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1 Introduction 
It is well known that the El Niño – Southern Oscillation (ENSO) phenomenon [1]– a quasi 
periodic oscillation of the coupled ocean atmosphere system over the equatorial Pacific Ocean – 
conditions the climate of many parts of the world, including southeastern South America. During 
warm events or El Niño years, with seas surface temperatures in the equatorial Pacific higher 
than average, precipitation over Uruguay tends to be higher in certain seasons. Conversely, 
during cold or La Niña events, it tends to rain less [2-3]. 

In this work, we will represent ENSO by a scalar monthly index that consists of the sea surface 
temperature anomaly averaged over a box at the central equatorial Pacific called Niño 3.4 region 
[4]. Observed values of the N3.4 index are available for over a century. 

The goal of this paper is to show the effect that the ENSO-induced bias in the precipitation has 
on the cost of energy supply in Uruguay. We further present a methodology to consider N3.4 
index in the optimization tools that compute the optimal policy for the use of the water stocked in 
the hydroelectric subsystem. 

We present the changes in the operation of the system induced by the consideration of N3.4 
index in the optimization process. We focus on the operation of the reservoir of Rincón del 
Bonete because it is the biggest one in Uruguay. A case study was selected corresponding to the 
time horizon from August 2009 to July 2010. At the beginning of the selected period the 
development of an El Niño event was already clear and therefore more rains were expected in the 
region, in particular for local spring. The evaluation of the results shows the significance of the 
impact that this foreknowledge has on the operation of the system. 

 

 

 

                                                 
1 Contact: Ruben Chaer - rchaer@fing.edu.uy - Instituto de Ingeniería Eléctrica. 
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2 The Uruguayan electricity system 
 

2.1 Hydroelectric Plants 
Uruguay has four hydroelectric plants: ”Bonete”, ”Baygorria” and ”Palmar” on the Negro River 
and “Salto Grande” on the Uruguay River, shared with Argentina. Bonete is upstream Baygorria 
which is upstream Palmar. The most relevant parameters of these plants are presented in Table 3.  

  Bonete Baygorria Palmar Salto-UY 
Minimum elevation of the reservoir [m] * 70 53 36 30 
Maximum elevation of the reservoir [m]* 81 56 44 35.5 
Discharge elevation [m]* Baygorria Palmar 7.5 5 
Storage capacity of the reservoir [Hm3] 8210 216 2575 3058 ** 
Mean inflow from the basin [m3/s] 567 0 290 2323** 
Maximum discharge flow [m3/s] 680 828 1373 4200 ** 

Installed power [MW] 155 108 333 945 ** 
 

Table 1. Hydroelectric plants of Uruguay. (*): ELEVATION IS MEASURED ABOVE SEA LEVEL 
(**): THIS VALUES CORRESPOND TO THE URUGUAYAN 50% PART OF THE PLANT. 

 

2.2 Fuel fired Plants 
In the time horizon of this study the fuel fired plants in operation are: 

• 460 MW of aeroderivative gas turbine, burning diesel oil, with a generation cost of 
approximately 200 USD/MWh.  

• 323 MW of steam turbines and moto-genenerators, burning fuel oil, with a generation 
cost of approximately 130 USD/MWh. 

 

2.3 Distributed generation 
In the horizon of this study there are approximately 60 MW of distributed generation composed 
of small wind farms and biomass fueled plants. 

 

2.4 Interconnections 
Uruguay is interconnected with Argentina through a 500 kV system with a capacity of 2000 MW 
and with Brazil through a 70 MW AC/AC converter that links a 150 kV, 50Hz subsystem in the 
Uruguayan side to a 230 kV, 60 Hz in the Brazilian side. 

A new interconnection between Uruguay and Brazil is starting to be built and will be in operation 
in the 2nd half of 2012. This date is out of the horizon of this study. 

 

2.5 The Load of the system 
The load of the Uruguayan electricity system shows an hourly curve that has the maximum 
around 9 p.m. and the minimum near 4 a.m.  The forecast of the annual energy consumption is 
displayed in Table 2. 

