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Abstract—Despite a large body of literature and methods
devoted to the Traffic Matrix (TM) estimation problem, the
inference of traffic flows volume from aggregated data still
represents a major issue for network operators. Directly and
frequently measuring a complete TM in a large-scale networkis
costly and difficult to perform due to routers limited capacities.
In this paper we introduce and evaluate a new method to estimate
a TM from easily available link load measurements. The method
uses a novel statistical learning technique to unveil the relation
between links traffic volume and origin-destination flows volume.
By training a system based on Random Neural Networks, we
provide a fast and accurate TM estimation tool that attains
proper results without assuming any traffic model or particular
behavior. Using real data from an operational backbone network,
we compare this new method to the most well known and
accepted TM estimation techniques, including in the evaluation
some more accurate and up-to-date methods developed in recent
works. Results show that current TM estimation techniques can
still be improved.

Index Terms—Traffic Matrix Estimation, Statistical Learning,
Random Neural Networks.

I. I NTRODUCTION

Knowing and understanding the traffic that flows through
a large-scale network represents a key issue in the design
and engineering of new network services and architectures.
A network-wide view of the traffic in a large-scale IP network
is typically described by a Traffic Matrix (TM). The TM
represents the volume of traffic transmitted between every pair
of nodes in a network, also referred to as the origin-destination
(OD) traffic flows. The measurement of the TM is a subject of
continuous debate between researchers, network operatorsand
technology vendors. Some of them claim that the evolution of
new access technologies and the development of optical access
networks is such, that the overheads incurred in the direct
measurement of the TM will become too costly and prohibitive
in the future. On the other hand, the progress in monitoring
and measurement technology of the past years makes some
others believe that the challenge of directly measuring the
TM can be solved by improving equipment measurement
capabilities. Whatever the result of this struggle betweentraffic
increase and progress in measurement capabilities, network
analysis requires efficient TM estimation methods that use
both aggregated data and direct measurements to improve
results.

Let us formally introduce the TM estimation problem.
Throughout the paper, the vectorXt = [xt(1), .., xt(m)]T

represents the value of the TM at timet, wherext(k) stands
for the traffic volume of each OD flowk = 1..m at time

t. Similarly, the vectorYt = [yt(1), .., yt(l)]
T represents the

value of the links aggregated traffic volume, whereyt(i) repre-
sents the total traffic volume in linki = 1..l at timet. This ag-
gregated data is available through the standard and well-known
SNMP protocol, so it will be usually referred to as the SNMP
measurements. In practice, timet is a discrete variable and
the SNMP measurements consist of the cumulative number of
bytes that enter or exit an IP network interface between two
consecutive times of measurement. We additionally introduce
the link capacities vectorC = [c1, c2, .., cl]

T , whereci stands
for the capacity of linki. The OD flows traffic and the SNMP
measurements are related through the routing matrixR, a
l ×m matrix in which elementRij is equal to1 if OD flow
j traverses linki, and0 otherwise:

Yt = RXt (1)

The computation ofXt from Yt represents a poorly-posed
problem, as the number of unknown OD flows is much larger
than the number of links,m >> l. This simple relation is
the basis of the celebrated TM Estimation (TME) problem,
introduced in 1996 by Vardi [1].

II. STATE OF THE ART

The first approach to tackle the TME problem was to
search for direct solutions, introducing additional information
to create additional constraints. This was achieved by Poisson
and Gaussian TM modeling assumptions in [1], [2], deriving
higher order statistics of OD flows traffic as the additional
constraints. In [3], authors showed that the basic assumptions
underlying these statistical models were not always justified,
and that these methods performed badly when the underlying
assumptions were violated.

Additional spatial information about the TM was included
into the problem, taking into account the network topology
and the routing process. This encouraged the application of
gravity models to the TME issue [4]. Authors in [5] made a
breakthrough in the TME problem with their Tomo-Gravity
approach, combining network tomography methods [1] with
gravity models to highly improve accuracy.

A further step was achieved by considering the strong
diurnal patterns found in the TM. Authors in [6] proposed
a pure data-driven approach to analyze OD flows, using
a Principal Component Analysis (PCA) method to capture
spatial correlations in the TM. A dynamic model was adopted
in [7] to capture the temporal correlation of the TM, using a



Kalman Filter for recursive estimation. These methods assume
that the TM can be directly measured during limited periods
of time for calibration purposes. Although accurate enoughfor
many management tasks, results presented in [7]–[9] showed
that they can be highly unstable if the underlying models are
not periodically re-calibrated.

