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ABSTRACT

In this work the Fan Chirp Transform (FChT), which provides an
acute representation of harmonically related linear chirp signals,
is applied to the analysis of pitch content in polyphonic music.
The implementation introduced was devised to be computation-
ally manageable and enables the generalization of the FChT for
the analysis of non-linear chirps. The combination with the Con-
stant Q Transform is explored to build a multi-resolution FChT.
An existing method to compute pitch salience from the FChT is
improved and adapted to handle polyphonic music. In this way
a useful melodic content visualization tool is obtained. The re-
sults of a frame based melody detection evaluation indicate that
the introduced technique is very promising as a front-end for mu-
sic analysis.

1. INTRODUCTION

Most real signals (for instance, music signals) are non-stationary
by nature. Moreover, usually an important part of the information
of interest has to do with the non stationarity (beginning and end
of events, modulations, drifts, etc). For this reason, the develop-
ment of time-frequency representations for the analysis of signals
whose spectral content varies in time is an active field of research
in signal processing [1]. The representation is commonly adapted
to the signal in order to enhance significant events so as to facili-
tate the detection, estimation or classification. An alternative goal
is to obtain a sparse representation for compression or denoising.
In some cases the elements of the sparse representation become
associated with salient features of the signal thus also providing
feature extraction [2].

The Short Time Fourier Transform (STFT) [3] is the standard
method for time-frequency analysis. This representation is ap-
propriate under the assumption that the signal is stationary within
the analysis frame. In addition, time-frequency resolution is con-
stant in the STFT. However, for the analysis of music signals a
non uniform tiling of the time-frequency plane is highly desired.
Higher frequency resolution is needed in the low and mid frequen-
cies where there is a higher density of harmonics. On the contrary,
frequency modulation (typical of the singing voice rapid pitch fluc-
tuations) calls for improved time resolution in higher frequencies.
Different multi-resolution time-frequency alternatives to the STFT
have been proposed such as the Constant-Q Transform (CQT) [4].

Precisely representing frequency modulated signals, like singing
voice, is a challenging problem in signal processing. Many time-
frequency transforms can be applied for this purpose. The most
popular quadratic time-frequency representation is the Wigner-Ville
Distribution (WVD), which offers good time-frequency localiza-
tion but suffers from interfering cross-terms. Several alternatives

were proposed to attenuate the interferences such as the Smoothed
Pseudo WVD and other Cohen class distributions [3], but with
the side effect of resolution loss due to the smoothing. A dif-
ferent approach to perform the analysis is considering the projec-
tion over frequency modulated sinusoids (chirps), in order to ob-
tain a non-Cartesian tiling of the time-frequency plane that closely
matches the pitch change rate. Among the chirp-based transforms,
the Chirplet Transform [5] and the Fractional Fourier Transform
[6] involve the scalar product between the signal and linear chirps
(linear FM), and can reach optimal resolution for a single compo-
nent linear chirp. However, many sounds present in music (e.g.
voice) have an harmonic structure, and these transforms are not
able to offer optimal resolution simultaneously for all the partials
of a harmonic chirp (harmonically related chirps). In the case of
harmonic signals, the Fan Chirp Transform (FChT) [7] is better
suited as it provides optimal time-frequency localization in a “fan”
geometry. The FChT can be considered as a time warping followed
by a Fourier Transform, which enables an efficient implementation
using the FFT. Although many of these techniques were applied to
speech [8], the use of time-frequency representations other than the
STFT for music analysis remains rather scarce [2, 9] and in par-
ticular the FChT to the best of our knowledge has almost not been
explored for this purpose, except a very few exceptions [10, 11].
See figures 1 and 2 for a comparison of different time-frequency
representations applied to a music audio excerpt.

In this work the FChT is applied to the analysis of pitch con-
tent in polyphonic music. Besides, it is combined with the CQT to
provide time-frequency multi-resolution in the fan geometry. The
formulation and implementation of the FChT differ from the pro-
posed in [7]. The goal of the formulation is to obtain a more acute
representation of linear chirps. A positive byproduct is that it also
enables the application of arbitrary warpings in order to analyze
non-linear chirps straightforwardly. In addition, the implementa-
tion is designed with an emphasis on computational cost. Among
the various existing approaches for pitch salience computation, the
technique adopted in this work is based on gathering harmonically
related peaks of the FChT as proposed in [8], which is improved
and adapted to deal with polyphonic music. Finally the applica-
tion of the FChT to melodic content visualization and automatic
melody detection is illustrated.

