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Abstract

Minimal surface regularization has been used in severdicipns ranging
from stereo to image segmentation, sometimes hidden aspa-gta dis-
crete formulation, or as a strictly convex approximatioif Yominimization.

In this paper we consider a modified version of minimal swefegulariza-
tion coupled with a robust data fitting term for interpolatjpurposes, where
the corresponding evolution equation is constrained faskfonly along the
isophotes of a given imageand we design a convergent numerical scheme
to accomplish this. To illustrate the usefulness of our apph, we apply
this framework to the digital elevation model interpolate&nd to constrained
vector probability diffusion.

1 Introduction

In our work we apply a PDE based anisotropic diffusion teghaithat imposes both
geometric and data fit constraints to interpolation of digélevation models (DEM).
Interpolation of DEM models requires to diffuse the knowtedaoints to unknown areas,
mainly because the elevation information is not valid ewdmgre. There are plenty of
techniques to obtain DEMs but we assume that the computafittihe model has been
already done but the result is sparse and/or noisy. We pedpaaterpolate the unknown
areas by constraining a diffusion process to the geometpps®d by a reference image,
and coupling the process with a data fitting term which treeadjust the reconstructed
surface to the known data. In a similar way this techniquédtbe applied to the diffusion
probability (as we will show later), or to other denoisinglarstoration problems.

For simplicity, we shall work in a discrete framework, andighimages are repre-
sented as vectors X := IRN*N. The above problem can be modelled as an optimization
problem:

Minpex (E(p) +AD(p)) 1)

wherep € X, D(p) is a term of attachment to the data that will be described, lated



E(p) is an anisotropic regularization energy written as:

N
E(p)= > \/ﬁ2+|A(i,j)Dp<i,j)|2 )
i,]=1

whereA; j is a 2x 2 matrix for eachi, j) and0 denotes any discretization of the gradient
(to be made precise later). The mattixs called thediffusion tensoand allows to embed
some information on the directions were we want to constiardiffusion process. The
proposed equation (2) belongs to a family that has proveretedny useful in surface
regularization [8]; a representative of such family, evidrgs suited in the present case,
corresponds té = Id, in this case the continuous analogue of the energy (2) mesithe
surface area gb (wheref is the ratio between the horizontal dimensions and theoagrti

dimension).
The gradient descent strategy to minimize (1) leads to thatam:
tAM++
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(where—div denotes the dual of the gradigénin X) plus Neumann boundary conditions.
Diffusion equations of the form:

op=div(=/0p) (4)

wheres is a diffusion tensor, i.e., @ map which associates to éagha positive definite
matrix «7; ;) have been studied in many contexts. In particular, Weididitstudied the
continuous, the time discrete and spatio-temporal distegtsor diffusion models and its
applications; Tschumperle considered this problem in {&8ther with its applications
to the diffusion of multi-valued data. In [15] Welk et al. ledeveloped the so called
Locally Analytic Schemes (LAS) for this type of problems aamthlyzed its connections
to wavelet shrinkage.

Even if the general model (4) contains (3) with= 0 as a particular case, the structure
tensor that we use does not satisfy the restrictions impws§#] to develop a stable
numerical approach (some diffusion across the level-lisesquired in order to obtain a
stable numerical approximation). On the other hand, theigpedorm of<” that we are
going to use is adapted to the applications we have in mind.

We will develop a globally convergent and explicit numek®eheme for the solution
of (3). The use of implicit methods is not always conveni¢nis may be the case when
the data term is too complex, like tfiendamental equation of correlatigiproposed in
[6]) for which only an approximation is available [7]. Othsolutions based on energy
minimization via graph cuts could be used [3] but they mayegan excessive memory
due to the size of our images (a digital elevation model maysisb of images of size
1000x 1000 pixels with a fine quantization of possible altitudeues).

Let us describe the plan of the paper. In Section 2 we desthndb@recise model
used for DEM interpolation: we make explicit the structugedor and the data fitting
terms. In Section 3 we propose (and prove the convergencanoxplicit numerical
scheme for the solution of (3) when the data fitting term isaffust type. In Section
4 we apply the proposed method to the interpolation of digievation models and we
display some experiments to illustrate its performanceti®e 5 is devoted to study the
anisotropic vector probability diffusion model (VPD). Rity, Section 6 summarizes the
main conclusions of the paper.
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Figure 1: Regularization subject to level lines. The evolution of surfadglotted level set), is
subject to the geometry (square) whose normalz.afle gradient op is projected over the basis
{z,z'} andOp— (Op,2)zis aligned toz".

