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1 Introduction

It is well known that the El Nifilo — Southern Osatilbn (ENSO) phenomenon [1]- a quasi

periodic oscillation of the coupled ocean atmoseplsststem over the equatorial Pacific Ocean —
conditions the climate of many parts of the wontttjuding southeastern South America. During

warm events or El Nifio years, with seas surfacep&atures in the equatorial Pacific higher

than average, precipitation over Uruguay tends dohlgher in certain seasons. Conversely,
during cold or La Nifia events, it tends to rairslg 3].

In this work, we will represent ENSO by a scalamtindy index that consists of the sea surface
temperature anomaly averaged over a box at theateuofuatorial Pacific called Nifio 3.4 region
[4]. Observed values of the N3.4 index are ava@dbi over a century.

The goal of this paper is to show the effect that ENSO-induced bias in the precipitation has
on the cost of energy supply in Uruguay. We furthersent a methodology to consider N3.4
index in the optimization tools that compute théropl policy for the use of the water stocked in
the hydroelectric subsystem.

We present the changes in the operation of thesysduced by the consideration of N3.4
index in the optimization process. We focus on diperation of the reservoir of Rincén del
Bonete because it is the biggest one in Uruguagage study was selected corresponding to the
time horizon from August 2009 to July 2010. At theginning of the selected period the
development of an EI Nifio event was already cledrtherefore more rains were expected in the
region, in particular for local spring. The evaloatof the results shows the significance of the
impact that this foreknowledge has on the operatfdhe system.

! Contact: Ruben Chaer - rchaer@fing.edu.uy - lnstide Ingenieria Eléctrica.
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2 The Uruguayan electricity system

2.1 Hydroelectric Plants

Uruguay has four hydroelectric plants: "Bonete” a§gorria” and "Palmar” on the Negro River
and “Salto Grande” on the Uruguay River, sharedh witgentina. Bonete is upstream Baygorria
which is upstream Palmar. The most relevant parnsnef these plants are presented in Table 3.

Bonete Baygorria Palmar  Salto-UY
Minimum elevation of the reservoir [m] * 70 53 36 03
Maximum elevation of the reservoir [m]* 81 56 44 .85
Discharge elevation [m]* Baygorria  Palmar 7.5 5
Storage capacity of the reservoir [Hm3] 8210 216 725 3058 **
Mean inflow from the basin [m3/s] 567 0 290 2323**
Maximum discharge flow [m3/s] 680 828 1373 4200 **
Installed power [MW] 155 108 333 945 **

Table 1. Hydroelectric plants of Uruguay: ELEVATION IS MEASURED ABOVE SEA LEVEL
(**): THIS VALUES CORRESPOND TO THE URUGUAYAN 50%ART OF THE PLANT.

2.2 Fud fired Plants
In the time horizon of this study the fuel firecdpts in operation are:

« 460 MW of aeroderivative gas turbine, burning diesi§ with a generation cost of
approximately 200 USD/MWh.

e 323 MW of steam turbines and moto-geneneratorjibgrfuel oil, with a generation
cost of approximately 130 USD/MWh.

2.3 Distributed generation

In the horizon of this study there are approxima&fl MW of distributed generation composed
of small wind farms and biomass fueled plants.

2.4 |nterconnections

Uruguay is interconnected with Argentina througb0@ kV system with a capacity of 2000 MW
and with Brazil through a 70 MW AC/AC converter thaks a 150 kV, 50Hz subsystem in the
Uruguayan side to a 230 kV, 60 Hz in the Brazikaie.

A new interconnection between Uruguay and Brazkasting to be built and will be in operation
in the 2% half of 2012. This date is out of the horizoniftstudy.

2.5 TheLoad of the system

The load of the Uruguayan electricity system sh@nmshourly curve that has the maximum
around 9 p.m. and the minimum near 4 a.m. Thec&steof the annual energy consumption is
displayed in Table 2.

Year 2009 2010 2011 2012 2013 2014 2015
GWh 8850 9204 9526 9860 10205 10562 10931

Table 2. Forecast of the Uruguayan energy load.
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3 Methodology.