2. FAN CHIRP TRANSFORM

2.1. Formulation

In this work, the definition of the FChT adopted is,

X(f, α) ,

Z

∞

−∞

x(t) φ′

α(t) e−j2πfφα(t)dt, (1)
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Figure 1: Time-frequency representations comparison for an audio excerpt (which is used throughout the article) of the music file
“pop1.wav” from the MIREX [12] melody extraction test set. It consist of three simultaneous prominent singing voices in the first part
followed by a single voice in the second part, and a rather soft accompaniment whithout percussion. The representations depicted are:
Spectrograms for window length of4096 and2048 samples atfs = 44100 Hz, a Short Time CQT and a Short Time FChT using the herein
proposed method. Note the improved time-frequency resolution for the most prominent singing voice in the latter representation.

whereφα(t) = (1 + 1
2
αt) t, is a time warping function. This

was formulated independently from the original work [7], so the
properties are slightly different as will be indicated later. Notice
that by the variable changeτ = φα(t), the formulation becomes,

X(f, α) =

Z

∞

−∞

x(φ−1
α (τ)) e−j2πfτdτ, (2)

which can be regarded as the Fourier Transform of a time warped
version of the signalx(t), and enables an efficient implementation
based on the FFT. The goal pursued is to obtain an acute represen-
tation of linear chirp signals of the formxc(t, f) = ej2πfφα(t).
Considering a limited analysis time support, the analysis basis is

Γ = {γk}k∈Z, γk = φ′

α(t) e
j2π k

T̆
φα(t), t ∈

h

φ−1
α (− T̆

2
), φ−1

α ( T̆
2
)
i

.

The inner product of the chirp and a basis element results in,

D

xch(t, 2π l

T̆
), γk

E

=
1

T̆

Z φ−1

α
( T̆

2
)

φ
−1
α (− T̆

2
)

φ′

α(t) e
j2π

l−k

T̆
φα(t)

dt

=
1

T̆

Z T̆

2

−
T̆

2

e
j2π

l−k

T̆
τ
dτ = δ[l − k], (3)

which denotes that only one element of the basis represents the
chirp. Note that the limits of integration include an integer number
of cycles of the chirp, in the warped and the original time interval.

In [7] the basis are designed to be orthonormal, in order to ob-
tain perfect reconstruction directly from the analysis basis. How-
ever, its response to a chirp of constant amplitude is not repre-
sented by a single element. It is important to note that when the
signal is windowed the orthogonality disappears so as the perfect
reconstruction. In a similar way, result given by equation 3 does
not hold anymore. To that end, it is worth defining a more appro-
priate goal, that is what kind of response would be desirable for
a time limited chirp. The solution proposed in this work permits
to achieve a delta convolved with the Fourier Transform of a well-
behaved analysis window. This motivates the above definition of
the analysis basisΓ and the application of the analysis window to
the time warped signal (which also differs from [7]). Then, the
proposed FChT for a time limited support is,

Xw(f, α) =

Z

∞

−∞

x(t) w(φα(t)) φ′

α(t) e−j2πfφα(t)dt (4)

wherew(t) stands for a time limited window, such as Hann.
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Figure 2:Time-frequency representations comparison for a frame
of the audio excerpt at time instantt = 2.66s. The prominent
singing voice has a very high pitch change rate at this instant. This
produces a blurry representation of the strongly non-stationary
higher harmonics in the Fourier Transform. The representation
of these harmonics is improved with the CQT because of the use
of shorter time windows in high frequency. The FChT exhibits a
more clear harmonic peak structure for the fan chirp rate that best
represents the pitch change rate of the singing voice.