 

Year 2009 2010 2011 2012 2013 2014 2015 

GWh 8850 9204 9526 9860 10205 10562 10931 

 
Table 2. Forecast of the Uruguayan energy load. 
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3 Methodology. 
 

3.1 The optimal operation policy and the Future Cost function.. 
The operation optimization of a hydrothermal system is a complex problem. This is because we 
are dealing with a system having reservoirs, so the issue of how to use the stocked resources is 
not only how much to use of each stock but also when to use them. This is a classical 
optimization problem [5]. A generic description follows to ease the explanation of the proposed 
methodology.  

The problem can be stated as the optimal control problem of a dynamical system as the one 
sketched in Figure 1. 

 
Figure 1. Sketch of the dynamical system that models the electric system and its operation. 

 

The inputs of the system are classified in two groups: non-controllable (“r”) and controllable 
(“u”). The state of the system is represented by a vector “x”, while “y” is the set of outputs. The 
“info” input to the Operator takes into account additional information available to the Operator; 
in this study the climate forecast associated to N3.4 index. A forecast of the non-controllable 
inputs “r” is also used by the Operator and is represented by the dotted line. 

The controllable variables “u” consists typically of: the committed power at each generation unit 
of the fuel fired plants, the amount of water spilled and turbined in the hydroelectric plants, and 
the power fluxes in the links with other power systems. 

The state vector “x” captures all past and current information that is relevant to compute the 
future evolution of the system with known future inputs. It comprises the volume of water in the 
reservoirs, the information that represents the wet or dry condition and any other necessary 
information to compute the future system.  The state of the system results from its  

We formulate an optimization problem where the objective is to minimize the operation cost: fuel 
consumption plus imports plus the country cost of fail in supplying the energy demand. The 
computation is discretized in a set of consecutive stages or time steps. The production costs of 
each thermal unit and the cost of fail is known at each time step. Water in the reservoirs does not 
have an explicit cost so the production cost of hydroelectric plants is not predefined.  

The present use of stocked water potentially increases future productions costs. The preservation 
of water today for a later use may reduce production costs in the future, but it certainly increases 
the cost today due to the additional thermal generation that will be needed. This is the core of the 
problem, to find a policy of use of stocked resources that balance present and future costs. 

We thus face an optimization problem: to minimize a cost function subject to several constraints 
-including the dynamic of the system- where the solution must be the expected minimum cost 
over the ensemble of possible realizations of the stochastic process “r”. A good introduction on 
how to build the problem equations can be found in [6]. 

There are well known strategies to face this problem. The most classical is called Stochastic 
Dynamic Programming (SDP)[5]. For this study, the SimSEE software [7] was used to run a 
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classical SDP algorithm, which computes the cost function from future back to present. To 
proceed with the calculations, a time and space discretization is defined for each of the state 
variables of the system.  

The SDP algorithm gives as a result the Bellman function [5], also called Future Cost function, 
denoted in this work as FC(x, t), where “x” is the state of the system and “t” is time. FC(x,t) 
gives, at each time “t” and for each state “x”, the minimum expected cost of operation, from the 
time “t” to the end of times. 

The FC function implies the system operation policy. At each time step, when the optimization 
problem of operation is posed, it must be decided how much of each resource has to be 
committed. Storable resources that do not have an explicit cost (e.g., water in the reservoirs), 
instead have a future value that is minus the derivative of FC with respect to the resource, at the 
end of the time step. If the use of a volume dV at this stage implies savings in direct costs (fuel, 
fail, imports) that are larger (smaller) than the increase caused in FC due to the variation of the 
system state associated to the extraction of dV, the decision will be to (not) use that volume. For 
this reason, an operation policy is equivalent to an FC function.  

In this study, we are comparing the performance of two operators, each one with its own optimal 
operation policy resulting of the information known. The difference among them is that one is 
more informed than the other.  We shall call the less informed operator OPLI and OPMI to the 
more informed operator.  

The information that makes the difference among operators is related the climate forecast 
associated to the conditioning of inflows due to ENSO (represented byN3.4 index). For the 
computation of its optimal operation policy (or FC function), OPLI does not consider N3.4 
information, while OPMI does.  This info is considered in the model of hydraulic inflows to the 
reservoirs.  