3.1 The optimal operation policy and the Future Cost function..

The operation optimization of a hydrothermal systera complex problem. This is because we
are dealing with a system having reservoirs, sagbe of how to use the stocked resources is
not only how much to use of each stock but alsonwte use them. This is a classical
optimization problem [5]. A generic descriptionlés to ease the explanation of the proposed
methodology.

The problem can be stated as the optimal contmiblpm of a dynamical system as the one
sketched in Figure 1.
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Figure 1. Sketch of the dynamical system that nwothed electric system and its operation.

The inputs of the system are classified in two gsownon-controllable ¢*) and controllable
(“u”). The state of the system is represented by tovég”, while “y” is the set of outputs. The
“info” input to the Operator takes into account giddal information available to the Operator;
in this study the climate forecast associated to4NBdex. A forecast of the non-controllable
inputs t” is also used by the Operator and is representetdeébdotted line.

The controllable variableu™ consists typically of: the committed power at leaeneration unit
of the fuel fired plants, the amount of water gullland turbined in the hydroelectric plants, and
the power fluxes in the links with other power gyss.

The state vectorxX® captures all past and current information thateakvant to compute the
future evolution of the system with known futur@uis. It comprises the volume of water in the
reservoirs, the information that represents the eretlry condition and any other necessary
information to compute the future system. Theestdithe system results from its

We formulate an optimization problem where the ofoye is to minimize the operation cost: fuel
consumption plus imports plus the country costaf ih supplying the energy demand. The
computation is discretized in a set of consecustages or time steps. The production costs of
each thermal unit and the cost of fail is knoweath time step. Water in the reservoirs does not
have an explicit cost so the production cost ofrbgtkctric plants is not predefined.

The present use of stocked water potentially irsgeduture productions costs. The preservation
of water today for a later use may reduce produatimsts in the future, but it certainly increases
the cost today due to the additional thermal gdimerahat will be needed. This is the core of the
problem, to find a policy of use of stocked resesrthat balance present and future costs.

We thus face an optimization problem: to minimizeoat function subject to several constraints
-including the dynamic of the system- where thaisoh must be the expected minimum cost
over the ensemble of possible realizations of thehastic process™ A good introduction on
how to build the problem equations can be founiéjn

There are well known strategies to face this pmobl&@he most classical is called Stochastic
Dynamic Programming (SDP)[5]. For this study, thenSEE software [7] was used to run a
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classical SDP algorithm, which computes the costction from future back to present. To
proceed with the calculations, a time and spaceratization is defined for each of the state
variables of the system.

The SDP algorithm gives as a result the Bellmarction [5], also called Future Cost function,
denoted in this work as FC(x, t), wheng is the state of the system antd fs time. FC(x,t)
gives, at each timet™and for each state “x”, the minimum expected aufsbperation, from the
time “t” to the end of times.

The FC function implies the system operation polisyy each time step, when the optimization
problem of operation is posed, it must be decided imuch of each resource has to be
committed. Storable resources that do not havexahcé cost (e.g., water in the reservoirs),
instead have a future value that is minus the dBve of FC with respect to the resource, at the
end of the time step. If the use of a volume dVha stage implies savings in direct costs (fuel,
fail, imports) that are larger (smaller) than therease caused in FC due to the variation of the
system state associated to the extraction of d&/d#zision will be to (not) use that volume. For
this reason, an operation policy is equivalenttd-& function.

In this study, we are comparing the performancevofoperators, each one with its own optimal
operation policy resulting of the information knawrhe difference among them is that one is
more informed than the other. We shall call thss lenformed operator OPLI and OPMI to the
more informed operator.

The information that makes the difference amongratpes is related the climate forecast
associated to the conditioning of inflows due toSEN (represented byN3.4 index). For the
computation of its optimal operation policy (or F@nction), OPLI does not consider N3.4
information, while OPMI does. This info is congidé in the model of hydraulic inflows to the
reservoirs.