Consider the case of a signal composed ofL harmonically re-
lated linear chirps,xhc(t, f0, L) =

PL

k=1 ej2πkf0φα . All compo-
nents share the same fan chirp rateα, so applying the appropriate
warpingφα delivers constant frequency harmonically related si-
nusoidal components. The FChT representation therefore shows
a sharp harmonic structure as it is composed of deltas convolved
with the Fourier Transform of the window.

2.2. Discrete time implementation

As stated before, the FChT of a signalx(t) can be computed by the
Fourier Transform of the time warped signalx̆(t) = x

`

φ−1
α (t)

´

,
where

φ−1
α (t) = − 1

α
+

√
1 + 2αt

α
. (5)

This warping function transforms linear chirps of instantaneous
frequencyν(t) = (1 + αt) f into sinusoids of frequency̆ν(t) =
f . In practice, the original signal is processed in short time frames.
In order to properly represent it with its warped counterpart, tem-
poral warping is implemented by adopting the following criteria.
After the time warping, the frequency of the resulting sinusoid is
the frequency of the linear chirp at the centre of the analysis win-
dow. Besides, the amplitude value of the warped signal remains
unchanged in the central instant of the window. Note this implies
that the duration of the original signal and the warped signal may
be different and is not imposed in [7].

Let x[n] = x((n−(N −1)/2)/fs− ta) be a finite length sig-
nal frame at central timeta, wheren = 0, . . . , N−1. When work-
ing with discrete signals, the temporal warping is implemented
by non-uniform resampling ofx[n]. If the sampling frequency
is fs, the frame duration isT = (N − 1) /fs. The time in-

stant corresponding to the n-th sample ofx[n] is defined astn =
(n − (N − 1)/2) /fs. Thus, the time domain of the signal is
Dx = [−T/2, T/2]. Similarly, let x̆α[m] be the time warped
signal, withm = 0, . . . , M − 1, and sampling frequency̆fs. Its
duration is then̆T = (M − 1) /f̆s and the time instant of the m-th
sample is defined as̆tm = (m − (M − 1)/2) /f̆s. The warped
time domain isDx̆ = [−T̆ /2, T̆ /2]. To compute the sample cor-
responding to time instant̆tm of the warped signal, it is necessary
to evaluatex[n] at time instanttm = φ−1

α (t̆m). As this instant
may not coincide with a sampling time, the evaluation must be
done using some interpolation technique. Time warping process
is illustrated in figure 3. The last step of the FChT is to apply an
analysis window to the time warped signal and compute the DFT.

The transform parameters are the number of samplesM and
the sampling ratĕfs. They should be selected in order to avoid
aliasing in the resampling process of the original signalx[n]. Given
a sampling ratefs, suppose that the signal is band limited tofmax

(with fmax ≤ fs/2). To setM andf̆s to avoid aliasing, the max-
imum resamplig periodTmax

s must fulfill Tmax
s ≤ 1/(2fmax). If

α ≥ 0, the previous condition is met if,

`

φ−1
α

´′

 

− T̆

2

!

≤ Tmax
s

T̆s

=
f̆s

2fmax
,

whereT̆s = 1/f̆s is the sampling period of̆xα[m]. Using equation
5 and considering that̆T = (M − 1) /f̆s, the condition becomes,

f̆s ≥ 2fmax
q

1 − |α|M−1

f̆s

.

The lengthN of the analysis window must be large enough to be
able to interpolatex[n] at every time instanttm. Specifically, it
must fulfill T/2 ≥ maxm |tm|. If α ≥ 0, maxm |tm| = |t0| =

|φ−1
α (−T̆ /2)| and thusT/2 ≥ |φ−1

α (−T̆ /2)|, which leads to

N > 2fs

1 −
q

1 − |α|M−1

f̆s

|α| .

In the current implementation, the discrete signal, originally
sampled at 44100 Hz, is first lowpass filtered to limit the spectral
content up tofmax = 10000 Hz, and then upsampled to double the
sampling rate, sofs = 88200 Hz. The computation of the warped
samples is done using linear interpolation. The above mentioned
upsampling is performed to obtain a more accurate and efficient
interpolation. The maximum absolute value of the fan chirp rate
employed isαmax = 6. With this parameters, values ofM =

2048, f̆s = 30000 Hz andN = 10000 meet the above conditions.
Note that proposed implementation permits to chooseM as a small
power of two to take advantage of the FFT efficiency.