New methods have emerged in the last few years. In [10]
we have presented a novel TME method based on spatial
parsimonious modeling and Maximum Likelihood estimation
techniques. This method presents quite accurate results and
optimality properties on the estimate, but estimation errors
are similar to those obtained by the Tomo-Gravity approach.
The last method that we highlight was recently introduced
in [11], where a three-layers feed-forward Artificial Neural
Network (ANN) model is used to learn the relation between
links traffic and OD flows traffic. This method is appealing,
but presents a major conception drawback: statistical learning
with ANNs provides results which are very sensitive to the
particular definition of the neural network topology [13], [14],
turning current implementation of the method highly unstable
and difficult to calibrate.

Contributions of the Paper

In this paper we develop a new method to estimate the TM
from easily available links traffic measurements. Our method
draws on the main ideas of [11], but improves the technique
by using a new kind of neural network, introduced in recent
years by E. Gelenbe [16]: the Random Neural Network (RNN).
As we will see and as it has been shown in many previous
applications [12], RNNs are a very powerful tool to capture
the intrinsic model behind the data. Using a three-layers neural
network topology as the one considered in [11], we show
that ANNs performance is highly dependent on the number
of neurons in the topology, while results obtained with RNNs
are remarkably stable.

Using the real topology and real TMs from an Internet2
backbone network, we compare the performance of this new
method against two classical and very well known TME
methods, namely the Gravity and the Tomo-Gravity methods.
We also include three modern algorithms in the comparative
evaluation, developed in [6], [10]. Our analysis shows that
the RNN-based method is more accurate than current method-
ologies for large-scale TME, but that the learning technique
is highly dependent on the particular characteristics of the
routing matrix.

The remainder of this paper is organized as follows. In
section III we present the new TME technique, based on
Random Neural Networks. In this section we also evidence the
stability problems of ANNs for TME w.r.t. RNNs. Section IV
presents the evaluation of the RNN-based method in different
large-scale networks, comparing its performance against the
one attained by the rest of the algorithms in an operational
Internet2 backbone network. Finally, section V concludes this
work.

III. T HE RNN FOR TM ESTIMATION

The RNN-TME method introduced in this work has its
origins in the statistical learning field. The method uses
multiple Random Neural Networks to reconstruct OD flows
volumeXt from SNMP measurementsYt. From (1), we know
that traffic volume at linki and timet is a linear combination
of OD flows volume at timet, yt(i) = Ri Xt, whereRi is
the i-th row of R. The main idea of our method is to find
a certain non-linear transfer-blockfk(·) : Rnk → R for each
OD flow k, such that:

xt(k) = fk (Yt(δk)) = fk
(

yt(δ
1
k), yt(δ

2
k), .., yt(δ

nk

k )
)

(2)

The vectorYt(δk) contains the traffic volume of thenk

links which are crossed by OD flowk, where vectorδk =
(

δ1k, δ
2
k, .., δ

nk

k

)

has the indexes of thenk elements in thek-
th column ofR that are different from zero. The non-linear
transfer-blockfk(·) “extracts” the volume of OD flowk from
the trace that this flow leaves in thenk links. We use the term
transfer-block instead of function becausefk(·) can not be
formally defined as it. It is easy to see that, in theory, the same
values of links volume can result from different combinations
of different OD flows traffic. However and as we will see in
the results, this does not happen in practice. Computingfk(·)
can be simply thought as computing a pseudo-inverse matrix
from routing matrixR, for a particular element of the TM.
Indeed, we will show in the evaluations that the structure of
fk(·) is strongly related to the characteristics ofR. The idea
of the method is then to learnm individual transfer-blocks
fk(·) from measurements, one for each OD flow of the TM,
using a single RNN model to build each block.

