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1 - IIE, INCO, Facultad de Ingenierı́a, UdelaR, Montevideo, Uruguay

2 - DIE, Universidad Cat́olica del Uruguay, Montevideo, Uruguay

3 - Departament de Tecnologia, Universitat Pompeu Fabra, Barcelona, Spain

4 - CNES, Centre National d’Etudes spatiales, Toulouse, France

{facciolo, fefo, apardo, almansa}@fing.edu.uy,

vicent.caselles@upf.edu, bernard.rouge@cnes.fr

Abstract

Minimal surface regularization has been used in several applications ranging
from stereo to image segmentation, sometimes hidden as a graph-cut dis-
crete formulation, or as a strictly convex approximation toTV minimization.
In this paper we consider a modified version of minimal surface regulariza-
tion coupled with a robust data fitting term for interpolation purposes, where
the corresponding evolution equation is constrained to diffuse only along the
isophotes of a given imageu and we design a convergent numerical scheme
to accomplish this. To illustrate the usefulness of our approach, we apply
this framework to the digital elevation model interpolation and to constrained
vector probability diffusion.

1 Introduction

In our work we apply a PDE based anisotropic diffusion technique that imposes both
geometric and data fit constraints to interpolation of digital elevation models (DEM).
Interpolation of DEM models requires to diffuse the known data points to unknown areas,
mainly because the elevation information is not valid everywhere. There are plenty of
techniques to obtain DEMs but we assume that the computationof the model has been
already done but the result is sparse and/or noisy. We propose to interpolate the unknown
areas by constraining a diffusion process to the geometry imposed by a reference image,
and coupling the process with a data fitting term which tries to adjust the reconstructed
surface to the known data. In a similar way this technique could be applied to the diffusion
probability (as we will show later), or to other denoising and restoration problems.

For simplicity, we shall work in a discrete framework, and thus images are repre-
sented as vectors inX := IRN×N. The above problem can be modelled as an optimization
problem:

minp∈X(E(p)+λD(p)) (1)

wherep ∈ X, D(p) is a term of attachment to the data that will be described later, and

1



E(p) is an anisotropic regularization energy written as:

E(p) =
N

∑
i, j=1

√

β 2 + |A(i, j)∇p(i, j)|2 (2)

whereA(i, j) is a 2×2 matrix for each(i, j) and∇ denotes any discretization of the gradient
(to be made precise later). The matrixA is called thediffusion tensorand allows to embed
some information on the directions were we want to constrainthe diffusion process. The
proposed equation (2) belongs to a family that has proven to be very useful in surface
regularization [8]; a representative of such family, even if less suited in the present case,
corresponds toA= Id, in this case the continuous analogue of the energy (2) measures the
surface area ofp (whereβ is the ratio between the horizontal dimensions and the vertical
dimension).

The gradient descent strategy to minimize (1) leads to the equation:

∂ p
∂ t

= div−−
(

A†A∇++p
√

β 2 + |A∇++p|2

)

−λ
∂D
∂ p

(p), (3)

(where−div denotes the dual of the gradient∇ in X) plus Neumann boundary conditions.
Diffusion equations of the form:

∂t p = div(A ∇p) (4)

whereA is a diffusion tensor, i.e., a map which associates to each(i, j) a positive definite
matrixA(i, j) have been studied in many contexts. In particular, Weickert[14] studied the
continuous, the time discrete and spatio-temporal discrete tensor diffusion models and its
applications; Tschumperle considered this problem in [13]together with its applications
to the diffusion of multi-valued data. In [15] Welk et al. have developed the so called
Locally Analytic Schemes (LAS) for this type of problems andanalyzed its connections
to wavelet shrinkage.

Even if the general model (4) contains (3) withλ = 0 as a particular case, the structure
tensor that we use does not satisfy the restrictions imposedin [14] to develop a stable
numerical approach (some diffusion across the level-linesis required in order to obtain a
stable numerical approximation). On the other hand, the precise form ofA that we are
going to use is adapted to the applications we have in mind.