Another consideration regarding the implementation, is that
time warping design is performed numerically based on relative
instantaneous frequency functions. More precisely, the design be-
gins with the selection of the warping instantaneous frequency
fr[n] for each sample. Then, the functionφ[n] is obtained by nu-
merical integration offr[n]. Finally the functionφ−1[n], needed
to compute the resampling times, is obtained by numerical inver-
sion. This allows the implementation of arbitrary warpings func-
tions instead of only linear warpings.
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Figure 3:Warping process illustration. A sinusoid is obtained by
appropriately warping a linear chirp. Note that the central time
instant remains the same and the time supports are different. The
FChT of the linear chirp shows a sharp high peak.

3. FAN CHIRP TRANSFORM FOR MUSIC
REPRESENTATION

In a practical situation, real signals such as speech or music sounds
can be assimilated to harmonically related linear chirps only within
short time intervals, where the evolution of frequency components
can be approximated by a first order model. This suggests the ap-
plication of the FChT to consecutive short time signal frames, so as
to build a time-frequency representation as a generalization of the
spectrogram [7]. In the monophonic case, a single value of the fan
chirp rateα that best matches the signal pitch variation rate should
be determined for each frame. This is the key factor to obtain a de-
tailed representation using the FChT. Different approaches could
be followed, such as predicting the pitch evolution and estimating
α as the relative derivative of the pitch [7].

In the polyphonic case, there is no single appropriate value
of α, because the multiple harmonic sounds present are likely to
change their fundamental frequency (f0) differently within the anal-
ysis frame. For this reason, a multi-dimensional representation for
each frame seems better suited in this case, consisting in several
FChT instances with differentα values. A given FChT is tuned
to represent one of the harmonic sounds with reduced spectrum
spread, whereas poorly representing the remaining ones. The se-
lection of a reduced set ofα values for each frame that produce
the better representation of each sound present, can be tackled by
means of sinusoidal modeling techniques as in [10]. In this work
a straightforward exhaustive approach is adopted, that consists in
computing a dense(f0, α) plane and selecting the best chirp rates
based on pitch salience. In addition, the pitch salience computa-
tion from the FChT produces itself a detailed representation of the
melodic content of the signal, that can be useful in several appli-
cations. This is described in detail in the following section.

4. PITCH SALIENCE COMPUTATION

The aim of pitch salience computation is to build a continuous
function that gives a prominence value for each fundamental fre-
quency in a certain range of interest. Ideally it shows pronounced
peaks at the positions corresponding to the true pitches present in
the signal frame. This detection function typically suffers from
the presence of spurious peaks at multiples and submultiples of
the true pitches, so some sort of refinement is required to reduce
this ambiguity. A common approach for pitch salience calcula-
tion is to define a fundamental frequency grid, and compute for
each frequency value a weighted sum of the partial amplitudes in
a whitened spectrum. A method of this kind was used in [13] for
melody extraction, which is formulated in the following according
to the log-spectrum gathering proposed in [8].

4.1. Gathered log-spectrum (GlogS)

The salience of a given fundamental frequency candidatef0 can
be obtained by gathering the log-spectrum at the positions of the
corresponding harmonics as [8],

ρ0(f0) =
1

nH

nH
X

i=1

log|S(if0)|, (6)

where|S(f)| is the power spectrum andnH is the number of har-
monics that are supposed to lie within the analysis bandwidth.
Linear interpolation from the discrete log-spectrum is applied to
estimate the values at arbitrary frequency positions. The loga-
rithm provides better results compared to the gathering of the lin-
ear spectrum. This makes sense, because the logarithm function
can be regarded as a kind of whitening in order to make the pitch
salience computation more robust against formant structure and
noise. With this respect, it is interesting to note that ap-norm with
0 < p < 1 is also appropriate and shows similar results. Note that
this seems coherent with the use of more robust norms which is
advocated in sparsity research. Therefore, the actual implementa-
tion is log(γ|S(if0)|+ 1) which adds the flexibility to custom the
norm applied by means of theγ parameter1.