SimSEE includes a model of these stochastic processes that generate synthetic series of inflow to 
the reservoirs. These series are used in a Monte Carlo simulation in the SDP algorithm. The 
difference between operators is reflected in these models of stochastic processes. When 
considering the expected inflows to the reservoirs, each operator visualizes them as a “cone” of 
possible values; the larger the uncertainty, the wider the cone. It is expected that the better 
informed OPMI has a lower variance than OPLI, and therefore a narrower cone, as shown in 
Figure 2. 

 
Figure 2. Uncertainty cones of non-controllable variables “r” -represented in the model by stochastic processes- 

associated with each operator 
 

These uncertainty cones should be conceived associated to probabilities. For example, it can be 
thought that, from the whole set of realizations of stochastic processes synthesized by the 
corresponding models, the cones represent values having a 90% confidence of not being 
exceeded, both in the sense of falling above the upper limit or below the lower limit. 

SimSEE has a tool -called “CEGH”- that identifies models for the stochastic processes, see the 
apendix of [8]. In the scope of this work, the stochastic processes of concern are mainly those 
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that generate the water inflows to the reservoirs. The historical available data is a 100-year long 
time series of the average weekly values of the inflows to the reservoirs of the three most 
important hydroelectric plants in the country.  

The model should be capable of generating synthetic series with the same properties as those of 
historical data, meaning that, at least, these synthetic series should maintain the amplitude 
histograms of the original series and that the inertia of the hidden stochastic processes is properly 
represented. The idea behind CEGH modelling is to build a set of non-linear transformations 
(NLT) and their inverses so as to be able to work in a “Gaussian world”. The reader can think of 
the NLT as a set of “lenses” that distort the amplitudes of the time series, making them look 
Gaussian. Since the linear transformation of a Gaussian process is also Gaussian, once in the 
distorted Gaussian world, we can make use of all the tools of linear system identification without 
losing the shape of the histograms. Once a linear model is obtained that captures the inertias and 
correlations of the (transformed) data series, we can use it to synthesize series in the Gaussian 
world and then apply the set of inverse NLT to transform those synthetic series to the real world. 

Two different CEGH models are built in this study. The first one considers the full 100 year of 
the historical data series in the design of the nonlinear transformations (NLT). The second one 
considers only a subset of 30 years of the historical data series, the analog years, selected based 
on the condition of ENSO (see section 3.3). 

The optimal policy obtained with SDP using the first model corresponds to the OPLI (Less 
Informed OPerator), which does not take into account the ENSO-related climate forecast, while 
the optimal policy obtained with the second model corresponds to an OPMI (More Informed 
OPerator), which considers ENSO conditioning of inflows. 

If we consider the distribution of inflows conditioned by N3.4 as a more accurate 
characterization of the expected inflow, we can say that the OPMI is more informed than the 
OPLI and therefore constitutes a better operation policy. This does not imply a lower cost of 
operation of the system for a particular realization, since the forecast is probabilistic and chance 
may favor the OPLI. However, if we consider expected values, the operation of OPLI is bound to 
be more costly than the operation of OPMI. 

 

3.2 Quantifying the economic value of the climate forecast. 
Given the two CEGH models and the corresponding operation policies, we can assess the 
economic impact associated to the information given by the N3.4 index regarding the expected 
inflows. We need to compare the operational costs associated with each operation policy in a 
given timeframe and for the same set of realizations of the stochastic processes. We carried out 
two set of simulations of the system, one with each of the operation policies, but with the same 
stochastic model, the one that considers only the analog years in the NLT, since it is our best 
model for the simulation period. Since OPMI was trained in that environment of uncertainty it 
will inevitably outperform –in a mean sense- OPLI, which resulted from the optimization in a 
broader uncertainty cone. In other words, the expected cost of operation should be lower for 
OPMI; we want to quantify how much lower. 