We will develop a globally convergent and explicit numerical scheme for the solution
of (3). The use of implicit methods is not always convenient;this may be the case when
the data term is too complex, like thefundamental equation of correlation(proposed in
[6]) for which only an approximation is available [7]. Othersolutions based on energy
minimization via graph cuts could be used [3] but they may require an excessive memory
due to the size of our images (a digital elevation model may consist of images of size
1000×1000 pixels with a fine quantization of possible altitude values).

Let us describe the plan of the paper. In Section 2 we describethe precise model
used for DEM interpolation: we make explicit the structure tensor and the data fitting
terms. In Section 3 we propose (and prove the convergence of)an explicit numerical
scheme for the solution of (3) when the data fitting term is of robust type. In Section
4 we apply the proposed method to the interpolation of digital elevation models and we
display some experiments to illustrate its performance. Section 5 is devoted to study the
anisotropic vector probability diffusion model (VPD). Finally, Section 6 summarizes the
main conclusions of the paper.
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Figure 1: Regularization subject to level lines. The evolution of surfacep (dotted level set), is
subject to the geometry (square) whose normals arez. The gradient ofp is projected over the basis
{z,z⊥} and∇p−〈∇p,z〉z is aligned toz⊥.

2 An anisotropic diffusion model for DEM
regularization and interpolation

The windowed correlation is at the base of the most precise [6] photogrammetric tech-
niques but generates elevation maps that are sparse and irregular (Fig. 2). It seems nec-
essary to impose some regularity, specially in the reconstruction of urban areas where
the height map is essentially given by a piecewise affine model and where the relevant
information is mostly concentrated on the borders of the objects.

Assume thatu ∈ X is a given reference image of a stereo pair from which we have
computed the disparity map and the associated height reconstructionm: {1, . . . ,N}2→ IR.
We also dispose of a mask functionw(i, j) which is 1 at the points(i, j) for which we
dispose of an acceptable estimate of the error standard deviation (Err(i, j)) and 0 otherwise
(see [6]). It may happen that the known datam is sparse, specially after considering the
maskw. In that case we want to interpolate them to get a reconstructed height function
p on the full grid by minimizing a energy functional of the form(1). Assuming that the
geometry of the reference imageu (expressed in terms of its edges, representing buildings
in case of urban area images) is correlated to the heightp, we shall use an structure tensor
that correlates both the geometries ofu andp. For that, as in [4, 13], we diffuse the image
p along the level lines ofu that serves as a geometric constraint. To do this, we use the
vector fieldzof unit normals to the level lines ofu and we inhibit the diffusion ofp across
those level lines, in other words, we inhibit diffusion ofp in the direction ofz. For that
we define the structure tensorA(i, j) = (I −z(i, j)⊗z(i, j)) so that

A(i, j)(∇p(i, j)) =

(
1−z2

x −zxzy

−zxzy 1−z2
y

)

∇p(i, j) = ∇p(i, j)−〈z(i, j),∇p(i, j)〉z(i, j) (5)

where the entries of the matrix are evaluated at(i, j). We define a regularized version of
the vector field of unit normals to the level lines ofu in the following way: we define

z(i, j) =
∇u(i, j)
|∇u(i, j)| when |∇u(i, j)| ≥ b and z(i, j) =

∇u(i, j)
√

b2+|∇u(i, j)|2
otherwise, wereb > 0 is a

threshold on the gradient which ensures that its direction is reliable, in our cases we select
b = 50, for images with a range[0,3000].

Concerning the data fitting term, we have explored several possibilities. The most
common is the weightedL2 norm D2(p,m) = ∑N

i, j=1w(i, j)d2(p(i, j),m(i, j)), wherew(i, j)
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is the binary function described previously andd2(x,y) = (x− y)2. When the datam
are contaminated by outliers, it is more useful to use a robust term like theL1 norm,
or the following variant:D1(p,m) = ∑N

i, j w(i, j)d1(p(i, j),m(i, j)), d1(x,y) =
√

a2 +(x−y)2,
a> 0, which is chosen here because it keeps the robustness of theL1 norm and avoids the
numerical difficulties associated to the non-differentiability of the L1 norm at 0. Generally
we may dispose of an estimate of the noise standard deviation(σ ) that affects the measures
of m, then we may impose the data fitting term as a constraintD2(p,m)≤ σ2L whereL is
the number of pixels at whichw(i, j) 6= 0 (or a similar one forD1(p,m)≤

√
a2 +σ2L) and

choose the value ofλ so that the constraint is satisfied [2, 9, 1] (for instance, bymeans of
Uzawa’s algorith).