The RNN model can be described as a merge between the
classical ANN model and queuing networks. RNNs are, as
ANNs, composed of a set of interconnected neurons. Each
neuron exchanges impulse signals with other neurons and with
the environment, and has a potential associated with it, which
is an integer random variable. The potential of neuroni at
time t is denoted byqt(i). If the potential of neuroni is
strictly positive, the neuron isexcited; in this state, it randomly
sends signals according to a Poisson process with rateri. In
this model, neurons exchangepositive and negativesignals.
The probability that a signal sent by neuroni goes to neuron
j as a positive/negative signal is denoted byp+i,j /p

−

i,j . The
signal leaves the network with probabilitydi. When a neuron
receives a positive signal, its potential is increased by 1;if it
receives a negative signal or if it sends a signal, its potential
decreases by 1. The lowest potential is 0. The flow of positive
and negative signals arriving from the environment to neuron
i is also a Poisson process of rateλ+

i and λ−

i respectively.
Finally, instead of working with branching probabilitiesp+i,j
andp−i,j , we use the neural networkweightsw+

i,j = rip
+

i,j and
w−

i,j = rip
−

i,j , in analogy to standard ANNs. In this context,
let us defineρi as the limit probability in which neuroni is
excited, which corresponds to a strictly positive potential:



ρi = lim
t→∞

Pr(qt(i) > 0) (3)

Similar to the classical Jackson’s result for open queuing
networks, E. Gelenbe proved in [16] that this RNN model
allows a simple system of equations with unique solutionρi,
given the ratesλ+

i andλ−

i of incoming signals. In a traditional
statistical learning application, a RNN withN interconnected
neurons can be seen as a black-box, where the incoming signal
ratesλ+ =

(

λ+

1 , λ
+

2 , .., λ
+

N

)

andλ− =
(

λ−

1 , λ
−

2 , .., λ
−

N

)

are
the inputs, and the probabilities of neuron excitementρ =
(ρ1, ρ2, .., ρN) are the outputs. As in most RNN applications,
we shall consider thatλ−

i is 0 for every neuron. In this context,
this black-box has a certain transfer-blockf(·) that relates the
N inputs with theN outputs:

ρ = f
(

λ+
)

(4)

where f(·) depends on the number of neuronsN , the
connection topology of the RNN, and the neural network
weightsw =

{

w+

i,j , w
−

i,j

}

. The weightsw are thus the free
parameters of the RNN model, which can be calibrated to
build a non-linear transfer-blockf(·) as the one we need.

In general, someλ+

i in (4) are set to0, and only a subset
of ρ is used as output. In our application (2), each block
fk(·) has nk inputs and one single output. Thenk inputs
correspond to the traffic volume of theδk links that are crossed
by OD flow k. The output is the OD flow volumext(k). The
calibration of each blockfk(·) is performed by supervised
learning, using alearning datasetcomposed ofT input-output
pairs {Yt(δk), xt(k)} , t = 1, .., T . We do not provide the
details of the learning algorithm in this paper, but we refer
the interested reader to [17].

Given that the output of the RNNρo is a probability, we
must scale the value of OD flow volumext(k) to be consistent
with the RNN model. We do this by simply normalizingxt(k)
by the smallest link capacity of thenk links that it crosses,
defined ascδmin

k

. In other words, we suppose that the routing
process is always stable, in the sense thatyt(i) < ci, ∀i =
1, .., l and ∀t, even in the occurrence of strong congestion
situations. We shall usezt(k) = xt(k)/cδmin

k

as the normalized
volume of OD flowk, with 0 ≤ zt(k) ≤ 1. In a similar way,
and even if the inputs in the model can take any arbitrary
positive value, i.e.λ+

i > 0, we use links utilization values
Ut(δk) = Yt(δk)/C(δk) as input instead ofYt(δk).

As in most applications of neural networks for learning pur-
poses, we use a three-layers feed-forward network topology,
which simplifies the RNN model and speeds-up computations.
In such a topology, the set ofN neurons is divided into three
subsets: a set ofI input neurons, a set ofH hidden neurons,
and a set ofO output neurons. Input neurons receive positive
signals from the environment and send signals to hidden
neurons. Hidden neurons do no interact with the environment
and only send signals to output neurons. Output neurons only
send signals to the environment. It is easy to see that in this
topology, the number of weights is2H(I+1). The number of

input neuronsI is equal tonk. This value is highly optimized
in large-scale networks, so it is generally very small. For
example, in our datasets, the mean number of links traversed
by every OD flow is below5. The number of output neurons
is O = 1. The number of hidden neuronsH is not a-priori
fixed, and there is no foolproof method for setting it [14]. Too
many degrees of freedom may cause over-fitting problems,
and too few may reduce theexpressivepower to capture the
underlying model. A convenient heuristic to chooseH in an
ANN is that the total number of weights is roughlyT/10 [15].
The number of weights in a RNN is twice that of an ANN
(negative weights), and thus this relation reduces toT/5.