SIMSEE includes a model of these stochastic presdbat generate synthetic series of inflow to
the reservoirs. These series are used in a Monti® Gianulation in the SDP algorithm. The
difference between operators is reflected in thesmlels of stochastic processes. When
considering the expected inflows to the reserva@egh operator visualizes them as a “cone” of
possible values; the larger the uncertainty, thdewithe cone. It is expected that the better
informed OPMI has a lower variance than OPLI, dmeréfore a narrower cone, as shown in
Figure 2.

OPMI

m3/s

Figure 2. Uncertainty cones of non-controllableiatales ‘+” -represented in the model by stochastic processes
associated with each operator

These uncertainty cones should be conceived assddia probabilities. For example, it can be
thought that, from the whole set of realizations stéchastic processes synthesized by the
corresponding models, the cones represent valuemicha 90% confidence of not being
exceeded, both in the sense of falling above tipeulmit or below the lower limit.

SIMSEE has a tool -called “CEGH"- that identifiepawls for the stochastic processes, see the
apendix of [8]. In the scope of this work, the $tastic processes of concern are mainly those
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that generate the water inflows to the reservdire historical available data is a 100-year long
time series of the average weekly values of theowd to the reservoirs of the three most
important hydroelectric plants in the country.

The model should be capable of generating syntlseties with the same properties as those of
historical data, meaning that, at least, thesehsyiat series should maintain the amplitude
histograms of the original series and that thetim@f the hidden stochastic processes is properly
represented. The idea behind CEGH modelling isuitdba set of non-linear transformations
(NLT) and their inverses so as to be able to work IGaussian world”. The reader can think of
the NLT as a set of “lenses” that distort the atopgis of the time series, making them look
Gaussian. Since the linear transformation of a &ansprocess is also Gaussian, once in the
distorted Gaussian world, we can make use of altdbls of linear system identification without
losing the shape of the histograms. Once a lineateinis obtained that captures the inertias and
correlations of the (transformed) data series, a® use it to synthesize series in the Gaussian
world and then apply the set of inverse NLT to $farm those synthetic series to the real world.

Two different CEGH models are built in this studye first one considers the full 100 year of
the historical data series in the design of thelinear transformations (NLT). The second one
considers only a subset of 30 years of the hisibdata series, the analog years, selected based
on the condition of ENSO (see section 3.3).

The optimal policy obtained with SDP using the tfisodel corresponds to the OPLI (Less
Informed OPerator), which does not take into actolie ENSO-related climate forecast, while
the optimal policy obtained with the second modairesponds to an OPMI (More Informed
OPerator), which considers ENSO conditioning oliows.

If we consider the distribution of inflows condiied by N3.4 as a more accurate
characterization of the expected inflow, we can et the OPMI is more informed than the
OPLI and therefore constitutes a better operatioliicya This does not imply a lower cost of
operation of the system for a particular realiagtisince the forecast is probabilistic and chance
may favor the OPLI. However, if we consider expdatalues, the operation of OPLI is bound to
be more costly than the operation of OPMI.

3.2 Quantifying the economic value of the climate forecast.

Given the two CEGH models and the correspondingatipe policies, we can assess the
economic impact associated to the information gibbgrihe N3.4 index regarding the expected
inflows. We need to compare the operational cost®@ated with each operation policy in a
given timeframe and for the same set of realizatiohthe stochastic processes. We carried out
two set of simulations of the system, one with eakcthe operation policies, but with the same
stochastic model, the one that considers only tiadog years in the NLT, since it is our best
model for the simulation period. Since OPMI wasnged in that environment of uncertainty it
will inevitably outperform —in a mean sense- OPWhich resulted from the optimization in a
broader uncertainty cone. In other words, the ebgaecost of operation should be lower for
OPMI; we want to quantify how much lower.