But using a single Lagrange multiplier will give an unfair weight to the values corre-
sponding to ”higher ground” in the computation of the error.In the case of DEM recon-
struction, since the disparities were calculated from a stereo pair by correlation, we may
assume that the differences(p−m) have 0 mean, and that we have at our disposal a local
estimateErr(m)2

(i, j) of the noise variance at each point(i, j). As it has been shown in [6],
such estimate (namedcorrelation curvature) is related to the correlation process and sug-
gests that the measures obtained near the image borders are the most reliable. Including
this information directly into the data fitting terms we obtain two new data terms:

D∗∗
2 (p,m) =

N

∑
i, j=1

w(i, j)d
∗∗
2 (p(i, j),m(i, j),Err(i, j)) where d∗∗2 (x,y,e) =

(x−y)2

e2 (6)

D∗∗
1 (p,m) =

N

∑
i, j=1

w(i, j)d
∗∗
1 (p(i, j),m(i, j),Err(i, j)) where d∗∗1 (x,y,e) =

√

1+
(x−y)2

e2

(7)
In both cases the new expected error per pixel is 1, and we write the constraints as:
D∗∗

2 (p,m)≤ L andD∗∗
1 (p,m)≤

√
2L. This observation allows us to use a unique value of

the multiplierλ for the whole data term; the resulting formulation is closely related to the
one presented in [9] but these authors adapt locally the values of their parametersλ .

3 Numerical Analysis of Constrained Diffusion

We denote byX the Euclidean space IRN×N. The Euclidean scalar product and the norm
in X will be denoted by〈·, ·〉X and ‖ · ‖X, respectively. Then the imageu ∈ X is the
vectoru = (u(i, j))

N
i, j=1. If u∈ X, the discrete gradient is a vector inY = X×X given by

∇++u := (∇+
x u,∇+

y u), where for eachi, j = 1, . . . ,N we define∇+
x u(i, j) = u(i+1, j)−u(i, j)

if 1 ≤ i < N and∇+
x u(i, j) = 0 if i = N, with an analogous expression for∇+

y u(i, j). Other
choices of the gradient are possible, this one will be convenient for the developments
below. We denote the euclidean norm of a vectorv∈ IR2 by |v|.

The Euclidean scalar product inY is defined in the standard way by〈~p,~q〉Y = ∑N
i, j=1

(p1
i, jq

1
i, j + p2

i, jq
2
i, j) for every~p = (p1, p2),~q = (q1,q2) ∈Y. The norm of~p = (p1, p2) ∈Y

is, as usual,‖~p‖Y = 〈~p,~p〉1/2
Y . By analogy with the continuous setting, we introduce a

discrete divergence div−− as the dual operator of∇++, i.e., for every~p∈Y andu∈ X we
have

〈−div−−~p,u〉X = 〈~p,∇++u〉Y.
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a) Reference image b) Ground truth c) Initial condition

d) Anisotropic diffusion e) Isotropic diffusion f ) 3D reconstructions ofd ande

Figure 2: DEM interpolation. From left to right: a sparse DEM to be interpolated, the ground
truth information, the reference image, two results obtained after regularization with anisotropic
and isotropic terms (usingD∗∗

1 data fitting) and the reconstructions side by side of them (front row
is the isotropic, while the back row is anisotropic). The elevation is encoded as a gray level images.

One can easily check that div−− is a discrete version of the divergence computed using
backward derivatives (see [5]).