Using RNNs for TME has a paramount advantage w.r.t.
ANNs as regards the choice ofH . Similar to [13], we shall
evidence the strong sensitivity of the three-layers feed-forward
ANN model used in [11] to the number of hidden neuronsH .
We shall use real TMs and the real topology of the Abilene
network, an Internet2 backbone network at the US. Abilene
consists of12 PoPs connected by30 very-high-speed links,
andm = 132 OD flows. Traffic consists of5’ sampled TMs,
collected via Netflow [19]. We use exactly the same neural
network topology and the same learning/estimation schemes
for both the ANN and the RNN models.

We take8 consecutive days of traffic from Abilene and
divide it into two disjoint datasets. Thelearningdataset is used
in the calibration of the models and it is composed of24 hours
of direct OD flow measurements, representing a total of288
patterns. Thevalidationdataset is used to verify the properties
of the estimation methods and it is composed of1 week of
traffic, which accounts for2016 measurements. As a global
indication of the accuracy of the RNN/ANN-TME estimates,
we use the relative root mean squared error RRMSE(t) :

RRMSE(t) =

√

∑

M

k=1
(xt(k)− x̂t(k))

2

√

∑

M

k=1
xt(k)

2

, ∀t ∈ Tval (5)

The RRMSE(t) index has been used in previous works
[7], [8] as a summary of the relative TM estimation error
produced at every timet. In this sense, we shall refer to the
RRMSE(t) as the temporal estimation error. The valueM
corresponds to the number of OD flows that are compared in
the RRMSE(t) index. Small-volume OD flows are well known
to be hard to estimate [5], [8], and are generally not considered
in (5), simply because they have little impact on Traffic
Engineering tasks, and so are generally less important to
estimate. Following previous works [5], [8], we shall generally
exclude from the RRMSE(t) index about5% of the total
traffic, corresponding to these small OD flows.

Figure 1 depicts the cdf of the RRMSE(t) for the2016 TMs
in the validation dataset, varying the mean number of hidden
neuronsH̄ between4 and 9. H̄ is the rounded average of
hidden neuronsHk used to build each transfer-blockfk(·),
i.e., H̄ = round (1/m

∑m

k=1
Hk). Using the rule presented

above withI = 4 andT = 288 gives an expected value of̄H
around6, which justifies our choice of limits 4 and 9. Figure
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(a) RNN model. (b) ANN model.

Fig. 1. RRMSE(t) cdf, H̄ = 4, . . . , 9 in Abilene.

1(a) shows that changinḡH around 6 has little impact on the
RNN model. For example, for a relative error of about8% (a
reasonable value of RRMSE according to previous works [7],
[8]), the variation of the cdf is below6%. On the contrary,
figure 1(b) shows that the cdf can vary almost a30% for the
same value of RRMSE in the ANN model, even for a change
of only 1 hidden neuron, from5 to 6 or from 8 to 9 for
example. This strong sensitivity seriously limits the usefulness
of the ANN-TME estimation method previously proposed in
[11].

IV. EVALUATION AND ANALYSIS

In this section we evaluate the RNN-TME method using
real measurements from two different backbone networks.
Firstly, we study the performance of the method facing two
different traffic scenarios: the former corresponds to normal-
operation traffic, the latter presents unexpected and largetraffic
variations. Secondly, we present a comparative analysis ofthe
RNN-TME algorithm against six different TME techniques
developed in previous works: our implementation of the ANN-
TME method, the Simple-Gravity and Tomo-Gravity Estima-
tion methods (SGE and TGE) [4], [5], our Spatial Maximum-
Likelihood method (SMLE) [10], the PCA method (PCAE)
[6], and an enhanced version of the Recursive Kalman Filter
method (RKFE), proposed by us in [10].

A. RNN-TME in Normal Operation

We shall consider the estimation of1 week of normal-
operation TMs from two operational networks: the Abilene
network and the GEANT network, a European large-scale
research network. The GEANT network consist of23 ag-
gregation nodes interconnected through74 high-speed links,
representing a total ofm = 506 OD flows. GEANT data
consists of15’ sampled TMs, built from IGP and BGP routing
information and Netflow data in [18]. As before, we take8
consecutive days of traffic, using the first24 hours of mea-
surements as the learning dataset, and the following7 days for
validation. Given that the sampling rate in GEANT is smaller
than the one used in Abilene, we interpolate intermediate
measurements in the learning dataset of the former topology.
In the following evaluations, we assume thatXt is only known
during the learning period of the RNNs models and consider
Yt as the input known data.