4.2. Postprocessing of the gathered log-spectrum

The harmonic accumulation shows peaks not only at the position
of the true pitches, but also at multiples and submultiples (see fig-
ure 4). To handle the ambiguity produced by multiples, the follow-
ing simple non-linear processing is proposed in [8],

ρ1(f0) = ρ0(f0) − max
q∈N

ρ0(f0/q). (7)

This is quite effective in removing pitch candidates multiples of
the actual one (as can be seen in figure 4). When dealing with
monophonic signals this suppression is enough. If pitch estima-
tion is obtained as the position of the maximum ofρ1(f0), f̂0 =
arg maxρ1(f0), submultiple spurious peaks do not affect the es-
timation because their amplitude is necessarily lower than for the
true pitch. However, in the polyphonic case, submultiple peaks
should also be removed. For this reason, the detection function is
further processed to remove the (k-1)-th submultiple according to,

ρ2(f0) = ρ1(f0) − ak ρ1(kf0) (8)

1Higher values tend to a 0-norm while lower values tend to a 1-norm.
All the results reported correspond toγ = 10.
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Figure 4:Normalized gathered log spectrum and the postprocess-
ing stages for a frame of the audio excerpt att = 0.36s, with three
prominent simultaneous singing voices and low accompaniment.
Positions of each correspondingf0, multiples and first submulti-
ple are also depicted.

wherea is an attenuation factor. From the simulations conducted
it turned out that removing only the first submultiple (k = 2) is
commonly sufficient for melodic content visualization and melody
detection (see figure 4). For a single ideal harmonic sound, follow-
ing a similar reasoning to that of [8] appendix B, it can be shown
that the attenuation factor isa2 = 1/2. However, it can also be
shown that the variance ofρ0(f0) is proportional to fundamen-
tal frequency (see also [8] appendix B). In practice a true pitch
peak can be unnecessarily attenuated due to the large variance at
its multiple, so a more conservative attenuation factor is preferred.
Slightly better results were obtained over polyphonic music for
a2 = 1/3, and this is the value used for the reported results.

4.3. Normalization of the gathered log-spectrum

The variance increase withf0 is an undesired feature. When ap-
plied to melodic content visualization different frequency regions
are unbalanced and it leads to incorrect detections when pursuing
melody extraction. For this reason, the last step in pitch salience
computation is to normalizeρ2(f0) to zero mean and unit vari-
ance. To do this, the mean and the variance ofρ2(f0) are collected
at eachf0 for every frame from a music collection (the complete
RWC Popular Music Database [14] was used for this purpose).
Each one of these statistics are then approximated by a second or-
der polynomial, as illustrated in figure 5. The polynomials evalu-
ated at eachf0 are the model used to obtain a normalized gathered
log-spectrumρ2(f0). The fundamental frequency grid used is log-
arithmically spaced with 192 points per octave.

4.4. Fan chirp rate selection using pitch salience

As early mentioned, theα values that best represent the different
harmonic sounds in a signal frame are selected by means of pitch
salience. Several FChT instances are computed for each frame
using differentα values. For each FChT a gathered log spectrum is
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Figure 5:Gathered log spectrum normalization model.

calculated as described above, so as to build a dense pitch salience
planeρ2(f0, α). See figure 6 for an example of this dense pitch
salience plane. Given a sound source of fundamental frequency
f̂0, the energy of its harmonics is more concentrated at the FChT
instance corresponding to the best matchingα valueα̂. Therefore,
the value ofρ2(f̂0, α̂) is the highest among the different available
α values. For this reason, a differentα value is selected for each
f0 in the grid, giving a single pitch salience value for eachf0 (see
figure 6). The reduced set ofα values can be selected according to
their corresponding pitch salience.

Pitch salience plane for fan chirp rate selection
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Figure 6:Pitch salience planeρ2(f0, α) for a frame of the audio
excerpt att = 0.27s. Prominent salience peaks (darker regions)
can be distinguished corresponding to the three singing voices.
Note that two of them are located approximately atα = 0 and
one atα = 1.3. This indicates that two of the voices are quite
stationary within the frame while the other is increasing its pitch.
The maximum pitch salience value for eachf0 is also depicted.