For each realization, operation policy and time step, the total cost of operation results from the 
sum of the direct costs (fuel + fails + imports) already incurred since the beginning of the 
simulation period to date, plus the value of the future cost function CF(x,t) evaluated at the state 
reached by the system at that instant. The future cost function was previously determined in the 
optimization process and depends on the uncertainty cone, so that CF(x,t) are different in each 
operation policy. Since OPMI is better informed, we consider CFOPMI(x,t) to be a better estimate 
of future costs. 
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Therefore, we can compute total cost function in different ways with different interpretations: 

 

Total cost predicted by OPLI 
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incurred during the operation and u the control variables associated with OPLI policy. The 
system reaches state x at time t as a consequence of the operation and the uncontrolled variables 
r. Brackets denote expected value over the ensemble of realizations r(t). 

 

Expected total costs for OPLI 
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future cost at the state x that results from applying OPLI policy is estimated with OPMI. 

 

Expected total costs for OPMI 
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differs from the one in the previous case through the dependence on the state x, which in turn 
depends on the previous operation policy. 

 

We can quantify the value of the climate forecast in two complementary ways. 

First we can compute the expected Value due to Reduction in Costs: 

( ) ( )tCTtCTtVRC OPMIeOPLI −= _)( ,    Eq. (1) 

which is null at t=t0, becomes non-zero as the system is operated with the different policies 
(OPMI and OPLI.) and reaches a final value at the end of the simulation period VCR(tf) which 
accounts for the expected total reduction in cost due to the additional information provided by 
N3.4 index. 

We can also compute the value of the information due to a more accurate prediction of total costs 
at the beginning of the period, which has an associated financial benefit since a more accurate 
amount of capital is frozen for the operation of the system. The error in the prediction of costs at 
the beginning of the period is given by: 

( ) ( ) ( )00_0 tCTtCTtErrP OPMIpOPLI −= ,         Eq. (2) 

which is -in general- nonzero due to the different future cost functions associated with each 
operation policy, since direct costs are zero at the initial time. The financial cost associated with 
the error in the prediction of costs can be estimated assuming a 4% annual interest rate as: 

ErrP×α , with ( ) 104.1 −= Yearsα  and Years the length of the simulation period. 

Therefore, the total value of the information is:  

ErrPtVRCVInfo f ×+= α)(         Eq. (3) 
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3.3 Subset of analog years. 
Extreme events of El Niño-Southern Oscillation (ENSO) peak towards the end of the calendar 
year, reaching the maximum amplitude of sea surface temperature anomalies respect to the mean 
annual cycle. The ENSO state for the entire period of interest (August 2009 to July 2010) was 
therefore characterized by a single number, the value of N3.4 index averaged from November 
2009 to January 2010. In view of the known relation between N3.4 and inflow to Rincón del 
Bonete [9], we consider that the historical inflow distribution limited to those years that share a 
similar value of N3.4 for the November to January trimester better represents the expected value 
compared to the entire historical set. We call this subset of years, the analog years. 

With this methodology, all weeks of the simulation period share the same subset of analog years, 
since these are determined by the N3.4 index during a fixed trimester of the year. We are aware 
of the strong seasonality of ENSO influence on regional precipitation [10]. However, we chose to 
adopt this simple definition of analog years for an initial study and leave seasonal variations for 
future work. The distribution of inflow values in the analog years is significantly different from 
the universe of inflows on record only for specific parts of the years, those seasons in which N3.4 
is known to condition the local climate. On other seasons the two distributions (entire record and 
analog years) are very similar and the limitation in the sampling cannot be justified. However, 
precisely because of the similarity in the distributions, no major influence in the results is 
expected from this simplification in the methodology. 

There is a tradeoff in the definition of the size of the subset of analog years. On the one hand, if it 
is too small, the interannual variability of inflow within years with similar ENSO conditions is 
not well captured. On the other hand, as the subset gets larger, it starts to incorporate analog 
years with increasingly different ENSO conditions. Experience shows that for a century long 
dataset it is reasonable to limit the size to 30 years, and that results don’t change substantially 
with small changes in the number of analog years. 