2 An anisotropic diffusion model for DEM
regularization and inter polation

The windowed correlation is at the base of the most precispH{6togrammetric tech-
niques but generates elevation maps that are sparse agdaméFig. 2). It seems nec-
essary to impose some regularity, specially in the recoottm of urban areas where
the height map is essentially given by a piecewise affine inaade where the relevant
information is mostly concentrated on the borders of thectsj

Assume thau € X is a given reference image of a stereo pair from which we have
computed the disparity map and the associated height reaotisnm: {1,...,N}? — IR.
We also dispose of a mask functiow; ;) which is 1 at the pointgi, j) for which we
dispose of an acceptable estimate of the error standarateviErr ;)) and O otherwise
(see [6]). It may happen that the known datas sparse, specially after considering the
maskw. In that case we want to interpolate them to get a reconstuneight function
p on the full grid by minimizing a energy functional of the forfh). Assuming that the
geometry of the reference imagéexpressed in terms of its edges, representing buildings
in case of urban area images) is correlated to the hgiglie shall use an structure tensor
that correlates both the geometriesi@ndp. For that, as in [4, 13], we diffuse the image
p along the level lines ofl that serves as a geometric constraint. To do this, we use the
vector fieldz of unit normals to the level lines afand we inhibit the diffusion op across
those level lines, in other words, we inhibit diffusion pin the direction ofz. For that
we define the structure tensly; ;) = (I —z; j) ®%;,j)) so that

1-2Z —zz
A j) (UPGj)) = (_szy 1_Z;> Opi.j) = OPi.j) = (i, UPij)ziy ()
where the entries of the matrix are evaluated gt). We define a regularized version of
the vector field of unit normals to the level lines win the following way: we define
Zij) T )] when |[Oug ;)| > b andz; \/W otherwise, weréb > 0 is a
threshold on the gradient which ensures that its directaaliable, in our cases we select
b =50, for images with a rangé, 3000.

Concerning the data fitting term, we have explored severss$ipiities. The most
common is the weightetl> norm Dy(p,m) = Zi'\,‘jzlw(i,j)dz(p(i,jym(i,j)), wherew; j



is the binary function described previously adgx,y) = (x—y)2. When the datan
are contaminated by outliers, it is more useful to use a totarm like theL! norm,
or the following variantD1(p,m) = 2{f‘j Wi jd1(Pg,j) M jy)» (X% y) = /a2 + (x—y)?,
a> 0, which is chosen here because it keeps the robustnessldf tieem and avoids the
numerical difficulties associated to the non-differeritigbof the L norm at 0. Generally
we may dispose of an estimate of the noise standard deviat)ahat affects the measures
of m, then we may impose the data fitting term as a constiitp, m) < gL whereL is
the number of pixels at whiohy; ;) # 0 (or a similar one foD1(p,m) < va?+ g2L) and
choose the value af so that the constraint is satisfied [2, 9, 1] (for instancemi@ans of
Uzawa’s algorith).

But using a single Lagrange multiplier will give an unfairigfat to the values corre-
sponding to "higher ground” in the computation of the ertarthe case of DEM recon-
struction, since the disparities were calculated from eestpair by correlation, we may
assume that the differencgs— m) have 0 mean, and that we have at our disposal a local
estimateErr( )<I N of the noise variance at each pojitj). As it has been shown in [6],
such estimate (namaxbrrelation curvaturg s related to the correlation process and sug-
gests that the measures obtained near the image bordelrearmst reliable. Including
this information directly into the data fitting terms we dhteawo new data terms:

N
kK *% * X
D3 (p7m)=_le"d (PGj)»Mqi.j),Errijy) where g (x,y,e) = 2 (6)
i,)=
N . X — V)2
ZW,]d P j)s (i7j),Err(i7j)) where d*(x,y,e) = l+( ezy)
i,]=1
(7)

In both cases the new expected error per pixel is 1, and we \iré constraints as:
D3*(p,m) < L andDj*(p,m) < +/2L. This observation allows us to use a unique value of
the multiplierA for the whole data term; the resulting formulation is clggelated to the
one presented in [9] but these authors adapt locally theegadfitheir parameters.