5. MULTI-RESOLUTION FAN CHIRP TRANSFORM

5.1. Constant Q Transform

The CQT provides a variable time-frequency resolution in such
a way that good frequency resolution in the low frequencies and
good time resolution in the high frequencies is obtained simulta-
neously. It is calculated using a different time window length for
each frequency bin. The window length is chosen so as to contain
the same effective number of oscillations of the corresponding fre-
quency. Among the various existing implementations of the CQT,
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in this article the IIR CQT [15] is selected, which gives a good
compromise between computational cost and design flexibility.

5.2. Combination with the Fan Chirp Transform

As mentioned before, the benefits from using a CQT transform in-
stead of a fixed time window rely on the non stationarity of the
signal, such as voice. The higher partials of a harmonic chirp are
particularly non stationary. Using the classical STFT their repre-
sentation is blurry. The use of a CQT with an adequate value of
Q makes it possible to achieve a good time-frequency resolution
compromise for non stationary signals along all the spectrum.

Although the FChT using linear warpings is devised to anal-
yse non stationary signals, the analysis may be further improved
because of two main reasons. The first is that the range of fan
chirp ratesα used in the analysis is discretized. If the signal chirp
rate does not closely matches any of the availableα values, higher
partials behave non stationarely after the time warping. Using the
CQT, with a relatively highQ value, alleviates this problem. As a
result, the number of analysisα values can be diminished, reduc-
ing the computational cost at no significant performance loss. The
second reason is that considering a linear evolution of the instanta-
neous fundamental frequency could be a crude approximation for
a signal frame with a non linear pitch evolution. In this case, the
warping once again outputs a non stationary signal and the CQT is
beneficial, specially for the higher partials (see figure 7). However,
the addition of the CQT produces some degradation in the analy-
sis of a signal with a linear pitch evolution, so a relatively high Q
value should be chosen in order to obtain a good performance for
a wider set of signals.
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Figure 7:Example of the FChT analysis including the CQT for a
frame of the audio excerpt att = 2.68s. The singing voice has a
high pitch curvature at this instant. Adding the CQT enhances the
representation of the higher partials. Note also that the peak re-
gion in the pitch salience plane is much concentrated in frequency
and the range ofα values with significant salience is widen which
allows a more sparseα discretization.

6. APPLICATIONS

6.1. Pitch visualization

The pitch salience function of each frame obtained as described in
subsection 4.4 is used to build a F0gram that shows the temporal
evolution of pitch for all the harmonic sounds of a musical signal,
as can be seen in figure 8. Note that even in the case that two
sources coincide in time and frequency they can be correctly rep-
resented if their pitch change rate is different, which is observable
at timet = 0.23 s. It can also be seen the precise pitch contour
evolution obtained, even for severe pitch fluctuations. Addition-
ally, the gathered log spectrum normalization provides a balanced
contrast of the F0gram, without spurious noticeable peaks when
no harmonic sound is present. A drawback of the selected pitch
salience function is that it tends to underestimate low frequency
harmonic sounds with a small number of prominent partials. This
is the case for the accompaniment in the selected example, that
only appears when no singing voice is present.

This kind of visualization tool can be useful itself for ana-
lyzing performance expressive features such as glissando, vibrato,
and pitch slides, that turn out clearly distinguishable.

6.2. Melody detection

A frame based melody detection evaluation was conducted to asses
the usefulness of the proposed FChT-based method for music anal-
ysis. To do this, two different labeled databases were consid-
ered, namely the 2004-2005 MIREX [12] melody extraction test
set (only vocal files) and the RWC Popular Music database [14].
The former comprises 21 music excerpts while the latter contains
100 complete songs, for a total duration of 8 minutes and 6 hours
respectively. The RWC is a more difficult dataset due to higher
polyphony (including prominent percussion) and dynamic com-
pression, whereas the MIREX although much smaller is publicly
available and more diverse (e.g. includes opera). For each frame
the most prominent F0gram peaks were selected and their corre-
sponding fundamental frequencies were considered as main melody
pitch candidates. Only those frames for which the melody was
present according to the labels were taken into account to compute
the evaluation measure according to,

score(f0) = min{1, max{0, (tolmax−∆f0)/(tolmax−tolmin)}}

where∆f0 = 100|f0 − fgt
0 |/fgt

0 is the relative error between
a candidate and the ground truth, and the tolerances tolmax and
tolmin correspond to 3% and 1% respectively. This represents a
strict soft thresholding of the estimation performance2.