Of course, the value of N3.4 for November 2009 – January 2010 was not known in August 2009, 
at the beginning of the period of the retrospective simulation. Instead, we took the best prediction 
available at the time. NCEP climate forecast from August 2009 predicted a mean anomaly of 
1.7ºC for N3.4 index for the target trimester. It proved to be quite a skillful prediction since the 
observed anomaly turned out to be 1.68ºC. 
 

1911 1912 1913 1914 1915 1918 1919 1923 1925 1926 

1929 1957 1958 1963 1965 1968 1969 1972 1977 1980 

1983 1986 1987 1991 1992 1994 2002 2003 2004 2006 

 
Table 3. List of analog years, those with ENSO conditions in Nov.-Jan. similar to the ones during the simulated period. 

 

3.4 CEGH model calibration. 
SimSEE simulator includes a module that trains linear stochastic processes on given temporal 
time series, in our case inflow to the reservoirs. This results in a calibration of the linear system 
that will in turn be used to simulate the stochastic processes during optimization and simulation 
phases. This calibration, that accounts for the short term memory and cross correlations of the 
uncontrolled variables, takes place in “Gaussian space”. CEGH (for Correlation in Gaussian 
Space of amplitude Histograms) therefore includes the set of nonlinear transformations (NLT) 
previously mentioned that transforms temporal series from the real to Gaussian space and back. 

The identification of the model (determination of the NLT and the coefficients of the linear 
system) was separately done based on the whole set of 100 years of historical time series and on 
the 30 analog years only. Figure 3 shows the expected inflows to Bonete (B), Salto (S) and 
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Palmar (P) for the simulation period (August 2009 – July 2010) based on the entire dataset and 
on the analog. The larger inflows in analog years reflect the wetter conditions associated with El 
Niño years. 

 

Figure 3. Expected inflows for to Bonete (B), Salto (S) and Palmar (P) during the simulation period considering the entire dataset (dashed lines) 
and the analog years only (solid lines). 

 

The linear system in Gaussian space is of the form: S(k+1) = A* S(k) + B* W(k), where S is the 
state of the stochastic process and W a vector of Gaussian cross-independent white noise. 
Training such system in the two cases considered, renders the following set of coefficients (the 
matrices are three-dimensional because we are considering three reservoirs: Bonete, Salto and 
Palmar): 

Identified coefficients for the system trained in the entire 100 record 

 0.761 0.025 0.076  0.380 -0.181 -0.397 

A = 0.158 0.626 0.010     B = 0.614 0.253 0.174 

 0.121 -0.033 0.780  0.182 -0.477 0.243 

Identified coefficients for the system trained in the 30 analog years 

 0.680 0.038 0.099  0.496 -0.179 -0.392 

A = 0.111 0.606 0.020     B = 0.617 0.356 0.197 

 0.088 -0.005 0.748  0.261 -0.500 0.280 

 
Table 4. Coefficients of the linear system trained under the two cases considered. 

 

The two set of coefficients are similar, indicating that the main influence of ENSO conditioning 
on inflows is not in the short term memory and cross correlations but in the amplitude of inflow 
histograms, as can be deduced from Figure 3. This dominant effect is captured in the set of 
nonlinear transformations. 
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4 Results 
 

Figure 4 shows the two optimal policies (OPMI and OPLI) for the use of the stocked water of the 
Bonete reservoir during January-February 2010. The horizontal lines, TV and TG, correspond to 
the variable cost of the fuel fired units, Vapor Turbines using fuel oil and Gas Turbines using 
gasoil, respectively. 
 

 
 

Figure 4. Comparison of the policies of the operation of the Bonete reservoir, 
average for January and February 2010 in the expected hydrological state. 

 

The information provided by N3.4 index changes the policy of use of the reservoir at the 
beginning of 2010, lagging the dispatch of thermal units until the elevation of the reservoir is 
reduced 1.6 meters below the elevation at which the same thermal plant would be committed 
using the OPLI policy (see Figure 4). This is only an example, for a given state of the system, of 
the differences induced by the knowledge of Niño 3.4 index in the optimal operation policy. It 
implies that the estimation of the value of the stocked water at that time is higher for OPLI as 
compared to OPMI, which is confirmed in Figure 6. Other consequences of the different 
information considered by the operators of the system are shown below.  