For each realization, operation policy and timg sthe total cost of operation results from the
sum of the direct costs (fuel + fails + importsjeady incurred since the beginning of the
simulation period to date, plus the value of thife cost function CF(x,t) evaluated at the state
reached by the system at that instant. The futasé function was previously determined in the
optimization process and depends on the uncertamtyg, so that CF(x,t) are different in each
operation policy. Since OPMI is better informed, eamsider CBpui(X,t) to be a better estimate
of future costs.
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Therefore, we can compute total cost function ffedent ways with different interpretations:

Total cost predicted by OPLI

t=t0

t
CTOPL,_p(t):<jchPL, W,r,t).dt+CF,g, (x,t)> , where cd,,, @t t) are the direct costs
R

incurred during the operation andthe control variables associated with OPLI polidye
system reaches stataat timet as a consequence of the operation and the undledtk@riables
r. Brackets denote expected value over the ensevhbéalizationg (t).

Expected total costs for OPLI

t
CTor (t) :< jchPL, U,r,t).dt+CF.p, (x,t)> , which differs from the previous one in that the
t=t0 R

future cost at the statethat results from applying OPLI policy is estindhigith OPMI.

Expected total costs for OPMI

t

CTom (t) :< jchPM, U,r,t).dt+CF.p, (x,t)> . Note that the future cost for the same time step
t=t0 R

differs from the one in the previous case through dependence on the statewvhich in turn

depends on the previous operation policy.

We can quantify the value of the climate forecadtio complementary ways.
First we can compute the expected Value due to &exiuin Costs:

VRQt) = CTOPLI_e(t) — CTopm (t)’ Eq. (1)

which is null att=t,, becomes non-zero as the system is operated hathdifferent policies
(OPMI and OPLL.) and reaches a final value at the ef the simulation period CR(t) which
accounts for the expected total reduction in cas th the additional information provided by
N3.4 index.

We can also compute the value of the informatios tdua more accurate prediction of total costs
at the beginning of the period, which has an assedifinancial benefit since a more accurate
amount of capital is frozen for the operation af #ystem. The error in the prediction of costs at
the beginning of the period is given by:

Errp(to) = CTOPLI _ p(tO) - CTOPMI (to) ) Eq. (2)

which is -in general- nonzero due to the differérture cost functions associated with each
operation policy, since direct costs are zero atitiitial time. The financial cost associated with
the error in the prediction of costs can be eswgghaassuming a 4% annual interest rate as:

axErnP, with a =(104)""*-1 andYearsthe length of the simulation period.
Therefore, the total value of the information is:
Vinfo=VRC(t,) + a x ErrP Eq. (3)
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3.3 Subset of analog years.

Extreme events of El Nifio-Southern Oscillation (EN$eak towards the end of the calendar
year, reaching the maximum amplitude of sea surt@cgerature anomalies respect to the mean
annual cycle. The ENSO state for the entire peabahterest (August 2009 to July 2010) was
therefore characterized by a single number, thaevaf N3.4 index averaged from November
2009 to January 2010. In view of the known relatimtween N3.4 and inflow to Rincon del
Bonete [9], we consider that the historical inflovgtribution limited to those years that share a
similar value of N3.4 for the November to Januanyéster better represents the expected value
compared to the entire historical set. We call slulsset of years, the analog years.

With this methodology, all weeks of the simulatjperiod share the same subset of analog years,
since these are determined by the N3.4 index dwifiged trimester of the year. We are aware
of the strong seasonality of ENSO influence onaeal precipitation [10]. However, we chose to
adopt this simple definition of analog years forimitial study and leave seasonal variations for
future work. The distribution of inflow values ihd analog years is significantly different from
the universe of inflows on record only for specfi@rts of the years, those seasons in which N3.4
is known to condition the local climate. On otheasons the two distributions (entire record and
analog years) are very similar and the limitatiorthe sampling cannot be justified. However,
precisely because of the similarity in the disttibns, no major influence in the results is
expected from this simplification in the methodotog

There is a tradeoff in the definition of the siZdle subset of analog years. On the one hand, if i
Is too small, the interannual variability of inflowithin years with similar ENSO conditions is
not well captured. On the other hand, as the sulpstst larger, it starts to incorporate analog
years with increasingly different ENSO conditio®perience shows that for a century long
dataset it is reasonable to limit the size to 3@rgeand that results don’t change substantially
with small changes in the number of analog years.