Considering that the pitch of a main melody is not equiproba-
ble in thef0 selected range, it is reasonable to include this a priori
information in the selection of candidates. To do this, salience
is weighted by a gaussian centered at MIDI note 60 (C4) and
with a standard deviation of an octave and a half. This values
were selected considering the main melody pitch distribution of
the databases (see figure 9), but setting the model parameters to
favour generalization (in particular tripling the standard deviation).
In figure 10 an example of the melody detection result is depicted.
Note that the first candidate correctly follows the main melody

2Note that this performance measure is stricter and more discriminative
than the binary 3% threshold used in MIREX. This was devised in order to
better distinguish the performance of the different methods evaluated and
considering that the ground truth labels are not perfectly accurate.
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F0gram: α with highest salience for each fundamental frequency
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Figure 8: Example of melodic content visualization for the selected audio excerpt. Thepitch contour of the three simultaneous singing
voices followed by a single voice can be clearly appreciated. Note that the 2nd submultiple is noticeable as it has not been attenuated.

First three melody candidates obtained from the F0gram.
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Figure 10:Example of melody detection. The three first candidates and a±3% band centered at the label are displayed. First candidate
tends to correctly match the melody while the remianing ones usually chose other secondary voice. Note that not attenuated submultiples
mislead the detection of these secondary sources.

when it is the most prominent. The fan chirp rate estimated for the
first candidate matches the actual value extracted from labels, as
shown in figure 11. This information can be further exploited, for
example when performing the temporal tracking.

Table 1 shows the scores obtained for the different methods
when applied to each database. The optimal parameter values were
grid searched for every method. It turned out that for the FChT-
based methods similar results were obtained for parameters around
the values specified in section 2.2 and different number ofα val-
ues. Results reported correspond to 15 fan chirp rates. In this case,
running time in a desktop computer reaches real time for a Matlab
and C code implementation of the FChT3.

The results indicate that the proposed improvements to the
pitch salience computation (submultiple attenuation, normaliza-
tion and a priori model) contribute to a significant performance

3The implementation is available at
http://iie.fing.edu.uy/~pcancela/fcht.

increase (compare the two STFT results). Further performance
improvement is achieved by the use of the FChT. Although the
combination of the FChT and the CQT leads to a better represen-
tation of some frames, its impact into the melody detection results
is marginal. This is related to the fact that higher partials are less
influential in the pitch salience value given their lower amplitude.
Additionally, the number of frames with highly non-linear pitch
evolution represent a small amount of the total.

7. CONCLUSIONS AND FURTHER WORK

In this work, a non classical time-frequency representation, namely
the FChT, was applied to polyphonic music analysis. The formu-
lation presented provides an acute representation of harmonically
related linear chirp signals. The implementation introduced was
devised to be computationally manageable and enables the use of
non linear warpings. Both the formulation and the implementation
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Figure 9:Pitch preference function (mean = 60, stdev = 18) and
melody pitch histogram for RWC Popular and MIREX data.
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Figure 11: Estimated fan chirp rate for the first candidate and
actual value extracted from labels.

differ from early proposals [7]. The combination with the CQT
was explored to build a multi-resolution FChT which improves the
representation of harmonic signals with non linear pitch variations.
In order to precisely represent the different pitched sources in a
signal using the FChT an existing method based on pitch salience
was adopted, which was improved and adapted to handle poly-
phonic music. The pitch salience computation from the FChT pro-
vides itself a useful melodic content visualization tool. Results
obtained for a frame based melody detection evaluation indicate
that the introduced F0gram is very promising as a front-end for
music analysis. A similar method to the herein described (adding
temporal tracking) was submitted to MIREX 2008 Audio Melody
Extraction Contest [13], performing best on Overall Accuracy.

Several applications will be tackled in future work (e.g. mul-
tiple f0 detection, sound source separation). Additionally, the use-
fulness of non linear warpings will be explored.
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