Figure 2 depicts the real and estimated values of the
normalized volume of a single OD flowk, namelyzt(k), for 1
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(b) OD flow 130 in Abilene

0   5 8 10 15 20 25
0  

0.2

0.4

0.6

0.8
0.92

1  

RRMSE (%)

C
um

ul
at

iv
e 

R
R

M
S

E

 

 

1 week of TMs in Abilene
1 week of TMs in GEANT

(c) RRMSE(t) cdf, 1 week of TMs in GEANT & Abilene

Fig. 2. RNN-TME estimation performance.

week of traffic in 2(a) GEANT and 2(b) Abilene. In both cases
the estimation is accurate and stable during the7 days of the
validation period. Figure 2(c) presents the cdf of the RRMSE
for the validation week in both networks. The accuracy of
the RNN-TME approach is quite impressive; the RRMSE(t)
index is below8% for more than90% of the samples. The
mean values of RRMSE(t) are3.46% for GEANT and4.22%
for Abilene, comparable to those obtained in the literature,
which may vary between5% and15% [7], [8].

These results are a-priori quite impressive, especially be-
cause the learning period is probably not that long so as
to cover all the possible input and output cases. However,
the key issue in the learning process of each transfer-block
fk(·) is that, in fact, we are not learning any function but
one very particular, which strongly depends on the structure
of the routing matrixR. Each blockfk(·) is nothing but
a particular pseudo-inverse ofRi. If we can correctly learn
fk(·) for a certain learning dataset, then this transfer-block
should perform correctly even for new data, not seen before.
The obvious drawback is that the performance of the method
depends on the particular characteristics ofR.

B. RNN-TME under Traffic Anomalies

Let us now consider the estimation of an OD flow in the
presence of a large and abrupt traffic variation. Figure 3 depicts
the normalized traffic volume of a single OD flow in Abilene.
Before time370 there is little traffic in this OD flow, but after
this time a BGP egress-point shift causes a large and sustained
volume increase during almost18hs, until time580. We use
the first24hs of normal-operation TMs to calibrate the RNN-
TME, the RKFE, and the PCAE methods. We use one hour of
SNMP measurementsYt to calibrate the SMLE method [10].



100 200 300 400 500 600 700 800
0

20

40

60

80

Time (measurements)

N
or

m
al

iz
ed

 v
ol

um
e

 

 
real OD flow
SGE flow
TGE flow
RNNTME flow
RKFE flow
PCAE flow
SMLE flow

real OD flow

training period

SMLE calibration

RNNTME, RKFE, PCAE
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The SGE and TGE methods do not require calibration.
All methods properly track the OD flow volume evolution

before the occurrence of the anomaly. However, only the RNN-
TME and the PCAE methods achieve a proper estimation of
the anomalous traffic. The reason for this success is that no
traffic model is assumed by none of them. Very interesting is
the tracking power achieved by the RNN-TME method, which
is not a-priori justified, especially because no anomalous traffic
patterns were present in the learning step. This evaluation
permits to exemplify the strong dependence of the RNN-TME
method on the particular structure ofR that we mentioned
before. In fact, one of the links that are crossed by the
anomalous OD flow is only used by this particular OD flow,
and thus the learning process results in this case in simply
setting the RNN weights so as to copy at the output a scaled
copy of the corresponding input. As regards the accuracy
obtained by the PCAE method, we can say that the analyzed
OD flow was captured in the space defined by the principal
components. The rest of the methods impose assumptions on
the underlying traffic that are clearly modified in the event of
an anomaly.

C. Comparative Analysis

Figure 4 presents a comparative summary on the perfor-
mance of all methods in Abilene, using a validation dataset
composed of 672 consecutive TMs. The calibration of all
methods is done as before. Figure 4(a) depicts the cdf of the
RRMSE(t). The RNN-TME and the RKFE produce estimation
relative errors below10% for approximately90% of the TMs.
80% is the approximated result obtained by the PCAE method.
The estimation performance drops to nearly55% for the
SMLE method,40% for the TGE method, and to0% for the
SGE method. The mean values of RRMSE are4.95%, 4.48%,
6.53%, 10.3%, 11.2%, and39.1% respectively. As regards the
performance achieved by the ANN-TME method, we have
included the best and worst-case results obtained when varying
the mean number of hidden neuronsH̄ as in section III. It is
easy to appreciate the same stability issues that were evidenced
before. Figure 4(b) depicts the cdf of the Spatial RRMSE,
defined as:

SRRMSE(k) =

√

∑

t∈Tval
(xt(k)− x̂t(k))

2

√

∑

t∈Tval
xt(k)

2

, ∀k = 1 . . .m (6)

The SRRMSE(k) index summarizes the error produced in
the estimation of each single OD flowk over its lifetime.
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Fig. 4. 672 TMs and132 OD flows in Abilene.

