 1600 1800 2000
RNN model. For example, for a relative error of ab8tf (a

reasonable value of RRMSE according to previous works [7] .
[8]), the variation of the cdf is belov%. On the contrary, 0827 == mm o i
figure 1(b) shows that the cdf can vary almosi(§% for the
same value of RRMSE in the ANN model, even for a change
of only 1 hidden neuron, fronb to 6 or from 8 to 9 for
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of the ANN-TME estimation method previously proposed in RRMSE (%)
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Fig. 2. RNN-TME estimation performance.
IV. EVALUATION AND ANALYSIS

In this section we evaluate the RNN-TME method using
real measurements from two different backbone networkgeek of traffic in 2(a) GEANT and 2(b) Abilene. In both cases
Firstly, we study the performance of the method facing twihe estimation is accurate and stable duringttaays of the
different traffic scenarios: the former corresponds to rad+m validation period. Figure 2(c) presents the cdf of the RRMSE
operation traffic, the latter presents unexpected and teaffec  for the validation week in both networks. The accuracy of
variations. Secondly, we present a comparative analydiseof the RNN-TME approach is quite impressive; the RRMSE(
RNN-TME algorithm against six different TME techniquesndex is below8% for more than90% of the samples. The
developed in previous works: our implementation of the ANNmean values of RRMSEY are3.46% for GEANT and4.22%
TME method, the Simple-Gravity and Tomo-Gravity Estimafor Abilene, comparable to those obtained in the literature
tion methods (SGE and TGE) [4], [5], our Spatial Maximumwhich may vary betweefi% and 15% [7], [8].
Likelihood method (SMLE) [10], the PCA method (PCAE) These results are a-priori quite impressive, especially be
[6], and an enhanced version of the Recursive Kalman Filteause the learning period is probably not that long so as
method (RKFE), proposed by us in [10]. to cover all the possible input and output cases. However,
_ _ the key issue in the learning process of each transfer-block
A. RNN-TME in Normal Operation fx(+) is that, in fact, we are not learning any function but
We shall consider the estimation df week of normal- one very particular, which strongly depends on the strectur
operation TMs from two operational networks: the Abilenef the routing matrix R. Each block fi(-) is nothing but
network and the GEANT network, a European large-scadeparticular pseudo-inverse d@t;. If we can correctly learn
research network. The GEANT network consist 2¥ ag- f,(-) for a certain learning dataset, then this transfer-block
gregation nodes interconnected throughhigh-speed links, should perform correctly even for new data, not seen before.
representing a total ofn = 506 OD flows. GEANT data The obvious drawback is that the performance of the method
consists ofl 5’ sampled TMs, built from IGP and BGP routingdepends on the particular characteristicsof
information and Netflow data in [18]. As before, we take i i
consecutive days of traffic, using the fist hours of mea- B- RNN-TME under Traffic Anomalies
surements as the learning dataset, and the folloWidays for Let us now consider the estimation of an OD flow in the
validation. Given that the sampling rate in GEANT is smallgoresence of a large and abrupt traffic variation. Figure 3otiep
than the one used in Abilene, we interpolate intermediatige normalized traffic volume of a single OD flow in Abilene.
measurements in the learning dataset of the former topoloBgfore time370 there is little traffic in this OD flow, but after
In the following evaluations, we assume titis only known this time a BGP egress-point shift causes a large and sadtain
during the learning period of the RNNs models and consideolume increase during almo$ghs, until time580. We use
Y, as the input known data. the first24hs of normal-operation TMs to calibrate the RNN-
Figure 2 depicts the real and estimated values of tA&E, the RKFE, and the PCAE methods. We use one hour of
normalized volume of a single OD flok namelyz;(k), for1 SNMP measurements to calibrate the SMLE method [10].
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The SGE and TGE methods do not require calibration.
All methods properly track the OD flow volume evolutio
before the occurrence of the anomaly. However, only the RN
TME and the PCAE methods achieve a proper estimation
the anomalous traffic. The reason for this success is that 0 5 B v o ¥ w0 s
traffic model is assumed by none of them. Very interesting is
the tracking power achieved by the RNN-TME method, which
is not a-priori justified, especially because no anomalmafic
patterns were present in the learning step. This evaluation

permits to exemplify the strong dependence of the RNN-TM . :
. . atial errors are fairly more spread than temporal errors,
method on the particular structure &f that we mentioned Ep y P b

bef In fact f the links that d b tshowing that some OD flows are more difficult to estimate
etore. In fact, ohe of the finks that are crossed by qgan others. A deeper analysis of the SRRMSE shows that

anomalous OD flow is only used by this particular OD ﬂ.OV\1 rge SRRMSE values correspond to small OD flows. The

Cumulative SRRMSE
o o o o

(b) SRRMSEE) cdf
Fig. 4. 672 TMs and132 OD flows in Abilene.

tial errors below0% for about90% of the 132 OD flows.

obtained by the PCAE method, we can say that the analy is is a direct consequence of the learning technique used

OD flow was captured in the space de_zfmed by the PINCIPA the method, where a single RNN is trained for each single
components. The rest of the methods impose assumptions {9 ¢\ capturing its particular characteristics.

the underlying traffic that are clearly modified in the eveht o
an anomaly. V. CONCLUSIONS

C. Comparative Analysis In this paper we have revisited the TME problem, introduc-
Figure 4 presents a comparative summary on the perfétg a novel method to accurately estimate a large-scale TM
mance of all methods in Abilene, using a validation datas&®m aggregated measurements. There is an important effort
composed of 672 consecutive TMs. The calibration of aff comparison in this paper, which categorically highlght
methods is done as before. Figure 4(a) depicts the cdf of fife virtues of this new proposal. Using real data and a
RRMSE(). The RNN-TME and the RKFE produce estimatiorieal large-scale network topology, we have shown that our
relative errors belowt0% for approximately90% of the TMs. method is more accurate than many other classical and modern
80% is the approximated result obtained by the PCAE metho@pproaches, regarding not only the estimation of a TM but
The estimation performance drops to neably% for the also the analysis of individual OD flows. The RNN-TME
SMLE method 40% for the TGE method, and t6% for the method is particularly attractive to estimate small-votu@®D
SGE method. The mean values of RRMSE 485%, 4.48%, flows, a task that other techniques can not even realize due to
6.53%, 10.3%, 11.2%, and39.1% respectively. As regards thelarge errors. The last contribution of this work is relatedat
performance achieved by the ANN-TME method, we haverevious implementation of a Neural Network model to tackle
included the best and worst-case results obtained wheimgarythe TME problem. Compared to the classical ANN model,
the mean number of hidden neuroHsas in section IIl. It is our method based on RNNs is definitely more stable in the
easy to appreciate the same stability issues that werermade definition of the Neural Network topology, a critical issue
before. Figure 4(b) depicts the cdf of the Spatial RRMSEegarding a reliable TME technique.
defined as:

copy of the corresponding input. As regards the accurag%é
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