3 Numerical Analysisof Constrained Diffusion

We denote byX the Euclidean space lRN. The Euclidean scalar product and the norm
in X will be denoted by(-,-)x and || - ||x, respectively. Then the imagee X is the

vectoru = (U(i,j))i'\,‘j:r If ue X, the discrete gradient is a vectorYn= X x X given by
O u:= (Ofu,0j u), where for each, j = 1,...,N we definel;} Ui, j) = Ugir,j) — Ui j)
if1<i<N andD Ui,j) = 0if i =N, with an analogous expression myu( j). Other

choices of the grad|ent are possible, this one will be coieverfor the developments
below. We denote the euclidean norm of a vestarlR? by |v].
The Euclidean scalar product Yhis defined in the standard way B, d)y = zi'\)‘jzl

(Pt + P77, for everyp= (p*, p?), 4= (g, ¢?) € Y. The norm offf = (p*, p?) € Y
is, as usual||p|ly = (B, ﬁ)}/z. By analogy with the continuous setting, we introduce a

discrete divergence div' as the dual operator &f* ™, i.e., for everyp € Y andu € X we
have

(—div=" p,u)x = (B,07 " u)y.
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Figure 2: DEM interpolation. From left to right: a sparse DEM to be interpolated, thermgo
truth information, the reference image, two results obtained after rézatian with anisotropic
and isotropic terms (usin@1* data fitting) and the reconstructions side by side of them (front row
is the isotropic, while the back row is anisotropic). The elevation is enccgladjeay level images.

One can easily check that div is a discrete version of the divergence computed using
backward derivatives (see [5]).
Let us consider the discrete functional:

E(p)+AD(p)= > N\/BZ+|A(i7j)D++p(i7j)|2 (8)

1<i,]

IA
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wherew; j) is a binary mask defined in Section 2 amgl;) > 0 is a weighting function to
be described later. We propose to solve the optimizatioblpno:

rngQE(p)HD(p). ©)
Since the functionaE + A D is strictly convex, there is a uniqgue minimum of itXy call
it p*. To minimizeE(p) + AD(p) we use an explicit gradient descent method, i.e., an
iterative scheme of the forp* = p" —t,0(E +AD)(p") with t, > 0 for all n, which in
the present case is:

Va2+|ph—mf?

n__
p"t = p"+t, (div—— (ApApO p") — Awar %> ; (10)
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Observe that, since we are in the discrete case, the teraeitise parenthesis is
bounded inX with a bound independent of Moreover, since the minimum & + AD
is unique, then using Theorem 1 below (see [¥3])} converges t@*

plus Neumann boundary conditions, whéveis defined a\, = A, =

Theorem 1 Let X be a vector space of finite dimension and J be a convetidartefined
on X which has a bounded set of minimum points Xssume that,tis a sequence of
positive numbers satisfying the conditions

+o00
th > 0, nlin+1 th =0, Z)tn = +oo, (11)
n=

and let ¥ be a sequence of vectors in X generated by the formiigk % x€ — t,dJ(x¥),
wheredJ(xy) is a subgradient of J atwith initial condition given by some’e X. If

the sequenc@J(x¥) is bounded, then there is a subsequence converging to soime po
x* € X*. If the minimum of J is unique, thek gonverges to it.

The above formulation (9) covers several interesting case:

e Casel: a = 0. In this case we are only considering the endigp), and its
evolution is given byp™?! = p" 4t div—— (A‘,:,,,AF,nD+Jr p”).

e Case2: o =1, abeing a positive constant amde X being a binary mask. It

corresponds to the minimization Bf p) + A D1(p) described in Section 2.

e Case3: o= ﬁ(m) ;a=Err(m). In this case the value @f = 1/ais not constant
and can be interpreted as a weighting function to impose @ loantrol on the
errors. In this case, we minimize the functiofdlp) +AD3*(p).