Figure 5 shows the expected value of the Bonete reservoir level for both operation policies. The 
upper curve corresponds to the OPLI operation, which does not consider ENSO-related wet 
climate forecast and is therefore more conservative with water management. The initial level is 
set to be the same in both simulations. The final levels are also the same for both operators, 
which is consistent with the fact that by the end of the period (one year) the impact of the 
different information considered by the operators at the starting time vanishes. 
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Figure 5. Expected evolution of the elevation of Bonete reservoir. 

Fig. 6 shows the expected value of water in the Bonete reservoir. It can be seen that the OPLI 
operation (black curve) is significantly more conservative (higher value of water) compared to 
OPMI during the first several months of the simulation. Since both operators start from the same 
initial condition, the more conservative management of OPLI results in higher levels of the 
reservoir (Figure 5). The larger volumes of stocked water affect the value of water which thus 
starts to decrease. Only by March 2010 does the expected value of water for OPLI fall below that 
of OPMI. At this point OPLI will start, for the first time in the period, to turbine more water than 
OPMI (see Figure 7). 

 
Figure 6. Expected evolution of the value of the water stored at Bonete reservoir. 
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Figure 7 shows the expected weekly average of turbined and spilled flow rates for both 
operations and inflows to Bonete reservoir. At the beginning of the period, it is observed that the 
OPMI starts turbining far more water than OPLI in an attempt to reduce future spilling. This is 
because, based on the Niño 3.4 index information, OPMI expects a wetter season and higher 
inflows than the OPLI. 

 
Figure 7. Expected operation of the Bonete hydroelectric plant. 

We can see that, in November and December 2009, both operators have considerable spilling. 
However, those of OPMI are somewhat lower. The same happens at the beginning of 2010 
winter when high inflows are expected once more. Again, thanks to the lower level of operation 
of the reservoir, OPMI manages to have lower spilling rates even though the operator is turbining 
less water than OPLI at that time. 

Table 5 shows the different use of water during the whole period for both operators, OPMI and 
OPLI, as percent of the incoming volume and the relation among them.  

 

 Spilled Turbined Stored 
OPMI 33% 46% 21% 
OPLI 38% 40% 21% 

OPLI/OPMI 1.17 0.89 0.99 
 

Table 5. Use of the water for each operation policy (see text) 
 

The OPLI spills 17% more water and turbines 11% less than the OPMI. Both operators store 
21% of the inflow volume, which is consistent with Figure 5 where it is shown that both the 
initial and final levels are the same for both operators. It is important to note that the OPMI 
succeeds in reducing the spilled water. 

Fig. 8 shows the expected value of operation cost accumulated since the beginning of the period 
for each operator (left axis) and its difference (right axis). The expected values of operation costs 
(fuel + fail + imports) during the year add up to 360 MUSD and 331 MUSD for the OPLI and the 
OPMI respectively. The accumulated over cost of the OPLI with respect to the OPMI is 30 
MUSD (about 10% of the yearly cost).  
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Figure 8. Expected evolution of the expected value of the accumulated operational costs. 

 

Figure 9 shows, for each time step, the Value due to Reduction in Costs (VRC), and the Error in 
the Prediction of costs (ErrP), as defined in Eqs. 1 and 2 respectively. 

 
Figure 9. Value of N3.4 index information available on August 1st 2009. Evolution of the VRC and ErrP measures. 

 

“ErrP” measures the prediction error in the total cost of the OPLI with respect to OPMI. At the 
beginning of the period, that value reaches 167 MUSD. This means that, at that time, the OPLI 
makes a cost estimate for the year, which is 167 MUSD higher than the OPMI estimate. “VRC” 
shows, at each time, the over cost attributable to the OPLI lack of climatic information. As was 
already mentioned, at the end of the period over cost equals 30 MUSD.  The value of information 
provided by N3.4 index on August 2009, as given by Eq. 3, amounts to 30 + 0.04*167 =  
36.7 MUSD.  
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5 Discussion, conclusions and future work. 
ENSO is known to affect precipitation and therefore influx to the reservoir of the hydroelectric 
dams in Uruguay. A methodology was developed to take consideration of this information 
(through the N3.4 index) in the optimal dispatch planning of Uruguayan energy system. 
Optimization and simulations were carried out for a one-year-long case study starting in August 
2009 when a warm event (El Niño) was developing in the equatorial Pacific. 