Let us consider the discrete functional:

E(p)+λD(p) = ∑
1≤i, j≤N

√

β 2 + |A(i, j)∇++p(i, j)|2 (8)

+λ ∑
1≤i, j≤N

w(i, j)α(i, j)

√

a2 + |p(i, j)−m(i, j)|2

wherew(i, j) is a binary mask defined in Section 2 andα(i, j) > 0 is a weighting function to
be described later. We propose to solve the optimization problem:

min
p∈X

E(p)+λD(p). (9)

Since the functionalE +λD is strictly convex, there is a unique minimum of it inX, call
it p∗. To minimizeE(p) + λD(p) we use an explicit gradient descent method, i.e., an
iterative scheme of the formpn+1 = pn− tn∇(E+λD)(pn) with tn > 0 for all n, which in
the present case is:

pn+1 = pn + tn

(

div−−
(
At

pnApn∇++pn)−λwα
pn−m

√

a2 + |pn−m|2

)

, (10)
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plus Neumann boundary conditions, whereAp is defined asAp = At
p = A

(β 2+|A∇++ p|2)
1
4

.

Observe that, since we are in the discrete case, the term inside the parenthesis is
bounded inX with a bound independent ofn. Moreover, since the minimum ofE + λD
is unique, then using Theorem 1 below (see [12]){pn} converges top∗

Theorem 1 Let X be a vector space of finite dimension and J be a convex function defined
on X which has a bounded set of minimum points X∗. Assume that tn is a sequence of
positive numbers satisfying the conditions

tn > 0, lim
n→+∞

tn = 0,
+∞

∑
n=0

tn = +∞, (11)

and let xk be a sequence of vectors in X generated by the formula: xk+1 = xk− tk∂J(xk),
where∂J(xk) is a subgradient of J at xk with initial condition given by some x0 ∈ X. If
the sequence∂J(xk) is bounded, then there is a subsequence converging to some point
x∗ ∈ X∗. If the minimum of J is unique, then xk converges to it.

The above formulation (9) covers several interesting case:

• Case 1: α = 0. In this case we are only considering the energyE(p), and its

evolution is given by:pn+1 = pn + tndiv−−
(

At
pnApn∇++pn

)

.

• Case 2: α = 1, a being a positive constant andw ∈ X being a binary mask. It
corresponds to the minimization ofE(p)+λD1(p) described in Section 2.

• Case 3: α = 1
Err(m) ; a = Err(m). In this case the value ofα = 1/a is not constant

and can be interpreted as a weighting function to impose a local control on the
errors. In this case, we minimize the functionalE(p)+λD∗∗

1 (p).

Remark 1 Now let us consider the case where the data term in the energy is quadratic,
for instance, assume that we replace the termD(p) with:

D2(p) = ∑
1≤i, j≤N

α(i, j)w(i, j)(p(i, j)−m(i, j))
2 (12)

and we minimizeE(p)+λD2(p). In this case,∂D2
∂ p = 2α(i, j)w(i, j)(pn−m) is not bounded

∀pn and we cannot use Theorem 1. Let us denote

Cn(p) := div−−
(
At

pnApn∇++p
)
, Bn(p) = Cn(p)−2λαw p

whereαwp(i, j) = α(i, j)w(i, j)p(i, j) ∀(i, j). In this case, we may write the gradient descent
equations forE(p)+λD2(p) as:

pn+1 = pn +dtCn(pn)−dtλαw2(pn−m) = (Id +dtBn)pn +2dtλαwm. (13)

By iterating we may expresspn+1 in terms ofp0 by the formula:

pn+1 =
n

∏
i=0

[Id +dtBi(pi)]p0

︸ ︷︷ ︸

I

+2dt λαwm

{

1+
j=n−1

∑
j=0

(
n

∏
k= j+1

[

Id +dtBk(pk)
]
)

p0

}

︸ ︷︷ ︸

II

.
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The sequencepn is bounded and the above method is stable. This will follow asa conse-
quence of Proposition 1 below which guarantees the boundedness of the term(I) and the
convergence of the series in(II ) as soon asdt < β

4+λαβ . This condition allows to cover
two cases:

• Case A: α = 1 andw∈ X being a binary mask. It corresponds to the minimization
of E(p)+λD2(p) described in Section 2.