Remark 1 Now let us consider the case where the data term in the engigyaidratic,
for instance, assume that we replace the tBxmp) with:

Da(p) = i jyWai j)(Pi.j) — M j))? (12)
1<1,)<N

5D2 _

and we minimizeE(p) + AD2(p). = 20 jyW j)(P" —m) is not bounded
vp" and we cannot use Theorem 1. Let us denote

%n(p) ==div. " (ApApnO p),  Ba(p) =%n(p)—22awp

whereawpy j) = i jyW j)P.j) ¥(i, ). In this case, we may write the gradient descent
equations foE(p) +AD2(p) as
)

p™1 = p"+ dt%,(p") — dth aw2(p" — m) = (Id 4 dtB,) p" + 2dtA awm (13)
By iterating we may expregs' in terms ofp® by the formula:

j=n-1 n
M1 —0d +d 2dt A 1 Id +d oL
p i|1[ +dtBy(p')] p° + 2dt awm{ + ZO (kn [ +dtBy(p )D }

=j+1




The sequence"” is bounded and the above method is stable. This will follow asnse-
guence of Proposition 1 below which guarantees the bouredsdsf the ternil ) and the

convergence of the series (H ) as soon aslt This condition allows to cover

B
< ZiAaB
two cases:

e CaseA: o =1andw e X being a binary mask. It corresponds to the minimization
of E(p) + AD2(p) described in Section 2.

e CaseB: a = m In this case the value af is not constant and can be inter-

preted as a weighting function to impose a local control @netors. In this case,
we minimize the functionaE (p) + A D5*(p).

For alinear operatok: X — X, we denote by (A) its spectral radius, that is mép;| :
Ai eigenvalue ofA}.

Proposition 1 Ifdt < ﬁ, then||ld +dtBy||x = p(ld +dtB,) < 1— ¢ for somee > 0.

Proof. Observe thaf6, is a symmetric operator and thus its normXrcoincides with
its spectral radius. Now, observe thatis an eigenvalue ofd + dtB, if and only if
A = 1+ dty; — 2dtA a for some eigenvalug; of 4. Our statement follows if we prove
that

—1l+e<1l+dtp—2dtAa <1-—¢ Vu eigenvalue of,. (14)

Now, we observe that the eigenvalueséafare contained in the interv{}L%, 0]. Indeed,
if xis an eigenvector o&, corresponding to the eigenvalye we have
UX3 = (6n(¥),x)x = (div- " (AADOTX), X)x = —(AAO T X O x)y
= —(ADOTTxAOM Xy = —[|AO X2 <0

and A X|§ < FIIATT X < & becauselA|| < 1 and||0**p||§ < 8||p|}- Since
the eigenvalues df}, are negative, (14) can be written as

2—e>dt(|u|+2ha) > &. (15)
If {1} are the eigenvalues &f,, this condition is implied if we choosgt such that

£ 1-¢
— <dt ——————
min; || +2A a max || +2A a
which is implied by a choice aft such that;f; < dt < (8/31)%' We can find a value
of € > 0 satisfying this as soon al < ﬁ.

4 Experimental results

The experiments with DEM interpolation where performechgsi low disparity synthetic
data set kindly provided by CNES - Centre National d’Etuqestiales (the reference im-
age is shown in figure 2a). It was also provided a disparity (figpre 2c) and the map
of estimated disparity errors for each poifr(; j)), both where obtained according to



ISOTROPIC ANISOTROPIC

DATA TERMS | Meand; Meand, | Meand; Meand,

D1 1.0165 0.0367 | 1.0106 0.0236

Di* 1.0143 0.0321 | 1.0115 0.0254

D> 1.0199 0.0438 | 1.0118 0.0259

D3* 1.0158 0.0358 | 1.0123 0.0274
initial condition | 1.0241  0.0552 | N/A N/A

Table 1:Experiments with DEM interpolation, here are reported different contisinaf interpo-
lation algorithm and data terms. The errors are measured against tiredgrath information as
the mean ofl; and the mean afs.

the correlation technique described in section 2. As canele& & figure 2c the ini-
tial disparity map is composed by sparse information, npdsticause some points have
errors beyond a certain threshold, so the known data mustépolated. To test the per-
formance of the different interpolation strategies we careghem against the provided
ground truth (figure 2b).