The results for the case study implemented are quite significant. The operator that takes into 
account N3.4 information has an expected saving of 30 MUSD when compared with the operator 
that ignored the climate forecast associated to ENSO. This saving is approximately 10% of the 
expected operation cost for the 12 months considered. A component of this savings is financial, 
due to do the better capacity of the informed operator to forecast the operation cost of the period. 
For this case, the less informed operator overestimates the operation cost of the period in 150 
MUSD, equivalent to 45% of the operation cost estimated by the more informed operator. The 
rest of the savings comes from lower direct costs due to a better management of the reservoirs, 
where spilling is reduced in 17%.  In years of very low inflows, there is very little room for water 
management and no risk of spilling water from the reservoirs, so different operation policies will 
have little differences in the direct costs incurred in the long run. However, the savings due to a 
better initial prediction of total costs remain valid even if the climate forecast is a dry one rather 
than a wet one. 

This individual case study is highly promising of the potential usefulness of climatic information 
to improve the operation of the electrical system of Uruguay. Nevertheless, there are many 
shortcomings in the methodology that limit the scope to which these results can be generalized. 
Each of these shortcomings in turn indicates a possible line of future development. We end up by 
addressing a few of them. 

Skill of the climate forecast. We assumed that the more informed operator is indeed better 
informed. Given a methodology to incorporate climate forecasts to the operation of the system, 
which in this study consists on the simple N3.4 analog years approach, its skill and impact needs 
to be assessed in a large number of cases to account for the probabilistic nature of the climate 
forecast. In this study we entirely skipped this issue concentrating on the impact of the forecast 
on the operation and economic outcome for a particular case. It is worth mentioning that 
precipitation over Bonete basin was larger than climatology in each of the first 7 months of the 
period considered and that the total precipitation for that period was more than twice the 
climatological value. Still, this information is only anecdotal and does not substitute for a 
rigorous analysis of skill and impact of forecasts. 

Non-deterministic forecast of ENSO: ENSO predictions are subject to errors, although the skill 
has consistently improved over the years. This depends partly on forecast lag, but also on the 
state of the coupled ocean-atmosphere system over the equatorial Pacific. In the future, a 
probabilistic prediction of ENSO (through N3.4 index or other) could be included in the 
generation of the stochastic processes. This approach will become inevitable if the optimization 
and simulation period extends beyond the predictability threshold for ENSO, which has already 
been stretched in this study. In particular, for multiyear planning simulations, there will be a need 
to incorporate a model that captures the dynamics of ENSO. 

Seasonality and lack of predictability. Both shortcomings were already highlighted previously. 
The analog year approach needs to be generalized to account for the seasonality of ENSO signal 
in the regional climate. One way could be to define the analog years for each week of the year. 
During many weeks, though, there will not be a defined signal and the conditioned distribution 
may not differ from the entire historical record, in particular during ENSO neutral years. In 
principle, this does not constitute a problem for the methodology. Should there be other predictor 
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of the local climate (i.e. the Atlantic Ocean), different indeces could easily be incorporated to this 
methodology as well. 

After the fact evaluations. This study was performed entirely with information available on 
August 2009.  Once the influx time series for the period becomes known, it is interesting to 
perform evaluations incorporating the new information. The total cost with each of the operation 
policies, OPLI and OPMI, could be computed for the realized influx time series. Moreover, a 
Perfect OPerator (OPP) policy could be assessed assuming the realized time series known at the 
initial time, redoing the optimization and, finally, computing the cost of OPP with the realized 
(and previously known) inflow. In this way, an upper bound of the value of the unknown 
information can be found. 
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