• Case B: α = 1
Err(m)2 . In this case the value ofα is not constant and can be inter-

preted as a weighting function to impose a local control on the errors. In this case,
we minimize the functionalE(p)+λD∗∗

2 (p).

For a linear operatorA : X→X, we denote byρ(A) its spectral radius, that is max{|λi | :
λi eigenvalue ofA}.

Proposition 1 If dt < β
4+λαβ , then‖Id +dtBn‖X = ρ(Id +dtBn)≤ 1−ε for someε > 0.

Proof. Observe thatCn is a symmetric operator and thus its norm inX coincides with
its spectral radius. Now, observe thatλi is an eigenvalue ofId + dtBn if and only if
λi = 1+dtµi −2dtλα for some eigenvalueµi of Cn. Our statement follows if we prove
that

−1+ ε ≤ 1+dtµ −2dtλα ≤ 1− ε ∀µ eigenvalue ofCn. (14)

Now, we observe that the eigenvalues ofCn are contained in the interval[− 8
β ,0]. Indeed,

if x is an eigenvector ofCn corresponding to the eigenvalueµ , we have

µ|x|22 = 〈Cn(x),x〉X = 〈div−−(At
xAx∇++x),x〉X =−〈At

xAx∇++x,∇++x〉Y
= −〈Ax∇++x,Ax∇++x〉Y =−‖Ax∇++x‖2

Y ≤ 0

and‖Ax∇++x‖2
Y ≤ 1

β ‖A∇++x‖2
Y ≤ 8

β because‖Ax‖ ≤ 1 and‖∇++p‖2
Y ≤ 8‖p‖2

X. Since
the eigenvalues ofCn are negative, (14) can be written as

2− ε ≥ dt(|µ |+2λα)≥ ε. (15)

If {µi} are the eigenvalues ofCn, this condition is implied if we choosedt such that

ε
mini |µi |+2λα

≤ dt ≤ 1− ε
maxi |µi |+2λα

,

which is implied by a choice ofdt such that ε
2λα ≤ dt ≤ 1−ε

(8/β )+2λα . We can find a value

of ε > 0 satisfying this as soon asdt < β
4+λαβ .

4 Experimental results

The experiments with DEM interpolation where performed using a low disparity synthetic
data set kindly provided by CNES - Centre National d’Etudes spatiales (the reference im-
age is shown in figure 2a). It was also provided a disparity map(figure 2c) and the map
of estimated disparity errors for each point (Err(i, j)), both where obtained according to
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ISOTROPIC ANISOTROPIC
DATA TERMS Meand1 Meand2 Meand1 Meand2

D1 1.0165 0.0367 1.0106 0.0236
D∗∗

1 1.0143 0.0321 1.0115 0.0254
D2 1.0199 0.0438 1.0118 0.0259
D∗∗

2 1.0158 0.0358 1.0123 0.0274

initial condition 1.0241 0.0552 N/A N/A

Table 1:Experiments with DEM interpolation, here are reported different combination of interpo-
lation algorithm and data terms. The errors are measured against the ground truth information as
the mean ofd1 and the mean ofd2.

the correlation technique described in section 2. As can be seen in figure 2c the ini-
tial disparity map is composed by sparse information, mostly because some points have
errors beyond a certain threshold, so the known data must be interpolated. To test the per-
formance of the different interpolation strategies we compare them against the provided
ground truth (figure 2b).

All the experiments where run with the same altitude ratioβ = 0.025, the time stepdt
was determined according to the described in Section 3, and theλ parameter is adjusted
to using the Uzawa´s algorithm [2, 1] to satisfy the constraints corresponding to each
data term (section 2). The local and the global constraints can be related by the following
observation, knowing the error mapErr(i, j) (which is the standard deviation of each point)

the global standard deviation is determined asσ =
√

1
L ∑i, j=0Err2

(i, j) = 0.032.