All the experiments where run with the same altitude rfitis 0.025, the time stept
was determined according to the described in Section 3, parameter is adjusted
to using the Uzawa’s algorithm [2, 1] to satisfy the constsacorresponding to each
data term (section 2). The local and the global constrasmsbe related by the following
observation, knowing the error m&pr ; j) (which is the standard deviation of each point)

the global standard deviation is determinedras /1 ¥ j—o Errﬁ‘j) =0.032.

In figure 2 we compare the results of isotropic (figure 2e) amdairopic (figure
2d) regularization of the data given in figure 2c. As it can bers the shape driven
regularization produces a more coherent result. This ifircoed by the reconstruction
displayed in figure 2f and by the errors in table 1 (computeti véspect to to the ground
truth). We have also verified that the data fitting constsaame satisfied by our algorithm
and that the data fitting terms have a better local behavi@mwisingD;* that when
usingD;. Finally let us observe that the use of a robust ndrf) éffectively increases the
precision, but this improvement is generally marginal careg to the obtained with the
use of the precision informatioi (r (m)).

5 A Moddl for Anisotropic Vector Probability Diffusion

The diffusion of probability vector maps (VPD), introduded11] as atool for improving
classification based on the same probability vector, isdasea vectorial form of the
Total Variation functional. An anisotropic version of it eg@roposed in [10] in order
to stop the diffusion across the edges of an imagehile allowing the diffusion along
them. This is achieved by means of the ten&atefined in (5), then given a vector of
probabilitiesp; j) € # = {p€ R": ||p|lr = 1, px > O} at each pixeli, j), the MVPD
formulation results in:

.
9P _ 4iy . A AT ) k=1.n. (16)
ot VB + 311 IAOpK]




The original formulation of VPD corresponds to the choiges Id andf3 = 0 in (16).
Observe that, to be consistent, the solution of (16) shoalthlthe simplex#?, i.e.,
5t(i’j) € & for each(i, j) and anyt > 0. At the continuous level, this would be guaranteed
by the equation (16). But at the discrete level, if we use gligik numerical scheme
the constraints are not always satisfied (for instance, ibisdifficult to check that the
maximum principle is violated), and have to be imposed aftah iteration. For that we
define the projectioi® of any vectorg € IR" onto the simplex? as the unique solution
P(q) of the minimum distance problem mjnz ||g— p||?. Then we consider the following

discrete approximation to (16):

ATAOpN
VB2 43Iy AT P2

It is easy to prove that the equation (17) satisfies the cimmgditof theorem 1, proving
that the associated method is stable and convergent. Thedlls in the first analyzed
case of section 3 where the data term of (1) is disabled bypgaki= 0.

An example of the application to the classification problershown in figure 3, there
are compared the classification errors of VPD and MVPD ag#iresmanual segmenta-
tion of the same frame, as well as the probability level lifi€}§.

pl=P | ph+ dtdiv

17)

Figure 3:Results of probability diffusion, plotted as level lines over the image. Atdggiotted the
initial probability map which has an error of 82 miss-classified pixels (o628l pixels belonging
to the manually segmented region), centered is the result of VPD (48esuis pixels) and at right
MVPD (40 erroneous pixels). It can be noticed that the level lines aépgrthe helmet from the
face in MVPD image tend to follow the borders while the VPD does not.

6 Conclusionsand Future Work

We have considered a variational model which couples amtafsc regularization term
with a data fitting term and its applications to the interfiola of sparse digital eleva-
tion models and to probability diffusion. To minimize theeegy functional, we solve
its Euler-Lagrange equation via a gradient descent approsing an explicit numerical
scheme, and we prove its convergence to the global minimuheicase of thé! based
data terms and its stability in the case of tfedata terms. We have observed that the use
of an anisotropic diffusion (respecting the geometry offanence image) and the use of
a robust data fitting term permits to improve the results wih&rpolating urban digital
elevation models.
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Several tasks remain for the future: the design of a fast nicaiescheme, the evalu-
ation of other techniques like Graph-Cuts, and the designrofiltiresolution numerical
scheme. The incorporation of different data terms like tluppsed in [6] is expected to
improve the results and further study of the local data {jtterm model.
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