Of course, the value of N3.4 for November 2009 ruday 2010 was not known in August 2009,
at the beginning of the period of the retrospecsiveulation. Instead, we took the best prediction
available at the time. NCEP climate forecast froogdst 2009 predicted a mean anomaly of
1.7°C for N3.4 index for the target trimester. dibyed to be quite a skillful prediction since the
observed anomaly turned out to be 1.68°C.

1911 1912 1913 1914 1915 1918 1919 1923 1925 1926
1929 1957 1958 1963 1965 1968 1969 1972 1977 1980
1983 1986 1987 1991 1992 1994 2002 2003 2004 2006

Table 3. List of analog years, those with ENSO d@mas in Nov.-Jan. similar to the ones during $iraulated period.

3.4 CEGH modd calibration.

SIMSEE simulator includes a module that trainsaingtochastic processes on given temporal
time series, in our case inflow to the reservaiitss results in a calibration of the linear system
that will in turn be used to simulate the stocl@aptiocesses during optimization and simulation
phases. This calibration, that accounts for thetsieom memory and cross correlations of the
uncontrolled variables, takes place in “Gaussiaaceph CEGH (for Correlation in Gaussian
Space of amplitude Histograms) therefore includesget of nonlinear transformations (NLT)
previously mentioned that transforms temporal sefriem the real to Gaussian space and back.

The identification of the model (determination detNLT and the coefficients of the linear
system) was separately done based on the whotd $60 years of historical time series and on
the 30 analog years only. Figure 3 shows the egdeittflows to Bonete (B), Salto (S) and
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Palmar (P) for the simulation period (August 2009uly 2010) based on the entire dataset and
on the analog. The larger inflows in analog yeaftect the wetter conditions associated with El
Nifio years.

expected weekly values of the inflows to the reservoirs
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Figure 3. Expected inflows for to Bonete (B), S8 and Palmar (P) during the simulation periodsatering the entire dataset (dashed lines)
and the analog years only (solid lines).

The linear system in Gaussian space is of the f&fkt1) = A* S(k) + B* W(k), where S is the
state of the stochastic process and W a vector afs§8an cross-independent white noise.
Training such system in the two cases considemu]ers the following set of coefficients (the
matrices are three-dimensional because we aredmimg) three reservoirs: Bonete, Salto and
Palmar):

Identified coefficients for the system trained in he entire 100 record

0.761 0.025 0.076 0.380 -0.181 -0.397
A= 10.158 0.626 0.010 B= 0.614 0.253 0.174

0.121 -0.033 0.780 0.182 -0.477 0.243
Identified coefficients for the system trained in he 30 analog years

0.680 0.038 0.099 0.496 -0.179 -0.392
A= [0.111 0.606 0.020 B= 0.617 0.356 0.197

0.088 -0.005 0.748 0.261 -0.500 0.280

Table 4. Coefficients of the linear system traineder the two cases considered.

The two set of coefficients are similar, indicatithgit the main influence of ENSO conditioning
on inflows is not in the short term memory and srosrrelations but in the amplitude of inflow
histograms, as can be deduced from Figure 3. Tdmsirthnt effect is captured in the set of
nonlinear transformations.
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4 Results

Figure 4 shows the two optimal policies (OPMI arlL® for the use of the stocked water of the
Bonete reservoir during January-February 2010. Fdrezontal lines, TV and TG, correspond to
the variable cost of the fuel fired units, Vaporrfiines using fuel oil and Gas Turbines using
gasoil, respectively.
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Figure 4. Comparison of the policies of the operatf the Bonete reservoir,
average for January and February 2010 in the esgédutdrological state.

The information provided by N3.4 index changes pudicy of use of the reservoir at the
beginning of 2010, lagging the dispatch of thermmaits until the elevation of the reservoir is
reduced 1.6 meters below the elevation at whichstmae thermal plant would be committed
using the OPLI policy (see Figure 4). This is oatyexample, for a given state of the system, of
the differences induced by the knowledge of Nii iBdex in the optimal operation policy. It
implies that the estimation of the value of theckeml water at that time is higher for OPLI as
compared to OPMI, which is confirmed in Figure 6th€ consequences of the different
information considered by the operators of theesyisare shown below.