In figure 2 we compare the results of isotropic (figure 2e) and anisotropic (figure
2d) regularization of the data given in figure 2c. As it can be seen, the shape driven
regularization produces a more coherent result. This is confirmed by the reconstruction
displayed in figure 2f and by the errors in table 1 (computed with respect to to the ground
truth). We have also verified that the data fitting constraints are satisfied by our algorithm
and that the data fitting terms have a better local behavior when usingD∗∗

i that when
usingDi . Finally let us observe that the use of a robust norm (L1) effectively increases the
precision, but this improvement is generally marginal compared to the obtained with the
use of the precision information (Err(m)).

5 A Model for Anisotropic Vector Probability Diffusion

The diffusion of probability vector maps (VPD), introducedin [11] as a tool for improving
classification based on the same probability vector, is based on a vectorial form of the
Total Variation functional. An anisotropic version of it was proposed in [10] in order
to stop the diffusion across the edges of an imageu while allowing the diffusion along
them. This is achieved by means of the tensorA defined in (5), then given a vector of
probabilities~p(i, j) ∈ P = {~p ∈ Rn : ‖p‖1 = 1, pk ≥ 0} at each pixel(i, j), the MVPD
formulation results in:

∂ pk

∂ t
= div

(

A†A∇pk
√

β 2 +∑n
i=1‖A∇pk‖2

)

k = 1, ...,n. (16)
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The original formulation of VPD corresponds to the choicesA = Id andβ = 0 in (16).
Observe that, to be consistent, the solution of (16) should be in the simplexP, i.e.,

~pt
(i, j) ∈P for each(i, j) and anyt > 0. At the continuous level, this would be guaranteed

by the equation (16). But at the discrete level, if we use an explicit numerical scheme
the constraints are not always satisfied (for instance, it isnot difficult to check that the
maximum principle is violated), and have to be imposed aftereach iteration. For that we
define the projectionP of any vectorq∈ IRn onto the simplexP as the unique solutionP(q) of the minimum distance problem minp∈P ‖q−p‖2. Then we consider the following
discrete approximation to (16):

~pn+1 = P~pn +dtdiv




A†A∇~pn

√

β 2 +∑n
i=1‖A∇~pn‖2







 (17)

It is easy to prove that the equation (17) satisfies the conditions of theorem 1, proving
that the associated method is stable and convergent. The method falls in the first analyzed
case of section 3 where the data term of (1) is disabled by taking λ = 0.

An example of the application to the classification problem is shown in figure 3, there
are compared the classification errors of VPD and MVPD against the manual segmenta-
tion of the same frame, as well as the probability level lines[10].

Figure 3:Results of probability diffusion, plotted as level lines over the image. At leftis plotted the
initial probability map which has an error of 82 miss-classified pixels (of the6281 pixels belonging
to the manually segmented region), centered is the result of VPD (49 erroneous pixels) and at right
MVPD (40 erroneous pixels). It can be noticed that the level lines separating the helmet from the
face in MVPD image tend to follow the borders while the VPD does not.

6 Conclusions and Future Work

We have considered a variational model which couples an anisotropic regularization term
with a data fitting term and its applications to the interpolation of sparse digital eleva-
tion models and to probability diffusion. To minimize the energy functional, we solve
its Euler-Lagrange equation via a gradient descent approach using an explicit numerical
scheme, and we prove its convergence to the global minimum inthe case of theL1 based
data terms and its stability in the case of theL2 data terms. We have observed that the use
of an anisotropic diffusion (respecting the geometry of a reference image) and the use of
a robust data fitting term permits to improve the results wheninterpolating urban digital
elevation models.
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Several tasks remain for the future: the design of a fast numerical scheme, the evalu-
ation of other techniques like Graph-Cuts, and the design ofa multiresolution numerical
scheme. The incorporation of different data terms like the proposed in [6] is expected to
improve the results and further study of the local data fitting term model.
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[13] D. Tschumperĺe. PDE-Based Regularization of Multivalued Images and Applica-
tions. PhD thesis, University of Nice-Sophia Antipolis, December 2002.

[14] J. Weickert.Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart,
Germany, 1998.

[15] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: A link between dif-
fusion filtering and wavelet shrinkage. Technical Report No. 2100, IMA, University
of Minnesota, Minneapolis, USA, February 2006.

10