Spatial errors are fairly more spread than temporal errors,
showing that some OD flows are more difficult to estimate
than others. A deeper analysis of the SRRMSE shows that
large SRRMSE values correspond to small OD flows. The
RNN-TME estimation method outperforms the rest of the
estimation algorithms, even for small OD flows, producing
spatial errors below20% for about90% of the132 OD flows.
This is a direct consequence of the learning technique used
in the method, where a single RNN is trained for each single
OD flow, capturing its particular characteristics.

V. CONCLUSIONS

In this paper we have revisited the TME problem, introduc-
ing a novel method to accurately estimate a large-scale TM
from aggregated measurements. There is an important effort
of comparison in this paper, which categorically highlights
the virtues of this new proposal. Using real data and a
real large-scale network topology, we have shown that our
method is more accurate than many other classical and modern
approaches, regarding not only the estimation of a TM but
also the analysis of individual OD flows. The RNN-TME
method is particularly attractive to estimate small-volume OD
flows, a task that other techniques can not even realize due to
large errors. The last contribution of this work is related to a
previous implementation of a Neural Network model to tackle
the TME problem. Compared to the classical ANN model,
our method based on RNNs is definitely more stable in the
definition of the Neural Network topology, a critical issue
regarding a reliable TME technique.

REFERENCES

[1] Y. Vardi, “Network tomography: estimating source-destination traffic
intensities from link data”, inJ. Amer. Statist. Assoc, 91, pp. 365-377,
1996.

[2] J. Cao et al, “Time-varying network tomography”, inJ. Amer. Statist.
Assoc, 95, pp. 1063-1075, 2000.

[3] A. Medina et al, “Traffic Matrix Estimation: Existing Techniques and
New Directions”, inACM Sigcomm, 2002.



[4] M. Roughan et al, “Experience in Measuring Backbone Traffic Variability:
Models, Metrics, Measurements and Meaning”, inACM Sigcomm IMW,
2002.

[5] Y. Zhang et al, “Fast Accurate Computation of Large-Scale IP Traffic
Matrices from Link Load Measurements”, inACM Sigmetrics, 2003.

[6] A. Lakhina et al, “Structural Analysis of Network TrafficFlows”, in ACM
Sigmetrics, 2004.

[7] A. Soule et al, “Traffic Matrix Tracking using Kalman Filters”, in LSNI,
2005.

[8] A. Soule et al, “Traffic Matrices: Balancing Measurements, Inference and
Modeling”, in ACM Sigmetrics, 2005.

[9] H. Ringberg et al, “Sensitivity of PCA for Traffic AnomalyDetection”,
in ACM Sigmetrics, 2007.

[10] P. Casas et al, “Efficient Methods for Traffic Matrix Modeling and On-
Line Estimation In IP Networks”, inITC21, 2009.

[11] D. Jiang et al, “Large-Scale IP Traffic Matrix Estimation Based in
Backpropagation Neural Network”, inIEEE ICINIS, 2008.

[12] H. Bakircioglu et al, “Survey of Random Neural Network Applications”,
in E.J.O.R., v. 126 (2), pp. 319-330, 2000.

[13] S. Mohamed et al, “A Study of Real-Time Packet Video Quality Using
Random Neural Networks”, inTrans. Circ. Syst. Video Tech., v. 12, pp.
1071-1083, 2000.

[14] C. Bishop, “Neural Networks for Pattern Recognition”,Oxford Uni.
Press, 1995.

[15] R. Duda et al, “Pattern Classification”,Wiley-Inter, 2000.
[16] E. Gelenbe, “Random neural networks with negative and positive signals

and product form solution”, inNeural Computation, v. 1, pp. 502-511,
1989.

[17] E. Gelenbe, “Learning in the Recurrent Random Neural Networks”, in
Neural Computation, v. 5, pp. 154-164, 1993.

[18] S. Uhlig et al, “Providing Public Intradomain Traffic Matrices to the
Research Community”, inACM Sigcomm CCR, 2006.

[19] Y. Zhang, “Abilene Dataset 2004”,
http://www.cs.utexas.edu/∼yzhang, 2004.