Figure 5 shows the expected value of the Bonetrves level for both operation policies. The
upper curve corresponds to the OPLI operation, kvltoes not consider ENSO-related wet
climate forecast and is therefore more conservatitie water management. The initial level is
set to be the same in both simulations. The figgéls are also the same for both operators,
which is consistent with the fact that by the ericthe period (one year) the impact of the
different information considered by the operatdrtha starting time vanishes.
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Figure 5. Expected evolution of the elevation ohBi reservoir.

Fig. 6 shows the expected value of water in theeBomeservoir. It can be seen that the OPLI
operation (black curve) is significantly more cansgive (higher value of water) compared to
OPMI during the first several months of the simiolat Since both operators start from the same
initial condition, the more conservative managemenOPLI results in higher levels of the
reservoir (Figure 5). The larger volumes of stockeder affect the value of water which thus
starts to decrease. Only by March 2010 does theatag value of water for OPLI fall below that
of OPMI. At this point OPLI will start, for the &t time in the period, to turbine more water than
OPMI (see Figure 7).
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Figure 6. Expected evolution of the value of theéewatored at Bonete reservoir.
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Figure 7 shows the expected weekly average of nadcbiand spilled flow rates for both
operations and inflows to Bonete reservoir. Atlteginning of the period, it is observed that the
OPMI starts turbining far more water than OPLI mattempt to reduce future spilling. This is
because, based on the Nifio 3.4 index informatidPlMiDexpects a wetter season and higher
inflows than the OPLI.
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Figure 7. Expected operation of the Bonete hydoteteplant.

We can see that, in November and December 2008, dierators have considerable spilling.

However, those of OPMI are somewhat lower. The shagmpens at the beginning of 2010

winter when high inflows are expected once moreaiAgthanks to the lower level of operation

of the reservoir, OPMI manages to have lower spjlliates even though the operator is turbining
less water than OPLI at that time.

Table 5 shows the different use of water duringwele period for both operators, OPMI and
OPLlI, as percent of the incoming volume and thati@h among them.

Spilled Turbined Stored

OPMI 33% 46% 21%
OPLI 38% 40% 21%
OPLI/OPMI 1.17 0.89 0.99

Table 5. Use of t8 water for each operation policy (see text)

The OPLI spills 17% more water and turbines 1196 liksn the OPMI. Both operators store
21% of the inflow volume, which is consistent wigure 5 where it is shown that both the
initial and final levels are the same for both @pers. It is important to note that the OPMI
succeeds in reducing the spilled water.

Fig. 8 shows the expected value of operation cosraulated since the beginning of the period
for each operator (left axis) and its differenaght axis). The expected values of operation costs
(fuel + fail + imports) during the year add up ®03VIUSD and 331 MUSD for the OPLI and the
OPMI respectively. The accumulated over cost of @fLl with respect to the OPMI is 30
MUSD (about 10% of the yearly cost).
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Figure 8. Expected evolution of the expected value accumulated operational costs.

Figure 9 shows, for each time step, the Value dugaduction in Costs (VRC), and the Error in
the Prediction of costs (ErrP), as defined in Hgand 2 respectively.
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Figure 9. Value of N3.4 index information available August ¥ 2009. Evolution of the VRC and ErrP measures.

“ErrP” measures the prediction error in the totasdtcof the OPLI with respect to OPMI. At the
beginning of the period, that value reaches 167 MUUBhis means that, at that time, the OPLI
makes a cost estimate for the year, which is 167SRMUigher than the OPMI estimate. “VRC”
shows, at each time, the over cost attributablia@cOPLI lack of climatic information. As was
already mentioned, at the end of the period ovst equals 30 MUSD. The value of information
provided by N3.4 index on August 2009, as givenHzy 3, amounts to 30 + 0.04*167 =
36.7 MUSD.
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5 Discussion, conclusions and future work.

ENSO is known to affect precipitation and thereforux to the reservoir of the hydroelectric
dams in Uruguay. A methodology was developed te ta@nsideration of this information
(through the N3.4 index) in the optimal dispatclarpiing of Uruguayan energy system.
Optimization and simulations were carried out fare-year-long case study starting in August
2009 when a warm event (El Nifio) was developintheequatorial Pacific.

The results for the case study implemented aree egignificant. The operator that takes into
account N3.4 information has an expected savir@d¥lUSD when compared with the operator
that ignored the climate forecast associated to @NEhis saving is approximately 10% of the
expected operation cost for the 12 months considé&kecomponent of this savings is financial,
due to do the better capacity of the informed cjper® forecast the operation cost of the period.
For this case, the less informed operator overaséisthe operation cost of the period in 150
MUSD, equivalent to 45% of the operation cost eated by the more informed operator. The
rest of the savings comes from lower direct cosis t a better management of the reservoirs,
where spilling is reduced in 17%. In years of vieny inflows, there is very little room for water
management and no risk of spilling water from thgervoirs, so different operation policies will
have little differences in the direct costs incdrie the long run. However, the savings due to a
better initial prediction of total costs remainida¢ven if the climate forecast is a dry one rather
than a wet one.

This individual case study is highly promising bétpotential usefulness of climatic information
to improve the operation of the electrical systemUouguay. Nevertheless, there are many
shortcomings in the methodology that limit the ssop which these results can be generalized.
Each of these shortcomings in turn indicates aipleskne of future development. We end up by
addressing a few of them.

Skill of the climate forecasWe assumed that the more informed operator iseddbetter
informed. Given a methodology to incorporate clienfdrecasts to the operation of the system,
which in this study consists on the simple N3.4l@pgears approach, its skill and impact needs
to be assessed in a large number of cases to ddoouhe probabilistic nature of the climate
forecast. In this study we entirely skipped thsuis concentrating on the impact of the forecast
on the operation and economic outcome for a paaticoase. It is worth mentioning that
precipitation over Bonete basin was larger thamatology in each of the first 7 months of the
period considered and that the total precipitation that period was more than twice the
climatological value. Still, this information is lpnanecdotal and does not substitute for a
rigorous analysis of skill and impact of forecasts.

Non-deterministic forecast of ENSBNSO predictions are subject to errors, althotinghskill
has consistently improved over the years. This a@pgartly on forecast lag, but also on the
state of the coupled ocean-atmosphere system teerequatorial Pacific. In the future, a
probabilistic prediction of ENSO (through N3.4 imder other) could be included in the
generation of the stochastic processes. This appradl become inevitable if the optimization
and simulation period extends beyond the prediltyabhreshold for ENSO, which has already
been stretched in this study. In particular, foltigear planning simulations, there will be a need
to incorporate a model that captures the dynanfiEN&O.

Seasonality and lack of predictabilitipoth shortcomings were already highlighted presig.
The analog year approach needs to be generalizacttaunt for the seasonality of ENSO signal
in the regional climate. One way could be to detime analog years for each week of the year.
During many weeks, though, there will not be a ki signal and the conditioned distribution
may not differ from the entire historical recora, particular during ENSO neutral years. In
principle, this does not constitute a problem f@ methodology. Should there be other predictor
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of the local climate (i.e. the Atlantic Ocean) feient indeces could easily be incorporated to this
methodology as well.

After the fact evaluationsThis study was performed entirely with informati@available on
August 2009. Once the influx time series for tlegigd becomes known, it is interesting to
perform evaluations incorporating the new informatiThe total cost with each of the operation
policies, OPLI and OPMI, could be computed for thalized influx time series. Moreover, a
Perfect OPerator (OPP) policy could be assessennasg the realized time series known at the
initial time, redoing the optimization and, fingllgomputing the cost of OPP with the realized
(and previously known) inflow. In this way, an uppsound of the value of the unknown
information can be found.
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